samples/bpf: extend test_cgrp2_attach2 test to use cgroup storage
[linux/fpc-iii.git] / mm / sparse.c
blobf13f2723950ad4c06502c15df16cd8f7acb8e4c3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
21 * Permanent SPARSEMEM data:
23 * 1) mem_section - memory sections, mem_map's for valid memory
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
73 return section;
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
81 if (mem_section[root])
82 return -EEXIST;
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
88 mem_section[root] = section;
90 return 0;
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 return 0;
97 #endif
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
114 VM_BUG_ON(!root);
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 #else
119 int __section_nr(struct mem_section* ms)
121 return (int)(ms - mem_section[0]);
123 #endif
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
131 static inline unsigned long sparse_encode_early_nid(int nid)
133 return (nid << SECTION_NID_SHIFT);
136 static inline int sparse_early_nid(struct mem_section *section)
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
179 int section_nr = __section_nr(ms);
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
187 static inline int next_present_section_nr(int section_nr)
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr <= __highest_present_section_nr));
195 return -1;
197 #define for_each_present_section_nr(start, section_nr) \
198 for (section_nr = next_present_section_nr(start-1); \
199 ((section_nr >= 0) && \
200 (section_nr <= __highest_present_section_nr)); \
201 section_nr = next_present_section_nr(section_nr))
203 /* Record a memory area against a node. */
204 void __init memory_present(int nid, unsigned long start, unsigned long end)
206 unsigned long pfn;
208 #ifdef CONFIG_SPARSEMEM_EXTREME
209 if (unlikely(!mem_section)) {
210 unsigned long size, align;
212 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
213 align = 1 << (INTERNODE_CACHE_SHIFT);
214 mem_section = memblock_virt_alloc(size, align);
216 #endif
218 start &= PAGE_SECTION_MASK;
219 mminit_validate_memmodel_limits(&start, &end);
220 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
221 unsigned long section = pfn_to_section_nr(pfn);
222 struct mem_section *ms;
224 sparse_index_init(section, nid);
225 set_section_nid(section, nid);
227 ms = __nr_to_section(section);
228 if (!ms->section_mem_map) {
229 ms->section_mem_map = sparse_encode_early_nid(nid) |
230 SECTION_IS_ONLINE;
231 section_mark_present(ms);
237 * Subtle, we encode the real pfn into the mem_map such that
238 * the identity pfn - section_mem_map will return the actual
239 * physical page frame number.
241 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
243 unsigned long coded_mem_map =
244 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
245 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
246 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
247 return coded_mem_map;
251 * Decode mem_map from the coded memmap
253 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
255 /* mask off the extra low bits of information */
256 coded_mem_map &= SECTION_MAP_MASK;
257 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260 static int __meminit sparse_init_one_section(struct mem_section *ms,
261 unsigned long pnum, struct page *mem_map,
262 unsigned long *pageblock_bitmap)
264 if (!present_section(ms))
265 return -EINVAL;
267 ms->section_mem_map &= ~SECTION_MAP_MASK;
268 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
269 SECTION_HAS_MEM_MAP;
270 ms->pageblock_flags = pageblock_bitmap;
272 return 1;
275 unsigned long usemap_size(void)
277 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
280 #ifdef CONFIG_MEMORY_HOTPLUG
281 static unsigned long *__kmalloc_section_usemap(void)
283 return kmalloc(usemap_size(), GFP_KERNEL);
285 #endif /* CONFIG_MEMORY_HOTPLUG */
287 #ifdef CONFIG_MEMORY_HOTREMOVE
288 static unsigned long * __init
289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
290 unsigned long size)
292 unsigned long goal, limit;
293 unsigned long *p;
294 int nid;
296 * A page may contain usemaps for other sections preventing the
297 * page being freed and making a section unremovable while
298 * other sections referencing the usemap remain active. Similarly,
299 * a pgdat can prevent a section being removed. If section A
300 * contains a pgdat and section B contains the usemap, both
301 * sections become inter-dependent. This allocates usemaps
302 * from the same section as the pgdat where possible to avoid
303 * this problem.
305 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
306 limit = goal + (1UL << PA_SECTION_SHIFT);
307 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
308 again:
309 p = memblock_virt_alloc_try_nid_nopanic(size,
310 SMP_CACHE_BYTES, goal, limit,
311 nid);
312 if (!p && limit) {
313 limit = 0;
314 goto again;
316 return p;
319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
321 unsigned long usemap_snr, pgdat_snr;
322 static unsigned long old_usemap_snr;
323 static unsigned long old_pgdat_snr;
324 struct pglist_data *pgdat = NODE_DATA(nid);
325 int usemap_nid;
327 /* First call */
328 if (!old_usemap_snr) {
329 old_usemap_snr = NR_MEM_SECTIONS;
330 old_pgdat_snr = NR_MEM_SECTIONS;
333 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
334 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
335 if (usemap_snr == pgdat_snr)
336 return;
338 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
339 /* skip redundant message */
340 return;
342 old_usemap_snr = usemap_snr;
343 old_pgdat_snr = pgdat_snr;
345 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
346 if (usemap_nid != nid) {
347 pr_info("node %d must be removed before remove section %ld\n",
348 nid, usemap_snr);
349 return;
352 * There is a circular dependency.
353 * Some platforms allow un-removable section because they will just
354 * gather other removable sections for dynamic partitioning.
355 * Just notify un-removable section's number here.
357 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
358 usemap_snr, pgdat_snr, nid);
360 #else
361 static unsigned long * __init
362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
363 unsigned long size)
365 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
371 #endif /* CONFIG_MEMORY_HOTREMOVE */
373 static void __init sparse_early_usemaps_alloc_node(void *data,
374 unsigned long pnum_begin,
375 unsigned long pnum_end,
376 unsigned long usemap_count, int nodeid)
378 void *usemap;
379 unsigned long pnum;
380 unsigned long **usemap_map = (unsigned long **)data;
381 int size = usemap_size();
383 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
384 size * usemap_count);
385 if (!usemap) {
386 pr_warn("%s: allocation failed\n", __func__);
387 return;
390 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
391 if (!present_section_nr(pnum))
392 continue;
393 usemap_map[pnum] = usemap;
394 usemap += size;
395 check_usemap_section_nr(nodeid, usemap_map[pnum]);
399 #ifndef CONFIG_SPARSEMEM_VMEMMAP
400 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
401 struct vmem_altmap *altmap)
403 struct page *map;
404 unsigned long size;
406 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
407 map = memblock_virt_alloc_try_nid(size,
408 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
409 BOOTMEM_ALLOC_ACCESSIBLE, nid);
410 return map;
412 void __init sparse_mem_maps_populate_node(struct page **map_map,
413 unsigned long pnum_begin,
414 unsigned long pnum_end,
415 unsigned long map_count, int nodeid)
417 void *map;
418 unsigned long pnum;
419 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
421 size = PAGE_ALIGN(size);
422 map = memblock_virt_alloc_try_nid_raw(size * map_count,
423 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
424 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
425 if (map) {
426 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
427 if (!present_section_nr(pnum))
428 continue;
429 map_map[pnum] = map;
430 map += size;
432 return;
435 /* fallback */
436 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
437 struct mem_section *ms;
439 if (!present_section_nr(pnum))
440 continue;
441 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
442 if (map_map[pnum])
443 continue;
444 ms = __nr_to_section(pnum);
445 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
446 __func__);
447 ms->section_mem_map = 0;
450 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
452 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
453 static void __init sparse_early_mem_maps_alloc_node(void *data,
454 unsigned long pnum_begin,
455 unsigned long pnum_end,
456 unsigned long map_count, int nodeid)
458 struct page **map_map = (struct page **)data;
459 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
460 map_count, nodeid);
462 #else
463 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
465 struct page *map;
466 struct mem_section *ms = __nr_to_section(pnum);
467 int nid = sparse_early_nid(ms);
469 map = sparse_mem_map_populate(pnum, nid, NULL);
470 if (map)
471 return map;
473 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
474 __func__);
475 ms->section_mem_map = 0;
476 return NULL;
478 #endif
480 void __weak __meminit vmemmap_populate_print_last(void)
485 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
486 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
488 static void __init alloc_usemap_and_memmap(void (*alloc_func)
489 (void *, unsigned long, unsigned long,
490 unsigned long, int), void *data)
492 unsigned long pnum;
493 unsigned long map_count;
494 int nodeid_begin = 0;
495 unsigned long pnum_begin = 0;
497 for_each_present_section_nr(0, pnum) {
498 struct mem_section *ms;
500 ms = __nr_to_section(pnum);
501 nodeid_begin = sparse_early_nid(ms);
502 pnum_begin = pnum;
503 break;
505 map_count = 1;
506 for_each_present_section_nr(pnum_begin + 1, pnum) {
507 struct mem_section *ms;
508 int nodeid;
510 ms = __nr_to_section(pnum);
511 nodeid = sparse_early_nid(ms);
512 if (nodeid == nodeid_begin) {
513 map_count++;
514 continue;
516 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
517 alloc_func(data, pnum_begin, pnum,
518 map_count, nodeid_begin);
519 /* new start, update count etc*/
520 nodeid_begin = nodeid;
521 pnum_begin = pnum;
522 map_count = 1;
524 /* ok, last chunk */
525 alloc_func(data, pnum_begin, __highest_present_section_nr+1,
526 map_count, nodeid_begin);
530 * Allocate the accumulated non-linear sections, allocate a mem_map
531 * for each and record the physical to section mapping.
533 void __init sparse_init(void)
535 unsigned long pnum;
536 struct page *map;
537 unsigned long *usemap;
538 unsigned long **usemap_map;
539 int size;
540 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
541 int size2;
542 struct page **map_map;
543 #endif
545 /* see include/linux/mmzone.h 'struct mem_section' definition */
546 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
548 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
549 set_pageblock_order();
552 * map is using big page (aka 2M in x86 64 bit)
553 * usemap is less one page (aka 24 bytes)
554 * so alloc 2M (with 2M align) and 24 bytes in turn will
555 * make next 2M slip to one more 2M later.
556 * then in big system, the memory will have a lot of holes...
557 * here try to allocate 2M pages continuously.
559 * powerpc need to call sparse_init_one_section right after each
560 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
562 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
563 usemap_map = memblock_virt_alloc(size, 0);
564 if (!usemap_map)
565 panic("can not allocate usemap_map\n");
566 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
567 (void *)usemap_map);
569 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
570 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
571 map_map = memblock_virt_alloc(size2, 0);
572 if (!map_map)
573 panic("can not allocate map_map\n");
574 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
575 (void *)map_map);
576 #endif
578 for_each_present_section_nr(0, pnum) {
579 usemap = usemap_map[pnum];
580 if (!usemap)
581 continue;
583 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
584 map = map_map[pnum];
585 #else
586 map = sparse_early_mem_map_alloc(pnum);
587 #endif
588 if (!map)
589 continue;
591 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
592 usemap);
595 vmemmap_populate_print_last();
597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
598 memblock_free_early(__pa(map_map), size2);
599 #endif
600 memblock_free_early(__pa(usemap_map), size);
603 #ifdef CONFIG_MEMORY_HOTPLUG
605 /* Mark all memory sections within the pfn range as online */
606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
608 unsigned long pfn;
610 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
611 unsigned long section_nr = pfn_to_section_nr(pfn);
612 struct mem_section *ms;
614 /* onlining code should never touch invalid ranges */
615 if (WARN_ON(!valid_section_nr(section_nr)))
616 continue;
618 ms = __nr_to_section(section_nr);
619 ms->section_mem_map |= SECTION_IS_ONLINE;
623 #ifdef CONFIG_MEMORY_HOTREMOVE
624 /* Mark all memory sections within the pfn range as online */
625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
627 unsigned long pfn;
629 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630 unsigned long section_nr = pfn_to_section_nr(pfn);
631 struct mem_section *ms;
634 * TODO this needs some double checking. Offlining code makes
635 * sure to check pfn_valid but those checks might be just bogus
637 if (WARN_ON(!valid_section_nr(section_nr)))
638 continue;
640 ms = __nr_to_section(section_nr);
641 ms->section_mem_map &= ~SECTION_IS_ONLINE;
644 #endif
646 #ifdef CONFIG_SPARSEMEM_VMEMMAP
647 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
648 struct vmem_altmap *altmap)
650 /* This will make the necessary allocations eventually. */
651 return sparse_mem_map_populate(pnum, nid, altmap);
653 static void __kfree_section_memmap(struct page *memmap,
654 struct vmem_altmap *altmap)
656 unsigned long start = (unsigned long)memmap;
657 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
659 vmemmap_free(start, end, altmap);
661 #ifdef CONFIG_MEMORY_HOTREMOVE
662 static void free_map_bootmem(struct page *memmap)
664 unsigned long start = (unsigned long)memmap;
665 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
667 vmemmap_free(start, end, NULL);
669 #endif /* CONFIG_MEMORY_HOTREMOVE */
670 #else
671 static struct page *__kmalloc_section_memmap(void)
673 struct page *page, *ret;
674 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
676 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
677 if (page)
678 goto got_map_page;
680 ret = vmalloc(memmap_size);
681 if (ret)
682 goto got_map_ptr;
684 return NULL;
685 got_map_page:
686 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
687 got_map_ptr:
689 return ret;
692 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
693 struct vmem_altmap *altmap)
695 return __kmalloc_section_memmap();
698 static void __kfree_section_memmap(struct page *memmap,
699 struct vmem_altmap *altmap)
701 if (is_vmalloc_addr(memmap))
702 vfree(memmap);
703 else
704 free_pages((unsigned long)memmap,
705 get_order(sizeof(struct page) * PAGES_PER_SECTION));
708 #ifdef CONFIG_MEMORY_HOTREMOVE
709 static void free_map_bootmem(struct page *memmap)
711 unsigned long maps_section_nr, removing_section_nr, i;
712 unsigned long magic, nr_pages;
713 struct page *page = virt_to_page(memmap);
715 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
716 >> PAGE_SHIFT;
718 for (i = 0; i < nr_pages; i++, page++) {
719 magic = (unsigned long) page->freelist;
721 BUG_ON(magic == NODE_INFO);
723 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
724 removing_section_nr = page_private(page);
727 * When this function is called, the removing section is
728 * logical offlined state. This means all pages are isolated
729 * from page allocator. If removing section's memmap is placed
730 * on the same section, it must not be freed.
731 * If it is freed, page allocator may allocate it which will
732 * be removed physically soon.
734 if (maps_section_nr != removing_section_nr)
735 put_page_bootmem(page);
738 #endif /* CONFIG_MEMORY_HOTREMOVE */
739 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
742 * returns the number of sections whose mem_maps were properly
743 * set. If this is <=0, then that means that the passed-in
744 * map was not consumed and must be freed.
746 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
747 unsigned long start_pfn, struct vmem_altmap *altmap)
749 unsigned long section_nr = pfn_to_section_nr(start_pfn);
750 struct mem_section *ms;
751 struct page *memmap;
752 unsigned long *usemap;
753 unsigned long flags;
754 int ret;
757 * no locking for this, because it does its own
758 * plus, it does a kmalloc
760 ret = sparse_index_init(section_nr, pgdat->node_id);
761 if (ret < 0 && ret != -EEXIST)
762 return ret;
763 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
764 if (!memmap)
765 return -ENOMEM;
766 usemap = __kmalloc_section_usemap();
767 if (!usemap) {
768 __kfree_section_memmap(memmap, altmap);
769 return -ENOMEM;
772 pgdat_resize_lock(pgdat, &flags);
774 ms = __pfn_to_section(start_pfn);
775 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
776 ret = -EEXIST;
777 goto out;
780 #ifdef CONFIG_DEBUG_VM
782 * Poison uninitialized struct pages in order to catch invalid flags
783 * combinations.
785 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
786 #endif
788 section_mark_present(ms);
790 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
792 out:
793 pgdat_resize_unlock(pgdat, &flags);
794 if (ret <= 0) {
795 kfree(usemap);
796 __kfree_section_memmap(memmap, altmap);
798 return ret;
801 #ifdef CONFIG_MEMORY_HOTREMOVE
802 #ifdef CONFIG_MEMORY_FAILURE
803 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
805 int i;
807 if (!memmap)
808 return;
810 for (i = 0; i < nr_pages; i++) {
811 if (PageHWPoison(&memmap[i])) {
812 atomic_long_sub(1, &num_poisoned_pages);
813 ClearPageHWPoison(&memmap[i]);
817 #else
818 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821 #endif
823 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
824 struct vmem_altmap *altmap)
826 struct page *usemap_page;
828 if (!usemap)
829 return;
831 usemap_page = virt_to_page(usemap);
833 * Check to see if allocation came from hot-plug-add
835 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
836 kfree(usemap);
837 if (memmap)
838 __kfree_section_memmap(memmap, altmap);
839 return;
843 * The usemap came from bootmem. This is packed with other usemaps
844 * on the section which has pgdat at boot time. Just keep it as is now.
847 if (memmap)
848 free_map_bootmem(memmap);
851 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
852 unsigned long map_offset, struct vmem_altmap *altmap)
854 struct page *memmap = NULL;
855 unsigned long *usemap = NULL, flags;
856 struct pglist_data *pgdat = zone->zone_pgdat;
858 pgdat_resize_lock(pgdat, &flags);
859 if (ms->section_mem_map) {
860 usemap = ms->pageblock_flags;
861 memmap = sparse_decode_mem_map(ms->section_mem_map,
862 __section_nr(ms));
863 ms->section_mem_map = 0;
864 ms->pageblock_flags = NULL;
866 pgdat_resize_unlock(pgdat, &flags);
868 clear_hwpoisoned_pages(memmap + map_offset,
869 PAGES_PER_SECTION - map_offset);
870 free_section_usemap(memmap, usemap, altmap);
872 #endif /* CONFIG_MEMORY_HOTREMOVE */
873 #endif /* CONFIG_MEMORY_HOTPLUG */