2 * Process number limiting controller for cgroups.
4 * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
5 * after a certain limit is reached.
7 * Since it is trivial to hit the task limit without hitting any kmemcg limits
8 * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
9 * preventable in the scope of a cgroup hierarchy by allowing resource limiting
10 * of the number of tasks in a cgroup.
12 * In order to use the `pids` controller, set the maximum number of tasks in
13 * pids.max (this is not available in the root cgroup for obvious reasons). The
14 * number of processes currently in the cgroup is given by pids.current.
15 * Organisational operations are not blocked by cgroup policies, so it is
16 * possible to have pids.current > pids.max. However, it is not possible to
17 * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
18 * would cause a cgroup policy to be violated.
20 * To set a cgroup to have no limit, set pids.max to "max". This is the default
21 * for all new cgroups (N.B. that PID limits are hierarchical, so the most
22 * stringent limit in the hierarchy is followed).
24 * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
25 * a superset of parent/child/pids.current.
27 * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
29 * This file is subject to the terms and conditions of version 2 of the GNU
30 * General Public License. See the file COPYING in the main directory of the
31 * Linux distribution for more details.
34 #include <linux/kernel.h>
35 #include <linux/threads.h>
36 #include <linux/atomic.h>
37 #include <linux/cgroup.h>
38 #include <linux/slab.h>
40 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
41 #define PIDS_MAX_STR "max"
44 struct cgroup_subsys_state css
;
47 * Use 64-bit types so that we can safely represent "max" as
48 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
54 static struct pids_cgroup
*css_pids(struct cgroup_subsys_state
*css
)
56 return container_of(css
, struct pids_cgroup
, css
);
59 static struct pids_cgroup
*parent_pids(struct pids_cgroup
*pids
)
61 return css_pids(pids
->css
.parent
);
64 static struct cgroup_subsys_state
*
65 pids_css_alloc(struct cgroup_subsys_state
*parent
)
67 struct pids_cgroup
*pids
;
69 pids
= kzalloc(sizeof(struct pids_cgroup
), GFP_KERNEL
);
71 return ERR_PTR(-ENOMEM
);
73 pids
->limit
= PIDS_MAX
;
74 atomic64_set(&pids
->counter
, 0);
78 static void pids_css_free(struct cgroup_subsys_state
*css
)
84 * pids_cancel - uncharge the local pid count
85 * @pids: the pid cgroup state
86 * @num: the number of pids to cancel
88 * This function will WARN if the pid count goes under 0, because such a case is
89 * a bug in the pids controller proper.
91 static void pids_cancel(struct pids_cgroup
*pids
, int num
)
94 * A negative count (or overflow for that matter) is invalid,
95 * and indicates a bug in the `pids` controller proper.
97 WARN_ON_ONCE(atomic64_add_negative(-num
, &pids
->counter
));
101 * pids_uncharge - hierarchically uncharge the pid count
102 * @pids: the pid cgroup state
103 * @num: the number of pids to uncharge
105 static void pids_uncharge(struct pids_cgroup
*pids
, int num
)
107 struct pids_cgroup
*p
;
109 for (p
= pids
; parent_pids(p
); p
= parent_pids(p
))
114 * pids_charge - hierarchically charge the pid count
115 * @pids: the pid cgroup state
116 * @num: the number of pids to charge
118 * This function does *not* follow the pid limit set. It cannot fail and the new
119 * pid count may exceed the limit. This is only used for reverting failed
120 * attaches, where there is no other way out than violating the limit.
122 static void pids_charge(struct pids_cgroup
*pids
, int num
)
124 struct pids_cgroup
*p
;
126 for (p
= pids
; parent_pids(p
); p
= parent_pids(p
))
127 atomic64_add(num
, &p
->counter
);
131 * pids_try_charge - hierarchically try to charge the pid count
132 * @pids: the pid cgroup state
133 * @num: the number of pids to charge
135 * This function follows the set limit. It will fail if the charge would cause
136 * the new value to exceed the hierarchical limit. Returns 0 if the charge
137 * succeeded, otherwise -EAGAIN.
139 static int pids_try_charge(struct pids_cgroup
*pids
, int num
)
141 struct pids_cgroup
*p
, *q
;
143 for (p
= pids
; parent_pids(p
); p
= parent_pids(p
)) {
144 int64_t new = atomic64_add_return(num
, &p
->counter
);
147 * Since new is capped to the maximum number of pid_t, if
148 * p->limit is %PIDS_MAX then we know that this test will never
158 for (q
= pids
; q
!= p
; q
= parent_pids(q
))
165 static int pids_can_attach(struct cgroup_taskset
*tset
)
167 struct task_struct
*task
;
168 struct cgroup_subsys_state
*dst_css
;
170 cgroup_taskset_for_each(task
, dst_css
, tset
) {
171 struct pids_cgroup
*pids
= css_pids(dst_css
);
172 struct cgroup_subsys_state
*old_css
;
173 struct pids_cgroup
*old_pids
;
176 * No need to pin @old_css between here and cancel_attach()
177 * because cgroup core protects it from being freed before
178 * the migration completes or fails.
180 old_css
= task_css(task
, pids_cgrp_id
);
181 old_pids
= css_pids(old_css
);
183 pids_charge(pids
, 1);
184 pids_uncharge(old_pids
, 1);
190 static void pids_cancel_attach(struct cgroup_taskset
*tset
)
192 struct task_struct
*task
;
193 struct cgroup_subsys_state
*dst_css
;
195 cgroup_taskset_for_each(task
, dst_css
, tset
) {
196 struct pids_cgroup
*pids
= css_pids(dst_css
);
197 struct cgroup_subsys_state
*old_css
;
198 struct pids_cgroup
*old_pids
;
200 old_css
= task_css(task
, pids_cgrp_id
);
201 old_pids
= css_pids(old_css
);
203 pids_charge(old_pids
, 1);
204 pids_uncharge(pids
, 1);
209 * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
210 * on threadgroup_change_begin() held by the copy_process().
212 static int pids_can_fork(struct task_struct
*task
)
214 struct cgroup_subsys_state
*css
;
215 struct pids_cgroup
*pids
;
217 css
= task_css_check(current
, pids_cgrp_id
, true);
218 pids
= css_pids(css
);
219 return pids_try_charge(pids
, 1);
222 static void pids_cancel_fork(struct task_struct
*task
)
224 struct cgroup_subsys_state
*css
;
225 struct pids_cgroup
*pids
;
227 css
= task_css_check(current
, pids_cgrp_id
, true);
228 pids
= css_pids(css
);
229 pids_uncharge(pids
, 1);
232 static void pids_free(struct task_struct
*task
)
234 struct pids_cgroup
*pids
= css_pids(task_css(task
, pids_cgrp_id
));
236 pids_uncharge(pids
, 1);
239 static ssize_t
pids_max_write(struct kernfs_open_file
*of
, char *buf
,
240 size_t nbytes
, loff_t off
)
242 struct cgroup_subsys_state
*css
= of_css(of
);
243 struct pids_cgroup
*pids
= css_pids(css
);
248 if (!strcmp(buf
, PIDS_MAX_STR
)) {
253 err
= kstrtoll(buf
, 0, &limit
);
257 if (limit
< 0 || limit
>= PIDS_MAX
)
262 * Limit updates don't need to be mutex'd, since it isn't
263 * critical that any racing fork()s follow the new limit.
269 static int pids_max_show(struct seq_file
*sf
, void *v
)
271 struct cgroup_subsys_state
*css
= seq_css(sf
);
272 struct pids_cgroup
*pids
= css_pids(css
);
273 int64_t limit
= pids
->limit
;
275 if (limit
>= PIDS_MAX
)
276 seq_printf(sf
, "%s\n", PIDS_MAX_STR
);
278 seq_printf(sf
, "%lld\n", limit
);
283 static s64
pids_current_read(struct cgroup_subsys_state
*css
,
286 struct pids_cgroup
*pids
= css_pids(css
);
288 return atomic64_read(&pids
->counter
);
291 static struct cftype pids_files
[] = {
294 .write
= pids_max_write
,
295 .seq_show
= pids_max_show
,
296 .flags
= CFTYPE_NOT_ON_ROOT
,
300 .read_s64
= pids_current_read
,
301 .flags
= CFTYPE_NOT_ON_ROOT
,
306 struct cgroup_subsys pids_cgrp_subsys
= {
307 .css_alloc
= pids_css_alloc
,
308 .css_free
= pids_css_free
,
309 .can_attach
= pids_can_attach
,
310 .cancel_attach
= pids_cancel_attach
,
311 .can_fork
= pids_can_fork
,
312 .cancel_fork
= pids_cancel_fork
,
314 .legacy_cftypes
= pids_files
,
315 .dfl_cftypes
= pids_files
,