PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / w1 / slaves / w1_ds28e04.c
blob365d6dff21de2e1a6222da448ce86ea1126d7dec
1 /*
2 * w1_ds28e04.c - w1 family 1C (DS28E04) driver
4 * Copyright (c) 2012 Markus Franke <franke.m@sebakmt.com>
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/device.h>
14 #include <linux/types.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/crc16.h>
18 #include <linux/uaccess.h>
20 #define CRC16_INIT 0
21 #define CRC16_VALID 0xb001
23 #include "../w1.h"
24 #include "../w1_int.h"
25 #include "../w1_family.h"
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Markus Franke <franke.m@sebakmt.com>, <franm@hrz.tu-chemnitz.de>");
29 MODULE_DESCRIPTION("w1 family 1C driver for DS28E04, 4kb EEPROM and PIO");
30 MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS28E04));
32 /* Allow the strong pullup to be disabled, but default to enabled.
33 * If it was disabled a parasite powered device might not get the required
34 * current to copy the data from the scratchpad to EEPROM. If it is enabled
35 * parasite powered devices have a better chance of getting the current
36 * required.
38 static int w1_strong_pullup = 1;
39 module_param_named(strong_pullup, w1_strong_pullup, int, 0);
41 /* enable/disable CRC checking on DS28E04-100 memory accesses */
42 static char w1_enable_crccheck = 1;
44 #define W1_EEPROM_SIZE 512
45 #define W1_PAGE_COUNT 16
46 #define W1_PAGE_SIZE 32
47 #define W1_PAGE_BITS 5
48 #define W1_PAGE_MASK 0x1F
50 #define W1_F1C_READ_EEPROM 0xF0
51 #define W1_F1C_WRITE_SCRATCH 0x0F
52 #define W1_F1C_READ_SCRATCH 0xAA
53 #define W1_F1C_COPY_SCRATCH 0x55
54 #define W1_F1C_ACCESS_WRITE 0x5A
56 #define W1_1C_REG_LOGIC_STATE 0x220
58 struct w1_f1C_data {
59 u8 memory[W1_EEPROM_SIZE];
60 u32 validcrc;
63 /**
64 * Check the file size bounds and adjusts count as needed.
65 * This would not be needed if the file size didn't reset to 0 after a write.
67 static inline size_t w1_f1C_fix_count(loff_t off, size_t count, size_t size)
69 if (off > size)
70 return 0;
72 if ((off + count) > size)
73 return size - off;
75 return count;
78 static int w1_f1C_refresh_block(struct w1_slave *sl, struct w1_f1C_data *data,
79 int block)
81 u8 wrbuf[3];
82 int off = block * W1_PAGE_SIZE;
84 if (data->validcrc & (1 << block))
85 return 0;
87 if (w1_reset_select_slave(sl)) {
88 data->validcrc = 0;
89 return -EIO;
92 wrbuf[0] = W1_F1C_READ_EEPROM;
93 wrbuf[1] = off & 0xff;
94 wrbuf[2] = off >> 8;
95 w1_write_block(sl->master, wrbuf, 3);
96 w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE);
98 /* cache the block if the CRC is valid */
99 if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID)
100 data->validcrc |= (1 << block);
102 return 0;
105 static int w1_f1C_read(struct w1_slave *sl, int addr, int len, char *data)
107 u8 wrbuf[3];
109 /* read directly from the EEPROM */
110 if (w1_reset_select_slave(sl))
111 return -EIO;
113 wrbuf[0] = W1_F1C_READ_EEPROM;
114 wrbuf[1] = addr & 0xff;
115 wrbuf[2] = addr >> 8;
117 w1_write_block(sl->master, wrbuf, sizeof(wrbuf));
118 return w1_read_block(sl->master, data, len);
121 static ssize_t eeprom_read(struct file *filp, struct kobject *kobj,
122 struct bin_attribute *bin_attr, char *buf,
123 loff_t off, size_t count)
125 struct w1_slave *sl = kobj_to_w1_slave(kobj);
126 struct w1_f1C_data *data = sl->family_data;
127 int i, min_page, max_page;
129 count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
130 if (count == 0)
131 return 0;
133 mutex_lock(&sl->master->mutex);
135 if (w1_enable_crccheck) {
136 min_page = (off >> W1_PAGE_BITS);
137 max_page = (off + count - 1) >> W1_PAGE_BITS;
138 for (i = min_page; i <= max_page; i++) {
139 if (w1_f1C_refresh_block(sl, data, i)) {
140 count = -EIO;
141 goto out_up;
144 memcpy(buf, &data->memory[off], count);
145 } else {
146 count = w1_f1C_read(sl, off, count, buf);
149 out_up:
150 mutex_unlock(&sl->master->mutex);
152 return count;
156 * Writes to the scratchpad and reads it back for verification.
157 * Then copies the scratchpad to EEPROM.
158 * The data must be on one page.
159 * The master must be locked.
161 * @param sl The slave structure
162 * @param addr Address for the write
163 * @param len length must be <= (W1_PAGE_SIZE - (addr & W1_PAGE_MASK))
164 * @param data The data to write
165 * @return 0=Success -1=failure
167 static int w1_f1C_write(struct w1_slave *sl, int addr, int len, const u8 *data)
169 u8 wrbuf[4];
170 u8 rdbuf[W1_PAGE_SIZE + 3];
171 u8 es = (addr + len - 1) & 0x1f;
172 unsigned int tm = 10;
173 int i;
174 struct w1_f1C_data *f1C = sl->family_data;
176 /* Write the data to the scratchpad */
177 if (w1_reset_select_slave(sl))
178 return -1;
180 wrbuf[0] = W1_F1C_WRITE_SCRATCH;
181 wrbuf[1] = addr & 0xff;
182 wrbuf[2] = addr >> 8;
184 w1_write_block(sl->master, wrbuf, 3);
185 w1_write_block(sl->master, data, len);
187 /* Read the scratchpad and verify */
188 if (w1_reset_select_slave(sl))
189 return -1;
191 w1_write_8(sl->master, W1_F1C_READ_SCRATCH);
192 w1_read_block(sl->master, rdbuf, len + 3);
194 /* Compare what was read against the data written */
195 if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) ||
196 (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0))
197 return -1;
199 /* Copy the scratchpad to EEPROM */
200 if (w1_reset_select_slave(sl))
201 return -1;
203 wrbuf[0] = W1_F1C_COPY_SCRATCH;
204 wrbuf[3] = es;
206 for (i = 0; i < sizeof(wrbuf); ++i) {
207 /* issue 10ms strong pullup (or delay) on the last byte
208 for writing the data from the scratchpad to EEPROM */
209 if (w1_strong_pullup && i == sizeof(wrbuf)-1)
210 w1_next_pullup(sl->master, tm);
212 w1_write_8(sl->master, wrbuf[i]);
215 if (!w1_strong_pullup)
216 msleep(tm);
218 if (w1_enable_crccheck) {
219 /* invalidate cached data */
220 f1C->validcrc &= ~(1 << (addr >> W1_PAGE_BITS));
223 /* Reset the bus to wake up the EEPROM (this may not be needed) */
224 w1_reset_bus(sl->master);
226 return 0;
229 static ssize_t eeprom_write(struct file *filp, struct kobject *kobj,
230 struct bin_attribute *bin_attr, char *buf,
231 loff_t off, size_t count)
234 struct w1_slave *sl = kobj_to_w1_slave(kobj);
235 int addr, len, idx;
237 count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
238 if (count == 0)
239 return 0;
241 if (w1_enable_crccheck) {
242 /* can only write full blocks in cached mode */
243 if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) {
244 dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n",
245 (int)off, count);
246 return -EINVAL;
249 /* make sure the block CRCs are valid */
250 for (idx = 0; idx < count; idx += W1_PAGE_SIZE) {
251 if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE)
252 != CRC16_VALID) {
253 dev_err(&sl->dev, "bad CRC at offset %d\n",
254 (int)off);
255 return -EINVAL;
260 mutex_lock(&sl->master->mutex);
262 /* Can only write data to one page at a time */
263 idx = 0;
264 while (idx < count) {
265 addr = off + idx;
266 len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK);
267 if (len > (count - idx))
268 len = count - idx;
270 if (w1_f1C_write(sl, addr, len, &buf[idx]) < 0) {
271 count = -EIO;
272 goto out_up;
274 idx += len;
277 out_up:
278 mutex_unlock(&sl->master->mutex);
280 return count;
283 static BIN_ATTR_RW(eeprom, W1_EEPROM_SIZE);
285 static ssize_t pio_read(struct file *filp, struct kobject *kobj,
286 struct bin_attribute *bin_attr, char *buf, loff_t off,
287 size_t count)
290 struct w1_slave *sl = kobj_to_w1_slave(kobj);
291 int ret;
293 /* check arguments */
294 if (off != 0 || count != 1 || buf == NULL)
295 return -EINVAL;
297 mutex_lock(&sl->master->mutex);
298 ret = w1_f1C_read(sl, W1_1C_REG_LOGIC_STATE, count, buf);
299 mutex_unlock(&sl->master->mutex);
301 return ret;
304 static ssize_t pio_write(struct file *filp, struct kobject *kobj,
305 struct bin_attribute *bin_attr, char *buf, loff_t off,
306 size_t count)
309 struct w1_slave *sl = kobj_to_w1_slave(kobj);
310 u8 wrbuf[3];
311 u8 ack;
313 /* check arguments */
314 if (off != 0 || count != 1 || buf == NULL)
315 return -EINVAL;
317 mutex_lock(&sl->master->mutex);
319 /* Write the PIO data */
320 if (w1_reset_select_slave(sl)) {
321 mutex_unlock(&sl->master->mutex);
322 return -1;
325 /* set bit 7..2 to value '1' */
326 *buf = *buf | 0xFC;
328 wrbuf[0] = W1_F1C_ACCESS_WRITE;
329 wrbuf[1] = *buf;
330 wrbuf[2] = ~(*buf);
331 w1_write_block(sl->master, wrbuf, 3);
333 w1_read_block(sl->master, &ack, sizeof(ack));
335 mutex_unlock(&sl->master->mutex);
337 /* check for acknowledgement */
338 if (ack != 0xAA)
339 return -EIO;
341 return count;
344 static BIN_ATTR_RW(pio, 1);
346 static ssize_t crccheck_show(struct device *dev, struct device_attribute *attr,
347 char *buf)
349 if (put_user(w1_enable_crccheck + 0x30, buf))
350 return -EFAULT;
352 return sizeof(w1_enable_crccheck);
355 static ssize_t crccheck_store(struct device *dev, struct device_attribute *attr,
356 const char *buf, size_t count)
358 char val;
360 if (count != 1 || !buf)
361 return -EINVAL;
363 if (get_user(val, buf))
364 return -EFAULT;
366 /* convert to decimal */
367 val = val - 0x30;
368 if (val != 0 && val != 1)
369 return -EINVAL;
371 /* set the new value */
372 w1_enable_crccheck = val;
374 return sizeof(w1_enable_crccheck);
377 static DEVICE_ATTR_RW(crccheck);
379 static struct attribute *w1_f1C_attrs[] = {
380 &dev_attr_crccheck.attr,
381 NULL,
384 static struct bin_attribute *w1_f1C_bin_attrs[] = {
385 &bin_attr_eeprom,
386 &bin_attr_pio,
387 NULL,
390 static const struct attribute_group w1_f1C_group = {
391 .attrs = w1_f1C_attrs,
392 .bin_attrs = w1_f1C_bin_attrs,
395 static const struct attribute_group *w1_f1C_groups[] = {
396 &w1_f1C_group,
397 NULL,
400 static int w1_f1C_add_slave(struct w1_slave *sl)
402 struct w1_f1C_data *data = NULL;
404 if (w1_enable_crccheck) {
405 data = kzalloc(sizeof(struct w1_f1C_data), GFP_KERNEL);
406 if (!data)
407 return -ENOMEM;
408 sl->family_data = data;
411 return 0;
414 static void w1_f1C_remove_slave(struct w1_slave *sl)
416 kfree(sl->family_data);
417 sl->family_data = NULL;
420 static struct w1_family_ops w1_f1C_fops = {
421 .add_slave = w1_f1C_add_slave,
422 .remove_slave = w1_f1C_remove_slave,
423 .groups = w1_f1C_groups,
426 static struct w1_family w1_family_1C = {
427 .fid = W1_FAMILY_DS28E04,
428 .fops = &w1_f1C_fops,
431 static int __init w1_f1C_init(void)
433 return w1_register_family(&w1_family_1C);
436 static void __exit w1_f1C_fini(void)
438 w1_unregister_family(&w1_family_1C);
441 module_init(w1_f1C_init);
442 module_exit(w1_f1C_fini);