2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per cpu nohz control structure
36 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
47 static ktime_t last_jiffies_update
;
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now
)
54 unsigned long ticks
= 0;
58 * Do a quick check without holding jiffies_lock:
60 delta
= ktime_sub(now
, last_jiffies_update
);
61 if (delta
.tv64
< tick_period
.tv64
)
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock
);
67 delta
= ktime_sub(now
, last_jiffies_update
);
68 if (delta
.tv64
>= tick_period
.tv64
) {
70 delta
= ktime_sub(delta
, tick_period
);
71 last_jiffies_update
= ktime_add(last_jiffies_update
,
74 /* Slow path for long timeouts */
75 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
76 s64 incr
= ktime_to_ns(tick_period
);
78 ticks
= ktime_divns(delta
, incr
);
80 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
88 write_sequnlock(&jiffies_lock
);
91 write_sequnlock(&jiffies_lock
);
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t
tick_init_jiffy_update(void)
102 write_seqlock(&jiffies_lock
);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update
.tv64
== 0)
105 last_jiffies_update
= tick_next_period
;
106 period
= last_jiffies_update
;
107 write_sequnlock(&jiffies_lock
);
112 static void tick_sched_do_timer(ktime_t now
)
114 int cpu
= smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
124 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
125 && !tick_nohz_full_cpu(cpu
))
126 tick_do_timer_cpu
= cpu
;
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu
== cpu
)
131 tick_do_update_jiffies64(now
);
134 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts
->tick_stopped
) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current
))
151 update_process_times(user_mode(regs
));
152 profile_tick(CPU_PROFILING
);
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask
;
158 cpumask_var_t housekeeping_mask
;
159 bool tick_nohz_full_running
;
160 static atomic_t tick_dep_mask
;
162 static bool check_tick_dependency(atomic_t
*dep
)
164 int val
= atomic_read(dep
);
166 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
171 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
176 if (val
& TICK_DEP_MASK_SCHED
) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
181 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
189 static bool can_stop_full_tick(struct tick_sched
*ts
)
191 WARN_ON_ONCE(!irqs_disabled());
193 if (check_tick_dependency(&tick_dep_mask
))
196 if (check_tick_dependency(&ts
->tick_dep_mask
))
199 if (check_tick_dependency(¤t
->tick_dep_mask
))
202 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
208 static void nohz_full_kick_func(struct irq_work
*work
)
210 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
213 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
214 .func
= nohz_full_kick_func
,
218 * Kick this CPU if it's full dynticks in order to force it to
219 * re-evaluate its dependency on the tick and restart it if necessary.
220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
223 static void tick_nohz_full_kick(void)
225 if (!tick_nohz_full_cpu(smp_processor_id()))
228 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
232 * Kick the CPU if it's full dynticks in order to force it to
233 * re-evaluate its dependency on the tick and restart it if necessary.
235 void tick_nohz_full_kick_cpu(int cpu
)
237 if (!tick_nohz_full_cpu(cpu
))
240 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
244 * Kick all full dynticks CPUs in order to force these to re-evaluate
245 * their dependency on the tick and restart it if necessary.
247 static void tick_nohz_full_kick_all(void)
251 if (!tick_nohz_full_running
)
255 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
256 tick_nohz_full_kick_cpu(cpu
);
260 static void tick_nohz_dep_set_all(atomic_t
*dep
,
261 enum tick_dep_bits bit
)
265 prev
= atomic_fetch_or(dep
, BIT(bit
));
267 tick_nohz_full_kick_all();
271 * Set a global tick dependency. Used by perf events that rely on freq and
274 void tick_nohz_dep_set(enum tick_dep_bits bit
)
276 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
279 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
281 atomic_andnot(BIT(bit
), &tick_dep_mask
);
285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
286 * manage events throttling.
288 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
291 struct tick_sched
*ts
;
293 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
295 prev
= atomic_fetch_or(&ts
->tick_dep_mask
, BIT(bit
));
298 /* Perf needs local kick that is NMI safe */
299 if (cpu
== smp_processor_id()) {
300 tick_nohz_full_kick();
302 /* Remote irq work not NMI-safe */
303 if (!WARN_ON_ONCE(in_nmi()))
304 tick_nohz_full_kick_cpu(cpu
);
310 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
312 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
314 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
321 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
324 * We could optimize this with just kicking the target running the task
325 * if that noise matters for nohz full users.
327 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
330 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
332 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
337 * per process timers.
339 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
341 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
344 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
346 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
350 * Re-evaluate the need for the tick as we switch the current task.
351 * It might need the tick due to per task/process properties:
352 * perf events, posix cpu timers, ...
354 void __tick_nohz_task_switch(void)
357 struct tick_sched
*ts
;
359 local_irq_save(flags
);
361 if (!tick_nohz_full_cpu(smp_processor_id()))
364 ts
= this_cpu_ptr(&tick_cpu_sched
);
366 if (ts
->tick_stopped
) {
367 if (atomic_read(¤t
->tick_dep_mask
) ||
368 atomic_read(¤t
->signal
->tick_dep_mask
))
369 tick_nohz_full_kick();
372 local_irq_restore(flags
);
375 /* Parse the boot-time nohz CPU list from the kernel parameters. */
376 static int __init
tick_nohz_full_setup(char *str
)
378 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
379 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
380 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381 free_bootmem_cpumask_var(tick_nohz_full_mask
);
384 tick_nohz_full_running
= true;
388 __setup("nohz_full=", tick_nohz_full_setup
);
390 static int tick_nohz_cpu_down_callback(struct notifier_block
*nfb
,
391 unsigned long action
,
394 unsigned int cpu
= (unsigned long)hcpu
;
396 switch (action
& ~CPU_TASKS_FROZEN
) {
397 case CPU_DOWN_PREPARE
:
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
403 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
410 static int tick_nohz_init_all(void)
414 #ifdef CONFIG_NO_HZ_FULL_ALL
415 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
416 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
420 cpumask_setall(tick_nohz_full_mask
);
421 tick_nohz_full_running
= true;
426 void __init
tick_nohz_init(void)
430 if (!tick_nohz_full_running
) {
431 if (tick_nohz_init_all() < 0)
435 if (!alloc_cpumask_var(&housekeeping_mask
, GFP_KERNEL
)) {
436 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
437 cpumask_clear(tick_nohz_full_mask
);
438 tick_nohz_full_running
= false;
443 * Full dynticks uses irq work to drive the tick rescheduling on safe
444 * locking contexts. But then we need irq work to raise its own
445 * interrupts to avoid circular dependency on the tick
447 if (!arch_irq_work_has_interrupt()) {
448 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 cpumask_clear(tick_nohz_full_mask
);
450 cpumask_copy(housekeeping_mask
, cpu_possible_mask
);
451 tick_nohz_full_running
= false;
455 cpu
= smp_processor_id();
457 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
458 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
460 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
463 cpumask_andnot(housekeeping_mask
,
464 cpu_possible_mask
, tick_nohz_full_mask
);
466 for_each_cpu(cpu
, tick_nohz_full_mask
)
467 context_tracking_cpu_set(cpu
);
469 cpu_notifier(tick_nohz_cpu_down_callback
, 0);
470 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 cpumask_pr_args(tick_nohz_full_mask
));
474 * We need at least one CPU to handle housekeeping work such
475 * as timekeeping, unbound timers, workqueues, ...
477 WARN_ON_ONCE(cpumask_empty(housekeeping_mask
));
482 * NOHZ - aka dynamic tick functionality
484 #ifdef CONFIG_NO_HZ_COMMON
488 bool tick_nohz_enabled __read_mostly
= true;
489 unsigned long tick_nohz_active __read_mostly
;
491 * Enable / Disable tickless mode
493 static int __init
setup_tick_nohz(char *str
)
495 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
498 __setup("nohz=", setup_tick_nohz
);
500 int tick_nohz_tick_stopped(void)
502 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
508 * Called from interrupt entry when the CPU was idle
510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511 * must be updated. Otherwise an interrupt handler could use a stale jiffy
512 * value. We do this unconditionally on any cpu, as we don't know whether the
513 * cpu, which has the update task assigned is in a long sleep.
515 static void tick_nohz_update_jiffies(ktime_t now
)
519 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
521 local_irq_save(flags
);
522 tick_do_update_jiffies64(now
);
523 local_irq_restore(flags
);
525 touch_softlockup_watchdog_sched();
529 * Updates the per cpu time idle statistics counters
532 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
536 if (ts
->idle_active
) {
537 delta
= ktime_sub(now
, ts
->idle_entrytime
);
538 if (nr_iowait_cpu(cpu
) > 0)
539 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
541 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
542 ts
->idle_entrytime
= now
;
545 if (last_update_time
)
546 *last_update_time
= ktime_to_us(now
);
550 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
552 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
555 sched_clock_idle_wakeup_event(0);
558 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
560 ktime_t now
= ktime_get();
562 ts
->idle_entrytime
= now
;
564 sched_clock_idle_sleep_event();
569 * get_cpu_idle_time_us - get the total idle time of a cpu
570 * @cpu: CPU number to query
571 * @last_update_time: variable to store update time in. Do not update
574 * Return the cummulative idle time (since boot) for a given
575 * CPU, in microseconds.
577 * This time is measured via accounting rather than sampling,
578 * and is as accurate as ktime_get() is.
580 * This function returns -1 if NOHZ is not enabled.
582 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
584 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
587 if (!tick_nohz_active
)
591 if (last_update_time
) {
592 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
593 idle
= ts
->idle_sleeptime
;
595 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
596 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
598 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
600 idle
= ts
->idle_sleeptime
;
604 return ktime_to_us(idle
);
607 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
610 * get_cpu_iowait_time_us - get the total iowait time of a cpu
611 * @cpu: CPU number to query
612 * @last_update_time: variable to store update time in. Do not update
615 * Return the cummulative iowait time (since boot) for a given
616 * CPU, in microseconds.
618 * This time is measured via accounting rather than sampling,
619 * and is as accurate as ktime_get() is.
621 * This function returns -1 if NOHZ is not enabled.
623 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
625 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
628 if (!tick_nohz_active
)
632 if (last_update_time
) {
633 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
634 iowait
= ts
->iowait_sleeptime
;
636 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
637 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
639 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
641 iowait
= ts
->iowait_sleeptime
;
645 return ktime_to_us(iowait
);
647 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
649 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
651 hrtimer_cancel(&ts
->sched_timer
);
652 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
654 /* Forward the time to expire in the future */
655 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
657 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
658 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
660 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
663 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
664 ktime_t now
, int cpu
)
666 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
667 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
668 unsigned long seq
, basejiff
;
671 /* Read jiffies and the time when jiffies were updated last */
673 seq
= read_seqbegin(&jiffies_lock
);
674 basemono
= last_jiffies_update
.tv64
;
676 } while (read_seqretry(&jiffies_lock
, seq
));
677 ts
->last_jiffies
= basejiff
;
679 if (rcu_needs_cpu(basemono
, &next_rcu
) ||
680 arch_needs_cpu() || irq_work_needs_cpu()) {
681 next_tick
= basemono
+ TICK_NSEC
;
684 * Get the next pending timer. If high resolution
685 * timers are enabled this only takes the timer wheel
686 * timers into account. If high resolution timers are
687 * disabled this also looks at the next expiring
690 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
691 ts
->next_timer
= next_tmr
;
692 /* Take the next rcu event into account */
693 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
697 * If the tick is due in the next period, keep it ticking or
698 * force prod the timer.
700 delta
= next_tick
- basemono
;
701 if (delta
<= (u64
)TICK_NSEC
) {
704 * We've not stopped the tick yet, and there's a timer in the
705 * next period, so no point in stopping it either, bail.
707 if (!ts
->tick_stopped
)
711 * If, OTOH, we did stop it, but there's a pending (expired)
712 * timer reprogram the timer hardware to fire now.
714 * We will not restart the tick proper, just prod the timer
715 * hardware into firing an interrupt to process the pending
716 * timers. Just like tick_irq_exit() will not restart the tick
717 * for 'normal' interrupts.
719 * Only once we exit the idle loop will we re-enable the tick,
720 * see tick_nohz_idle_exit().
723 tick_nohz_restart(ts
, now
);
729 * If this cpu is the one which updates jiffies, then give up
730 * the assignment and let it be taken by the cpu which runs
731 * the tick timer next, which might be this cpu as well. If we
732 * don't drop this here the jiffies might be stale and
733 * do_timer() never invoked. Keep track of the fact that it
734 * was the one which had the do_timer() duty last. If this cpu
735 * is the one which had the do_timer() duty last, we limit the
736 * sleep time to the timekeeping max_deferement value.
737 * Otherwise we can sleep as long as we want.
739 delta
= timekeeping_max_deferment();
740 if (cpu
== tick_do_timer_cpu
) {
741 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
742 ts
->do_timer_last
= 1;
743 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
745 ts
->do_timer_last
= 0;
746 } else if (!ts
->do_timer_last
) {
750 #ifdef CONFIG_NO_HZ_FULL
751 /* Limit the tick delta to the maximum scheduler deferment */
753 delta
= min(delta
, scheduler_tick_max_deferment());
756 /* Calculate the next expiry time */
757 if (delta
< (KTIME_MAX
- basemono
))
758 expires
= basemono
+ delta
;
762 expires
= min_t(u64
, expires
, next_tick
);
765 /* Skip reprogram of event if its not changed */
766 if (ts
->tick_stopped
&& (expires
== dev
->next_event
.tv64
))
770 * nohz_stop_sched_tick can be called several times before
771 * the nohz_restart_sched_tick is called. This happens when
772 * interrupts arrive which do not cause a reschedule. In the
773 * first call we save the current tick time, so we can restart
774 * the scheduler tick in nohz_restart_sched_tick.
776 if (!ts
->tick_stopped
) {
777 nohz_balance_enter_idle(cpu
);
778 calc_load_enter_idle();
780 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
781 ts
->tick_stopped
= 1;
782 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
786 * If the expiration time == KTIME_MAX, then we simply stop
789 if (unlikely(expires
== KTIME_MAX
)) {
790 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
791 hrtimer_cancel(&ts
->sched_timer
);
795 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
796 hrtimer_start(&ts
->sched_timer
, tick
, HRTIMER_MODE_ABS_PINNED
);
798 tick_program_event(tick
, 1);
800 /* Update the estimated sleep length */
801 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
805 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
, int active
)
807 /* Update jiffies first */
808 tick_do_update_jiffies64(now
);
809 update_cpu_load_nohz(active
);
811 calc_load_exit_idle();
812 touch_softlockup_watchdog_sched();
814 * Cancel the scheduled timer and restore the tick
816 ts
->tick_stopped
= 0;
817 ts
->idle_exittime
= now
;
819 tick_nohz_restart(ts
, now
);
822 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
824 #ifdef CONFIG_NO_HZ_FULL
825 int cpu
= smp_processor_id();
827 if (!tick_nohz_full_cpu(cpu
))
830 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
833 if (can_stop_full_tick(ts
))
834 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
835 else if (ts
->tick_stopped
)
836 tick_nohz_restart_sched_tick(ts
, ktime_get(), 1);
840 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
843 * If this cpu is offline and it is the one which updates
844 * jiffies, then give up the assignment and let it be taken by
845 * the cpu which runs the tick timer next. If we don't drop
846 * this here the jiffies might be stale and do_timer() never
849 if (unlikely(!cpu_online(cpu
))) {
850 if (cpu
== tick_do_timer_cpu
)
851 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
855 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
856 ts
->sleep_length
= (ktime_t
) { .tv64
= NSEC_PER_SEC
/HZ
};
863 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
864 static int ratelimit
;
866 if (ratelimit
< 10 &&
867 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
868 pr_warn("NOHZ: local_softirq_pending %02x\n",
869 (unsigned int) local_softirq_pending());
875 if (tick_nohz_full_enabled()) {
877 * Keep the tick alive to guarantee timekeeping progression
878 * if there are full dynticks CPUs around
880 if (tick_do_timer_cpu
== cpu
)
883 * Boot safety: make sure the timekeeping duty has been
884 * assigned before entering dyntick-idle mode,
886 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
893 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
895 ktime_t now
, expires
;
896 int cpu
= smp_processor_id();
898 now
= tick_nohz_start_idle(ts
);
900 if (can_stop_idle_tick(cpu
, ts
)) {
901 int was_stopped
= ts
->tick_stopped
;
905 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
906 if (expires
.tv64
> 0LL) {
908 ts
->idle_expires
= expires
;
911 if (!was_stopped
&& ts
->tick_stopped
)
912 ts
->idle_jiffies
= ts
->last_jiffies
;
917 * tick_nohz_idle_enter - stop the idle tick from the idle task
919 * When the next event is more than a tick into the future, stop the idle tick
920 * Called when we start the idle loop.
922 * The arch is responsible of calling:
924 * - rcu_idle_enter() after its last use of RCU before the CPU is put
926 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
928 void tick_nohz_idle_enter(void)
930 struct tick_sched
*ts
;
932 WARN_ON_ONCE(irqs_disabled());
935 * Update the idle state in the scheduler domain hierarchy
936 * when tick_nohz_stop_sched_tick() is called from the idle loop.
937 * State will be updated to busy during the first busy tick after
940 set_cpu_sd_state_idle();
944 ts
= this_cpu_ptr(&tick_cpu_sched
);
946 __tick_nohz_idle_enter(ts
);
952 * tick_nohz_irq_exit - update next tick event from interrupt exit
954 * When an interrupt fires while we are idle and it doesn't cause
955 * a reschedule, it may still add, modify or delete a timer, enqueue
956 * an RCU callback, etc...
957 * So we need to re-calculate and reprogram the next tick event.
959 void tick_nohz_irq_exit(void)
961 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
964 __tick_nohz_idle_enter(ts
);
966 tick_nohz_full_update_tick(ts
);
970 * tick_nohz_get_sleep_length - return the length of the current sleep
972 * Called from power state control code with interrupts disabled
974 ktime_t
tick_nohz_get_sleep_length(void)
976 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
978 return ts
->sleep_length
;
981 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
983 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
986 if (vtime_accounting_cpu_enabled())
989 * We stopped the tick in idle. Update process times would miss the
990 * time we slept as update_process_times does only a 1 tick
991 * accounting. Enforce that this is accounted to idle !
993 ticks
= jiffies
- ts
->idle_jiffies
;
995 * We might be one off. Do not randomly account a huge number of ticks!
997 if (ticks
&& ticks
< LONG_MAX
)
998 account_idle_ticks(ticks
);
1003 * tick_nohz_idle_exit - restart the idle tick from the idle task
1005 * Restart the idle tick when the CPU is woken up from idle
1006 * This also exit the RCU extended quiescent state. The CPU
1007 * can use RCU again after this function is called.
1009 void tick_nohz_idle_exit(void)
1011 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1014 local_irq_disable();
1016 WARN_ON_ONCE(!ts
->inidle
);
1020 if (ts
->idle_active
|| ts
->tick_stopped
)
1023 if (ts
->idle_active
)
1024 tick_nohz_stop_idle(ts
, now
);
1026 if (ts
->tick_stopped
) {
1027 tick_nohz_restart_sched_tick(ts
, now
, 0);
1028 tick_nohz_account_idle_ticks(ts
);
1035 * The nohz low res interrupt handler
1037 static void tick_nohz_handler(struct clock_event_device
*dev
)
1039 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1040 struct pt_regs
*regs
= get_irq_regs();
1041 ktime_t now
= ktime_get();
1043 dev
->next_event
.tv64
= KTIME_MAX
;
1045 tick_sched_do_timer(now
);
1046 tick_sched_handle(ts
, regs
);
1048 /* No need to reprogram if we are running tickless */
1049 if (unlikely(ts
->tick_stopped
))
1052 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1053 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1056 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1058 if (!tick_nohz_enabled
)
1060 ts
->nohz_mode
= mode
;
1061 /* One update is enough */
1062 if (!test_and_set_bit(0, &tick_nohz_active
))
1063 timers_update_migration(true);
1067 * tick_nohz_switch_to_nohz - switch to nohz mode
1069 static void tick_nohz_switch_to_nohz(void)
1071 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1074 if (!tick_nohz_enabled
)
1077 if (tick_switch_to_oneshot(tick_nohz_handler
))
1081 * Recycle the hrtimer in ts, so we can share the
1082 * hrtimer_forward with the highres code.
1084 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1085 /* Get the next period */
1086 next
= tick_init_jiffy_update();
1088 hrtimer_set_expires(&ts
->sched_timer
, next
);
1089 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1090 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1091 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1095 * When NOHZ is enabled and the tick is stopped, we need to kick the
1096 * tick timer from irq_enter() so that the jiffies update is kept
1097 * alive during long running softirqs. That's ugly as hell, but
1098 * correctness is key even if we need to fix the offending softirq in
1101 * Note, this is different to tick_nohz_restart. We just kick the
1102 * timer and do not touch the other magic bits which need to be done
1103 * when idle is left.
1105 static void tick_nohz_kick_tick(struct tick_sched
*ts
, ktime_t now
)
1108 /* Switch back to 2.6.27 behaviour */
1112 * Do not touch the tick device, when the next expiry is either
1113 * already reached or less/equal than the tick period.
1115 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
1116 if (delta
.tv64
<= tick_period
.tv64
)
1119 tick_nohz_restart(ts
, now
);
1123 static inline void tick_nohz_irq_enter(void)
1125 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1128 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1131 if (ts
->idle_active
)
1132 tick_nohz_stop_idle(ts
, now
);
1133 if (ts
->tick_stopped
) {
1134 tick_nohz_update_jiffies(now
);
1135 tick_nohz_kick_tick(ts
, now
);
1141 static inline void tick_nohz_switch_to_nohz(void) { }
1142 static inline void tick_nohz_irq_enter(void) { }
1143 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1145 #endif /* CONFIG_NO_HZ_COMMON */
1148 * Called from irq_enter to notify about the possible interruption of idle()
1150 void tick_irq_enter(void)
1152 tick_check_oneshot_broadcast_this_cpu();
1153 tick_nohz_irq_enter();
1157 * High resolution timer specific code
1159 #ifdef CONFIG_HIGH_RES_TIMERS
1161 * We rearm the timer until we get disabled by the idle code.
1162 * Called with interrupts disabled.
1164 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1166 struct tick_sched
*ts
=
1167 container_of(timer
, struct tick_sched
, sched_timer
);
1168 struct pt_regs
*regs
= get_irq_regs();
1169 ktime_t now
= ktime_get();
1171 tick_sched_do_timer(now
);
1174 * Do not call, when we are not in irq context and have
1175 * no valid regs pointer
1178 tick_sched_handle(ts
, regs
);
1180 /* No need to reprogram if we are in idle or full dynticks mode */
1181 if (unlikely(ts
->tick_stopped
))
1182 return HRTIMER_NORESTART
;
1184 hrtimer_forward(timer
, now
, tick_period
);
1186 return HRTIMER_RESTART
;
1189 static int sched_skew_tick
;
1191 static int __init
skew_tick(char *str
)
1193 get_option(&str
, &sched_skew_tick
);
1197 early_param("skew_tick", skew_tick
);
1200 * tick_setup_sched_timer - setup the tick emulation timer
1202 void tick_setup_sched_timer(void)
1204 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1205 ktime_t now
= ktime_get();
1208 * Emulate tick processing via per-CPU hrtimers:
1210 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1211 ts
->sched_timer
.function
= tick_sched_timer
;
1213 /* Get the next period (per cpu) */
1214 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1216 /* Offset the tick to avert jiffies_lock contention. */
1217 if (sched_skew_tick
) {
1218 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1219 do_div(offset
, num_possible_cpus());
1220 offset
*= smp_processor_id();
1221 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1224 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1225 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1226 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1228 #endif /* HIGH_RES_TIMERS */
1230 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231 void tick_cancel_sched_timer(int cpu
)
1233 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1235 # ifdef CONFIG_HIGH_RES_TIMERS
1236 if (ts
->sched_timer
.base
)
1237 hrtimer_cancel(&ts
->sched_timer
);
1240 memset(ts
, 0, sizeof(*ts
));
1245 * Async notification about clocksource changes
1247 void tick_clock_notify(void)
1251 for_each_possible_cpu(cpu
)
1252 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1256 * Async notification about clock event changes
1258 void tick_oneshot_notify(void)
1260 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1262 set_bit(0, &ts
->check_clocks
);
1266 * Check, if a change happened, which makes oneshot possible.
1268 * Called cyclic from the hrtimer softirq (driven by the timer
1269 * softirq) allow_nohz signals, that we can switch into low-res nohz
1270 * mode, because high resolution timers are disabled (either compile
1271 * or runtime). Called with interrupts disabled.
1273 int tick_check_oneshot_change(int allow_nohz
)
1275 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1277 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1280 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1283 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1289 tick_nohz_switch_to_nohz();