PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / storage / alauda.c
blob6636a583da126bff3138d5a9d3a711224e5974d6
1 /*
2 * Driver for Alauda-based card readers
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
17 * For protocol info, see http://alauda.sourceforge.net
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/slab.h>
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
51 * Status bytes
53 #define ALAUDA_STATUS_ERROR 0x01
54 #define ALAUDA_STATUS_READY 0x40
57 * Control opcodes (for request field)
59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
67 * Bulk command identity (byte 0)
69 #define ALAUDA_BULK_CMD 0x40
72 * Bulk opcodes (byte 1)
74 #define ALAUDA_BULK_GET_REDU_DATA 0x85
75 #define ALAUDA_BULK_READ_BLOCK 0x94
76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
78 #define ALAUDA_BULK_GET_STATUS2 0xb7
79 #define ALAUDA_BULK_RESET_MEDIA 0xe0
82 * Port to operate on (byte 8)
84 #define ALAUDA_PORT_XD 0x00
85 #define ALAUDA_PORT_SM 0x01
88 * LBA and PBA are unsigned ints. Special values.
90 #define UNDEF 0xffff
91 #define SPARE 0xfffe
92 #define UNUSABLE 0xfffd
94 struct alauda_media_info {
95 unsigned long capacity; /* total media size in bytes */
96 unsigned int pagesize; /* page size in bytes */
97 unsigned int blocksize; /* number of pages per block */
98 unsigned int uzonesize; /* number of usable blocks per zone */
99 unsigned int zonesize; /* number of blocks per zone */
100 unsigned int blockmask; /* mask to get page from address */
102 unsigned char pageshift;
103 unsigned char blockshift;
104 unsigned char zoneshift;
106 u16 **lba_to_pba; /* logical to physical block map */
107 u16 **pba_to_lba; /* physical to logical block map */
110 struct alauda_info {
111 struct alauda_media_info port[2];
112 int wr_ep; /* endpoint to write data out of */
114 unsigned char sense_key;
115 unsigned long sense_asc; /* additional sense code */
116 unsigned long sense_ascq; /* additional sense code qualifier */
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
130 static int init_alauda(struct us_data *us);
134 * The table of devices
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 vendorName, productName, useProtocol, useTransport, \
138 initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140 .driver_info = (flags) }
142 static struct usb_device_id alauda_usb_ids[] = {
143 # include "unusual_alauda.h"
144 { } /* Terminating entry */
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
148 #undef UNUSUAL_DEV
151 * The flags table
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 vendor_name, product_name, use_protocol, use_transport, \
155 init_function, Flags) \
157 .vendorName = vendor_name, \
158 .productName = product_name, \
159 .useProtocol = use_protocol, \
160 .useTransport = use_transport, \
161 .initFunction = init_function, \
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 # include "unusual_alauda.h"
166 { } /* Terminating entry */
169 #undef UNUSUAL_DEV
173 * Media handling
176 struct alauda_card_info {
177 unsigned char id; /* id byte */
178 unsigned char chipshift; /* 1<<cs bytes total capacity */
179 unsigned char pageshift; /* 1<<ps bytes in a page */
180 unsigned char blockshift; /* 1<<bs pages per block */
181 unsigned char zoneshift; /* 1<<zs blocks per zone */
184 static struct alauda_card_info alauda_card_ids[] = {
185 /* NAND flash */
186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
188 { 0xec, 20, 8, 4, 8}, /* 1 MB */
189 { 0x64, 21, 8, 4, 9}, /* 2 MB */
190 { 0xea, 21, 8, 4, 9}, /* 2 MB */
191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
195 { 0x73, 24, 9, 5, 10}, /* 16 MB */
196 { 0x75, 25, 9, 5, 10}, /* 32 MB */
197 { 0x76, 26, 9, 5, 10}, /* 64 MB */
198 { 0x79, 27, 9, 5, 10}, /* 128 MB */
199 { 0x71, 28, 9, 5, 10}, /* 256 MB */
201 /* MASK ROM */
202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
205 { 0x57, 24, 9, 4, 11}, /* 16 MB */
206 { 0x58, 25, 9, 4, 12}, /* 32 MB */
207 { 0,}
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 int i;
213 for (i = 0; alauda_card_ids[i].id != 0; i++)
214 if (alauda_card_ids[i].id == id)
215 return &(alauda_card_ids[i]);
216 return NULL;
220 * ECC computation.
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
226 static void nand_init_ecc(void) {
227 int i, j, a;
229 parity[0] = 0;
230 for (i = 1; i < 256; i++)
231 parity[i] = (parity[i&(i-1)] ^ 1);
233 for (i = 0; i < 256; i++) {
234 a = 0;
235 for (j = 0; j < 8; j++) {
236 if (i & (1<<j)) {
237 if ((j & 1) == 0)
238 a ^= 0x04;
239 if ((j & 2) == 0)
240 a ^= 0x10;
241 if ((j & 4) == 0)
242 a ^= 0x40;
245 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
249 /* compute 3-byte ecc on 256 bytes */
250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 int i, j, a;
252 unsigned char par = 0, bit, bits[8] = {0};
254 /* collect 16 checksum bits */
255 for (i = 0; i < 256; i++) {
256 par ^= data[i];
257 bit = parity[data[i]];
258 for (j = 0; j < 8; j++)
259 if ((i & (1<<j)) == 0)
260 bits[j] ^= bit;
263 /* put 4+4+4 = 12 bits in the ecc */
264 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
265 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
267 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
268 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
270 ecc[2] = ecc2[par];
273 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
274 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
277 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
278 memcpy(data, ecc, 3);
282 * Alauda driver
286 * Forget our PBA <---> LBA mappings for a particular port
288 static void alauda_free_maps (struct alauda_media_info *media_info)
290 unsigned int shift = media_info->zoneshift
291 + media_info->blockshift + media_info->pageshift;
292 unsigned int num_zones = media_info->capacity >> shift;
293 unsigned int i;
295 if (media_info->lba_to_pba != NULL)
296 for (i = 0; i < num_zones; i++) {
297 kfree(media_info->lba_to_pba[i]);
298 media_info->lba_to_pba[i] = NULL;
301 if (media_info->pba_to_lba != NULL)
302 for (i = 0; i < num_zones; i++) {
303 kfree(media_info->pba_to_lba[i]);
304 media_info->pba_to_lba[i] = NULL;
309 * Returns 2 bytes of status data
310 * The first byte describes media status, and second byte describes door status
312 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
314 int rc;
315 unsigned char command;
317 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
318 command = ALAUDA_GET_XD_MEDIA_STATUS;
319 else
320 command = ALAUDA_GET_SM_MEDIA_STATUS;
322 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
323 command, 0xc0, 0, 1, data, 2);
325 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
327 return rc;
331 * Clears the "media was changed" bit so that we know when it changes again
332 * in the future.
334 static int alauda_ack_media(struct us_data *us)
336 unsigned char command;
338 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
339 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
340 else
341 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
343 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
344 command, 0x40, 0, 1, NULL, 0);
348 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
349 * and some other details.
351 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
353 unsigned char command;
355 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
356 command = ALAUDA_GET_XD_MEDIA_SIG;
357 else
358 command = ALAUDA_GET_SM_MEDIA_SIG;
360 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
361 command, 0xc0, 0, 0, data, 4);
365 * Resets the media status (but not the whole device?)
367 static int alauda_reset_media(struct us_data *us)
369 unsigned char *command = us->iobuf;
371 memset(command, 0, 9);
372 command[0] = ALAUDA_BULK_CMD;
373 command[1] = ALAUDA_BULK_RESET_MEDIA;
374 command[8] = MEDIA_PORT(us);
376 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
377 command, 9, NULL);
381 * Examines the media and deduces capacity, etc.
383 static int alauda_init_media(struct us_data *us)
385 unsigned char *data = us->iobuf;
386 int ready = 0;
387 struct alauda_card_info *media_info;
388 unsigned int num_zones;
390 while (ready == 0) {
391 msleep(20);
393 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
394 return USB_STOR_TRANSPORT_ERROR;
396 if (data[0] & 0x10)
397 ready = 1;
400 usb_stor_dbg(us, "We are ready for action!\n");
402 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
403 return USB_STOR_TRANSPORT_ERROR;
405 msleep(10);
407 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
408 return USB_STOR_TRANSPORT_ERROR;
410 if (data[0] != 0x14) {
411 usb_stor_dbg(us, "Media not ready after ack\n");
412 return USB_STOR_TRANSPORT_ERROR;
415 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
416 return USB_STOR_TRANSPORT_ERROR;
418 usb_stor_dbg(us, "Media signature: %02X %02X %02X %02X\n",
419 data[0], data[1], data[2], data[3]);
420 media_info = alauda_card_find_id(data[1]);
421 if (media_info == NULL) {
422 printk(KERN_WARNING
423 "alauda_init_media: Unrecognised media signature: "
424 "%02X %02X %02X %02X\n",
425 data[0], data[1], data[2], data[3]);
426 return USB_STOR_TRANSPORT_ERROR;
429 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
430 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
431 MEDIA_INFO(us).capacity >> 20);
433 MEDIA_INFO(us).pageshift = media_info->pageshift;
434 MEDIA_INFO(us).blockshift = media_info->blockshift;
435 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
437 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
438 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
439 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
441 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
442 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
444 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
445 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
446 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
447 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
449 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
450 return USB_STOR_TRANSPORT_ERROR;
452 return USB_STOR_TRANSPORT_GOOD;
456 * Examines the media status and does the right thing when the media has gone,
457 * appeared, or changed.
459 static int alauda_check_media(struct us_data *us)
461 struct alauda_info *info = (struct alauda_info *) us->extra;
462 unsigned char status[2];
463 int rc;
465 rc = alauda_get_media_status(us, status);
467 /* Check for no media or door open */
468 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
469 || ((status[1] & 0x01) == 0)) {
470 usb_stor_dbg(us, "No media, or door open\n");
471 alauda_free_maps(&MEDIA_INFO(us));
472 info->sense_key = 0x02;
473 info->sense_asc = 0x3A;
474 info->sense_ascq = 0x00;
475 return USB_STOR_TRANSPORT_FAILED;
478 /* Check for media change */
479 if (status[0] & 0x08) {
480 usb_stor_dbg(us, "Media change detected\n");
481 alauda_free_maps(&MEDIA_INFO(us));
482 alauda_init_media(us);
484 info->sense_key = UNIT_ATTENTION;
485 info->sense_asc = 0x28;
486 info->sense_ascq = 0x00;
487 return USB_STOR_TRANSPORT_FAILED;
490 return USB_STOR_TRANSPORT_GOOD;
494 * Checks the status from the 2nd status register
495 * Returns 3 bytes of status data, only the first is known
497 static int alauda_check_status2(struct us_data *us)
499 int rc;
500 unsigned char command[] = {
501 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
502 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
504 unsigned char data[3];
506 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
507 command, 9, NULL);
508 if (rc != USB_STOR_XFER_GOOD)
509 return rc;
511 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
512 data, 3, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
516 usb_stor_dbg(us, "%02X %02X %02X\n", data[0], data[1], data[2]);
517 if (data[0] & ALAUDA_STATUS_ERROR)
518 return USB_STOR_XFER_ERROR;
520 return USB_STOR_XFER_GOOD;
524 * Gets the redundancy data for the first page of a PBA
525 * Returns 16 bytes.
527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
529 int rc;
530 unsigned char command[] = {
531 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
532 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
535 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
536 command, 9, NULL);
537 if (rc != USB_STOR_XFER_GOOD)
538 return rc;
540 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
541 data, 16, NULL);
545 * Finds the first unused PBA in a zone
546 * Returns the absolute PBA of an unused PBA, or 0 if none found.
548 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
549 unsigned int zone)
551 u16 *pba_to_lba = info->pba_to_lba[zone];
552 unsigned int i;
554 for (i = 0; i < info->zonesize; i++)
555 if (pba_to_lba[i] == UNDEF)
556 return (zone << info->zoneshift) + i;
558 return 0;
562 * Reads the redundancy data for all PBA's in a zone
563 * Produces lba <--> pba mappings
565 static int alauda_read_map(struct us_data *us, unsigned int zone)
567 unsigned char *data = us->iobuf;
568 int result;
569 int i, j;
570 unsigned int zonesize = MEDIA_INFO(us).zonesize;
571 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
572 unsigned int lba_offset, lba_real, blocknum;
573 unsigned int zone_base_lba = zone * uzonesize;
574 unsigned int zone_base_pba = zone * zonesize;
575 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
576 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
577 if (lba_to_pba == NULL || pba_to_lba == NULL) {
578 result = USB_STOR_TRANSPORT_ERROR;
579 goto error;
582 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
584 /* 1024 PBA's per zone */
585 for (i = 0; i < zonesize; i++)
586 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
588 for (i = 0; i < zonesize; i++) {
589 blocknum = zone_base_pba + i;
591 result = alauda_get_redu_data(us, blocknum, data);
592 if (result != USB_STOR_XFER_GOOD) {
593 result = USB_STOR_TRANSPORT_ERROR;
594 goto error;
597 /* special PBAs have control field 0^16 */
598 for (j = 0; j < 16; j++)
599 if (data[j] != 0)
600 goto nonz;
601 pba_to_lba[i] = UNUSABLE;
602 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
603 continue;
605 nonz:
606 /* unwritten PBAs have control field FF^16 */
607 for (j = 0; j < 16; j++)
608 if (data[j] != 0xff)
609 goto nonff;
610 continue;
612 nonff:
613 /* normal PBAs start with six FFs */
614 if (j < 6) {
615 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
616 blocknum,
617 data[0], data[1], data[2], data[3],
618 data[4], data[5]);
619 pba_to_lba[i] = UNUSABLE;
620 continue;
623 if ((data[6] >> 4) != 0x01) {
624 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
625 blocknum, data[6], data[7],
626 data[11], data[12]);
627 pba_to_lba[i] = UNUSABLE;
628 continue;
631 /* check even parity */
632 if (parity[data[6] ^ data[7]]) {
633 printk(KERN_WARNING
634 "alauda_read_map: Bad parity in LBA for block %d"
635 " (%02X %02X)\n", i, data[6], data[7]);
636 pba_to_lba[i] = UNUSABLE;
637 continue;
640 lba_offset = short_pack(data[7], data[6]);
641 lba_offset = (lba_offset & 0x07FF) >> 1;
642 lba_real = lba_offset + zone_base_lba;
645 * Every 1024 physical blocks ("zone"), the LBA numbers
646 * go back to zero, but are within a higher block of LBA's.
647 * Also, there is a maximum of 1000 LBA's per zone.
648 * In other words, in PBA 1024-2047 you will find LBA 0-999
649 * which are really LBA 1000-1999. This allows for 24 bad
650 * or special physical blocks per zone.
653 if (lba_offset >= uzonesize) {
654 printk(KERN_WARNING
655 "alauda_read_map: Bad low LBA %d for block %d\n",
656 lba_real, blocknum);
657 continue;
660 if (lba_to_pba[lba_offset] != UNDEF) {
661 printk(KERN_WARNING
662 "alauda_read_map: "
663 "LBA %d seen for PBA %d and %d\n",
664 lba_real, lba_to_pba[lba_offset], blocknum);
665 continue;
668 pba_to_lba[i] = lba_real;
669 lba_to_pba[lba_offset] = blocknum;
670 continue;
673 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
674 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
675 result = 0;
676 goto out;
678 error:
679 kfree(lba_to_pba);
680 kfree(pba_to_lba);
681 out:
682 return result;
686 * Checks to see whether we have already mapped a certain zone
687 * If we haven't, the map is generated
689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
691 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
692 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
693 alauda_read_map(us, zone);
697 * Erases an entire block
699 static int alauda_erase_block(struct us_data *us, u16 pba)
701 int rc;
702 unsigned char command[] = {
703 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
704 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
706 unsigned char buf[2];
708 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
710 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
711 command, 9, NULL);
712 if (rc != USB_STOR_XFER_GOOD)
713 return rc;
715 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
716 buf, 2, NULL);
717 if (rc != USB_STOR_XFER_GOOD)
718 return rc;
720 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
721 return rc;
725 * Reads data from a certain offset page inside a PBA, including interleaved
726 * redundancy data. Returns (pagesize+64)*pages bytes in data.
728 static int alauda_read_block_raw(struct us_data *us, u16 pba,
729 unsigned int page, unsigned int pages, unsigned char *data)
731 int rc;
732 unsigned char command[] = {
733 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
734 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
737 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
739 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
740 command, 9, NULL);
741 if (rc != USB_STOR_XFER_GOOD)
742 return rc;
744 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
745 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
749 * Reads data from a certain offset page inside a PBA, excluding redundancy
750 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
751 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
752 * trailing bytes outside this function.
754 static int alauda_read_block(struct us_data *us, u16 pba,
755 unsigned int page, unsigned int pages, unsigned char *data)
757 int i, rc;
758 unsigned int pagesize = MEDIA_INFO(us).pagesize;
760 rc = alauda_read_block_raw(us, pba, page, pages, data);
761 if (rc != USB_STOR_XFER_GOOD)
762 return rc;
764 /* Cut out the redundancy data */
765 for (i = 0; i < pages; i++) {
766 int dest_offset = i * pagesize;
767 int src_offset = i * (pagesize + 64);
768 memmove(data + dest_offset, data + src_offset, pagesize);
771 return rc;
775 * Writes an entire block of data and checks status after write.
776 * Redundancy data must be already included in data. Data should be
777 * (pagesize+64)*blocksize bytes in length.
779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
781 int rc;
782 struct alauda_info *info = (struct alauda_info *) us->extra;
783 unsigned char command[] = {
784 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
785 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
788 usb_stor_dbg(us, "pba %d\n", pba);
790 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
791 command, 9, NULL);
792 if (rc != USB_STOR_XFER_GOOD)
793 return rc;
795 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
796 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
797 NULL);
798 if (rc != USB_STOR_XFER_GOOD)
799 return rc;
801 return alauda_check_status2(us);
805 * Write some data to a specific LBA.
807 static int alauda_write_lba(struct us_data *us, u16 lba,
808 unsigned int page, unsigned int pages,
809 unsigned char *ptr, unsigned char *blockbuffer)
811 u16 pba, lbap, new_pba;
812 unsigned char *bptr, *cptr, *xptr;
813 unsigned char ecc[3];
814 int i, result;
815 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
816 unsigned int zonesize = MEDIA_INFO(us).zonesize;
817 unsigned int pagesize = MEDIA_INFO(us).pagesize;
818 unsigned int blocksize = MEDIA_INFO(us).blocksize;
819 unsigned int lba_offset = lba % uzonesize;
820 unsigned int new_pba_offset;
821 unsigned int zone = lba / uzonesize;
823 alauda_ensure_map_for_zone(us, zone);
825 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
826 if (pba == 1) {
827 /* Maybe it is impossible to write to PBA 1.
828 Fake success, but don't do anything. */
829 printk(KERN_WARNING
830 "alauda_write_lba: avoid writing to pba 1\n");
831 return USB_STOR_TRANSPORT_GOOD;
834 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
835 if (!new_pba) {
836 printk(KERN_WARNING
837 "alauda_write_lba: Out of unused blocks\n");
838 return USB_STOR_TRANSPORT_ERROR;
841 /* read old contents */
842 if (pba != UNDEF) {
843 result = alauda_read_block_raw(us, pba, 0,
844 blocksize, blockbuffer);
845 if (result != USB_STOR_XFER_GOOD)
846 return result;
847 } else {
848 memset(blockbuffer, 0, blocksize * (pagesize + 64));
851 lbap = (lba_offset << 1) | 0x1000;
852 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
853 lbap ^= 1;
855 /* check old contents and fill lba */
856 for (i = 0; i < blocksize; i++) {
857 bptr = blockbuffer + (i * (pagesize + 64));
858 cptr = bptr + pagesize;
859 nand_compute_ecc(bptr, ecc);
860 if (!nand_compare_ecc(cptr+13, ecc)) {
861 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
862 i, pba);
863 nand_store_ecc(cptr+13, ecc);
865 nand_compute_ecc(bptr + (pagesize / 2), ecc);
866 if (!nand_compare_ecc(cptr+8, ecc)) {
867 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
868 i, pba);
869 nand_store_ecc(cptr+8, ecc);
871 cptr[6] = cptr[11] = MSB_of(lbap);
872 cptr[7] = cptr[12] = LSB_of(lbap);
875 /* copy in new stuff and compute ECC */
876 xptr = ptr;
877 for (i = page; i < page+pages; i++) {
878 bptr = blockbuffer + (i * (pagesize + 64));
879 cptr = bptr + pagesize;
880 memcpy(bptr, xptr, pagesize);
881 xptr += pagesize;
882 nand_compute_ecc(bptr, ecc);
883 nand_store_ecc(cptr+13, ecc);
884 nand_compute_ecc(bptr + (pagesize / 2), ecc);
885 nand_store_ecc(cptr+8, ecc);
888 result = alauda_write_block(us, new_pba, blockbuffer);
889 if (result != USB_STOR_XFER_GOOD)
890 return result;
892 new_pba_offset = new_pba - (zone * zonesize);
893 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
894 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
895 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
897 if (pba != UNDEF) {
898 unsigned int pba_offset = pba - (zone * zonesize);
899 result = alauda_erase_block(us, pba);
900 if (result != USB_STOR_XFER_GOOD)
901 return result;
902 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
905 return USB_STOR_TRANSPORT_GOOD;
909 * Read data from a specific sector address
911 static int alauda_read_data(struct us_data *us, unsigned long address,
912 unsigned int sectors)
914 unsigned char *buffer;
915 u16 lba, max_lba;
916 unsigned int page, len, offset;
917 unsigned int blockshift = MEDIA_INFO(us).blockshift;
918 unsigned int pageshift = MEDIA_INFO(us).pageshift;
919 unsigned int blocksize = MEDIA_INFO(us).blocksize;
920 unsigned int pagesize = MEDIA_INFO(us).pagesize;
921 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
922 struct scatterlist *sg;
923 int result;
926 * Since we only read in one block at a time, we have to create
927 * a bounce buffer and move the data a piece at a time between the
928 * bounce buffer and the actual transfer buffer.
929 * We make this buffer big enough to hold temporary redundancy data,
930 * which we use when reading the data blocks.
933 len = min(sectors, blocksize) * (pagesize + 64);
934 buffer = kmalloc(len, GFP_NOIO);
935 if (buffer == NULL) {
936 printk(KERN_WARNING "alauda_read_data: Out of memory\n");
937 return USB_STOR_TRANSPORT_ERROR;
940 /* Figure out the initial LBA and page */
941 lba = address >> blockshift;
942 page = (address & MEDIA_INFO(us).blockmask);
943 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
945 result = USB_STOR_TRANSPORT_GOOD;
946 offset = 0;
947 sg = NULL;
949 while (sectors > 0) {
950 unsigned int zone = lba / uzonesize; /* integer division */
951 unsigned int lba_offset = lba - (zone * uzonesize);
952 unsigned int pages;
953 u16 pba;
954 alauda_ensure_map_for_zone(us, zone);
956 /* Not overflowing capacity? */
957 if (lba >= max_lba) {
958 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
959 lba, max_lba);
960 result = USB_STOR_TRANSPORT_ERROR;
961 break;
964 /* Find number of pages we can read in this block */
965 pages = min(sectors, blocksize - page);
966 len = pages << pageshift;
968 /* Find where this lba lives on disk */
969 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
971 if (pba == UNDEF) { /* this lba was never written */
972 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
973 pages, lba, page);
975 /* This is not really an error. It just means
976 that the block has never been written.
977 Instead of returning USB_STOR_TRANSPORT_ERROR
978 it is better to return all zero data. */
980 memset(buffer, 0, len);
981 } else {
982 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
983 pages, pba, lba, page);
985 result = alauda_read_block(us, pba, page, pages, buffer);
986 if (result != USB_STOR_TRANSPORT_GOOD)
987 break;
990 /* Store the data in the transfer buffer */
991 usb_stor_access_xfer_buf(buffer, len, us->srb,
992 &sg, &offset, TO_XFER_BUF);
994 page = 0;
995 lba++;
996 sectors -= pages;
999 kfree(buffer);
1000 return result;
1004 * Write data to a specific sector address
1006 static int alauda_write_data(struct us_data *us, unsigned long address,
1007 unsigned int sectors)
1009 unsigned char *buffer, *blockbuffer;
1010 unsigned int page, len, offset;
1011 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1012 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1013 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1014 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1015 struct scatterlist *sg;
1016 u16 lba, max_lba;
1017 int result;
1020 * Since we don't write the user data directly to the device,
1021 * we have to create a bounce buffer and move the data a piece
1022 * at a time between the bounce buffer and the actual transfer buffer.
1025 len = min(sectors, blocksize) * pagesize;
1026 buffer = kmalloc(len, GFP_NOIO);
1027 if (buffer == NULL) {
1028 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1029 return USB_STOR_TRANSPORT_ERROR;
1033 * We also need a temporary block buffer, where we read in the old data,
1034 * overwrite parts with the new data, and manipulate the redundancy data
1036 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1037 if (blockbuffer == NULL) {
1038 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039 kfree(buffer);
1040 return USB_STOR_TRANSPORT_ERROR;
1043 /* Figure out the initial LBA and page */
1044 lba = address >> blockshift;
1045 page = (address & MEDIA_INFO(us).blockmask);
1046 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1048 result = USB_STOR_TRANSPORT_GOOD;
1049 offset = 0;
1050 sg = NULL;
1052 while (sectors > 0) {
1053 /* Write as many sectors as possible in this block */
1054 unsigned int pages = min(sectors, blocksize - page);
1055 len = pages << pageshift;
1057 /* Not overflowing capacity? */
1058 if (lba >= max_lba) {
1059 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1060 lba, max_lba);
1061 result = USB_STOR_TRANSPORT_ERROR;
1062 break;
1065 /* Get the data from the transfer buffer */
1066 usb_stor_access_xfer_buf(buffer, len, us->srb,
1067 &sg, &offset, FROM_XFER_BUF);
1069 result = alauda_write_lba(us, lba, page, pages, buffer,
1070 blockbuffer);
1071 if (result != USB_STOR_TRANSPORT_GOOD)
1072 break;
1074 page = 0;
1075 lba++;
1076 sectors -= pages;
1079 kfree(buffer);
1080 kfree(blockbuffer);
1081 return result;
1085 * Our interface with the rest of the world
1088 static void alauda_info_destructor(void *extra)
1090 struct alauda_info *info = (struct alauda_info *) extra;
1091 int port;
1093 if (!info)
1094 return;
1096 for (port = 0; port < 2; port++) {
1097 struct alauda_media_info *media_info = &info->port[port];
1099 alauda_free_maps(media_info);
1100 kfree(media_info->lba_to_pba);
1101 kfree(media_info->pba_to_lba);
1106 * Initialize alauda_info struct and find the data-write endpoint
1108 static int init_alauda(struct us_data *us)
1110 struct alauda_info *info;
1111 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1112 nand_init_ecc();
1114 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1115 if (!us->extra)
1116 return USB_STOR_TRANSPORT_ERROR;
1118 info = (struct alauda_info *) us->extra;
1119 us->extra_destructor = alauda_info_destructor;
1121 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1122 altsetting->endpoint[0].desc.bEndpointAddress
1123 & USB_ENDPOINT_NUMBER_MASK);
1125 return USB_STOR_TRANSPORT_GOOD;
1128 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1130 int rc;
1131 struct alauda_info *info = (struct alauda_info *) us->extra;
1132 unsigned char *ptr = us->iobuf;
1133 static unsigned char inquiry_response[36] = {
1134 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1137 if (srb->cmnd[0] == INQUIRY) {
1138 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1139 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1140 fill_inquiry_response(us, ptr, 36);
1141 return USB_STOR_TRANSPORT_GOOD;
1144 if (srb->cmnd[0] == TEST_UNIT_READY) {
1145 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1146 return alauda_check_media(us);
1149 if (srb->cmnd[0] == READ_CAPACITY) {
1150 unsigned int num_zones;
1151 unsigned long capacity;
1153 rc = alauda_check_media(us);
1154 if (rc != USB_STOR_TRANSPORT_GOOD)
1155 return rc;
1157 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1158 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1160 capacity = num_zones * MEDIA_INFO(us).uzonesize
1161 * MEDIA_INFO(us).blocksize;
1163 /* Report capacity and page size */
1164 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1165 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1167 usb_stor_set_xfer_buf(ptr, 8, srb);
1168 return USB_STOR_TRANSPORT_GOOD;
1171 if (srb->cmnd[0] == READ_10) {
1172 unsigned int page, pages;
1174 rc = alauda_check_media(us);
1175 if (rc != USB_STOR_TRANSPORT_GOOD)
1176 return rc;
1178 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1179 page <<= 16;
1180 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1181 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1183 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1185 return alauda_read_data(us, page, pages);
1188 if (srb->cmnd[0] == WRITE_10) {
1189 unsigned int page, pages;
1191 rc = alauda_check_media(us);
1192 if (rc != USB_STOR_TRANSPORT_GOOD)
1193 return rc;
1195 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1196 page <<= 16;
1197 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1198 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1200 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1202 return alauda_write_data(us, page, pages);
1205 if (srb->cmnd[0] == REQUEST_SENSE) {
1206 usb_stor_dbg(us, "REQUEST_SENSE\n");
1208 memset(ptr, 0, 18);
1209 ptr[0] = 0xF0;
1210 ptr[2] = info->sense_key;
1211 ptr[7] = 11;
1212 ptr[12] = info->sense_asc;
1213 ptr[13] = info->sense_ascq;
1214 usb_stor_set_xfer_buf(ptr, 18, srb);
1216 return USB_STOR_TRANSPORT_GOOD;
1219 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1220 /* sure. whatever. not like we can stop the user from popping
1221 the media out of the device (no locking doors, etc) */
1222 return USB_STOR_TRANSPORT_GOOD;
1225 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1226 srb->cmnd[0], srb->cmnd[0]);
1227 info->sense_key = 0x05;
1228 info->sense_asc = 0x20;
1229 info->sense_ascq = 0x00;
1230 return USB_STOR_TRANSPORT_FAILED;
1233 static int alauda_probe(struct usb_interface *intf,
1234 const struct usb_device_id *id)
1236 struct us_data *us;
1237 int result;
1239 result = usb_stor_probe1(&us, intf, id,
1240 (id - alauda_usb_ids) + alauda_unusual_dev_list);
1241 if (result)
1242 return result;
1244 us->transport_name = "Alauda Control/Bulk";
1245 us->transport = alauda_transport;
1246 us->transport_reset = usb_stor_Bulk_reset;
1247 us->max_lun = 1;
1249 result = usb_stor_probe2(us);
1250 return result;
1253 static struct usb_driver alauda_driver = {
1254 .name = "ums-alauda",
1255 .probe = alauda_probe,
1256 .disconnect = usb_stor_disconnect,
1257 .suspend = usb_stor_suspend,
1258 .resume = usb_stor_resume,
1259 .reset_resume = usb_stor_reset_resume,
1260 .pre_reset = usb_stor_pre_reset,
1261 .post_reset = usb_stor_post_reset,
1262 .id_table = alauda_usb_ids,
1263 .soft_unbind = 1,
1264 .no_dynamic_id = 1,
1267 module_usb_driver(alauda_driver);