3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/uaccess.h>
24 * DOC: bitmap introduction
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
40 * These operations actually hold to a slightly stronger rule:
41 * if you don't input any bitmaps to these ops that have some
42 * unused bits set, then they won't output any set unused bits
45 * The byte ordering of bitmaps is more natural on little
46 * endian architectures. See the big-endian headers
47 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
48 * for the best explanations of this ordering.
51 int __bitmap_equal(const unsigned long *bitmap1
,
52 const unsigned long *bitmap2
, unsigned int bits
)
54 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
55 for (k
= 0; k
< lim
; ++k
)
56 if (bitmap1
[k
] != bitmap2
[k
])
59 if (bits
% BITS_PER_LONG
)
60 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
65 EXPORT_SYMBOL(__bitmap_equal
);
67 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, unsigned int bits
)
69 unsigned int k
, lim
= BITS_TO_LONGS(bits
);
70 for (k
= 0; k
< lim
; ++k
)
73 EXPORT_SYMBOL(__bitmap_complement
);
76 * __bitmap_shift_right - logical right shift of the bits in a bitmap
77 * @dst : destination bitmap
78 * @src : source bitmap
79 * @shift : shift by this many bits
80 * @nbits : bitmap size, in bits
82 * Shifting right (dividing) means moving bits in the MS -> LS bit
83 * direction. Zeros are fed into the vacated MS positions and the
84 * LS bits shifted off the bottom are lost.
86 void __bitmap_shift_right(unsigned long *dst
, const unsigned long *src
,
87 unsigned shift
, unsigned nbits
)
89 unsigned k
, lim
= BITS_TO_LONGS(nbits
);
90 unsigned off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
91 unsigned long mask
= BITMAP_LAST_WORD_MASK(nbits
);
92 for (k
= 0; off
+ k
< lim
; ++k
) {
93 unsigned long upper
, lower
;
96 * If shift is not word aligned, take lower rem bits of
97 * word above and make them the top rem bits of result.
99 if (!rem
|| off
+ k
+ 1 >= lim
)
102 upper
= src
[off
+ k
+ 1];
103 if (off
+ k
+ 1 == lim
- 1)
105 upper
<<= (BITS_PER_LONG
- rem
);
107 lower
= src
[off
+ k
];
108 if (off
+ k
== lim
- 1)
111 dst
[k
] = lower
| upper
;
114 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
116 EXPORT_SYMBOL(__bitmap_shift_right
);
120 * __bitmap_shift_left - logical left shift of the bits in a bitmap
121 * @dst : destination bitmap
122 * @src : source bitmap
123 * @shift : shift by this many bits
124 * @nbits : bitmap size, in bits
126 * Shifting left (multiplying) means moving bits in the LS -> MS
127 * direction. Zeros are fed into the vacated LS bit positions
128 * and those MS bits shifted off the top are lost.
131 void __bitmap_shift_left(unsigned long *dst
, const unsigned long *src
,
132 unsigned int shift
, unsigned int nbits
)
135 unsigned int lim
= BITS_TO_LONGS(nbits
);
136 unsigned int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
137 for (k
= lim
- off
- 1; k
>= 0; --k
) {
138 unsigned long upper
, lower
;
141 * If shift is not word aligned, take upper rem bits of
142 * word below and make them the bottom rem bits of result.
145 lower
= src
[k
- 1] >> (BITS_PER_LONG
- rem
);
148 upper
= src
[k
] << rem
;
149 dst
[k
+ off
] = lower
| upper
;
152 memset(dst
, 0, off
*sizeof(unsigned long));
154 EXPORT_SYMBOL(__bitmap_shift_left
);
156 int __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
157 const unsigned long *bitmap2
, unsigned int bits
)
160 unsigned int lim
= bits
/BITS_PER_LONG
;
161 unsigned long result
= 0;
163 for (k
= 0; k
< lim
; k
++)
164 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
]);
165 if (bits
% BITS_PER_LONG
)
166 result
|= (dst
[k
] = bitmap1
[k
] & bitmap2
[k
] &
167 BITMAP_LAST_WORD_MASK(bits
));
170 EXPORT_SYMBOL(__bitmap_and
);
172 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
173 const unsigned long *bitmap2
, unsigned int bits
)
176 unsigned int nr
= BITS_TO_LONGS(bits
);
178 for (k
= 0; k
< nr
; k
++)
179 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
181 EXPORT_SYMBOL(__bitmap_or
);
183 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
184 const unsigned long *bitmap2
, unsigned int bits
)
187 unsigned int nr
= BITS_TO_LONGS(bits
);
189 for (k
= 0; k
< nr
; k
++)
190 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
192 EXPORT_SYMBOL(__bitmap_xor
);
194 int __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
195 const unsigned long *bitmap2
, unsigned int bits
)
198 unsigned int lim
= bits
/BITS_PER_LONG
;
199 unsigned long result
= 0;
201 for (k
= 0; k
< lim
; k
++)
202 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
]);
203 if (bits
% BITS_PER_LONG
)
204 result
|= (dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
] &
205 BITMAP_LAST_WORD_MASK(bits
));
208 EXPORT_SYMBOL(__bitmap_andnot
);
210 int __bitmap_intersects(const unsigned long *bitmap1
,
211 const unsigned long *bitmap2
, unsigned int bits
)
213 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
214 for (k
= 0; k
< lim
; ++k
)
215 if (bitmap1
[k
] & bitmap2
[k
])
218 if (bits
% BITS_PER_LONG
)
219 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
223 EXPORT_SYMBOL(__bitmap_intersects
);
225 int __bitmap_subset(const unsigned long *bitmap1
,
226 const unsigned long *bitmap2
, unsigned int bits
)
228 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
229 for (k
= 0; k
< lim
; ++k
)
230 if (bitmap1
[k
] & ~bitmap2
[k
])
233 if (bits
% BITS_PER_LONG
)
234 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
238 EXPORT_SYMBOL(__bitmap_subset
);
240 int __bitmap_weight(const unsigned long *bitmap
, unsigned int bits
)
242 unsigned int k
, lim
= bits
/BITS_PER_LONG
;
245 for (k
= 0; k
< lim
; k
++)
246 w
+= hweight_long(bitmap
[k
]);
248 if (bits
% BITS_PER_LONG
)
249 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
253 EXPORT_SYMBOL(__bitmap_weight
);
255 void __bitmap_set(unsigned long *map
, unsigned int start
, int len
)
257 unsigned long *p
= map
+ BIT_WORD(start
);
258 const unsigned int size
= start
+ len
;
259 int bits_to_set
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
260 unsigned long mask_to_set
= BITMAP_FIRST_WORD_MASK(start
);
262 while (len
- bits_to_set
>= 0) {
265 bits_to_set
= BITS_PER_LONG
;
270 mask_to_set
&= BITMAP_LAST_WORD_MASK(size
);
274 EXPORT_SYMBOL(__bitmap_set
);
276 void __bitmap_clear(unsigned long *map
, unsigned int start
, int len
)
278 unsigned long *p
= map
+ BIT_WORD(start
);
279 const unsigned int size
= start
+ len
;
280 int bits_to_clear
= BITS_PER_LONG
- (start
% BITS_PER_LONG
);
281 unsigned long mask_to_clear
= BITMAP_FIRST_WORD_MASK(start
);
283 while (len
- bits_to_clear
>= 0) {
284 *p
&= ~mask_to_clear
;
285 len
-= bits_to_clear
;
286 bits_to_clear
= BITS_PER_LONG
;
287 mask_to_clear
= ~0UL;
291 mask_to_clear
&= BITMAP_LAST_WORD_MASK(size
);
292 *p
&= ~mask_to_clear
;
295 EXPORT_SYMBOL(__bitmap_clear
);
298 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
299 * @map: The address to base the search on
300 * @size: The bitmap size in bits
301 * @start: The bitnumber to start searching at
302 * @nr: The number of zeroed bits we're looking for
303 * @align_mask: Alignment mask for zero area
304 * @align_offset: Alignment offset for zero area.
306 * The @align_mask should be one less than a power of 2; the effect is that
307 * the bit offset of all zero areas this function finds plus @align_offset
308 * is multiple of that power of 2.
310 unsigned long bitmap_find_next_zero_area_off(unsigned long *map
,
314 unsigned long align_mask
,
315 unsigned long align_offset
)
317 unsigned long index
, end
, i
;
319 index
= find_next_zero_bit(map
, size
, start
);
321 /* Align allocation */
322 index
= __ALIGN_MASK(index
+ align_offset
, align_mask
) - align_offset
;
327 i
= find_next_bit(map
, end
, index
);
334 EXPORT_SYMBOL(bitmap_find_next_zero_area_off
);
337 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
338 * second version by Paul Jackson, third by Joe Korty.
342 #define nbits_to_hold_value(val) fls(val)
343 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
346 * __bitmap_parse - convert an ASCII hex string into a bitmap.
347 * @buf: pointer to buffer containing string.
348 * @buflen: buffer size in bytes. If string is smaller than this
349 * then it must be terminated with a \0.
350 * @is_user: location of buffer, 0 indicates kernel space
351 * @maskp: pointer to bitmap array that will contain result.
352 * @nmaskbits: size of bitmap, in bits.
354 * Commas group hex digits into chunks. Each chunk defines exactly 32
355 * bits of the resultant bitmask. No chunk may specify a value larger
356 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
357 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
358 * characters and for grouping errors such as "1,,5", ",44", "," and "".
359 * Leading and trailing whitespace accepted, but not embedded whitespace.
361 int __bitmap_parse(const char *buf
, unsigned int buflen
,
362 int is_user
, unsigned long *maskp
,
365 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
367 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
369 bitmap_zero(maskp
, nmaskbits
);
371 nchunks
= nbits
= totaldigits
= c
= 0;
374 ndigits
= totaldigits
;
376 /* Get the next chunk of the bitmap */
380 if (__get_user(c
, ubuf
++))
390 * If the last character was a space and the current
391 * character isn't '\0', we've got embedded whitespace.
392 * This is a no-no, so throw an error.
394 if (totaldigits
&& c
&& isspace(old_c
))
397 /* A '\0' or a ',' signal the end of the chunk */
398 if (c
== '\0' || c
== ',')
405 * Make sure there are at least 4 free bits in 'chunk'.
406 * If not, this hexdigit will overflow 'chunk', so
409 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
412 chunk
= (chunk
<< 4) | hex_to_bin(c
);
415 if (ndigits
== totaldigits
)
417 if (nchunks
== 0 && chunk
== 0)
420 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
423 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
424 if (nbits
> nmaskbits
)
426 } while (buflen
&& c
== ',');
430 EXPORT_SYMBOL(__bitmap_parse
);
433 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
435 * @ubuf: pointer to user buffer containing string.
436 * @ulen: buffer size in bytes. If string is smaller than this
437 * then it must be terminated with a \0.
438 * @maskp: pointer to bitmap array that will contain result.
439 * @nmaskbits: size of bitmap, in bits.
441 * Wrapper for __bitmap_parse(), providing it with user buffer.
443 * We cannot have this as an inline function in bitmap.h because it needs
444 * linux/uaccess.h to get the access_ok() declaration and this causes
445 * cyclic dependencies.
447 int bitmap_parse_user(const char __user
*ubuf
,
448 unsigned int ulen
, unsigned long *maskp
,
451 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
453 return __bitmap_parse((const char __force
*)ubuf
,
454 ulen
, 1, maskp
, nmaskbits
);
457 EXPORT_SYMBOL(bitmap_parse_user
);
460 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
461 * @list: indicates whether the bitmap must be list
462 * @buf: page aligned buffer into which string is placed
463 * @maskp: pointer to bitmap to convert
464 * @nmaskbits: size of bitmap, in bits
466 * Output format is a comma-separated list of decimal numbers and
467 * ranges if list is specified or hex digits grouped into comma-separated
468 * sets of 8 digits/set. Returns the number of characters written to buf.
470 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
471 * area and that sufficient storage remains at @buf to accommodate the
472 * bitmap_print_to_pagebuf() output. Returns the number of characters
473 * actually printed to @buf, excluding terminating '\0'.
475 int bitmap_print_to_pagebuf(bool list
, char *buf
, const unsigned long *maskp
,
478 ptrdiff_t len
= PAGE_SIZE
- offset_in_page(buf
);
482 n
= list
? scnprintf(buf
, len
, "%*pbl\n", nmaskbits
, maskp
) :
483 scnprintf(buf
, len
, "%*pb\n", nmaskbits
, maskp
);
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf
);
489 * __bitmap_parselist - convert list format ASCII string to bitmap
490 * @buf: read nul-terminated user string from this buffer
491 * @buflen: buffer size in bytes. If string is smaller than this
492 * then it must be terminated with a \0.
493 * @is_user: location of buffer, 0 indicates kernel space
494 * @maskp: write resulting mask here
495 * @nmaskbits: number of bits in mask to be written
497 * Input format is a comma-separated list of decimal numbers and
498 * ranges. Consecutively set bits are shown as two hyphen-separated
499 * decimal numbers, the smallest and largest bit numbers set in
501 * Optionally each range can be postfixed to denote that only parts of it
502 * should be set. The range will divided to groups of specific size.
503 * From each group will be used only defined amount of bits.
504 * Syntax: range:used_size/group_size
505 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
507 * Returns: 0 on success, -errno on invalid input strings. Error values:
509 * - ``-EINVAL``: second number in range smaller than first
510 * - ``-EINVAL``: invalid character in string
511 * - ``-ERANGE``: bit number specified too large for mask
513 static int __bitmap_parselist(const char *buf
, unsigned int buflen
,
514 int is_user
, unsigned long *maskp
,
517 unsigned int a
, b
, old_a
, old_b
;
518 unsigned int group_size
, used_size
, off
;
519 int c
, old_c
, totaldigits
, ndigits
;
520 const char __user __force
*ubuf
= (const char __user __force
*)buf
;
521 int at_start
, in_range
, in_partial_range
;
525 group_size
= used_size
= 0;
526 bitmap_zero(maskp
, nmaskbits
);
530 in_partial_range
= 0;
532 ndigits
= totaldigits
;
534 /* Get the next cpu# or a range of cpu#'s */
538 if (__get_user(c
, ubuf
++))
546 /* A '\0' or a ',' signal the end of a cpu# or range */
547 if (c
== '\0' || c
== ',')
550 * whitespaces between digits are not allowed,
551 * but it's ok if whitespaces are on head or tail.
552 * when old_c is whilespace,
553 * if totaldigits == ndigits, whitespace is on head.
554 * if whitespace is on tail, it should not run here.
555 * as c was ',' or '\0',
556 * the last code line has broken the current loop.
558 if ((totaldigits
!= ndigits
) && isspace(old_c
))
574 in_partial_range
= 1;
580 if (at_start
|| in_range
)
591 b
= b
* 10 + (c
- '0');
597 if (ndigits
== totaldigits
)
599 if (in_partial_range
) {
605 used_size
= group_size
= b
- a
+ 1;
607 /* if no digit is after '-', it's wrong*/
608 if (at_start
&& in_range
)
610 if (!(a
<= b
) || group_size
== 0 || !(used_size
<= group_size
))
615 off
= min(b
- a
+ 1, used_size
);
616 bitmap_set(maskp
, a
, off
);
619 } while (buflen
&& c
== ',');
623 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
625 char *nl
= strchrnul(bp
, '\n');
628 return __bitmap_parselist(bp
, len
, 0, maskp
, nmaskbits
);
630 EXPORT_SYMBOL(bitmap_parselist
);
634 * bitmap_parselist_user()
636 * @ubuf: pointer to user buffer containing string.
637 * @ulen: buffer size in bytes. If string is smaller than this
638 * then it must be terminated with a \0.
639 * @maskp: pointer to bitmap array that will contain result.
640 * @nmaskbits: size of bitmap, in bits.
642 * Wrapper for bitmap_parselist(), providing it with user buffer.
644 * We cannot have this as an inline function in bitmap.h because it needs
645 * linux/uaccess.h to get the access_ok() declaration and this causes
646 * cyclic dependencies.
648 int bitmap_parselist_user(const char __user
*ubuf
,
649 unsigned int ulen
, unsigned long *maskp
,
652 if (!access_ok(VERIFY_READ
, ubuf
, ulen
))
654 return __bitmap_parselist((const char __force
*)ubuf
,
655 ulen
, 1, maskp
, nmaskbits
);
657 EXPORT_SYMBOL(bitmap_parselist_user
);
661 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
662 * @buf: pointer to a bitmap
663 * @pos: a bit position in @buf (0 <= @pos < @nbits)
664 * @nbits: number of valid bit positions in @buf
666 * Map the bit at position @pos in @buf (of length @nbits) to the
667 * ordinal of which set bit it is. If it is not set or if @pos
668 * is not a valid bit position, map to -1.
670 * If for example, just bits 4 through 7 are set in @buf, then @pos
671 * values 4 through 7 will get mapped to 0 through 3, respectively,
672 * and other @pos values will get mapped to -1. When @pos value 7
673 * gets mapped to (returns) @ord value 3 in this example, that means
674 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
676 * The bit positions 0 through @bits are valid positions in @buf.
678 static int bitmap_pos_to_ord(const unsigned long *buf
, unsigned int pos
, unsigned int nbits
)
680 if (pos
>= nbits
|| !test_bit(pos
, buf
))
683 return __bitmap_weight(buf
, pos
);
687 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
688 * @buf: pointer to bitmap
689 * @ord: ordinal bit position (n-th set bit, n >= 0)
690 * @nbits: number of valid bit positions in @buf
692 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
693 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
694 * >= weight(buf), returns @nbits.
696 * If for example, just bits 4 through 7 are set in @buf, then @ord
697 * values 0 through 3 will get mapped to 4 through 7, respectively,
698 * and all other @ord values returns @nbits. When @ord value 3
699 * gets mapped to (returns) @pos value 7 in this example, that means
700 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
702 * The bit positions 0 through @nbits-1 are valid positions in @buf.
704 unsigned int bitmap_ord_to_pos(const unsigned long *buf
, unsigned int ord
, unsigned int nbits
)
708 for (pos
= find_first_bit(buf
, nbits
);
710 pos
= find_next_bit(buf
, nbits
, pos
+ 1))
717 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
718 * @dst: remapped result
719 * @src: subset to be remapped
720 * @old: defines domain of map
721 * @new: defines range of map
722 * @nbits: number of bits in each of these bitmaps
724 * Let @old and @new define a mapping of bit positions, such that
725 * whatever position is held by the n-th set bit in @old is mapped
726 * to the n-th set bit in @new. In the more general case, allowing
727 * for the possibility that the weight 'w' of @new is less than the
728 * weight of @old, map the position of the n-th set bit in @old to
729 * the position of the m-th set bit in @new, where m == n % w.
731 * If either of the @old and @new bitmaps are empty, or if @src and
732 * @dst point to the same location, then this routine copies @src
735 * The positions of unset bits in @old are mapped to themselves
736 * (the identify map).
738 * Apply the above specified mapping to @src, placing the result in
739 * @dst, clearing any bits previously set in @dst.
741 * For example, lets say that @old has bits 4 through 7 set, and
742 * @new has bits 12 through 15 set. This defines the mapping of bit
743 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
744 * bit positions unchanged. So if say @src comes into this routine
745 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
748 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
749 const unsigned long *old
, const unsigned long *new,
752 unsigned int oldbit
, w
;
754 if (dst
== src
) /* following doesn't handle inplace remaps */
756 bitmap_zero(dst
, nbits
);
758 w
= bitmap_weight(new, nbits
);
759 for_each_set_bit(oldbit
, src
, nbits
) {
760 int n
= bitmap_pos_to_ord(old
, oldbit
, nbits
);
763 set_bit(oldbit
, dst
); /* identity map */
765 set_bit(bitmap_ord_to_pos(new, n
% w
, nbits
), dst
);
768 EXPORT_SYMBOL(bitmap_remap
);
771 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
772 * @oldbit: bit position to be mapped
773 * @old: defines domain of map
774 * @new: defines range of map
775 * @bits: number of bits in each of these bitmaps
777 * Let @old and @new define a mapping of bit positions, such that
778 * whatever position is held by the n-th set bit in @old is mapped
779 * to the n-th set bit in @new. In the more general case, allowing
780 * for the possibility that the weight 'w' of @new is less than the
781 * weight of @old, map the position of the n-th set bit in @old to
782 * the position of the m-th set bit in @new, where m == n % w.
784 * The positions of unset bits in @old are mapped to themselves
785 * (the identify map).
787 * Apply the above specified mapping to bit position @oldbit, returning
788 * the new bit position.
790 * For example, lets say that @old has bits 4 through 7 set, and
791 * @new has bits 12 through 15 set. This defines the mapping of bit
792 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
793 * bit positions unchanged. So if say @oldbit is 5, then this routine
796 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
797 const unsigned long *new, int bits
)
799 int w
= bitmap_weight(new, bits
);
800 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
804 return bitmap_ord_to_pos(new, n
% w
, bits
);
806 EXPORT_SYMBOL(bitmap_bitremap
);
809 * bitmap_onto - translate one bitmap relative to another
810 * @dst: resulting translated bitmap
811 * @orig: original untranslated bitmap
812 * @relmap: bitmap relative to which translated
813 * @bits: number of bits in each of these bitmaps
815 * Set the n-th bit of @dst iff there exists some m such that the
816 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
817 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
818 * (If you understood the previous sentence the first time your
819 * read it, you're overqualified for your current job.)
821 * In other words, @orig is mapped onto (surjectively) @dst,
822 * using the map { <n, m> | the n-th bit of @relmap is the
823 * m-th set bit of @relmap }.
825 * Any set bits in @orig above bit number W, where W is the
826 * weight of (number of set bits in) @relmap are mapped nowhere.
827 * In particular, if for all bits m set in @orig, m >= W, then
828 * @dst will end up empty. In situations where the possibility
829 * of such an empty result is not desired, one way to avoid it is
830 * to use the bitmap_fold() operator, below, to first fold the
831 * @orig bitmap over itself so that all its set bits x are in the
832 * range 0 <= x < W. The bitmap_fold() operator does this by
833 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
835 * Example [1] for bitmap_onto():
836 * Let's say @relmap has bits 30-39 set, and @orig has bits
837 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
838 * @dst will have bits 31, 33, 35, 37 and 39 set.
840 * When bit 0 is set in @orig, it means turn on the bit in
841 * @dst corresponding to whatever is the first bit (if any)
842 * that is turned on in @relmap. Since bit 0 was off in the
843 * above example, we leave off that bit (bit 30) in @dst.
845 * When bit 1 is set in @orig (as in the above example), it
846 * means turn on the bit in @dst corresponding to whatever
847 * is the second bit that is turned on in @relmap. The second
848 * bit in @relmap that was turned on in the above example was
849 * bit 31, so we turned on bit 31 in @dst.
851 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
852 * because they were the 4th, 6th, 8th and 10th set bits
853 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
854 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
856 * When bit 11 is set in @orig, it means turn on the bit in
857 * @dst corresponding to whatever is the twelfth bit that is
858 * turned on in @relmap. In the above example, there were
859 * only ten bits turned on in @relmap (30..39), so that bit
860 * 11 was set in @orig had no affect on @dst.
862 * Example [2] for bitmap_fold() + bitmap_onto():
863 * Let's say @relmap has these ten bits set::
865 * 40 41 42 43 45 48 53 61 74 95
867 * (for the curious, that's 40 plus the first ten terms of the
868 * Fibonacci sequence.)
870 * Further lets say we use the following code, invoking
871 * bitmap_fold() then bitmap_onto, as suggested above to
872 * avoid the possibility of an empty @dst result::
874 * unsigned long *tmp; // a temporary bitmap's bits
876 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
877 * bitmap_onto(dst, tmp, relmap, bits);
879 * Then this table shows what various values of @dst would be, for
880 * various @orig's. I list the zero-based positions of each set bit.
881 * The tmp column shows the intermediate result, as computed by
882 * using bitmap_fold() to fold the @orig bitmap modulo ten
883 * (the weight of @relmap):
885 * =============== ============== =================
891 * 1 3 5 7 1 3 5 7 41 43 48 61
892 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
893 * 0 9 18 27 0 9 8 7 40 61 74 95
895 * 0 11 22 33 0 1 2 3 40 41 42 43
896 * 0 12 24 36 0 2 4 6 40 42 45 53
897 * 78 102 211 1 2 8 41 42 74 [#f1]_
898 * =============== ============== =================
902 * For these marked lines, if we hadn't first done bitmap_fold()
903 * into tmp, then the @dst result would have been empty.
905 * If either of @orig or @relmap is empty (no set bits), then @dst
906 * will be returned empty.
908 * If (as explained above) the only set bits in @orig are in positions
909 * m where m >= W, (where W is the weight of @relmap) then @dst will
910 * once again be returned empty.
912 * All bits in @dst not set by the above rule are cleared.
914 void bitmap_onto(unsigned long *dst
, const unsigned long *orig
,
915 const unsigned long *relmap
, unsigned int bits
)
917 unsigned int n
, m
; /* same meaning as in above comment */
919 if (dst
== orig
) /* following doesn't handle inplace mappings */
921 bitmap_zero(dst
, bits
);
924 * The following code is a more efficient, but less
925 * obvious, equivalent to the loop:
926 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
927 * n = bitmap_ord_to_pos(orig, m, bits);
928 * if (test_bit(m, orig))
934 for_each_set_bit(n
, relmap
, bits
) {
935 /* m == bitmap_pos_to_ord(relmap, n, bits) */
936 if (test_bit(m
, orig
))
941 EXPORT_SYMBOL(bitmap_onto
);
944 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
945 * @dst: resulting smaller bitmap
946 * @orig: original larger bitmap
947 * @sz: specified size
948 * @nbits: number of bits in each of these bitmaps
950 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
951 * Clear all other bits in @dst. See further the comment and
952 * Example [2] for bitmap_onto() for why and how to use this.
954 void bitmap_fold(unsigned long *dst
, const unsigned long *orig
,
955 unsigned int sz
, unsigned int nbits
)
959 if (dst
== orig
) /* following doesn't handle inplace mappings */
961 bitmap_zero(dst
, nbits
);
963 for_each_set_bit(oldbit
, orig
, nbits
)
964 set_bit(oldbit
% sz
, dst
);
966 EXPORT_SYMBOL(bitmap_fold
);
969 * Common code for bitmap_*_region() routines.
970 * bitmap: array of unsigned longs corresponding to the bitmap
971 * pos: the beginning of the region
972 * order: region size (log base 2 of number of bits)
973 * reg_op: operation(s) to perform on that region of bitmap
975 * Can set, verify and/or release a region of bits in a bitmap,
976 * depending on which combination of REG_OP_* flag bits is set.
978 * A region of a bitmap is a sequence of bits in the bitmap, of
979 * some size '1 << order' (a power of two), aligned to that same
980 * '1 << order' power of two.
982 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
983 * Returns 0 in all other cases and reg_ops.
987 REG_OP_ISFREE
, /* true if region is all zero bits */
988 REG_OP_ALLOC
, /* set all bits in region */
989 REG_OP_RELEASE
, /* clear all bits in region */
992 static int __reg_op(unsigned long *bitmap
, unsigned int pos
, int order
, int reg_op
)
994 int nbits_reg
; /* number of bits in region */
995 int index
; /* index first long of region in bitmap */
996 int offset
; /* bit offset region in bitmap[index] */
997 int nlongs_reg
; /* num longs spanned by region in bitmap */
998 int nbitsinlong
; /* num bits of region in each spanned long */
999 unsigned long mask
; /* bitmask for one long of region */
1000 int i
; /* scans bitmap by longs */
1001 int ret
= 0; /* return value */
1004 * Either nlongs_reg == 1 (for small orders that fit in one long)
1005 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1007 nbits_reg
= 1 << order
;
1008 index
= pos
/ BITS_PER_LONG
;
1009 offset
= pos
- (index
* BITS_PER_LONG
);
1010 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
1011 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
1014 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1015 * overflows if nbitsinlong == BITS_PER_LONG.
1017 mask
= (1UL << (nbitsinlong
- 1));
1023 for (i
= 0; i
< nlongs_reg
; i
++) {
1024 if (bitmap
[index
+ i
] & mask
)
1027 ret
= 1; /* all bits in region free (zero) */
1031 for (i
= 0; i
< nlongs_reg
; i
++)
1032 bitmap
[index
+ i
] |= mask
;
1035 case REG_OP_RELEASE
:
1036 for (i
= 0; i
< nlongs_reg
; i
++)
1037 bitmap
[index
+ i
] &= ~mask
;
1045 * bitmap_find_free_region - find a contiguous aligned mem region
1046 * @bitmap: array of unsigned longs corresponding to the bitmap
1047 * @bits: number of bits in the bitmap
1048 * @order: region size (log base 2 of number of bits) to find
1050 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1051 * allocate them (set them to one). Only consider regions of length
1052 * a power (@order) of two, aligned to that power of two, which
1053 * makes the search algorithm much faster.
1055 * Return the bit offset in bitmap of the allocated region,
1056 * or -errno on failure.
1058 int bitmap_find_free_region(unsigned long *bitmap
, unsigned int bits
, int order
)
1060 unsigned int pos
, end
; /* scans bitmap by regions of size order */
1062 for (pos
= 0 ; (end
= pos
+ (1U << order
)) <= bits
; pos
= end
) {
1063 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1065 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1070 EXPORT_SYMBOL(bitmap_find_free_region
);
1073 * bitmap_release_region - release allocated bitmap region
1074 * @bitmap: array of unsigned longs corresponding to the bitmap
1075 * @pos: beginning of bit region to release
1076 * @order: region size (log base 2 of number of bits) to release
1078 * This is the complement to __bitmap_find_free_region() and releases
1079 * the found region (by clearing it in the bitmap).
1083 void bitmap_release_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1085 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
1087 EXPORT_SYMBOL(bitmap_release_region
);
1090 * bitmap_allocate_region - allocate bitmap region
1091 * @bitmap: array of unsigned longs corresponding to the bitmap
1092 * @pos: beginning of bit region to allocate
1093 * @order: region size (log base 2 of number of bits) to allocate
1095 * Allocate (set bits in) a specified region of a bitmap.
1097 * Return 0 on success, or %-EBUSY if specified region wasn't
1098 * free (not all bits were zero).
1100 int bitmap_allocate_region(unsigned long *bitmap
, unsigned int pos
, int order
)
1102 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
1104 return __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
1106 EXPORT_SYMBOL(bitmap_allocate_region
);
1109 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1110 * @dst: destination buffer
1111 * @src: bitmap to copy
1112 * @nbits: number of bits in the bitmap
1114 * Require nbits % BITS_PER_LONG == 0.
1117 void bitmap_copy_le(unsigned long *dst
, const unsigned long *src
, unsigned int nbits
)
1121 for (i
= 0; i
< nbits
/BITS_PER_LONG
; i
++) {
1122 if (BITS_PER_LONG
== 64)
1123 dst
[i
] = cpu_to_le64(src
[i
]);
1125 dst
[i
] = cpu_to_le32(src
[i
]);
1128 EXPORT_SYMBOL(bitmap_copy_le
);
1131 unsigned long *bitmap_alloc(unsigned int nbits
, gfp_t flags
)
1133 return kmalloc_array(BITS_TO_LONGS(nbits
), sizeof(unsigned long),
1136 EXPORT_SYMBOL(bitmap_alloc
);
1138 unsigned long *bitmap_zalloc(unsigned int nbits
, gfp_t flags
)
1140 return bitmap_alloc(nbits
, flags
| __GFP_ZERO
);
1142 EXPORT_SYMBOL(bitmap_zalloc
);
1144 void bitmap_free(const unsigned long *bitmap
)
1148 EXPORT_SYMBOL(bitmap_free
);
1150 #if BITS_PER_LONG == 64
1152 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1153 * @bitmap: array of unsigned longs, the destination bitmap
1154 * @buf: array of u32 (in host byte order), the source bitmap
1155 * @nbits: number of bits in @bitmap
1157 void bitmap_from_arr32(unsigned long *bitmap
, const u32
*buf
, unsigned int nbits
)
1159 unsigned int i
, halfwords
;
1161 halfwords
= DIV_ROUND_UP(nbits
, 32);
1162 for (i
= 0; i
< halfwords
; i
++) {
1163 bitmap
[i
/2] = (unsigned long) buf
[i
];
1164 if (++i
< halfwords
)
1165 bitmap
[i
/2] |= ((unsigned long) buf
[i
]) << 32;
1168 /* Clear tail bits in last word beyond nbits. */
1169 if (nbits
% BITS_PER_LONG
)
1170 bitmap
[(halfwords
- 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits
);
1172 EXPORT_SYMBOL(bitmap_from_arr32
);
1175 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1176 * @buf: array of u32 (in host byte order), the dest bitmap
1177 * @bitmap: array of unsigned longs, the source bitmap
1178 * @nbits: number of bits in @bitmap
1180 void bitmap_to_arr32(u32
*buf
, const unsigned long *bitmap
, unsigned int nbits
)
1182 unsigned int i
, halfwords
;
1184 halfwords
= DIV_ROUND_UP(nbits
, 32);
1185 for (i
= 0; i
< halfwords
; i
++) {
1186 buf
[i
] = (u32
) (bitmap
[i
/2] & UINT_MAX
);
1187 if (++i
< halfwords
)
1188 buf
[i
] = (u32
) (bitmap
[i
/2] >> 32);
1191 /* Clear tail bits in last element of array beyond nbits. */
1192 if (nbits
% BITS_PER_LONG
)
1193 buf
[halfwords
- 1] &= (u32
) (UINT_MAX
>> ((-nbits
) & 31));
1195 EXPORT_SYMBOL(bitmap_to_arr32
);