PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / storage / transport.c
blob22c7d4360fa222722369b6861da34bafdd4b5b96
1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
11 * Initial work by:
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
34 * later version.
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/gfp.h>
48 #include <linux/errno.h>
49 #include <linux/export.h>
51 #include <linux/usb/quirks.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_eh.h>
55 #include <scsi/scsi_device.h>
57 #include "usb.h"
58 #include "transport.h"
59 #include "protocol.h"
60 #include "scsiglue.h"
61 #include "debug.h"
63 #include <linux/blkdev.h>
64 #include "../../scsi/sd.h"
67 /***********************************************************************
68 * Data transfer routines
69 ***********************************************************************/
72 * This is subtle, so pay attention:
73 * ---------------------------------
74 * We're very concerned about races with a command abort. Hanging this code
75 * is a sure fire way to hang the kernel. (Note that this discussion applies
76 * only to transactions resulting from a scsi queued-command, since only
77 * these transactions are subject to a scsi abort. Other transactions, such
78 * as those occurring during device-specific initialization, must be handled
79 * by a separate code path.)
81 * The abort function (usb_storage_command_abort() in scsiglue.c) first
82 * sets the machine state and the ABORTING bit in us->dflags to prevent
83 * new URBs from being submitted. It then calls usb_stor_stop_transport()
84 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
85 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
86 * bit is tested to see if the current_sg scatter-gather request needs to be
87 * stopped. The timeout callback routine does much the same thing.
89 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
90 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
91 * called to stop any ongoing requests.
93 * The submit function first verifies that the submitting is allowed
94 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
95 * completes without errors, and only then sets the URB_ACTIVE bit. This
96 * prevents the stop_transport() function from trying to cancel the URB
97 * while the submit call is underway. Next, the submit function must test
98 * the flags to see if an abort or disconnect occurred during the submission
99 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
100 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
101 * is still set). Either way, the function must then wait for the URB to
102 * finish. Note that the URB can still be in progress even after a call to
103 * usb_unlink_urb() returns.
105 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
106 * either the stop_transport() function or the submitting function
107 * is guaranteed to call usb_unlink_urb() for an active URB,
108 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
109 * called more than once or from being called during usb_submit_urb().
112 /* This is the completion handler which will wake us up when an URB
113 * completes.
115 static void usb_stor_blocking_completion(struct urb *urb)
117 struct completion *urb_done_ptr = urb->context;
119 complete(urb_done_ptr);
122 /* This is the common part of the URB message submission code
124 * All URBs from the usb-storage driver involved in handling a queued scsi
125 * command _must_ pass through this function (or something like it) for the
126 * abort mechanisms to work properly.
128 static int usb_stor_msg_common(struct us_data *us, int timeout)
130 struct completion urb_done;
131 long timeleft;
132 int status;
134 /* don't submit URBs during abort processing */
135 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
136 return -EIO;
138 /* set up data structures for the wakeup system */
139 init_completion(&urb_done);
141 /* fill the common fields in the URB */
142 us->current_urb->context = &urb_done;
143 us->current_urb->transfer_flags = 0;
145 /* we assume that if transfer_buffer isn't us->iobuf then it
146 * hasn't been mapped for DMA. Yes, this is clunky, but it's
147 * easier than always having the caller tell us whether the
148 * transfer buffer has already been mapped. */
149 if (us->current_urb->transfer_buffer == us->iobuf)
150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
151 us->current_urb->transfer_dma = us->iobuf_dma;
153 /* submit the URB */
154 status = usb_submit_urb(us->current_urb, GFP_NOIO);
155 if (status) {
156 /* something went wrong */
157 return status;
160 /* since the URB has been submitted successfully, it's now okay
161 * to cancel it */
162 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
164 /* did an abort occur during the submission? */
165 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
167 /* cancel the URB, if it hasn't been cancelled already */
168 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
169 usb_stor_dbg(us, "-- cancelling URB\n");
170 usb_unlink_urb(us->current_urb);
174 /* wait for the completion of the URB */
175 timeleft = wait_for_completion_interruptible_timeout(
176 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
178 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
180 if (timeleft <= 0) {
181 usb_stor_dbg(us, "%s -- cancelling URB\n",
182 timeleft == 0 ? "Timeout" : "Signal");
183 usb_kill_urb(us->current_urb);
186 /* return the URB status */
187 return us->current_urb->status;
191 * Transfer one control message, with timeouts, and allowing early
192 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
194 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
195 u8 request, u8 requesttype, u16 value, u16 index,
196 void *data, u16 size, int timeout)
198 int status;
200 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
201 request, requesttype, value, index, size);
203 /* fill in the devrequest structure */
204 us->cr->bRequestType = requesttype;
205 us->cr->bRequest = request;
206 us->cr->wValue = cpu_to_le16(value);
207 us->cr->wIndex = cpu_to_le16(index);
208 us->cr->wLength = cpu_to_le16(size);
210 /* fill and submit the URB */
211 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
212 (unsigned char*) us->cr, data, size,
213 usb_stor_blocking_completion, NULL);
214 status = usb_stor_msg_common(us, timeout);
216 /* return the actual length of the data transferred if no error */
217 if (status == 0)
218 status = us->current_urb->actual_length;
219 return status;
221 EXPORT_SYMBOL_GPL(usb_stor_control_msg);
223 /* This is a version of usb_clear_halt() that allows early termination and
224 * doesn't read the status from the device -- this is because some devices
225 * crash their internal firmware when the status is requested after a halt.
227 * A definitive list of these 'bad' devices is too difficult to maintain or
228 * make complete enough to be useful. This problem was first observed on the
229 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
230 * MacOS nor Windows checks the status after clearing a halt.
232 * Since many vendors in this space limit their testing to interoperability
233 * with these two OSes, specification violations like this one are common.
235 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
237 int result;
238 int endp = usb_pipeendpoint(pipe);
240 if (usb_pipein (pipe))
241 endp |= USB_DIR_IN;
243 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
244 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
245 USB_ENDPOINT_HALT, endp,
246 NULL, 0, 3*HZ);
248 if (result >= 0)
249 usb_reset_endpoint(us->pusb_dev, endp);
251 usb_stor_dbg(us, "result = %d\n", result);
252 return result;
254 EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
258 * Interpret the results of a URB transfer
260 * This function prints appropriate debugging messages, clears halts on
261 * non-control endpoints, and translates the status to the corresponding
262 * USB_STOR_XFER_xxx return code.
264 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
265 unsigned int length, int result, unsigned int partial)
267 usb_stor_dbg(us, "Status code %d; transferred %u/%u\n",
268 result, partial, length);
269 switch (result) {
271 /* no error code; did we send all the data? */
272 case 0:
273 if (partial != length) {
274 usb_stor_dbg(us, "-- short transfer\n");
275 return USB_STOR_XFER_SHORT;
278 usb_stor_dbg(us, "-- transfer complete\n");
279 return USB_STOR_XFER_GOOD;
281 /* stalled */
282 case -EPIPE:
283 /* for control endpoints, (used by CB[I]) a stall indicates
284 * a failed command */
285 if (usb_pipecontrol(pipe)) {
286 usb_stor_dbg(us, "-- stall on control pipe\n");
287 return USB_STOR_XFER_STALLED;
290 /* for other sorts of endpoint, clear the stall */
291 usb_stor_dbg(us, "clearing endpoint halt for pipe 0x%x\n",
292 pipe);
293 if (usb_stor_clear_halt(us, pipe) < 0)
294 return USB_STOR_XFER_ERROR;
295 return USB_STOR_XFER_STALLED;
297 /* babble - the device tried to send more than we wanted to read */
298 case -EOVERFLOW:
299 usb_stor_dbg(us, "-- babble\n");
300 return USB_STOR_XFER_LONG;
302 /* the transfer was cancelled by abort, disconnect, or timeout */
303 case -ECONNRESET:
304 usb_stor_dbg(us, "-- transfer cancelled\n");
305 return USB_STOR_XFER_ERROR;
307 /* short scatter-gather read transfer */
308 case -EREMOTEIO:
309 usb_stor_dbg(us, "-- short read transfer\n");
310 return USB_STOR_XFER_SHORT;
312 /* abort or disconnect in progress */
313 case -EIO:
314 usb_stor_dbg(us, "-- abort or disconnect in progress\n");
315 return USB_STOR_XFER_ERROR;
317 /* the catch-all error case */
318 default:
319 usb_stor_dbg(us, "-- unknown error\n");
320 return USB_STOR_XFER_ERROR;
325 * Transfer one control message, without timeouts, but allowing early
326 * termination. Return codes are USB_STOR_XFER_xxx.
328 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
329 u8 request, u8 requesttype, u16 value, u16 index,
330 void *data, u16 size)
332 int result;
334 usb_stor_dbg(us, "rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
335 request, requesttype, value, index, size);
337 /* fill in the devrequest structure */
338 us->cr->bRequestType = requesttype;
339 us->cr->bRequest = request;
340 us->cr->wValue = cpu_to_le16(value);
341 us->cr->wIndex = cpu_to_le16(index);
342 us->cr->wLength = cpu_to_le16(size);
344 /* fill and submit the URB */
345 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
346 (unsigned char*) us->cr, data, size,
347 usb_stor_blocking_completion, NULL);
348 result = usb_stor_msg_common(us, 0);
350 return interpret_urb_result(us, pipe, size, result,
351 us->current_urb->actual_length);
353 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
356 * Receive one interrupt buffer, without timeouts, but allowing early
357 * termination. Return codes are USB_STOR_XFER_xxx.
359 * This routine always uses us->recv_intr_pipe as the pipe and
360 * us->ep_bInterval as the interrupt interval.
362 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
363 unsigned int length)
365 int result;
366 unsigned int pipe = us->recv_intr_pipe;
367 unsigned int maxp;
369 usb_stor_dbg(us, "xfer %u bytes\n", length);
371 /* calculate the max packet size */
372 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
373 if (maxp > length)
374 maxp = length;
376 /* fill and submit the URB */
377 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
378 maxp, usb_stor_blocking_completion, NULL,
379 us->ep_bInterval);
380 result = usb_stor_msg_common(us, 0);
382 return interpret_urb_result(us, pipe, length, result,
383 us->current_urb->actual_length);
387 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
388 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
389 * stalls during the transfer, the halt is automatically cleared.
391 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
392 void *buf, unsigned int length, unsigned int *act_len)
394 int result;
396 usb_stor_dbg(us, "xfer %u bytes\n", length);
398 /* fill and submit the URB */
399 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
400 usb_stor_blocking_completion, NULL);
401 result = usb_stor_msg_common(us, 0);
403 /* store the actual length of the data transferred */
404 if (act_len)
405 *act_len = us->current_urb->actual_length;
406 return interpret_urb_result(us, pipe, length, result,
407 us->current_urb->actual_length);
409 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
412 * Transfer a scatter-gather list via bulk transfer
414 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
415 * above, but it uses the usbcore scatter-gather library.
417 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
418 struct scatterlist *sg, int num_sg, unsigned int length,
419 unsigned int *act_len)
421 int result;
423 /* don't submit s-g requests during abort processing */
424 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
425 return USB_STOR_XFER_ERROR;
427 /* initialize the scatter-gather request block */
428 usb_stor_dbg(us, "xfer %u bytes, %d entries\n", length, num_sg);
429 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
430 sg, num_sg, length, GFP_NOIO);
431 if (result) {
432 usb_stor_dbg(us, "usb_sg_init returned %d\n", result);
433 return USB_STOR_XFER_ERROR;
436 /* since the block has been initialized successfully, it's now
437 * okay to cancel it */
438 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
440 /* did an abort occur during the submission? */
441 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
443 /* cancel the request, if it hasn't been cancelled already */
444 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
445 usb_stor_dbg(us, "-- cancelling sg request\n");
446 usb_sg_cancel(&us->current_sg);
450 /* wait for the completion of the transfer */
451 usb_sg_wait(&us->current_sg);
452 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
454 result = us->current_sg.status;
455 if (act_len)
456 *act_len = us->current_sg.bytes;
457 return interpret_urb_result(us, pipe, length, result,
458 us->current_sg.bytes);
462 * Common used function. Transfer a complete command
463 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
465 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
466 struct scsi_cmnd* srb)
468 unsigned int partial;
469 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
470 scsi_sg_count(srb), scsi_bufflen(srb),
471 &partial);
473 scsi_set_resid(srb, scsi_bufflen(srb) - partial);
474 return result;
476 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
479 * Transfer an entire SCSI command's worth of data payload over the bulk
480 * pipe.
482 * Note that this uses usb_stor_bulk_transfer_buf() and
483 * usb_stor_bulk_transfer_sglist() to achieve its goals --
484 * this function simply determines whether we're going to use
485 * scatter-gather or not, and acts appropriately.
487 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
488 void *buf, unsigned int length_left, int use_sg, int *residual)
490 int result;
491 unsigned int partial;
493 /* are we scatter-gathering? */
494 if (use_sg) {
495 /* use the usb core scatter-gather primitives */
496 result = usb_stor_bulk_transfer_sglist(us, pipe,
497 (struct scatterlist *) buf, use_sg,
498 length_left, &partial);
499 length_left -= partial;
500 } else {
501 /* no scatter-gather, just make the request */
502 result = usb_stor_bulk_transfer_buf(us, pipe, buf,
503 length_left, &partial);
504 length_left -= partial;
507 /* store the residual and return the error code */
508 if (residual)
509 *residual = length_left;
510 return result;
512 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
514 /***********************************************************************
515 * Transport routines
516 ***********************************************************************/
518 /* There are so many devices that report the capacity incorrectly,
519 * this routine was written to counteract some of the resulting
520 * problems.
522 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
524 struct gendisk *disk;
525 struct scsi_disk *sdkp;
526 u32 sector;
528 /* To Report "Medium Error: Record Not Found */
529 static unsigned char record_not_found[18] = {
530 [0] = 0x70, /* current error */
531 [2] = MEDIUM_ERROR, /* = 0x03 */
532 [7] = 0x0a, /* additional length */
533 [12] = 0x14 /* Record Not Found */
536 /* If last-sector problems can't occur, whether because the
537 * capacity was already decremented or because the device is
538 * known to report the correct capacity, then we don't need
539 * to do anything.
541 if (!us->use_last_sector_hacks)
542 return;
544 /* Was this command a READ(10) or a WRITE(10)? */
545 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
546 goto done;
548 /* Did this command access the last sector? */
549 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
550 (srb->cmnd[4] << 8) | (srb->cmnd[5]);
551 disk = srb->request->rq_disk;
552 if (!disk)
553 goto done;
554 sdkp = scsi_disk(disk);
555 if (!sdkp)
556 goto done;
557 if (sector + 1 != sdkp->capacity)
558 goto done;
560 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
562 /* The command succeeded. We know this device doesn't
563 * have the last-sector bug, so stop checking it.
565 us->use_last_sector_hacks = 0;
567 } else {
568 /* The command failed. Allow up to 3 retries in case this
569 * is some normal sort of failure. After that, assume the
570 * capacity is wrong and we're trying to access the sector
571 * beyond the end. Replace the result code and sense data
572 * with values that will cause the SCSI core to fail the
573 * command immediately, instead of going into an infinite
574 * (or even just a very long) retry loop.
576 if (++us->last_sector_retries < 3)
577 return;
578 srb->result = SAM_STAT_CHECK_CONDITION;
579 memcpy(srb->sense_buffer, record_not_found,
580 sizeof(record_not_found));
583 done:
584 /* Don't reset the retry counter for TEST UNIT READY commands,
585 * because they get issued after device resets which might be
586 * caused by a failed last-sector access.
588 if (srb->cmnd[0] != TEST_UNIT_READY)
589 us->last_sector_retries = 0;
592 /* Invoke the transport and basic error-handling/recovery methods
594 * This is used by the protocol layers to actually send the message to
595 * the device and receive the response.
597 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
599 int need_auto_sense;
600 int result;
602 /* send the command to the transport layer */
603 scsi_set_resid(srb, 0);
604 result = us->transport(srb, us);
606 /* if the command gets aborted by the higher layers, we need to
607 * short-circuit all other processing
609 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
610 usb_stor_dbg(us, "-- command was aborted\n");
611 srb->result = DID_ABORT << 16;
612 goto Handle_Errors;
615 /* if there is a transport error, reset and don't auto-sense */
616 if (result == USB_STOR_TRANSPORT_ERROR) {
617 usb_stor_dbg(us, "-- transport indicates error, resetting\n");
618 srb->result = DID_ERROR << 16;
619 goto Handle_Errors;
622 /* if the transport provided its own sense data, don't auto-sense */
623 if (result == USB_STOR_TRANSPORT_NO_SENSE) {
624 srb->result = SAM_STAT_CHECK_CONDITION;
625 last_sector_hacks(us, srb);
626 return;
629 srb->result = SAM_STAT_GOOD;
631 /* Determine if we need to auto-sense
633 * I normally don't use a flag like this, but it's almost impossible
634 * to understand what's going on here if I don't.
636 need_auto_sense = 0;
639 * If we're running the CB transport, which is incapable
640 * of determining status on its own, we will auto-sense
641 * unless the operation involved a data-in transfer. Devices
642 * can signal most data-in errors by stalling the bulk-in pipe.
644 if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
645 srb->sc_data_direction != DMA_FROM_DEVICE) {
646 usb_stor_dbg(us, "-- CB transport device requiring auto-sense\n");
647 need_auto_sense = 1;
651 * If we have a failure, we're going to do a REQUEST_SENSE
652 * automatically. Note that we differentiate between a command
653 * "failure" and an "error" in the transport mechanism.
655 if (result == USB_STOR_TRANSPORT_FAILED) {
656 usb_stor_dbg(us, "-- transport indicates command failure\n");
657 need_auto_sense = 1;
661 * Determine if this device is SAT by seeing if the
662 * command executed successfully. Otherwise we'll have
663 * to wait for at least one CHECK_CONDITION to determine
664 * SANE_SENSE support
666 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
667 result == USB_STOR_TRANSPORT_GOOD &&
668 !(us->fflags & US_FL_SANE_SENSE) &&
669 !(us->fflags & US_FL_BAD_SENSE) &&
670 !(srb->cmnd[2] & 0x20))) {
671 usb_stor_dbg(us, "-- SAT supported, increasing auto-sense\n");
672 us->fflags |= US_FL_SANE_SENSE;
676 * A short transfer on a command where we don't expect it
677 * is unusual, but it doesn't mean we need to auto-sense.
679 if ((scsi_get_resid(srb) > 0) &&
680 !((srb->cmnd[0] == REQUEST_SENSE) ||
681 (srb->cmnd[0] == INQUIRY) ||
682 (srb->cmnd[0] == MODE_SENSE) ||
683 (srb->cmnd[0] == LOG_SENSE) ||
684 (srb->cmnd[0] == MODE_SENSE_10))) {
685 usb_stor_dbg(us, "-- unexpectedly short transfer\n");
688 /* Now, if we need to do the auto-sense, let's do it */
689 if (need_auto_sense) {
690 int temp_result;
691 struct scsi_eh_save ses;
692 int sense_size = US_SENSE_SIZE;
693 struct scsi_sense_hdr sshdr;
694 const u8 *scdd;
695 u8 fm_ili;
697 /* device supports and needs bigger sense buffer */
698 if (us->fflags & US_FL_SANE_SENSE)
699 sense_size = ~0;
700 Retry_Sense:
701 usb_stor_dbg(us, "Issuing auto-REQUEST_SENSE\n");
703 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
705 /* FIXME: we must do the protocol translation here */
706 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
707 us->subclass == USB_SC_CYP_ATACB)
708 srb->cmd_len = 6;
709 else
710 srb->cmd_len = 12;
712 /* issue the auto-sense command */
713 scsi_set_resid(srb, 0);
714 temp_result = us->transport(us->srb, us);
716 /* let's clean up right away */
717 scsi_eh_restore_cmnd(srb, &ses);
719 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
720 usb_stor_dbg(us, "-- auto-sense aborted\n");
721 srb->result = DID_ABORT << 16;
723 /* If SANE_SENSE caused this problem, disable it */
724 if (sense_size != US_SENSE_SIZE) {
725 us->fflags &= ~US_FL_SANE_SENSE;
726 us->fflags |= US_FL_BAD_SENSE;
728 goto Handle_Errors;
731 /* Some devices claim to support larger sense but fail when
732 * trying to request it. When a transport failure happens
733 * using US_FS_SANE_SENSE, we always retry with a standard
734 * (small) sense request. This fixes some USB GSM modems
736 if (temp_result == USB_STOR_TRANSPORT_FAILED &&
737 sense_size != US_SENSE_SIZE) {
738 usb_stor_dbg(us, "-- auto-sense failure, retry small sense\n");
739 sense_size = US_SENSE_SIZE;
740 us->fflags &= ~US_FL_SANE_SENSE;
741 us->fflags |= US_FL_BAD_SENSE;
742 goto Retry_Sense;
745 /* Other failures */
746 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
747 usb_stor_dbg(us, "-- auto-sense failure\n");
749 /* we skip the reset if this happens to be a
750 * multi-target device, since failure of an
751 * auto-sense is perfectly valid
753 srb->result = DID_ERROR << 16;
754 if (!(us->fflags & US_FL_SCM_MULT_TARG))
755 goto Handle_Errors;
756 return;
759 /* If the sense data returned is larger than 18-bytes then we
760 * assume this device supports requesting more in the future.
761 * The response code must be 70h through 73h inclusive.
763 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
764 !(us->fflags & US_FL_SANE_SENSE) &&
765 !(us->fflags & US_FL_BAD_SENSE) &&
766 (srb->sense_buffer[0] & 0x7C) == 0x70) {
767 usb_stor_dbg(us, "-- SANE_SENSE support enabled\n");
768 us->fflags |= US_FL_SANE_SENSE;
770 /* Indicate to the user that we truncated their sense
771 * because we didn't know it supported larger sense.
773 usb_stor_dbg(us, "-- Sense data truncated to %i from %i\n",
774 US_SENSE_SIZE,
775 srb->sense_buffer[7] + 8);
776 srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
779 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
780 &sshdr);
782 usb_stor_dbg(us, "-- Result from auto-sense is %d\n",
783 temp_result);
784 usb_stor_dbg(us, "-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
785 sshdr.response_code, sshdr.sense_key,
786 sshdr.asc, sshdr.ascq);
787 #ifdef CONFIG_USB_STORAGE_DEBUG
788 usb_stor_show_sense(us, sshdr.sense_key, sshdr.asc, sshdr.ascq);
789 #endif
791 /* set the result so the higher layers expect this data */
792 srb->result = SAM_STAT_CHECK_CONDITION;
794 scdd = scsi_sense_desc_find(srb->sense_buffer,
795 SCSI_SENSE_BUFFERSIZE, 4);
796 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
798 /* We often get empty sense data. This could indicate that
799 * everything worked or that there was an unspecified
800 * problem. We have to decide which.
802 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
803 fm_ili == 0) {
804 /* If things are really okay, then let's show that.
805 * Zero out the sense buffer so the higher layers
806 * won't realize we did an unsolicited auto-sense.
808 if (result == USB_STOR_TRANSPORT_GOOD) {
809 srb->result = SAM_STAT_GOOD;
810 srb->sense_buffer[0] = 0x0;
812 /* If there was a problem, report an unspecified
813 * hardware error to prevent the higher layers from
814 * entering an infinite retry loop.
816 } else {
817 srb->result = DID_ERROR << 16;
818 if ((sshdr.response_code & 0x72) == 0x72)
819 srb->sense_buffer[1] = HARDWARE_ERROR;
820 else
821 srb->sense_buffer[2] = HARDWARE_ERROR;
827 * Some devices don't work or return incorrect data the first
828 * time they get a READ(10) command, or for the first READ(10)
829 * after a media change. If the INITIAL_READ10 flag is set,
830 * keep track of whether READ(10) commands succeed. If the
831 * previous one succeeded and this one failed, set the REDO_READ10
832 * flag to force a retry.
834 if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
835 srb->cmnd[0] == READ_10)) {
836 if (srb->result == SAM_STAT_GOOD) {
837 set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
838 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
839 clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
840 set_bit(US_FLIDX_REDO_READ10, &us->dflags);
844 * Next, if the REDO_READ10 flag is set, return a result
845 * code that will cause the SCSI core to retry the READ(10)
846 * command immediately.
848 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
849 clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
850 srb->result = DID_IMM_RETRY << 16;
851 srb->sense_buffer[0] = 0;
855 /* Did we transfer less than the minimum amount required? */
856 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
857 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
858 srb->result = DID_ERROR << 16;
860 last_sector_hacks(us, srb);
861 return;
863 /* Error and abort processing: try to resynchronize with the device
864 * by issuing a port reset. If that fails, try a class-specific
865 * device reset. */
866 Handle_Errors:
868 /* Set the RESETTING bit, and clear the ABORTING bit so that
869 * the reset may proceed. */
870 scsi_lock(us_to_host(us));
871 set_bit(US_FLIDX_RESETTING, &us->dflags);
872 clear_bit(US_FLIDX_ABORTING, &us->dflags);
873 scsi_unlock(us_to_host(us));
875 /* We must release the device lock because the pre_reset routine
876 * will want to acquire it. */
877 mutex_unlock(&us->dev_mutex);
878 result = usb_stor_port_reset(us);
879 mutex_lock(&us->dev_mutex);
881 if (result < 0) {
882 scsi_lock(us_to_host(us));
883 usb_stor_report_device_reset(us);
884 scsi_unlock(us_to_host(us));
885 us->transport_reset(us);
887 clear_bit(US_FLIDX_RESETTING, &us->dflags);
888 last_sector_hacks(us, srb);
891 /* Stop the current URB transfer */
892 void usb_stor_stop_transport(struct us_data *us)
894 /* If the state machine is blocked waiting for an URB,
895 * let's wake it up. The test_and_clear_bit() call
896 * guarantees that if a URB has just been submitted,
897 * it won't be cancelled more than once. */
898 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
899 usb_stor_dbg(us, "-- cancelling URB\n");
900 usb_unlink_urb(us->current_urb);
903 /* If we are waiting for a scatter-gather operation, cancel it. */
904 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
905 usb_stor_dbg(us, "-- cancelling sg request\n");
906 usb_sg_cancel(&us->current_sg);
911 * Control/Bulk and Control/Bulk/Interrupt transport
914 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
916 unsigned int transfer_length = scsi_bufflen(srb);
917 unsigned int pipe = 0;
918 int result;
920 /* COMMAND STAGE */
921 /* let's send the command via the control pipe */
922 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
923 US_CBI_ADSC,
924 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
925 us->ifnum, srb->cmnd, srb->cmd_len);
927 /* check the return code for the command */
928 usb_stor_dbg(us, "Call to usb_stor_ctrl_transfer() returned %d\n",
929 result);
931 /* if we stalled the command, it means command failed */
932 if (result == USB_STOR_XFER_STALLED) {
933 return USB_STOR_TRANSPORT_FAILED;
936 /* Uh oh... serious problem here */
937 if (result != USB_STOR_XFER_GOOD) {
938 return USB_STOR_TRANSPORT_ERROR;
941 /* DATA STAGE */
942 /* transfer the data payload for this command, if one exists*/
943 if (transfer_length) {
944 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
945 us->recv_bulk_pipe : us->send_bulk_pipe;
946 result = usb_stor_bulk_srb(us, pipe, srb);
947 usb_stor_dbg(us, "CBI data stage result is 0x%x\n", result);
949 /* if we stalled the data transfer it means command failed */
950 if (result == USB_STOR_XFER_STALLED)
951 return USB_STOR_TRANSPORT_FAILED;
952 if (result > USB_STOR_XFER_STALLED)
953 return USB_STOR_TRANSPORT_ERROR;
956 /* STATUS STAGE */
958 /* NOTE: CB does not have a status stage. Silly, I know. So
959 * we have to catch this at a higher level.
961 if (us->protocol != USB_PR_CBI)
962 return USB_STOR_TRANSPORT_GOOD;
964 result = usb_stor_intr_transfer(us, us->iobuf, 2);
965 usb_stor_dbg(us, "Got interrupt data (0x%x, 0x%x)\n",
966 us->iobuf[0], us->iobuf[1]);
967 if (result != USB_STOR_XFER_GOOD)
968 return USB_STOR_TRANSPORT_ERROR;
970 /* UFI gives us ASC and ASCQ, like a request sense
972 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
973 * devices, so we ignore the information for those commands. Note
974 * that this means we could be ignoring a real error on these
975 * commands, but that can't be helped.
977 if (us->subclass == USB_SC_UFI) {
978 if (srb->cmnd[0] == REQUEST_SENSE ||
979 srb->cmnd[0] == INQUIRY)
980 return USB_STOR_TRANSPORT_GOOD;
981 if (us->iobuf[0])
982 goto Failed;
983 return USB_STOR_TRANSPORT_GOOD;
986 /* If not UFI, we interpret the data as a result code
987 * The first byte should always be a 0x0.
989 * Some bogus devices don't follow that rule. They stuff the ASC
990 * into the first byte -- so if it's non-zero, call it a failure.
992 if (us->iobuf[0]) {
993 usb_stor_dbg(us, "CBI IRQ data showed reserved bType 0x%x\n",
994 us->iobuf[0]);
995 goto Failed;
999 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
1000 switch (us->iobuf[1] & 0x0F) {
1001 case 0x00:
1002 return USB_STOR_TRANSPORT_GOOD;
1003 case 0x01:
1004 goto Failed;
1006 return USB_STOR_TRANSPORT_ERROR;
1008 /* the CBI spec requires that the bulk pipe must be cleared
1009 * following any data-in/out command failure (section 2.4.3.1.3)
1011 Failed:
1012 if (pipe)
1013 usb_stor_clear_halt(us, pipe);
1014 return USB_STOR_TRANSPORT_FAILED;
1016 EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
1019 * Bulk only transport
1022 /* Determine what the maximum LUN supported is */
1023 int usb_stor_Bulk_max_lun(struct us_data *us)
1025 int result;
1027 /* issue the command */
1028 us->iobuf[0] = 0;
1029 result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
1030 US_BULK_GET_MAX_LUN,
1031 USB_DIR_IN | USB_TYPE_CLASS |
1032 USB_RECIP_INTERFACE,
1033 0, us->ifnum, us->iobuf, 1, 10*HZ);
1035 usb_stor_dbg(us, "GetMaxLUN command result is %d, data is %d\n",
1036 result, us->iobuf[0]);
1038 /* if we have a successful request, return the result */
1039 if (result > 0)
1040 return us->iobuf[0];
1043 * Some devices don't like GetMaxLUN. They may STALL the control
1044 * pipe, they may return a zero-length result, they may do nothing at
1045 * all and timeout, or they may fail in even more bizarrely creative
1046 * ways. In these cases the best approach is to use the default
1047 * value: only one LUN.
1049 return 0;
1052 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1054 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1055 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1056 unsigned int transfer_length = scsi_bufflen(srb);
1057 unsigned int residue;
1058 int result;
1059 int fake_sense = 0;
1060 unsigned int cswlen;
1061 unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1063 /* Take care of BULK32 devices; set extra byte to 0 */
1064 if (unlikely(us->fflags & US_FL_BULK32)) {
1065 cbwlen = 32;
1066 us->iobuf[31] = 0;
1069 /* set up the command wrapper */
1070 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1071 bcb->DataTransferLength = cpu_to_le32(transfer_length);
1072 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
1073 US_BULK_FLAG_IN : 0;
1074 bcb->Tag = ++us->tag;
1075 bcb->Lun = srb->device->lun;
1076 if (us->fflags & US_FL_SCM_MULT_TARG)
1077 bcb->Lun |= srb->device->id << 4;
1078 bcb->Length = srb->cmd_len;
1080 /* copy the command payload */
1081 memset(bcb->CDB, 0, sizeof(bcb->CDB));
1082 memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1084 /* send it to out endpoint */
1085 usb_stor_dbg(us, "Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1086 le32_to_cpu(bcb->Signature), bcb->Tag,
1087 le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1088 (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1089 bcb->Length);
1090 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1091 bcb, cbwlen, NULL);
1092 usb_stor_dbg(us, "Bulk command transfer result=%d\n", result);
1093 if (result != USB_STOR_XFER_GOOD)
1094 return USB_STOR_TRANSPORT_ERROR;
1096 /* DATA STAGE */
1097 /* send/receive data payload, if there is any */
1099 /* Some USB-IDE converter chips need a 100us delay between the
1100 * command phase and the data phase. Some devices need a little
1101 * more than that, probably because of clock rate inaccuracies. */
1102 if (unlikely(us->fflags & US_FL_GO_SLOW))
1103 udelay(125);
1105 if (transfer_length) {
1106 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1107 us->recv_bulk_pipe : us->send_bulk_pipe;
1108 result = usb_stor_bulk_srb(us, pipe, srb);
1109 usb_stor_dbg(us, "Bulk data transfer result 0x%x\n", result);
1110 if (result == USB_STOR_XFER_ERROR)
1111 return USB_STOR_TRANSPORT_ERROR;
1113 /* If the device tried to send back more data than the
1114 * amount requested, the spec requires us to transfer
1115 * the CSW anyway. Since there's no point retrying the
1116 * the command, we'll return fake sense data indicating
1117 * Illegal Request, Invalid Field in CDB.
1119 if (result == USB_STOR_XFER_LONG)
1120 fake_sense = 1;
1123 /* See flow chart on pg 15 of the Bulk Only Transport spec for
1124 * an explanation of how this code works.
1127 /* get CSW for device status */
1128 usb_stor_dbg(us, "Attempting to get CSW...\n");
1129 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1130 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1132 /* Some broken devices add unnecessary zero-length packets to the
1133 * end of their data transfers. Such packets show up as 0-length
1134 * CSWs. If we encounter such a thing, try to read the CSW again.
1136 if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1137 usb_stor_dbg(us, "Received 0-length CSW; retrying...\n");
1138 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1139 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1142 /* did the attempt to read the CSW fail? */
1143 if (result == USB_STOR_XFER_STALLED) {
1145 /* get the status again */
1146 usb_stor_dbg(us, "Attempting to get CSW (2nd try)...\n");
1147 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1148 bcs, US_BULK_CS_WRAP_LEN, NULL);
1151 /* if we still have a failure at this point, we're in trouble */
1152 usb_stor_dbg(us, "Bulk status result = %d\n", result);
1153 if (result != USB_STOR_XFER_GOOD)
1154 return USB_STOR_TRANSPORT_ERROR;
1156 /* check bulk status */
1157 residue = le32_to_cpu(bcs->Residue);
1158 usb_stor_dbg(us, "Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1159 le32_to_cpu(bcs->Signature), bcs->Tag,
1160 residue, bcs->Status);
1161 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1162 bcs->Status > US_BULK_STAT_PHASE) {
1163 usb_stor_dbg(us, "Bulk logical error\n");
1164 return USB_STOR_TRANSPORT_ERROR;
1167 /* Some broken devices report odd signatures, so we do not check them
1168 * for validity against the spec. We store the first one we see,
1169 * and check subsequent transfers for validity against this signature.
1171 if (!us->bcs_signature) {
1172 us->bcs_signature = bcs->Signature;
1173 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1174 usb_stor_dbg(us, "Learnt BCS signature 0x%08X\n",
1175 le32_to_cpu(us->bcs_signature));
1176 } else if (bcs->Signature != us->bcs_signature) {
1177 usb_stor_dbg(us, "Signature mismatch: got %08X, expecting %08X\n",
1178 le32_to_cpu(bcs->Signature),
1179 le32_to_cpu(us->bcs_signature));
1180 return USB_STOR_TRANSPORT_ERROR;
1183 /* try to compute the actual residue, based on how much data
1184 * was really transferred and what the device tells us */
1185 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1187 /* Heuristically detect devices that generate bogus residues
1188 * by seeing what happens with INQUIRY and READ CAPACITY
1189 * commands.
1191 if (bcs->Status == US_BULK_STAT_OK &&
1192 scsi_get_resid(srb) == 0 &&
1193 ((srb->cmnd[0] == INQUIRY &&
1194 transfer_length == 36) ||
1195 (srb->cmnd[0] == READ_CAPACITY &&
1196 transfer_length == 8))) {
1197 us->fflags |= US_FL_IGNORE_RESIDUE;
1199 } else {
1200 residue = min(residue, transfer_length);
1201 scsi_set_resid(srb, max(scsi_get_resid(srb),
1202 (int) residue));
1206 /* based on the status code, we report good or bad */
1207 switch (bcs->Status) {
1208 case US_BULK_STAT_OK:
1209 /* device babbled -- return fake sense data */
1210 if (fake_sense) {
1211 memcpy(srb->sense_buffer,
1212 usb_stor_sense_invalidCDB,
1213 sizeof(usb_stor_sense_invalidCDB));
1214 return USB_STOR_TRANSPORT_NO_SENSE;
1217 /* command good -- note that data could be short */
1218 return USB_STOR_TRANSPORT_GOOD;
1220 case US_BULK_STAT_FAIL:
1221 /* command failed */
1222 return USB_STOR_TRANSPORT_FAILED;
1224 case US_BULK_STAT_PHASE:
1225 /* phase error -- note that a transport reset will be
1226 * invoked by the invoke_transport() function
1228 return USB_STOR_TRANSPORT_ERROR;
1231 /* we should never get here, but if we do, we're in trouble */
1232 return USB_STOR_TRANSPORT_ERROR;
1234 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
1236 /***********************************************************************
1237 * Reset routines
1238 ***********************************************************************/
1240 /* This is the common part of the device reset code.
1242 * It's handy that every transport mechanism uses the control endpoint for
1243 * resets.
1245 * Basically, we send a reset with a 5-second timeout, so we don't get
1246 * jammed attempting to do the reset.
1248 static int usb_stor_reset_common(struct us_data *us,
1249 u8 request, u8 requesttype,
1250 u16 value, u16 index, void *data, u16 size)
1252 int result;
1253 int result2;
1255 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1256 usb_stor_dbg(us, "No reset during disconnect\n");
1257 return -EIO;
1260 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1261 request, requesttype, value, index, data, size,
1262 5*HZ);
1263 if (result < 0) {
1264 usb_stor_dbg(us, "Soft reset failed: %d\n", result);
1265 return result;
1268 /* Give the device some time to recover from the reset,
1269 * but don't delay disconnect processing. */
1270 wait_event_interruptible_timeout(us->delay_wait,
1271 test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1272 HZ*6);
1273 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1274 usb_stor_dbg(us, "Reset interrupted by disconnect\n");
1275 return -EIO;
1278 usb_stor_dbg(us, "Soft reset: clearing bulk-in endpoint halt\n");
1279 result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1281 usb_stor_dbg(us, "Soft reset: clearing bulk-out endpoint halt\n");
1282 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1284 /* return a result code based on the result of the clear-halts */
1285 if (result >= 0)
1286 result = result2;
1287 if (result < 0)
1288 usb_stor_dbg(us, "Soft reset failed\n");
1289 else
1290 usb_stor_dbg(us, "Soft reset done\n");
1291 return result;
1294 /* This issues a CB[I] Reset to the device in question
1296 #define CB_RESET_CMD_SIZE 12
1298 int usb_stor_CB_reset(struct us_data *us)
1300 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1301 us->iobuf[0] = SEND_DIAGNOSTIC;
1302 us->iobuf[1] = 4;
1303 return usb_stor_reset_common(us, US_CBI_ADSC,
1304 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1305 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1307 EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
1309 /* This issues a Bulk-only Reset to the device in question, including
1310 * clearing the subsequent endpoint halts that may occur.
1312 int usb_stor_Bulk_reset(struct us_data *us)
1314 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1315 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1316 0, us->ifnum, NULL, 0);
1318 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
1320 /* Issue a USB port reset to the device. The caller must not hold
1321 * us->dev_mutex.
1323 int usb_stor_port_reset(struct us_data *us)
1325 int result;
1327 /*for these devices we must use the class specific method */
1328 if (us->pusb_dev->quirks & USB_QUIRK_RESET)
1329 return -EPERM;
1331 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1332 if (result < 0)
1333 usb_stor_dbg(us, "unable to lock device for reset: %d\n",
1334 result);
1335 else {
1336 /* Were we disconnected while waiting for the lock? */
1337 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1338 result = -EIO;
1339 usb_stor_dbg(us, "No reset during disconnect\n");
1340 } else {
1341 result = usb_reset_device(us->pusb_dev);
1342 usb_stor_dbg(us, "usb_reset_device returns %d\n",
1343 result);
1345 usb_unlock_device(us->pusb_dev);
1347 return result;