PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / musb / cppi_dma.c
blob904fb85d85a6c36811ce33ddbf0761beff21454c
1 /*
2 * Copyright (C) 2005-2006 by Texas Instruments
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
9 #include <linux/module.h>
10 #include <linux/platform_device.h>
11 #include <linux/slab.h>
12 #include <linux/usb.h>
14 #include "musb_core.h"
15 #include "musb_debug.h"
16 #include "cppi_dma.h"
19 /* CPPI DMA status 7-mar-2006:
21 * - See musb_{host,gadget}.c for more info
23 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
24 * which can easily saturate the CPU under non-mass-storage loads.
26 * NOTES 24-aug-2006 (2.6.18-rc4):
28 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
29 * evidently after the 1 byte packet was received and acked, the queue
30 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
31 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
32 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
33 * of its next (512 byte) packet. IRQ issues?
35 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
36 * evidently also directly update the RX and TX CSRs ... so audit all
37 * host and peripheral side DMA code to avoid CSR access after DMA has
38 * been started.
41 /* REVISIT now we can avoid preallocating these descriptors; or
42 * more simply, switch to a global freelist not per-channel ones.
43 * Note: at full speed, 64 descriptors == 4K bulk data.
45 #define NUM_TXCHAN_BD 64
46 #define NUM_RXCHAN_BD 64
48 static inline void cpu_drain_writebuffer(void)
50 wmb();
51 #ifdef CONFIG_CPU_ARM926T
52 /* REVISIT this "should not be needed",
53 * but lack of it sure seemed to hurt ...
55 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
56 #endif
59 static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
61 struct cppi_descriptor *bd = c->freelist;
63 if (bd)
64 c->freelist = bd->next;
65 return bd;
68 static inline void
69 cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
71 if (!bd)
72 return;
73 bd->next = c->freelist;
74 c->freelist = bd;
78 * Start DMA controller
80 * Initialize the DMA controller as necessary.
83 /* zero out entire rx state RAM entry for the channel */
84 static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
86 musb_writel(&rx->rx_skipbytes, 0, 0);
87 musb_writel(&rx->rx_head, 0, 0);
88 musb_writel(&rx->rx_sop, 0, 0);
89 musb_writel(&rx->rx_current, 0, 0);
90 musb_writel(&rx->rx_buf_current, 0, 0);
91 musb_writel(&rx->rx_len_len, 0, 0);
92 musb_writel(&rx->rx_cnt_cnt, 0, 0);
95 /* zero out entire tx state RAM entry for the channel */
96 static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
98 musb_writel(&tx->tx_head, 0, 0);
99 musb_writel(&tx->tx_buf, 0, 0);
100 musb_writel(&tx->tx_current, 0, 0);
101 musb_writel(&tx->tx_buf_current, 0, 0);
102 musb_writel(&tx->tx_info, 0, 0);
103 musb_writel(&tx->tx_rem_len, 0, 0);
104 /* musb_writel(&tx->tx_dummy, 0, 0); */
105 musb_writel(&tx->tx_complete, 0, ptr);
108 static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
110 int j;
112 /* initialize channel fields */
113 c->head = NULL;
114 c->tail = NULL;
115 c->last_processed = NULL;
116 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
117 c->controller = cppi;
118 c->is_rndis = 0;
119 c->freelist = NULL;
121 /* build the BD Free list for the channel */
122 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
123 struct cppi_descriptor *bd;
124 dma_addr_t dma;
126 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
127 bd->dma = dma;
128 cppi_bd_free(c, bd);
132 static int cppi_channel_abort(struct dma_channel *);
134 static void cppi_pool_free(struct cppi_channel *c)
136 struct cppi *cppi = c->controller;
137 struct cppi_descriptor *bd;
139 (void) cppi_channel_abort(&c->channel);
140 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
141 c->controller = NULL;
143 /* free all its bds */
144 bd = c->last_processed;
145 do {
146 if (bd)
147 dma_pool_free(cppi->pool, bd, bd->dma);
148 bd = cppi_bd_alloc(c);
149 } while (bd);
150 c->last_processed = NULL;
153 static void cppi_controller_start(struct cppi *controller)
155 void __iomem *tibase;
156 int i;
158 /* do whatever is necessary to start controller */
159 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
160 controller->tx[i].transmit = true;
161 controller->tx[i].index = i;
163 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
164 controller->rx[i].transmit = false;
165 controller->rx[i].index = i;
168 /* setup BD list on a per channel basis */
169 for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
170 cppi_pool_init(controller, controller->tx + i);
171 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
172 cppi_pool_init(controller, controller->rx + i);
174 tibase = controller->tibase;
175 INIT_LIST_HEAD(&controller->tx_complete);
177 /* initialise tx/rx channel head pointers to zero */
178 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
179 struct cppi_channel *tx_ch = controller->tx + i;
180 struct cppi_tx_stateram __iomem *tx;
182 INIT_LIST_HEAD(&tx_ch->tx_complete);
184 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
185 tx_ch->state_ram = tx;
186 cppi_reset_tx(tx, 0);
188 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
189 struct cppi_channel *rx_ch = controller->rx + i;
190 struct cppi_rx_stateram __iomem *rx;
192 INIT_LIST_HEAD(&rx_ch->tx_complete);
194 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
195 rx_ch->state_ram = rx;
196 cppi_reset_rx(rx);
199 /* enable individual cppi channels */
200 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
201 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
202 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
203 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
205 /* enable tx/rx CPPI control */
206 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
207 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
209 /* disable RNDIS mode, also host rx RNDIS autorequest */
210 musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
211 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
215 * Stop DMA controller
217 * De-Init the DMA controller as necessary.
220 static void cppi_controller_stop(struct cppi *controller)
222 void __iomem *tibase;
223 int i;
224 struct musb *musb;
226 musb = controller->musb;
228 tibase = controller->tibase;
229 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
230 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
231 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
232 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
233 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
235 dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
236 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
237 /* FIXME restructure of txdma to use bds like rxdma */
238 controller->tx[i].last_processed = NULL;
239 cppi_pool_free(controller->tx + i);
241 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
242 cppi_pool_free(controller->rx + i);
244 /* in Tx Case proper teardown is supported. We resort to disabling
245 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
246 * complete TX CPPI cannot be disabled.
248 /*disable tx/rx cppi */
249 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
250 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253 /* While dma channel is allocated, we only want the core irqs active
254 * for fault reports, otherwise we'd get irqs that we don't care about.
255 * Except for TX irqs, where dma done != fifo empty and reusable ...
257 * NOTE: docs don't say either way, but irq masking **enables** irqs.
259 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
261 static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
263 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
266 static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
268 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
273 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
274 * each transfer direction of a non-control endpoint, so allocating
275 * (and deallocating) is mostly a way to notice bad housekeeping on
276 * the software side. We assume the irqs are always active.
278 static struct dma_channel *
279 cppi_channel_allocate(struct dma_controller *c,
280 struct musb_hw_ep *ep, u8 transmit)
282 struct cppi *controller;
283 u8 index;
284 struct cppi_channel *cppi_ch;
285 void __iomem *tibase;
286 struct musb *musb;
288 controller = container_of(c, struct cppi, controller);
289 tibase = controller->tibase;
290 musb = controller->musb;
292 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
293 index = ep->epnum - 1;
295 /* return the corresponding CPPI Channel Handle, and
296 * probably disable the non-CPPI irq until we need it.
298 if (transmit) {
299 if (index >= ARRAY_SIZE(controller->tx)) {
300 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
301 return NULL;
303 cppi_ch = controller->tx + index;
304 } else {
305 if (index >= ARRAY_SIZE(controller->rx)) {
306 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
307 return NULL;
309 cppi_ch = controller->rx + index;
310 core_rxirq_disable(tibase, ep->epnum);
313 /* REVISIT make this an error later once the same driver code works
314 * with the other DMA engine too
316 if (cppi_ch->hw_ep)
317 dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
318 index, transmit ? 'T' : 'R', cppi_ch);
319 cppi_ch->hw_ep = ep;
320 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
321 cppi_ch->channel.max_len = 0x7fffffff;
323 dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
324 return &cppi_ch->channel;
327 /* Release a CPPI Channel. */
328 static void cppi_channel_release(struct dma_channel *channel)
330 struct cppi_channel *c;
331 void __iomem *tibase;
333 /* REVISIT: for paranoia, check state and abort if needed... */
335 c = container_of(channel, struct cppi_channel, channel);
336 tibase = c->controller->tibase;
337 if (!c->hw_ep)
338 dev_dbg(c->controller->musb->controller,
339 "releasing idle DMA channel %p\n", c);
340 else if (!c->transmit)
341 core_rxirq_enable(tibase, c->index + 1);
343 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
344 c->hw_ep = NULL;
345 channel->status = MUSB_DMA_STATUS_UNKNOWN;
348 /* Context: controller irqlocked */
349 static void
350 cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
352 void __iomem *base = c->controller->mregs;
353 struct cppi_rx_stateram __iomem *rx = c->state_ram;
355 musb_ep_select(base, c->index + 1);
357 dev_dbg(c->controller->musb->controller,
358 "RX DMA%d%s: %d left, csr %04x, "
359 "%08x H%08x S%08x C%08x, "
360 "B%08x L%08x %08x .. %08x"
361 "\n",
362 c->index, tag,
363 musb_readl(c->controller->tibase,
364 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
365 musb_readw(c->hw_ep->regs, MUSB_RXCSR),
367 musb_readl(&rx->rx_skipbytes, 0),
368 musb_readl(&rx->rx_head, 0),
369 musb_readl(&rx->rx_sop, 0),
370 musb_readl(&rx->rx_current, 0),
372 musb_readl(&rx->rx_buf_current, 0),
373 musb_readl(&rx->rx_len_len, 0),
374 musb_readl(&rx->rx_cnt_cnt, 0),
375 musb_readl(&rx->rx_complete, 0)
379 /* Context: controller irqlocked */
380 static void
381 cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
383 void __iomem *base = c->controller->mregs;
384 struct cppi_tx_stateram __iomem *tx = c->state_ram;
386 musb_ep_select(base, c->index + 1);
388 dev_dbg(c->controller->musb->controller,
389 "TX DMA%d%s: csr %04x, "
390 "H%08x S%08x C%08x %08x, "
391 "F%08x L%08x .. %08x"
392 "\n",
393 c->index, tag,
394 musb_readw(c->hw_ep->regs, MUSB_TXCSR),
396 musb_readl(&tx->tx_head, 0),
397 musb_readl(&tx->tx_buf, 0),
398 musb_readl(&tx->tx_current, 0),
399 musb_readl(&tx->tx_buf_current, 0),
401 musb_readl(&tx->tx_info, 0),
402 musb_readl(&tx->tx_rem_len, 0),
403 /* dummy/unused word 6 */
404 musb_readl(&tx->tx_complete, 0)
408 /* Context: controller irqlocked */
409 static inline void
410 cppi_rndis_update(struct cppi_channel *c, int is_rx,
411 void __iomem *tibase, int is_rndis)
413 /* we may need to change the rndis flag for this cppi channel */
414 if (c->is_rndis != is_rndis) {
415 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
416 u32 temp = 1 << (c->index);
418 if (is_rx)
419 temp <<= 16;
420 if (is_rndis)
421 value |= temp;
422 else
423 value &= ~temp;
424 musb_writel(tibase, DAVINCI_RNDIS_REG, value);
425 c->is_rndis = is_rndis;
429 static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
431 pr_debug("RXBD/%s %08x: "
432 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
433 tag, bd->dma,
434 bd->hw_next, bd->hw_bufp, bd->hw_off_len,
435 bd->hw_options);
438 static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
440 struct cppi_descriptor *bd;
442 cppi_dump_rx(level, rx, tag);
443 if (rx->last_processed)
444 cppi_dump_rxbd("last", rx->last_processed);
445 for (bd = rx->head; bd; bd = bd->next)
446 cppi_dump_rxbd("active", bd);
450 /* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
451 * so we won't ever use it (see "CPPI RX Woes" below).
453 static inline int cppi_autoreq_update(struct cppi_channel *rx,
454 void __iomem *tibase, int onepacket, unsigned n_bds)
456 u32 val;
458 #ifdef RNDIS_RX_IS_USABLE
459 u32 tmp;
460 /* assert(is_host_active(musb)) */
462 /* start from "AutoReq never" */
463 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
464 val = tmp & ~((0x3) << (rx->index * 2));
466 /* HCD arranged reqpkt for packet #1. we arrange int
467 * for all but the last one, maybe in two segments.
469 if (!onepacket) {
470 #if 0
471 /* use two segments, autoreq "all" then the last "never" */
472 val |= ((0x3) << (rx->index * 2));
473 n_bds--;
474 #else
475 /* one segment, autoreq "all-but-last" */
476 val |= ((0x1) << (rx->index * 2));
477 #endif
480 if (val != tmp) {
481 int n = 100;
483 /* make sure that autoreq is updated before continuing */
484 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
485 do {
486 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
487 if (tmp == val)
488 break;
489 cpu_relax();
490 } while (n-- > 0);
492 #endif
494 /* REQPKT is turned off after each segment */
495 if (n_bds && rx->channel.actual_len) {
496 void __iomem *regs = rx->hw_ep->regs;
498 val = musb_readw(regs, MUSB_RXCSR);
499 if (!(val & MUSB_RXCSR_H_REQPKT)) {
500 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
501 musb_writew(regs, MUSB_RXCSR, val);
502 /* flush writebuffer */
503 val = musb_readw(regs, MUSB_RXCSR);
506 return n_bds;
510 /* Buffer enqueuing Logic:
512 * - RX builds new queues each time, to help handle routine "early
513 * termination" cases (faults, including errors and short reads)
514 * more correctly.
516 * - for now, TX reuses the same queue of BDs every time
518 * REVISIT long term, we want a normal dynamic model.
519 * ... the goal will be to append to the
520 * existing queue, processing completed "dma buffers" (segments) on the fly.
522 * Otherwise we force an IRQ latency between requests, which slows us a lot
523 * (especially in "transparent" dma). Unfortunately that model seems to be
524 * inherent in the DMA model from the Mentor code, except in the rare case
525 * of transfers big enough (~128+ KB) that we could append "middle" segments
526 * in the TX paths. (RX can't do this, see below.)
528 * That's true even in the CPPI- friendly iso case, where most urbs have
529 * several small segments provided in a group and where the "packet at a time"
530 * "transparent" DMA model is always correct, even on the RX side.
534 * CPPI TX:
535 * ========
536 * TX is a lot more reasonable than RX; it doesn't need to run in
537 * irq-per-packet mode very often. RNDIS mode seems to behave too
538 * (except how it handles the exactly-N-packets case). Building a
539 * txdma queue with multiple requests (urb or usb_request) looks
540 * like it would work ... but fault handling would need much testing.
542 * The main issue with TX mode RNDIS relates to transfer lengths that
543 * are an exact multiple of the packet length. It appears that there's
544 * a hiccup in that case (maybe the DMA completes before the ZLP gets
545 * written?) boiling down to not being able to rely on CPPI writing any
546 * terminating zero length packet before the next transfer is written.
547 * So that's punted to PIO; better yet, gadget drivers can avoid it.
549 * Plus, there's allegedly an undocumented constraint that rndis transfer
550 * length be a multiple of 64 bytes ... but the chip doesn't act that
551 * way, and we really don't _want_ that behavior anyway.
553 * On TX, "transparent" mode works ... although experiments have shown
554 * problems trying to use the SOP/EOP bits in different USB packets.
556 * REVISIT try to handle terminating zero length packets using CPPI
557 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
558 * links avoid that issue by forcing them to avoid zlps.)
560 static void
561 cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
563 unsigned maxpacket = tx->maxpacket;
564 dma_addr_t addr = tx->buf_dma + tx->offset;
565 size_t length = tx->buf_len - tx->offset;
566 struct cppi_descriptor *bd;
567 unsigned n_bds;
568 unsigned i;
569 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
570 int rndis;
572 /* TX can use the CPPI "rndis" mode, where we can probably fit this
573 * transfer in one BD and one IRQ. The only time we would NOT want
574 * to use it is when hardware constraints prevent it, or if we'd
575 * trigger the "send a ZLP?" confusion.
577 rndis = (maxpacket & 0x3f) == 0
578 && length > maxpacket
579 && length < 0xffff
580 && (length % maxpacket) != 0;
582 if (rndis) {
583 maxpacket = length;
584 n_bds = 1;
585 } else {
586 n_bds = length / maxpacket;
587 if (!length || (length % maxpacket))
588 n_bds++;
589 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590 length = min(n_bds * maxpacket, length);
593 dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
594 tx->index,
595 maxpacket,
596 rndis ? "rndis" : "transparent",
597 n_bds,
598 (unsigned long long)addr, length);
600 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
602 /* assuming here that channel_program is called during
603 * transfer initiation ... current code maintains state
604 * for one outstanding request only (no queues, not even
605 * the implicit ones of an iso urb).
608 bd = tx->freelist;
609 tx->head = bd;
610 tx->last_processed = NULL;
612 /* FIXME use BD pool like RX side does, and just queue
613 * the minimum number for this request.
616 /* Prepare queue of BDs first, then hand it to hardware.
617 * All BDs except maybe the last should be of full packet
618 * size; for RNDIS there _is_ only that last packet.
620 for (i = 0; i < n_bds; ) {
621 if (++i < n_bds && bd->next)
622 bd->hw_next = bd->next->dma;
623 else
624 bd->hw_next = 0;
626 bd->hw_bufp = tx->buf_dma + tx->offset;
628 /* FIXME set EOP only on the last packet,
629 * SOP only on the first ... avoid IRQs
631 if ((tx->offset + maxpacket) <= tx->buf_len) {
632 tx->offset += maxpacket;
633 bd->hw_off_len = maxpacket;
634 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
635 | CPPI_OWN_SET | maxpacket;
636 } else {
637 /* only this one may be a partial USB Packet */
638 u32 partial_len;
640 partial_len = tx->buf_len - tx->offset;
641 tx->offset = tx->buf_len;
642 bd->hw_off_len = partial_len;
644 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
645 | CPPI_OWN_SET | partial_len;
646 if (partial_len == 0)
647 bd->hw_options |= CPPI_ZERO_SET;
650 dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
651 bd, bd->hw_next, bd->hw_bufp,
652 bd->hw_off_len, bd->hw_options);
654 /* update the last BD enqueued to the list */
655 tx->tail = bd;
656 bd = bd->next;
659 /* BDs live in DMA-coherent memory, but writes might be pending */
660 cpu_drain_writebuffer();
662 /* Write to the HeadPtr in state RAM to trigger */
663 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
665 cppi_dump_tx(5, tx, "/S");
669 * CPPI RX Woes:
670 * =============
671 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
672 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673 * (Full speed transfers have similar scenarios.)
675 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676 * and the next packet goes into a buffer that's queued later; while (b) fills
677 * the buffer with 1024 bytes. How to do that with CPPI?
679 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680 * (b) loses **BADLY** because nothing (!) happens when that second packet
681 * fills the buffer, much less when a third one arrives. (Which makes this
682 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
683 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
684 * out to end-of-buffer. Standard PCI host controller DMA descriptors
685 * implement that mode by default ... which is no accident.)
687 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
689 * ignores SOP/EOP markings and processes both of those BDs; so both packets
690 * are loaded into the buffer (with a 212 byte gap between them), and the next
691 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692 * are intended as outputs for RX queues, not inputs...)
694 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695 * reliably make both cases work, with software handling both cases correctly
696 * and at the significant penalty of needing an IRQ per packet. (The lack of
697 * I/O overlap can be slightly ameliorated by enabling double buffering.)
699 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
700 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702 * with guaranteed driver level fault recovery and scrubbing out what's left
703 * of that garbaged datastream.
705 * But there seems to be no way to identify the cases where CPPI RNDIS mode
706 * is appropriate -- which do NOT include RNDIS host drivers, but do include
707 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709 * that applies best on the peripheral side (and which could fail rudely).
711 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712 * cases other than mass storage class. Otherwise we're correct but slow,
713 * since CPPI penalizes our need for a "true RNDIS" default mode.
717 /* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
719 * IFF
720 * (a) peripheral mode ... since rndis peripherals could pad their
721 * writes to hosts, causing i/o failure; or we'd have to cope with
722 * a largely unknowable variety of host side protocol variants
723 * (b) and short reads are NOT errors ... since full reads would
724 * cause those same i/o failures
725 * (c) and read length is
726 * - less than 64KB (max per cppi descriptor)
727 * - not a multiple of 4096 (g_zero default, full reads typical)
728 * - N (>1) packets long, ditto (full reads not EXPECTED)
729 * THEN
730 * try rx rndis mode
732 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
733 * fill out the whole buffer. Buggy host side usb network drivers could
734 * trigger that, but "in the field" such bugs seem to be all but unknown.
736 * So this module parameter lets the heuristic be disabled. When using
737 * gadgetfs, the heuristic will probably need to be disabled.
739 static bool cppi_rx_rndis = 1;
741 module_param(cppi_rx_rndis, bool, 0);
742 MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
746 * cppi_next_rx_segment - dma read for the next chunk of a buffer
747 * @musb: the controller
748 * @rx: dma channel
749 * @onepacket: true unless caller treats short reads as errors, and
750 * performs fault recovery above usbcore.
751 * Context: controller irqlocked
753 * See above notes about why we can't use multi-BD RX queues except in
754 * rare cases (mass storage class), and can never use the hardware "rndis"
755 * mode (since it's not a "true" RNDIS mode) with complete safety..
757 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758 * code to recover from corrupted datastreams after each short transfer.
760 static void
761 cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
763 unsigned maxpacket = rx->maxpacket;
764 dma_addr_t addr = rx->buf_dma + rx->offset;
765 size_t length = rx->buf_len - rx->offset;
766 struct cppi_descriptor *bd, *tail;
767 unsigned n_bds;
768 unsigned i;
769 void __iomem *tibase = musb->ctrl_base;
770 int is_rndis = 0;
771 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
772 struct cppi_descriptor *d;
774 if (onepacket) {
775 /* almost every USB driver, host or peripheral side */
776 n_bds = 1;
778 /* maybe apply the heuristic above */
779 if (cppi_rx_rndis
780 && is_peripheral_active(musb)
781 && length > maxpacket
782 && (length & ~0xffff) == 0
783 && (length & 0x0fff) != 0
784 && (length & (maxpacket - 1)) == 0) {
785 maxpacket = length;
786 is_rndis = 1;
788 } else {
789 /* virtually nothing except mass storage class */
790 if (length > 0xffff) {
791 n_bds = 0xffff / maxpacket;
792 length = n_bds * maxpacket;
793 } else {
794 n_bds = length / maxpacket;
795 if (length % maxpacket)
796 n_bds++;
798 if (n_bds == 1)
799 onepacket = 1;
800 else
801 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
804 /* In host mode, autorequest logic can generate some IN tokens; it's
805 * tricky since we can't leave REQPKT set in RXCSR after the transfer
806 * finishes. So: multipacket transfers involve two or more segments.
807 * And always at least two IRQs ... RNDIS mode is not an option.
809 if (is_host_active(musb))
810 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
812 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
814 length = min(n_bds * maxpacket, length);
816 dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
817 "dma 0x%llx len %u %u/%u\n",
818 rx->index, maxpacket,
819 onepacket
820 ? (is_rndis ? "rndis" : "onepacket")
821 : "multipacket",
822 n_bds,
823 musb_readl(tibase,
824 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
825 & 0xffff,
826 (unsigned long long)addr, length,
827 rx->channel.actual_len, rx->buf_len);
829 /* only queue one segment at a time, since the hardware prevents
830 * correct queue shutdown after unexpected short packets
832 bd = cppi_bd_alloc(rx);
833 rx->head = bd;
835 /* Build BDs for all packets in this segment */
836 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
837 u32 bd_len;
839 if (i) {
840 bd = cppi_bd_alloc(rx);
841 if (!bd)
842 break;
843 tail->next = bd;
844 tail->hw_next = bd->dma;
846 bd->hw_next = 0;
848 /* all but the last packet will be maxpacket size */
849 if (maxpacket < length)
850 bd_len = maxpacket;
851 else
852 bd_len = length;
854 bd->hw_bufp = addr;
855 addr += bd_len;
856 rx->offset += bd_len;
858 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
859 bd->buflen = bd_len;
861 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
862 length -= bd_len;
865 /* we always expect at least one reusable BD! */
866 if (!tail) {
867 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
868 return;
869 } else if (i < n_bds)
870 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
872 tail->next = NULL;
873 tail->hw_next = 0;
875 bd = rx->head;
876 rx->tail = tail;
878 /* short reads and other faults should terminate this entire
879 * dma segment. we want one "dma packet" per dma segment, not
880 * one per USB packet, terminating the whole queue at once...
881 * NOTE that current hardware seems to ignore SOP and EOP.
883 bd->hw_options |= CPPI_SOP_SET;
884 tail->hw_options |= CPPI_EOP_SET;
886 for (d = rx->head; d; d = d->next)
887 cppi_dump_rxbd("S", d);
889 /* in case the preceding transfer left some state... */
890 tail = rx->last_processed;
891 if (tail) {
892 tail->next = bd;
893 tail->hw_next = bd->dma;
896 core_rxirq_enable(tibase, rx->index + 1);
898 /* BDs live in DMA-coherent memory, but writes might be pending */
899 cpu_drain_writebuffer();
901 /* REVISIT specs say to write this AFTER the BUFCNT register
902 * below ... but that loses badly.
904 musb_writel(&rx_ram->rx_head, 0, bd->dma);
906 /* bufferCount must be at least 3, and zeroes on completion
907 * unless it underflows below zero, or stops at two, or keeps
908 * growing ... grr.
910 i = musb_readl(tibase,
911 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
912 & 0xffff;
914 if (!i)
915 musb_writel(tibase,
916 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
917 n_bds + 2);
918 else if (n_bds > (i - 3))
919 musb_writel(tibase,
920 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
921 n_bds - (i - 3));
923 i = musb_readl(tibase,
924 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
925 & 0xffff;
926 if (i < (2 + n_bds)) {
927 dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
928 rx->index, i, n_bds);
929 musb_writel(tibase,
930 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
931 n_bds + 2);
934 cppi_dump_rx(4, rx, "/S");
938 * cppi_channel_program - program channel for data transfer
939 * @ch: the channel
940 * @maxpacket: max packet size
941 * @mode: For RX, 1 unless the usb protocol driver promised to treat
942 * all short reads as errors and kick in high level fault recovery.
943 * For TX, ignored because of RNDIS mode races/glitches.
944 * @dma_addr: dma address of buffer
945 * @len: length of buffer
946 * Context: controller irqlocked
948 static int cppi_channel_program(struct dma_channel *ch,
949 u16 maxpacket, u8 mode,
950 dma_addr_t dma_addr, u32 len)
952 struct cppi_channel *cppi_ch;
953 struct cppi *controller;
954 struct musb *musb;
956 cppi_ch = container_of(ch, struct cppi_channel, channel);
957 controller = cppi_ch->controller;
958 musb = controller->musb;
960 switch (ch->status) {
961 case MUSB_DMA_STATUS_BUS_ABORT:
962 case MUSB_DMA_STATUS_CORE_ABORT:
963 /* fault irq handler should have handled cleanup */
964 WARNING("%cX DMA%d not cleaned up after abort!\n",
965 cppi_ch->transmit ? 'T' : 'R',
966 cppi_ch->index);
967 /* WARN_ON(1); */
968 break;
969 case MUSB_DMA_STATUS_BUSY:
970 WARNING("program active channel? %cX DMA%d\n",
971 cppi_ch->transmit ? 'T' : 'R',
972 cppi_ch->index);
973 /* WARN_ON(1); */
974 break;
975 case MUSB_DMA_STATUS_UNKNOWN:
976 dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
977 cppi_ch->transmit ? 'T' : 'R',
978 cppi_ch->index);
979 /* FALLTHROUGH */
980 case MUSB_DMA_STATUS_FREE:
981 break;
984 ch->status = MUSB_DMA_STATUS_BUSY;
986 /* set transfer parameters, then queue up its first segment */
987 cppi_ch->buf_dma = dma_addr;
988 cppi_ch->offset = 0;
989 cppi_ch->maxpacket = maxpacket;
990 cppi_ch->buf_len = len;
991 cppi_ch->channel.actual_len = 0;
993 /* TX channel? or RX? */
994 if (cppi_ch->transmit)
995 cppi_next_tx_segment(musb, cppi_ch);
996 else
997 cppi_next_rx_segment(musb, cppi_ch, mode);
999 return true;
1002 static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1004 struct cppi_channel *rx = &cppi->rx[ch];
1005 struct cppi_rx_stateram __iomem *state = rx->state_ram;
1006 struct cppi_descriptor *bd;
1007 struct cppi_descriptor *last = rx->last_processed;
1008 bool completed = false;
1009 bool acked = false;
1010 int i;
1011 dma_addr_t safe2ack;
1012 void __iomem *regs = rx->hw_ep->regs;
1013 struct musb *musb = cppi->musb;
1015 cppi_dump_rx(6, rx, "/K");
1017 bd = last ? last->next : rx->head;
1018 if (!bd)
1019 return false;
1021 /* run through all completed BDs */
1022 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1023 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1024 i++, bd = bd->next) {
1025 u16 len;
1027 /* catch latest BD writes from CPPI */
1028 rmb();
1029 if (!completed && (bd->hw_options & CPPI_OWN_SET))
1030 break;
1032 dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
1033 "off.len %08x opt.len %08x (%d)\n",
1034 (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1035 bd->hw_off_len, bd->hw_options,
1036 rx->channel.actual_len);
1038 /* actual packet received length */
1039 if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1040 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1041 else
1042 len = 0;
1044 if (bd->hw_options & CPPI_EOQ_MASK)
1045 completed = true;
1047 if (!completed && len < bd->buflen) {
1048 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1049 * must have been cleared, and no more DMA packets may
1050 * active be in the queue... TI docs didn't say, but
1051 * CPPI ignores those BDs even though OWN is still set.
1053 completed = true;
1054 dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
1055 len, bd->buflen,
1056 rx->channel.actual_len);
1059 /* If we got here, we expect to ack at least one BD; meanwhile
1060 * CPPI may completing other BDs while we scan this list...
1062 * RACE: we can notice OWN cleared before CPPI raises the
1063 * matching irq by writing that BD as the completion pointer.
1064 * In such cases, stop scanning and wait for the irq, avoiding
1065 * lost acks and states where BD ownership is unclear.
1067 if (bd->dma == safe2ack) {
1068 musb_writel(&state->rx_complete, 0, safe2ack);
1069 safe2ack = musb_readl(&state->rx_complete, 0);
1070 acked = true;
1071 if (bd->dma == safe2ack)
1072 safe2ack = 0;
1075 rx->channel.actual_len += len;
1077 cppi_bd_free(rx, last);
1078 last = bd;
1080 /* stop scanning on end-of-segment */
1081 if (bd->hw_next == 0)
1082 completed = true;
1084 rx->last_processed = last;
1086 /* dma abort, lost ack, or ... */
1087 if (!acked && last) {
1088 int csr;
1090 if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1091 musb_writel(&state->rx_complete, 0, safe2ack);
1092 if (safe2ack == 0) {
1093 cppi_bd_free(rx, last);
1094 rx->last_processed = NULL;
1096 /* if we land here on the host side, H_REQPKT will
1097 * be clear and we need to restart the queue...
1099 WARN_ON(rx->head);
1101 musb_ep_select(cppi->mregs, rx->index + 1);
1102 csr = musb_readw(regs, MUSB_RXCSR);
1103 if (csr & MUSB_RXCSR_DMAENAB) {
1104 dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
1105 rx->index,
1106 rx->head, rx->tail,
1107 rx->last_processed
1108 ? (unsigned long long)
1109 rx->last_processed->dma
1110 : 0,
1111 completed ? ", completed" : "",
1112 csr);
1113 cppi_dump_rxq(4, "/what?", rx);
1116 if (!completed) {
1117 int csr;
1119 rx->head = bd;
1121 /* REVISIT seems like "autoreq all but EOP" doesn't...
1122 * setting it here "should" be racey, but seems to work
1124 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1125 if (is_host_active(cppi->musb)
1126 && bd
1127 && !(csr & MUSB_RXCSR_H_REQPKT)) {
1128 csr |= MUSB_RXCSR_H_REQPKT;
1129 musb_writew(regs, MUSB_RXCSR,
1130 MUSB_RXCSR_H_WZC_BITS | csr);
1131 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1133 } else {
1134 rx->head = NULL;
1135 rx->tail = NULL;
1138 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1139 return completed;
1142 irqreturn_t cppi_interrupt(int irq, void *dev_id)
1144 struct musb *musb = dev_id;
1145 struct cppi *cppi;
1146 void __iomem *tibase;
1147 struct musb_hw_ep *hw_ep = NULL;
1148 u32 rx, tx;
1149 int i, index;
1150 unsigned long uninitialized_var(flags);
1152 cppi = container_of(musb->dma_controller, struct cppi, controller);
1153 if (cppi->irq)
1154 spin_lock_irqsave(&musb->lock, flags);
1156 tibase = musb->ctrl_base;
1158 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1159 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1161 if (!tx && !rx) {
1162 if (cppi->irq)
1163 spin_unlock_irqrestore(&musb->lock, flags);
1164 return IRQ_NONE;
1167 dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1169 /* process TX channels */
1170 for (index = 0; tx; tx = tx >> 1, index++) {
1171 struct cppi_channel *tx_ch;
1172 struct cppi_tx_stateram __iomem *tx_ram;
1173 bool completed = false;
1174 struct cppi_descriptor *bd;
1176 if (!(tx & 1))
1177 continue;
1179 tx_ch = cppi->tx + index;
1180 tx_ram = tx_ch->state_ram;
1182 /* FIXME need a cppi_tx_scan() routine, which
1183 * can also be called from abort code
1186 cppi_dump_tx(5, tx_ch, "/E");
1188 bd = tx_ch->head;
1191 * If Head is null then this could mean that a abort interrupt
1192 * that needs to be acknowledged.
1194 if (NULL == bd) {
1195 dev_dbg(musb->controller, "null BD\n");
1196 musb_writel(&tx_ram->tx_complete, 0, 0);
1197 continue;
1200 /* run through all completed BDs */
1201 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1202 i++, bd = bd->next) {
1203 u16 len;
1205 /* catch latest BD writes from CPPI */
1206 rmb();
1207 if (bd->hw_options & CPPI_OWN_SET)
1208 break;
1210 dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
1211 bd, bd->hw_next, bd->hw_bufp,
1212 bd->hw_off_len, bd->hw_options);
1214 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1215 tx_ch->channel.actual_len += len;
1217 tx_ch->last_processed = bd;
1219 /* write completion register to acknowledge
1220 * processing of completed BDs, and possibly
1221 * release the IRQ; EOQ might not be set ...
1223 * REVISIT use the same ack strategy as rx
1225 * REVISIT have observed bit 18 set; huh??
1227 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1228 musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1230 /* stop scanning on end-of-segment */
1231 if (bd->hw_next == 0)
1232 completed = true;
1235 /* on end of segment, maybe go to next one */
1236 if (completed) {
1237 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1239 /* transfer more, or report completion */
1240 if (tx_ch->offset >= tx_ch->buf_len) {
1241 tx_ch->head = NULL;
1242 tx_ch->tail = NULL;
1243 tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1245 hw_ep = tx_ch->hw_ep;
1247 musb_dma_completion(musb, index + 1, 1);
1249 } else {
1250 /* Bigger transfer than we could fit in
1251 * that first batch of descriptors...
1253 cppi_next_tx_segment(musb, tx_ch);
1255 } else
1256 tx_ch->head = bd;
1259 /* Start processing the RX block */
1260 for (index = 0; rx; rx = rx >> 1, index++) {
1262 if (rx & 1) {
1263 struct cppi_channel *rx_ch;
1265 rx_ch = cppi->rx + index;
1267 /* let incomplete dma segments finish */
1268 if (!cppi_rx_scan(cppi, index))
1269 continue;
1271 /* start another dma segment if needed */
1272 if (rx_ch->channel.actual_len != rx_ch->buf_len
1273 && rx_ch->channel.actual_len
1274 == rx_ch->offset) {
1275 cppi_next_rx_segment(musb, rx_ch, 1);
1276 continue;
1279 /* all segments completed! */
1280 rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1282 hw_ep = rx_ch->hw_ep;
1284 core_rxirq_disable(tibase, index + 1);
1285 musb_dma_completion(musb, index + 1, 0);
1289 /* write to CPPI EOI register to re-enable interrupts */
1290 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1292 if (cppi->irq)
1293 spin_unlock_irqrestore(&musb->lock, flags);
1295 return IRQ_HANDLED;
1297 EXPORT_SYMBOL_GPL(cppi_interrupt);
1299 /* Instantiate a software object representing a DMA controller. */
1300 struct dma_controller *dma_controller_create(struct musb *musb, void __iomem *mregs)
1302 struct cppi *controller;
1303 struct device *dev = musb->controller;
1304 struct platform_device *pdev = to_platform_device(dev);
1305 int irq = platform_get_irq_byname(pdev, "dma");
1307 controller = kzalloc(sizeof *controller, GFP_KERNEL);
1308 if (!controller)
1309 return NULL;
1311 controller->mregs = mregs;
1312 controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1314 controller->musb = musb;
1315 controller->controller.channel_alloc = cppi_channel_allocate;
1316 controller->controller.channel_release = cppi_channel_release;
1317 controller->controller.channel_program = cppi_channel_program;
1318 controller->controller.channel_abort = cppi_channel_abort;
1320 /* NOTE: allocating from on-chip SRAM would give the least
1321 * contention for memory access, if that ever matters here.
1324 /* setup BufferPool */
1325 controller->pool = dma_pool_create("cppi",
1326 controller->musb->controller,
1327 sizeof(struct cppi_descriptor),
1328 CPPI_DESCRIPTOR_ALIGN, 0);
1329 if (!controller->pool) {
1330 kfree(controller);
1331 return NULL;
1334 if (irq > 0) {
1335 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1336 dev_err(dev, "request_irq %d failed!\n", irq);
1337 dma_controller_destroy(&controller->controller);
1338 return NULL;
1340 controller->irq = irq;
1343 cppi_controller_start(controller);
1344 return &controller->controller;
1348 * Destroy a previously-instantiated DMA controller.
1350 void dma_controller_destroy(struct dma_controller *c)
1352 struct cppi *cppi;
1354 cppi = container_of(c, struct cppi, controller);
1356 cppi_controller_stop(cppi);
1358 if (cppi->irq)
1359 free_irq(cppi->irq, cppi->musb);
1361 /* assert: caller stopped the controller first */
1362 dma_pool_destroy(cppi->pool);
1364 kfree(cppi);
1368 * Context: controller irqlocked, endpoint selected
1370 static int cppi_channel_abort(struct dma_channel *channel)
1372 struct cppi_channel *cppi_ch;
1373 struct cppi *controller;
1374 void __iomem *mbase;
1375 void __iomem *tibase;
1376 void __iomem *regs;
1377 u32 value;
1378 struct cppi_descriptor *queue;
1380 cppi_ch = container_of(channel, struct cppi_channel, channel);
1382 controller = cppi_ch->controller;
1384 switch (channel->status) {
1385 case MUSB_DMA_STATUS_BUS_ABORT:
1386 case MUSB_DMA_STATUS_CORE_ABORT:
1387 /* from RX or TX fault irq handler */
1388 case MUSB_DMA_STATUS_BUSY:
1389 /* the hardware needs shutting down */
1390 regs = cppi_ch->hw_ep->regs;
1391 break;
1392 case MUSB_DMA_STATUS_UNKNOWN:
1393 case MUSB_DMA_STATUS_FREE:
1394 return 0;
1395 default:
1396 return -EINVAL;
1399 if (!cppi_ch->transmit && cppi_ch->head)
1400 cppi_dump_rxq(3, "/abort", cppi_ch);
1402 mbase = controller->mregs;
1403 tibase = controller->tibase;
1405 queue = cppi_ch->head;
1406 cppi_ch->head = NULL;
1407 cppi_ch->tail = NULL;
1409 /* REVISIT should rely on caller having done this,
1410 * and caller should rely on us not changing it.
1411 * peripheral code is safe ... check host too.
1413 musb_ep_select(mbase, cppi_ch->index + 1);
1415 if (cppi_ch->transmit) {
1416 struct cppi_tx_stateram __iomem *tx_ram;
1417 /* REVISIT put timeouts on these controller handshakes */
1419 cppi_dump_tx(6, cppi_ch, " (teardown)");
1421 /* teardown DMA engine then usb core */
1422 do {
1423 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1424 } while (!(value & CPPI_TEAR_READY));
1425 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1427 tx_ram = cppi_ch->state_ram;
1428 do {
1429 value = musb_readl(&tx_ram->tx_complete, 0);
1430 } while (0xFFFFFFFC != value);
1432 /* FIXME clean up the transfer state ... here?
1433 * the completion routine should get called with
1434 * an appropriate status code.
1437 value = musb_readw(regs, MUSB_TXCSR);
1438 value &= ~MUSB_TXCSR_DMAENAB;
1439 value |= MUSB_TXCSR_FLUSHFIFO;
1440 musb_writew(regs, MUSB_TXCSR, value);
1441 musb_writew(regs, MUSB_TXCSR, value);
1444 * 1. Write to completion Ptr value 0x1(bit 0 set)
1445 * (write back mode)
1446 * 2. Wait for abort interrupt and then put the channel in
1447 * compare mode by writing 1 to the tx_complete register.
1449 cppi_reset_tx(tx_ram, 1);
1450 cppi_ch->head = NULL;
1451 musb_writel(&tx_ram->tx_complete, 0, 1);
1452 cppi_dump_tx(5, cppi_ch, " (done teardown)");
1454 /* REVISIT tx side _should_ clean up the same way
1455 * as the RX side ... this does no cleanup at all!
1458 } else /* RX */ {
1459 u16 csr;
1461 /* NOTE: docs don't guarantee any of this works ... we
1462 * expect that if the usb core stops telling the cppi core
1463 * to pull more data from it, then it'll be safe to flush
1464 * current RX DMA state iff any pending fifo transfer is done.
1467 core_rxirq_disable(tibase, cppi_ch->index + 1);
1469 /* for host, ensure ReqPkt is never set again */
1470 if (is_host_active(cppi_ch->controller->musb)) {
1471 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1472 value &= ~((0x3) << (cppi_ch->index * 2));
1473 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1476 csr = musb_readw(regs, MUSB_RXCSR);
1478 /* for host, clear (just) ReqPkt at end of current packet(s) */
1479 if (is_host_active(cppi_ch->controller->musb)) {
1480 csr |= MUSB_RXCSR_H_WZC_BITS;
1481 csr &= ~MUSB_RXCSR_H_REQPKT;
1482 } else
1483 csr |= MUSB_RXCSR_P_WZC_BITS;
1485 /* clear dma enable */
1486 csr &= ~(MUSB_RXCSR_DMAENAB);
1487 musb_writew(regs, MUSB_RXCSR, csr);
1488 csr = musb_readw(regs, MUSB_RXCSR);
1490 /* Quiesce: wait for current dma to finish (if not cleanup).
1491 * We can't use bit zero of stateram->rx_sop, since that
1492 * refers to an entire "DMA packet" not just emptying the
1493 * current fifo. Most segments need multiple usb packets.
1495 if (channel->status == MUSB_DMA_STATUS_BUSY)
1496 udelay(50);
1498 /* scan the current list, reporting any data that was
1499 * transferred and acking any IRQ
1501 cppi_rx_scan(controller, cppi_ch->index);
1503 /* clobber the existing state once it's idle
1505 * NOTE: arguably, we should also wait for all the other
1506 * RX channels to quiesce (how??) and then temporarily
1507 * disable RXCPPI_CTRL_REG ... but it seems that we can
1508 * rely on the controller restarting from state ram, with
1509 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1510 * correct itself after the next DMA transfer though.
1512 * REVISIT does using rndis mode change that?
1514 cppi_reset_rx(cppi_ch->state_ram);
1516 /* next DMA request _should_ load cppi head ptr */
1518 /* ... we don't "free" that list, only mutate it in place. */
1519 cppi_dump_rx(5, cppi_ch, " (done abort)");
1521 /* clean up previously pending bds */
1522 cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1523 cppi_ch->last_processed = NULL;
1525 while (queue) {
1526 struct cppi_descriptor *tmp = queue->next;
1528 cppi_bd_free(cppi_ch, queue);
1529 queue = tmp;
1533 channel->status = MUSB_DMA_STATUS_FREE;
1534 cppi_ch->buf_dma = 0;
1535 cppi_ch->offset = 0;
1536 cppi_ch->buf_len = 0;
1537 cppi_ch->maxpacket = 0;
1538 return 0;
1541 /* TBD Queries:
1543 * Power Management ... probably turn off cppi during suspend, restart;
1544 * check state ram? Clocking is presumably shared with usb core.