Merge tag 'rtc-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux/fpc-iii.git] / mm / hugetlb.c
blobe37efd5d831830123ca117a0efec6eead901eaa7
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 __initdata LIST_HEAD(huge_boot_pages);
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 spin_unlock(&spool->lock);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
94 struct hugepage_subpool *spool;
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
110 spool->rsv_hpages = min_hpages;
112 return spool;
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
134 long ret = delta;
136 if (!spool)
137 return ret;
139 spin_lock(&spool->lock);
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
179 long ret = delta;
181 if (!spool)
182 return delta;
184 spin_lock(&spool->lock);
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool);
207 return ret;
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 return HUGETLBFS_SB(inode->i_sb)->spool;
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 return subpool_inode(file_inode(vma->vm_file));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map *resv, long f, long t)
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
289 add += t - f;
290 goto out_locked;
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map *resv, long f, long t)
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
436 chg -= rg->to - rg->from;
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map *resv, long f, long t)
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map *resv, long f, long t)
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
502 if (rg->from >= t)
503 break;
505 if (f > rg->from && t < rg->to) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
527 del += t - f;
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
534 /* Original entry is trimmed */
535 rg->to = f;
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
572 void hugetlb_fix_reserve_counts(struct inode *inode)
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
581 hugetlb_acct_memory(h, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map *resv, long f, long t)
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
609 chg += seg_to - seg_from;
611 spin_unlock(&resv->lock);
613 return chg;
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 return vma_kernel_pagesize(vma);
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 return (unsigned long)vma->vm_private_data;
690 static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
693 vma->vm_private_data = (void *)value;
696 struct resv_map *resv_map_alloc(void)
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
704 return NULL;
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
711 resv_map->adds_in_progress = 0;
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
717 return resv_map;
720 void resv_map_release(struct kref *ref)
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
735 VM_BUG_ON(resv_map->adds_in_progress);
737 kfree(resv_map);
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 return inode->i_mapping->private_data;
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
752 return inode_resv_map(inode);
754 } else {
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 return (get_vma_private_data(vma) & flag) != 0;
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 if (vma->vm_flags & VM_NORESERVE) {
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 return true;
807 else
808 return false;
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
820 if (chg)
821 return false;
822 else
823 return true;
827 * Only the process that called mmap() has reserves for
828 * private mappings.
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
846 if (chg)
847 return false;
848 else
849 return true;
852 return false;
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 struct page *page;
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
869 break;
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
874 if (&h->hugepage_freelists[nid] == &page->lru)
875 return NULL;
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
892 zonelist = node_zonelist(nid, gfp_mask);
894 retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
916 return NULL;
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
931 long chg)
933 struct page *page;
934 struct mempolicy *mpol;
935 gfp_t gfp_mask;
936 nodemask_t *nodemask;
937 int nid;
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
946 goto err;
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 goto err;
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
960 mpol_cond_put(mpol);
961 return page;
963 err:
964 return NULL;
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
979 return nid;
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
998 int nid;
1000 VM_BUG_ON(!nodes_allowed);
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005 return nid;
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 int nid;
1018 VM_BUG_ON(!nodes_allowed);
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023 return nid;
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040 unsigned int order)
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1058 free_contig_range(page_to_pfn(page), 1 << order);
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 gfp_mask);
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 if (!pfn_valid(i))
1077 return false;
1079 page = pfn_to_page(i);
1081 if (page_zone(page) != z)
1082 return false;
1084 if (PageReserved(page))
1085 return false;
1087 if (page_count(page) > 0)
1088 return false;
1090 if (PageHuge(page))
1091 return false;
1094 return true;
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
1107 unsigned int order = huge_page_order(h);
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
1110 struct zonelist *zonelist;
1111 struct zone *zone;
1112 struct zoneref *z;
1114 zonelist = node_zonelist(nid, gfp_mask);
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 spin_lock_irqsave(&zone->lock, flags);
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 if (!ret)
1131 return pfn_to_page(pfn);
1132 spin_lock_irqsave(&zone->lock, flags);
1134 pfn += nr_pages;
1137 spin_unlock_irqrestore(&zone->lock, flags);
1140 return NULL;
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 unsigned int order) { }
1153 #endif
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1157 int i;
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 return;
1162 h->nr_huge_pages--;
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
1167 1 << PG_active | 1 << PG_private |
1168 1 << PG_writeback);
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 set_page_refcounted(page);
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1176 } else {
1177 __free_pages(page, huge_page_order(h));
1181 struct hstate *size_to_hstate(unsigned long size)
1183 struct hstate *h;
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1187 return h;
1189 return NULL;
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1196 * This function can be called for tail pages, but never returns true for them.
1198 bool page_huge_active(struct page *page)
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1211 static void clear_page_huge_active(struct page *page)
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1221 static inline bool PageHugeTemporary(struct page *page)
1223 if (!PageHuge(page))
1224 return false;
1226 return (unsigned long)page[2].mapping == -1U;
1229 static inline void SetPageHugeTemporary(struct page *page)
1231 page[2].mapping = (void *)-1U;
1234 static inline void ClearPageHugeTemporary(struct page *page)
1236 page[2].mapping = NULL;
1239 void free_huge_page(struct page *page)
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1245 struct hstate *h = page_hstate(page);
1246 int nid = page_to_nid(page);
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
1249 bool restore_reserve;
1251 VM_BUG_ON_PAGE(page_count(page), page);
1252 VM_BUG_ON_PAGE(page_mapcount(page), page);
1254 set_page_private(page, 0);
1255 page->mapping = NULL;
1256 restore_reserve = PagePrivate(page);
1257 ClearPagePrivate(page);
1260 * A return code of zero implies that the subpool will be under its
1261 * minimum size if the reservation is not restored after page is free.
1262 * Therefore, force restore_reserve operation.
1264 if (hugepage_subpool_put_pages(spool, 1) == 0)
1265 restore_reserve = true;
1267 spin_lock(&hugetlb_lock);
1268 clear_page_huge_active(page);
1269 hugetlb_cgroup_uncharge_page(hstate_index(h),
1270 pages_per_huge_page(h), page);
1271 if (restore_reserve)
1272 h->resv_huge_pages++;
1274 if (PageHugeTemporary(page)) {
1275 list_del(&page->lru);
1276 ClearPageHugeTemporary(page);
1277 update_and_free_page(h, page);
1278 } else if (h->surplus_huge_pages_node[nid]) {
1279 /* remove the page from active list */
1280 list_del(&page->lru);
1281 update_and_free_page(h, page);
1282 h->surplus_huge_pages--;
1283 h->surplus_huge_pages_node[nid]--;
1284 } else {
1285 arch_clear_hugepage_flags(page);
1286 enqueue_huge_page(h, page);
1288 spin_unlock(&hugetlb_lock);
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293 INIT_LIST_HEAD(&page->lru);
1294 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1295 spin_lock(&hugetlb_lock);
1296 set_hugetlb_cgroup(page, NULL);
1297 h->nr_huge_pages++;
1298 h->nr_huge_pages_node[nid]++;
1299 spin_unlock(&hugetlb_lock);
1302 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 int i;
1305 int nr_pages = 1 << order;
1306 struct page *p = page + 1;
1308 /* we rely on prep_new_huge_page to set the destructor */
1309 set_compound_order(page, order);
1310 __ClearPageReserved(page);
1311 __SetPageHead(page);
1312 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314 * For gigantic hugepages allocated through bootmem at
1315 * boot, it's safer to be consistent with the not-gigantic
1316 * hugepages and clear the PG_reserved bit from all tail pages
1317 * too. Otherwse drivers using get_user_pages() to access tail
1318 * pages may get the reference counting wrong if they see
1319 * PG_reserved set on a tail page (despite the head page not
1320 * having PG_reserved set). Enforcing this consistency between
1321 * head and tail pages allows drivers to optimize away a check
1322 * on the head page when they need know if put_page() is needed
1323 * after get_user_pages().
1325 __ClearPageReserved(p);
1326 set_page_count(p, 0);
1327 set_compound_head(p, page);
1329 atomic_set(compound_mapcount_ptr(page), -1);
1333 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1334 * transparent huge pages. See the PageTransHuge() documentation for more
1335 * details.
1337 int PageHuge(struct page *page)
1339 if (!PageCompound(page))
1340 return 0;
1342 page = compound_head(page);
1343 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345 EXPORT_SYMBOL_GPL(PageHuge);
1348 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1349 * normal or transparent huge pages.
1351 int PageHeadHuge(struct page *page_head)
1353 if (!PageHead(page_head))
1354 return 0;
1356 return get_compound_page_dtor(page_head) == free_huge_page;
1359 pgoff_t __basepage_index(struct page *page)
1361 struct page *page_head = compound_head(page);
1362 pgoff_t index = page_index(page_head);
1363 unsigned long compound_idx;
1365 if (!PageHuge(page_head))
1366 return page_index(page);
1368 if (compound_order(page_head) >= MAX_ORDER)
1369 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1370 else
1371 compound_idx = page - page_head;
1373 return (index << compound_order(page_head)) + compound_idx;
1376 static struct page *alloc_buddy_huge_page(struct hstate *h,
1377 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1379 int order = huge_page_order(h);
1380 struct page *page;
1382 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1383 if (nid == NUMA_NO_NODE)
1384 nid = numa_mem_id();
1385 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1386 if (page)
1387 __count_vm_event(HTLB_BUDDY_PGALLOC);
1388 else
1389 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391 return page;
1395 * Common helper to allocate a fresh hugetlb page. All specific allocators
1396 * should use this function to get new hugetlb pages
1398 static struct page *alloc_fresh_huge_page(struct hstate *h,
1399 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401 struct page *page;
1403 if (hstate_is_gigantic(h))
1404 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1405 else
1406 page = alloc_buddy_huge_page(h, gfp_mask,
1407 nid, nmask);
1408 if (!page)
1409 return NULL;
1411 if (hstate_is_gigantic(h))
1412 prep_compound_gigantic_page(page, huge_page_order(h));
1413 prep_new_huge_page(h, page, page_to_nid(page));
1415 return page;
1419 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1420 * manner.
1422 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424 struct page *page;
1425 int nr_nodes, node;
1426 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1429 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1430 if (page)
1431 break;
1434 if (!page)
1435 return 0;
1437 put_page(page); /* free it into the hugepage allocator */
1439 return 1;
1443 * Free huge page from pool from next node to free.
1444 * Attempt to keep persistent huge pages more or less
1445 * balanced over allowed nodes.
1446 * Called with hugetlb_lock locked.
1448 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1449 bool acct_surplus)
1451 int nr_nodes, node;
1452 int ret = 0;
1454 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456 * If we're returning unused surplus pages, only examine
1457 * nodes with surplus pages.
1459 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1460 !list_empty(&h->hugepage_freelists[node])) {
1461 struct page *page =
1462 list_entry(h->hugepage_freelists[node].next,
1463 struct page, lru);
1464 list_del(&page->lru);
1465 h->free_huge_pages--;
1466 h->free_huge_pages_node[node]--;
1467 if (acct_surplus) {
1468 h->surplus_huge_pages--;
1469 h->surplus_huge_pages_node[node]--;
1471 update_and_free_page(h, page);
1472 ret = 1;
1473 break;
1477 return ret;
1481 * Dissolve a given free hugepage into free buddy pages. This function does
1482 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1483 * dissolution fails because a give page is not a free hugepage, or because
1484 * free hugepages are fully reserved.
1486 int dissolve_free_huge_page(struct page *page)
1488 int rc = -EBUSY;
1490 spin_lock(&hugetlb_lock);
1491 if (PageHuge(page) && !page_count(page)) {
1492 struct page *head = compound_head(page);
1493 struct hstate *h = page_hstate(head);
1494 int nid = page_to_nid(head);
1495 if (h->free_huge_pages - h->resv_huge_pages == 0)
1496 goto out;
1498 * Move PageHWPoison flag from head page to the raw error page,
1499 * which makes any subpages rather than the error page reusable.
1501 if (PageHWPoison(head) && page != head) {
1502 SetPageHWPoison(page);
1503 ClearPageHWPoison(head);
1505 list_del(&head->lru);
1506 h->free_huge_pages--;
1507 h->free_huge_pages_node[nid]--;
1508 h->max_huge_pages--;
1509 update_and_free_page(h, head);
1510 rc = 0;
1512 out:
1513 spin_unlock(&hugetlb_lock);
1514 return rc;
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527 unsigned long pfn;
1528 struct page *page;
1529 int rc = 0;
1531 if (!hugepages_supported())
1532 return rc;
1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 page = pfn_to_page(pfn);
1536 if (PageHuge(page) && !page_count(page)) {
1537 rc = dissolve_free_huge_page(page);
1538 if (rc)
1539 break;
1543 return rc;
1547 * Allocates a fresh surplus page from the page allocator.
1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550 int nid, nodemask_t *nmask)
1552 struct page *page = NULL;
1554 if (hstate_is_gigantic(h))
1555 return NULL;
1557 spin_lock(&hugetlb_lock);
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 goto out_unlock;
1560 spin_unlock(&hugetlb_lock);
1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563 if (!page)
1564 return NULL;
1566 spin_lock(&hugetlb_lock);
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1572 * codeflow
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
1576 put_page(page);
1577 page = NULL;
1578 } else {
1579 h->surplus_huge_pages++;
1580 h->surplus_huge_pages_node[page_to_nid(page)]++;
1583 out_unlock:
1584 spin_unlock(&hugetlb_lock);
1586 return page;
1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590 int nid, nodemask_t *nmask)
1592 struct page *page;
1594 if (hstate_is_gigantic(h))
1595 return NULL;
1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598 if (!page)
1599 return NULL;
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1605 SetPageHugeTemporary(page);
1607 return page;
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 static
1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615 struct vm_area_struct *vma, unsigned long addr)
1617 struct page *page;
1618 struct mempolicy *mpol;
1619 gfp_t gfp_mask = htlb_alloc_mask(h);
1620 int nid;
1621 nodemask_t *nodemask;
1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625 mpol_cond_put(mpol);
1627 return page;
1630 /* page migration callback function */
1631 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633 gfp_t gfp_mask = htlb_alloc_mask(h);
1634 struct page *page = NULL;
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1639 spin_lock(&hugetlb_lock);
1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642 spin_unlock(&hugetlb_lock);
1644 if (!page)
1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1647 return page;
1650 /* page migration callback function */
1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 nodemask_t *nmask)
1654 gfp_t gfp_mask = htlb_alloc_mask(h);
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658 struct page *page;
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 if (page) {
1662 spin_unlock(&hugetlb_lock);
1663 return page;
1666 spin_unlock(&hugetlb_lock);
1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1671 /* mempolicy aware migration callback */
1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 unsigned long address)
1675 struct mempolicy *mpol;
1676 nodemask_t *nodemask;
1677 struct page *page;
1678 gfp_t gfp_mask;
1679 int node;
1681 gfp_mask = htlb_alloc_mask(h);
1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 page = alloc_huge_page_nodemask(h, node, nodemask);
1684 mpol_cond_put(mpol);
1686 return page;
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1697 int ret, i;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 if (needed <= 0) {
1703 h->resv_huge_pages += delta;
1704 return 0;
1707 allocated = 0;
1708 INIT_LIST_HEAD(&surplus_list);
1710 ret = -ENOMEM;
1711 retry:
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715 NUMA_NO_NODE, NULL);
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1720 list_add(&page->lru, &surplus_list);
1721 cond_resched();
1723 allocated += i;
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1729 spin_lock(&hugetlb_lock);
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1740 goto free;
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1750 needed += allocated;
1751 h->resv_huge_pages += delta;
1752 ret = 0;
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 if ((--needed) < 0)
1757 break;
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1762 put_page_testzero(page);
1763 VM_BUG_ON_PAGE(page_count(page), page);
1764 enqueue_huge_page(h, page);
1766 free:
1767 spin_unlock(&hugetlb_lock);
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
1772 spin_lock(&hugetlb_lock);
1774 return ret;
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
1794 unsigned long nr_pages;
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h))
1798 goto out;
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1818 while (nr_pages--) {
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 goto out;
1823 cond_resched_lock(&hugetlb_lock);
1826 out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1856 enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
1859 VMA_END_RESV,
1860 VMA_ADD_RESV,
1862 static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
1864 enum vma_resv_mode mode)
1866 struct resv_map *resv;
1867 pgoff_t idx;
1868 long ret;
1870 resv = vma_resv_map(vma);
1871 if (!resv)
1872 return 1;
1874 idx = vma_hugecache_offset(h, vma, addr);
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
1877 ret = region_chg(resv, idx, idx + 1);
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
1882 case VMA_END_RESV:
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1893 break;
1894 default:
1895 BUG();
1898 if (vma->vm_flags & VM_MAYSHARE)
1899 return ret;
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1919 else
1920 return ret < 0 ? ret : 0;
1923 static long vma_needs_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1929 static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1935 static void vma_end_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1941 static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1958 static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1965 if (unlikely(rc < 0)) {
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1982 * See above comment about rare out of
1983 * memory condition.
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 unsigned long addr, int avoid_reserve)
1994 struct hugepage_subpool *spool = subpool_vma(vma);
1995 struct hstate *h = hstate_vma(vma);
1996 struct page *page;
1997 long map_chg, map_commit;
1998 long gbl_chg;
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
2002 idx = hstate_index(h);
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
2010 return ERR_PTR(-ENOMEM);
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
2022 vma_end_reservation(h, vma, addr);
2023 return ERR_PTR(-ENOSPC);
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 if (ret)
2040 goto out_subpool_put;
2042 spin_lock(&hugetlb_lock);
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 if (!page) {
2050 spin_unlock(&hugetlb_lock);
2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 if (!page)
2053 goto out_uncharge_cgroup;
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
2060 /* Fall through */
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
2065 set_page_private(page, (unsigned long)spool);
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2078 long rsv_adjust;
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2083 return page;
2085 out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088 if (map_chg || avoid_reserve)
2089 hugepage_subpool_put_pages(spool, 1);
2090 vma_end_reservation(h, vma, addr);
2091 return ERR_PTR(-ENOSPC);
2094 int alloc_bootmem_huge_page(struct hstate *h)
2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate *h)
2098 struct huge_bootmem_page *m;
2099 int nr_nodes, node;
2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102 void *addr;
2104 addr = memblock_alloc_try_nid_raw(
2105 huge_page_size(h), huge_page_size(h),
2106 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2107 if (addr) {
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2113 m = addr;
2114 goto found;
2117 return 0;
2119 found:
2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121 /* Put them into a private list first because mem_map is not up yet */
2122 INIT_LIST_HEAD(&m->list);
2123 list_add(&m->list, &huge_boot_pages);
2124 m->hstate = h;
2125 return 1;
2128 static void __init prep_compound_huge_page(struct page *page,
2129 unsigned int order)
2131 if (unlikely(order > (MAX_ORDER - 1)))
2132 prep_compound_gigantic_page(page, order);
2133 else
2134 prep_compound_page(page, order);
2137 /* Put bootmem huge pages into the standard lists after mem_map is up */
2138 static void __init gather_bootmem_prealloc(void)
2140 struct huge_bootmem_page *m;
2142 list_for_each_entry(m, &huge_boot_pages, list) {
2143 struct page *page = virt_to_page(m);
2144 struct hstate *h = m->hstate;
2146 WARN_ON(page_count(page) != 1);
2147 prep_compound_huge_page(page, h->order);
2148 WARN_ON(PageReserved(page));
2149 prep_new_huge_page(h, page, page_to_nid(page));
2150 put_page(page); /* free it into the hugepage allocator */
2153 * If we had gigantic hugepages allocated at boot time, we need
2154 * to restore the 'stolen' pages to totalram_pages in order to
2155 * fix confusing memory reports from free(1) and another
2156 * side-effects, like CommitLimit going negative.
2158 if (hstate_is_gigantic(h))
2159 adjust_managed_page_count(page, 1 << h->order);
2160 cond_resched();
2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2166 unsigned long i;
2168 for (i = 0; i < h->max_huge_pages; ++i) {
2169 if (hstate_is_gigantic(h)) {
2170 if (!alloc_bootmem_huge_page(h))
2171 break;
2172 } else if (!alloc_pool_huge_page(h,
2173 &node_states[N_MEMORY]))
2174 break;
2175 cond_resched();
2177 if (i < h->max_huge_pages) {
2178 char buf[32];
2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2182 h->max_huge_pages, buf, i);
2183 h->max_huge_pages = i;
2187 static void __init hugetlb_init_hstates(void)
2189 struct hstate *h;
2191 for_each_hstate(h) {
2192 if (minimum_order > huge_page_order(h))
2193 minimum_order = huge_page_order(h);
2195 /* oversize hugepages were init'ed in early boot */
2196 if (!hstate_is_gigantic(h))
2197 hugetlb_hstate_alloc_pages(h);
2199 VM_BUG_ON(minimum_order == UINT_MAX);
2202 static void __init report_hugepages(void)
2204 struct hstate *h;
2206 for_each_hstate(h) {
2207 char buf[32];
2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 buf, h->free_huge_pages);
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate *h, unsigned long count,
2217 nodemask_t *nodes_allowed)
2219 int i;
2221 if (hstate_is_gigantic(h))
2222 return;
2224 for_each_node_mask(i, *nodes_allowed) {
2225 struct page *page, *next;
2226 struct list_head *freel = &h->hugepage_freelists[i];
2227 list_for_each_entry_safe(page, next, freel, lru) {
2228 if (count >= h->nr_huge_pages)
2229 return;
2230 if (PageHighMem(page))
2231 continue;
2232 list_del(&page->lru);
2233 update_and_free_page(h, page);
2234 h->free_huge_pages--;
2235 h->free_huge_pages_node[page_to_nid(page)]--;
2239 #else
2240 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241 nodemask_t *nodes_allowed)
2244 #endif
2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252 int delta)
2254 int nr_nodes, node;
2256 VM_BUG_ON(delta != -1 && delta != 1);
2258 if (delta < 0) {
2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260 if (h->surplus_huge_pages_node[node])
2261 goto found;
2263 } else {
2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265 if (h->surplus_huge_pages_node[node] <
2266 h->nr_huge_pages_node[node])
2267 goto found;
2270 return 0;
2272 found:
2273 h->surplus_huge_pages += delta;
2274 h->surplus_huge_pages_node[node] += delta;
2275 return 1;
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280 nodemask_t *nodes_allowed)
2282 unsigned long min_count, ret;
2284 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285 return h->max_huge_pages;
2288 * Increase the pool size
2289 * First take pages out of surplus state. Then make up the
2290 * remaining difference by allocating fresh huge pages.
2292 * We might race with alloc_surplus_huge_page() here and be unable
2293 * to convert a surplus huge page to a normal huge page. That is
2294 * not critical, though, it just means the overall size of the
2295 * pool might be one hugepage larger than it needs to be, but
2296 * within all the constraints specified by the sysctls.
2298 spin_lock(&hugetlb_lock);
2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301 break;
2304 while (count > persistent_huge_pages(h)) {
2306 * If this allocation races such that we no longer need the
2307 * page, free_huge_page will handle it by freeing the page
2308 * and reducing the surplus.
2310 spin_unlock(&hugetlb_lock);
2312 /* yield cpu to avoid soft lockup */
2313 cond_resched();
2315 ret = alloc_pool_huge_page(h, nodes_allowed);
2316 spin_lock(&hugetlb_lock);
2317 if (!ret)
2318 goto out;
2320 /* Bail for signals. Probably ctrl-c from user */
2321 if (signal_pending(current))
2322 goto out;
2326 * Decrease the pool size
2327 * First return free pages to the buddy allocator (being careful
2328 * to keep enough around to satisfy reservations). Then place
2329 * pages into surplus state as needed so the pool will shrink
2330 * to the desired size as pages become free.
2332 * By placing pages into the surplus state independent of the
2333 * overcommit value, we are allowing the surplus pool size to
2334 * exceed overcommit. There are few sane options here. Since
2335 * alloc_surplus_huge_page() is checking the global counter,
2336 * though, we'll note that we're not allowed to exceed surplus
2337 * and won't grow the pool anywhere else. Not until one of the
2338 * sysctls are changed, or the surplus pages go out of use.
2340 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2341 min_count = max(count, min_count);
2342 try_to_free_low(h, min_count, nodes_allowed);
2343 while (min_count < persistent_huge_pages(h)) {
2344 if (!free_pool_huge_page(h, nodes_allowed, 0))
2345 break;
2346 cond_resched_lock(&hugetlb_lock);
2348 while (count < persistent_huge_pages(h)) {
2349 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2350 break;
2352 out:
2353 ret = persistent_huge_pages(h);
2354 spin_unlock(&hugetlb_lock);
2355 return ret;
2358 #define HSTATE_ATTR_RO(_name) \
2359 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2361 #define HSTATE_ATTR(_name) \
2362 static struct kobj_attribute _name##_attr = \
2363 __ATTR(_name, 0644, _name##_show, _name##_store)
2365 static struct kobject *hugepages_kobj;
2366 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2368 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2370 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2372 int i;
2374 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2375 if (hstate_kobjs[i] == kobj) {
2376 if (nidp)
2377 *nidp = NUMA_NO_NODE;
2378 return &hstates[i];
2381 return kobj_to_node_hstate(kobj, nidp);
2384 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2385 struct kobj_attribute *attr, char *buf)
2387 struct hstate *h;
2388 unsigned long nr_huge_pages;
2389 int nid;
2391 h = kobj_to_hstate(kobj, &nid);
2392 if (nid == NUMA_NO_NODE)
2393 nr_huge_pages = h->nr_huge_pages;
2394 else
2395 nr_huge_pages = h->nr_huge_pages_node[nid];
2397 return sprintf(buf, "%lu\n", nr_huge_pages);
2400 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2401 struct hstate *h, int nid,
2402 unsigned long count, size_t len)
2404 int err;
2405 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2407 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2408 err = -EINVAL;
2409 goto out;
2412 if (nid == NUMA_NO_NODE) {
2414 * global hstate attribute
2416 if (!(obey_mempolicy &&
2417 init_nodemask_of_mempolicy(nodes_allowed))) {
2418 NODEMASK_FREE(nodes_allowed);
2419 nodes_allowed = &node_states[N_MEMORY];
2421 } else if (nodes_allowed) {
2423 * per node hstate attribute: adjust count to global,
2424 * but restrict alloc/free to the specified node.
2426 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2427 init_nodemask_of_node(nodes_allowed, nid);
2428 } else
2429 nodes_allowed = &node_states[N_MEMORY];
2431 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2433 if (nodes_allowed != &node_states[N_MEMORY])
2434 NODEMASK_FREE(nodes_allowed);
2436 return len;
2437 out:
2438 NODEMASK_FREE(nodes_allowed);
2439 return err;
2442 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2443 struct kobject *kobj, const char *buf,
2444 size_t len)
2446 struct hstate *h;
2447 unsigned long count;
2448 int nid;
2449 int err;
2451 err = kstrtoul(buf, 10, &count);
2452 if (err)
2453 return err;
2455 h = kobj_to_hstate(kobj, &nid);
2456 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2459 static ssize_t nr_hugepages_show(struct kobject *kobj,
2460 struct kobj_attribute *attr, char *buf)
2462 return nr_hugepages_show_common(kobj, attr, buf);
2465 static ssize_t nr_hugepages_store(struct kobject *kobj,
2466 struct kobj_attribute *attr, const char *buf, size_t len)
2468 return nr_hugepages_store_common(false, kobj, buf, len);
2470 HSTATE_ATTR(nr_hugepages);
2472 #ifdef CONFIG_NUMA
2475 * hstate attribute for optionally mempolicy-based constraint on persistent
2476 * huge page alloc/free.
2478 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2479 struct kobj_attribute *attr, char *buf)
2481 return nr_hugepages_show_common(kobj, attr, buf);
2484 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2485 struct kobj_attribute *attr, const char *buf, size_t len)
2487 return nr_hugepages_store_common(true, kobj, buf, len);
2489 HSTATE_ATTR(nr_hugepages_mempolicy);
2490 #endif
2493 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2496 struct hstate *h = kobj_to_hstate(kobj, NULL);
2497 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2500 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2501 struct kobj_attribute *attr, const char *buf, size_t count)
2503 int err;
2504 unsigned long input;
2505 struct hstate *h = kobj_to_hstate(kobj, NULL);
2507 if (hstate_is_gigantic(h))
2508 return -EINVAL;
2510 err = kstrtoul(buf, 10, &input);
2511 if (err)
2512 return err;
2514 spin_lock(&hugetlb_lock);
2515 h->nr_overcommit_huge_pages = input;
2516 spin_unlock(&hugetlb_lock);
2518 return count;
2520 HSTATE_ATTR(nr_overcommit_hugepages);
2522 static ssize_t free_hugepages_show(struct kobject *kobj,
2523 struct kobj_attribute *attr, char *buf)
2525 struct hstate *h;
2526 unsigned long free_huge_pages;
2527 int nid;
2529 h = kobj_to_hstate(kobj, &nid);
2530 if (nid == NUMA_NO_NODE)
2531 free_huge_pages = h->free_huge_pages;
2532 else
2533 free_huge_pages = h->free_huge_pages_node[nid];
2535 return sprintf(buf, "%lu\n", free_huge_pages);
2537 HSTATE_ATTR_RO(free_hugepages);
2539 static ssize_t resv_hugepages_show(struct kobject *kobj,
2540 struct kobj_attribute *attr, char *buf)
2542 struct hstate *h = kobj_to_hstate(kobj, NULL);
2543 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2545 HSTATE_ATTR_RO(resv_hugepages);
2547 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2548 struct kobj_attribute *attr, char *buf)
2550 struct hstate *h;
2551 unsigned long surplus_huge_pages;
2552 int nid;
2554 h = kobj_to_hstate(kobj, &nid);
2555 if (nid == NUMA_NO_NODE)
2556 surplus_huge_pages = h->surplus_huge_pages;
2557 else
2558 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2560 return sprintf(buf, "%lu\n", surplus_huge_pages);
2562 HSTATE_ATTR_RO(surplus_hugepages);
2564 static struct attribute *hstate_attrs[] = {
2565 &nr_hugepages_attr.attr,
2566 &nr_overcommit_hugepages_attr.attr,
2567 &free_hugepages_attr.attr,
2568 &resv_hugepages_attr.attr,
2569 &surplus_hugepages_attr.attr,
2570 #ifdef CONFIG_NUMA
2571 &nr_hugepages_mempolicy_attr.attr,
2572 #endif
2573 NULL,
2576 static const struct attribute_group hstate_attr_group = {
2577 .attrs = hstate_attrs,
2580 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2581 struct kobject **hstate_kobjs,
2582 const struct attribute_group *hstate_attr_group)
2584 int retval;
2585 int hi = hstate_index(h);
2587 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2588 if (!hstate_kobjs[hi])
2589 return -ENOMEM;
2591 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2592 if (retval)
2593 kobject_put(hstate_kobjs[hi]);
2595 return retval;
2598 static void __init hugetlb_sysfs_init(void)
2600 struct hstate *h;
2601 int err;
2603 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2604 if (!hugepages_kobj)
2605 return;
2607 for_each_hstate(h) {
2608 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2609 hstate_kobjs, &hstate_attr_group);
2610 if (err)
2611 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2615 #ifdef CONFIG_NUMA
2618 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2619 * with node devices in node_devices[] using a parallel array. The array
2620 * index of a node device or _hstate == node id.
2621 * This is here to avoid any static dependency of the node device driver, in
2622 * the base kernel, on the hugetlb module.
2624 struct node_hstate {
2625 struct kobject *hugepages_kobj;
2626 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2628 static struct node_hstate node_hstates[MAX_NUMNODES];
2631 * A subset of global hstate attributes for node devices
2633 static struct attribute *per_node_hstate_attrs[] = {
2634 &nr_hugepages_attr.attr,
2635 &free_hugepages_attr.attr,
2636 &surplus_hugepages_attr.attr,
2637 NULL,
2640 static const struct attribute_group per_node_hstate_attr_group = {
2641 .attrs = per_node_hstate_attrs,
2645 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2646 * Returns node id via non-NULL nidp.
2648 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2650 int nid;
2652 for (nid = 0; nid < nr_node_ids; nid++) {
2653 struct node_hstate *nhs = &node_hstates[nid];
2654 int i;
2655 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2656 if (nhs->hstate_kobjs[i] == kobj) {
2657 if (nidp)
2658 *nidp = nid;
2659 return &hstates[i];
2663 BUG();
2664 return NULL;
2668 * Unregister hstate attributes from a single node device.
2669 * No-op if no hstate attributes attached.
2671 static void hugetlb_unregister_node(struct node *node)
2673 struct hstate *h;
2674 struct node_hstate *nhs = &node_hstates[node->dev.id];
2676 if (!nhs->hugepages_kobj)
2677 return; /* no hstate attributes */
2679 for_each_hstate(h) {
2680 int idx = hstate_index(h);
2681 if (nhs->hstate_kobjs[idx]) {
2682 kobject_put(nhs->hstate_kobjs[idx]);
2683 nhs->hstate_kobjs[idx] = NULL;
2687 kobject_put(nhs->hugepages_kobj);
2688 nhs->hugepages_kobj = NULL;
2693 * Register hstate attributes for a single node device.
2694 * No-op if attributes already registered.
2696 static void hugetlb_register_node(struct node *node)
2698 struct hstate *h;
2699 struct node_hstate *nhs = &node_hstates[node->dev.id];
2700 int err;
2702 if (nhs->hugepages_kobj)
2703 return; /* already allocated */
2705 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2706 &node->dev.kobj);
2707 if (!nhs->hugepages_kobj)
2708 return;
2710 for_each_hstate(h) {
2711 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2712 nhs->hstate_kobjs,
2713 &per_node_hstate_attr_group);
2714 if (err) {
2715 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2716 h->name, node->dev.id);
2717 hugetlb_unregister_node(node);
2718 break;
2724 * hugetlb init time: register hstate attributes for all registered node
2725 * devices of nodes that have memory. All on-line nodes should have
2726 * registered their associated device by this time.
2728 static void __init hugetlb_register_all_nodes(void)
2730 int nid;
2732 for_each_node_state(nid, N_MEMORY) {
2733 struct node *node = node_devices[nid];
2734 if (node->dev.id == nid)
2735 hugetlb_register_node(node);
2739 * Let the node device driver know we're here so it can
2740 * [un]register hstate attributes on node hotplug.
2742 register_hugetlbfs_with_node(hugetlb_register_node,
2743 hugetlb_unregister_node);
2745 #else /* !CONFIG_NUMA */
2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2749 BUG();
2750 if (nidp)
2751 *nidp = -1;
2752 return NULL;
2755 static void hugetlb_register_all_nodes(void) { }
2757 #endif
2759 static int __init hugetlb_init(void)
2761 int i;
2763 if (!hugepages_supported())
2764 return 0;
2766 if (!size_to_hstate(default_hstate_size)) {
2767 if (default_hstate_size != 0) {
2768 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2769 default_hstate_size, HPAGE_SIZE);
2772 default_hstate_size = HPAGE_SIZE;
2773 if (!size_to_hstate(default_hstate_size))
2774 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2776 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2777 if (default_hstate_max_huge_pages) {
2778 if (!default_hstate.max_huge_pages)
2779 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2782 hugetlb_init_hstates();
2783 gather_bootmem_prealloc();
2784 report_hugepages();
2786 hugetlb_sysfs_init();
2787 hugetlb_register_all_nodes();
2788 hugetlb_cgroup_file_init();
2790 #ifdef CONFIG_SMP
2791 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2792 #else
2793 num_fault_mutexes = 1;
2794 #endif
2795 hugetlb_fault_mutex_table =
2796 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2797 GFP_KERNEL);
2798 BUG_ON(!hugetlb_fault_mutex_table);
2800 for (i = 0; i < num_fault_mutexes; i++)
2801 mutex_init(&hugetlb_fault_mutex_table[i]);
2802 return 0;
2804 subsys_initcall(hugetlb_init);
2806 /* Should be called on processing a hugepagesz=... option */
2807 void __init hugetlb_bad_size(void)
2809 parsed_valid_hugepagesz = false;
2812 void __init hugetlb_add_hstate(unsigned int order)
2814 struct hstate *h;
2815 unsigned long i;
2817 if (size_to_hstate(PAGE_SIZE << order)) {
2818 pr_warn("hugepagesz= specified twice, ignoring\n");
2819 return;
2821 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2822 BUG_ON(order == 0);
2823 h = &hstates[hugetlb_max_hstate++];
2824 h->order = order;
2825 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2826 h->nr_huge_pages = 0;
2827 h->free_huge_pages = 0;
2828 for (i = 0; i < MAX_NUMNODES; ++i)
2829 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2830 INIT_LIST_HEAD(&h->hugepage_activelist);
2831 h->next_nid_to_alloc = first_memory_node;
2832 h->next_nid_to_free = first_memory_node;
2833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2834 huge_page_size(h)/1024);
2836 parsed_hstate = h;
2839 static int __init hugetlb_nrpages_setup(char *s)
2841 unsigned long *mhp;
2842 static unsigned long *last_mhp;
2844 if (!parsed_valid_hugepagesz) {
2845 pr_warn("hugepages = %s preceded by "
2846 "an unsupported hugepagesz, ignoring\n", s);
2847 parsed_valid_hugepagesz = true;
2848 return 1;
2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2852 * so this hugepages= parameter goes to the "default hstate".
2854 else if (!hugetlb_max_hstate)
2855 mhp = &default_hstate_max_huge_pages;
2856 else
2857 mhp = &parsed_hstate->max_huge_pages;
2859 if (mhp == last_mhp) {
2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2861 return 1;
2864 if (sscanf(s, "%lu", mhp) <= 0)
2865 *mhp = 0;
2868 * Global state is always initialized later in hugetlb_init.
2869 * But we need to allocate >= MAX_ORDER hstates here early to still
2870 * use the bootmem allocator.
2872 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2873 hugetlb_hstate_alloc_pages(parsed_hstate);
2875 last_mhp = mhp;
2877 return 1;
2879 __setup("hugepages=", hugetlb_nrpages_setup);
2881 static int __init hugetlb_default_setup(char *s)
2883 default_hstate_size = memparse(s, &s);
2884 return 1;
2886 __setup("default_hugepagesz=", hugetlb_default_setup);
2888 static unsigned int cpuset_mems_nr(unsigned int *array)
2890 int node;
2891 unsigned int nr = 0;
2893 for_each_node_mask(node, cpuset_current_mems_allowed)
2894 nr += array[node];
2896 return nr;
2899 #ifdef CONFIG_SYSCTL
2900 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2901 struct ctl_table *table, int write,
2902 void __user *buffer, size_t *length, loff_t *ppos)
2904 struct hstate *h = &default_hstate;
2905 unsigned long tmp = h->max_huge_pages;
2906 int ret;
2908 if (!hugepages_supported())
2909 return -EOPNOTSUPP;
2911 table->data = &tmp;
2912 table->maxlen = sizeof(unsigned long);
2913 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2914 if (ret)
2915 goto out;
2917 if (write)
2918 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2919 NUMA_NO_NODE, tmp, *length);
2920 out:
2921 return ret;
2924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2925 void __user *buffer, size_t *length, loff_t *ppos)
2928 return hugetlb_sysctl_handler_common(false, table, write,
2929 buffer, length, ppos);
2932 #ifdef CONFIG_NUMA
2933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2934 void __user *buffer, size_t *length, loff_t *ppos)
2936 return hugetlb_sysctl_handler_common(true, table, write,
2937 buffer, length, ppos);
2939 #endif /* CONFIG_NUMA */
2941 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2942 void __user *buffer,
2943 size_t *length, loff_t *ppos)
2945 struct hstate *h = &default_hstate;
2946 unsigned long tmp;
2947 int ret;
2949 if (!hugepages_supported())
2950 return -EOPNOTSUPP;
2952 tmp = h->nr_overcommit_huge_pages;
2954 if (write && hstate_is_gigantic(h))
2955 return -EINVAL;
2957 table->data = &tmp;
2958 table->maxlen = sizeof(unsigned long);
2959 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2960 if (ret)
2961 goto out;
2963 if (write) {
2964 spin_lock(&hugetlb_lock);
2965 h->nr_overcommit_huge_pages = tmp;
2966 spin_unlock(&hugetlb_lock);
2968 out:
2969 return ret;
2972 #endif /* CONFIG_SYSCTL */
2974 void hugetlb_report_meminfo(struct seq_file *m)
2976 struct hstate *h;
2977 unsigned long total = 0;
2979 if (!hugepages_supported())
2980 return;
2982 for_each_hstate(h) {
2983 unsigned long count = h->nr_huge_pages;
2985 total += (PAGE_SIZE << huge_page_order(h)) * count;
2987 if (h == &default_hstate)
2988 seq_printf(m,
2989 "HugePages_Total: %5lu\n"
2990 "HugePages_Free: %5lu\n"
2991 "HugePages_Rsvd: %5lu\n"
2992 "HugePages_Surp: %5lu\n"
2993 "Hugepagesize: %8lu kB\n",
2994 count,
2995 h->free_huge_pages,
2996 h->resv_huge_pages,
2997 h->surplus_huge_pages,
2998 (PAGE_SIZE << huge_page_order(h)) / 1024);
3001 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3004 int hugetlb_report_node_meminfo(int nid, char *buf)
3006 struct hstate *h = &default_hstate;
3007 if (!hugepages_supported())
3008 return 0;
3009 return sprintf(buf,
3010 "Node %d HugePages_Total: %5u\n"
3011 "Node %d HugePages_Free: %5u\n"
3012 "Node %d HugePages_Surp: %5u\n",
3013 nid, h->nr_huge_pages_node[nid],
3014 nid, h->free_huge_pages_node[nid],
3015 nid, h->surplus_huge_pages_node[nid]);
3018 void hugetlb_show_meminfo(void)
3020 struct hstate *h;
3021 int nid;
3023 if (!hugepages_supported())
3024 return;
3026 for_each_node_state(nid, N_MEMORY)
3027 for_each_hstate(h)
3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 nid,
3030 h->nr_huge_pages_node[nid],
3031 h->free_huge_pages_node[nid],
3032 h->surplus_huge_pages_node[nid],
3033 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3039 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3045 struct hstate *h;
3046 unsigned long nr_total_pages = 0;
3048 for_each_hstate(h)
3049 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3050 return nr_total_pages;
3053 static int hugetlb_acct_memory(struct hstate *h, long delta)
3055 int ret = -ENOMEM;
3057 spin_lock(&hugetlb_lock);
3059 * When cpuset is configured, it breaks the strict hugetlb page
3060 * reservation as the accounting is done on a global variable. Such
3061 * reservation is completely rubbish in the presence of cpuset because
3062 * the reservation is not checked against page availability for the
3063 * current cpuset. Application can still potentially OOM'ed by kernel
3064 * with lack of free htlb page in cpuset that the task is in.
3065 * Attempt to enforce strict accounting with cpuset is almost
3066 * impossible (or too ugly) because cpuset is too fluid that
3067 * task or memory node can be dynamically moved between cpusets.
3069 * The change of semantics for shared hugetlb mapping with cpuset is
3070 * undesirable. However, in order to preserve some of the semantics,
3071 * we fall back to check against current free page availability as
3072 * a best attempt and hopefully to minimize the impact of changing
3073 * semantics that cpuset has.
3075 if (delta > 0) {
3076 if (gather_surplus_pages(h, delta) < 0)
3077 goto out;
3079 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3080 return_unused_surplus_pages(h, delta);
3081 goto out;
3085 ret = 0;
3086 if (delta < 0)
3087 return_unused_surplus_pages(h, (unsigned long) -delta);
3089 out:
3090 spin_unlock(&hugetlb_lock);
3091 return ret;
3094 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096 struct resv_map *resv = vma_resv_map(vma);
3099 * This new VMA should share its siblings reservation map if present.
3100 * The VMA will only ever have a valid reservation map pointer where
3101 * it is being copied for another still existing VMA. As that VMA
3102 * has a reference to the reservation map it cannot disappear until
3103 * after this open call completes. It is therefore safe to take a
3104 * new reference here without additional locking.
3106 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3107 kref_get(&resv->refs);
3110 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112 struct hstate *h = hstate_vma(vma);
3113 struct resv_map *resv = vma_resv_map(vma);
3114 struct hugepage_subpool *spool = subpool_vma(vma);
3115 unsigned long reserve, start, end;
3116 long gbl_reserve;
3118 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119 return;
3121 start = vma_hugecache_offset(h, vma, vma->vm_start);
3122 end = vma_hugecache_offset(h, vma, vma->vm_end);
3124 reserve = (end - start) - region_count(resv, start, end);
3126 kref_put(&resv->refs, resv_map_release);
3128 if (reserve) {
3130 * Decrement reserve counts. The global reserve count may be
3131 * adjusted if the subpool has a minimum size.
3133 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3134 hugetlb_acct_memory(h, -gbl_reserve);
3138 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3141 return -EINVAL;
3142 return 0;
3145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3147 struct hstate *hstate = hstate_vma(vma);
3149 return 1UL << huge_page_shift(hstate);
3153 * We cannot handle pagefaults against hugetlb pages at all. They cause
3154 * handle_mm_fault() to try to instantiate regular-sized pages in the
3155 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3156 * this far.
3158 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3160 BUG();
3161 return 0;
3165 * When a new function is introduced to vm_operations_struct and added
3166 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3167 * This is because under System V memory model, mappings created via
3168 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3169 * their original vm_ops are overwritten with shm_vm_ops.
3171 const struct vm_operations_struct hugetlb_vm_ops = {
3172 .fault = hugetlb_vm_op_fault,
3173 .open = hugetlb_vm_op_open,
3174 .close = hugetlb_vm_op_close,
3175 .split = hugetlb_vm_op_split,
3176 .pagesize = hugetlb_vm_op_pagesize,
3179 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3180 int writable)
3182 pte_t entry;
3184 if (writable) {
3185 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3186 vma->vm_page_prot)));
3187 } else {
3188 entry = huge_pte_wrprotect(mk_huge_pte(page,
3189 vma->vm_page_prot));
3191 entry = pte_mkyoung(entry);
3192 entry = pte_mkhuge(entry);
3193 entry = arch_make_huge_pte(entry, vma, page, writable);
3195 return entry;
3198 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3199 unsigned long address, pte_t *ptep)
3201 pte_t entry;
3203 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3204 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3205 update_mmu_cache(vma, address, ptep);
3208 bool is_hugetlb_entry_migration(pte_t pte)
3210 swp_entry_t swp;
3212 if (huge_pte_none(pte) || pte_present(pte))
3213 return false;
3214 swp = pte_to_swp_entry(pte);
3215 if (non_swap_entry(swp) && is_migration_entry(swp))
3216 return true;
3217 else
3218 return false;
3221 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3223 swp_entry_t swp;
3225 if (huge_pte_none(pte) || pte_present(pte))
3226 return 0;
3227 swp = pte_to_swp_entry(pte);
3228 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3229 return 1;
3230 else
3231 return 0;
3234 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3235 struct vm_area_struct *vma)
3237 pte_t *src_pte, *dst_pte, entry, dst_entry;
3238 struct page *ptepage;
3239 unsigned long addr;
3240 int cow;
3241 struct address_space *mapping = vma->vm_file->f_mapping;
3242 struct hstate *h = hstate_vma(vma);
3243 unsigned long sz = huge_page_size(h);
3244 struct mmu_notifier_range range;
3245 int ret = 0;
3247 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3249 if (cow) {
3250 mmu_notifier_range_init(&range, src, vma->vm_start,
3251 vma->vm_end);
3252 mmu_notifier_invalidate_range_start(&range);
3253 } else {
3255 * For shared mappings i_mmap_rwsem must be held to call
3256 * huge_pte_alloc, otherwise the returned ptep could go
3257 * away if part of a shared pmd and another thread calls
3258 * huge_pmd_unshare.
3260 i_mmap_lock_read(mapping);
3263 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3264 spinlock_t *src_ptl, *dst_ptl;
3266 src_pte = huge_pte_offset(src, addr, sz);
3267 if (!src_pte)
3268 continue;
3270 dst_pte = huge_pte_alloc(dst, addr, sz);
3271 if (!dst_pte) {
3272 ret = -ENOMEM;
3273 break;
3277 * If the pagetables are shared don't copy or take references.
3278 * dst_pte == src_pte is the common case of src/dest sharing.
3280 * However, src could have 'unshared' and dst shares with
3281 * another vma. If dst_pte !none, this implies sharing.
3282 * Check here before taking page table lock, and once again
3283 * after taking the lock below.
3285 dst_entry = huge_ptep_get(dst_pte);
3286 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3287 continue;
3289 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3290 src_ptl = huge_pte_lockptr(h, src, src_pte);
3291 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3292 entry = huge_ptep_get(src_pte);
3293 dst_entry = huge_ptep_get(dst_pte);
3294 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3296 * Skip if src entry none. Also, skip in the
3297 * unlikely case dst entry !none as this implies
3298 * sharing with another vma.
3301 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3302 is_hugetlb_entry_hwpoisoned(entry))) {
3303 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3305 if (is_write_migration_entry(swp_entry) && cow) {
3307 * COW mappings require pages in both
3308 * parent and child to be set to read.
3310 make_migration_entry_read(&swp_entry);
3311 entry = swp_entry_to_pte(swp_entry);
3312 set_huge_swap_pte_at(src, addr, src_pte,
3313 entry, sz);
3315 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3316 } else {
3317 if (cow) {
3319 * No need to notify as we are downgrading page
3320 * table protection not changing it to point
3321 * to a new page.
3323 * See Documentation/vm/mmu_notifier.rst
3325 huge_ptep_set_wrprotect(src, addr, src_pte);
3327 entry = huge_ptep_get(src_pte);
3328 ptepage = pte_page(entry);
3329 get_page(ptepage);
3330 page_dup_rmap(ptepage, true);
3331 set_huge_pte_at(dst, addr, dst_pte, entry);
3332 hugetlb_count_add(pages_per_huge_page(h), dst);
3334 spin_unlock(src_ptl);
3335 spin_unlock(dst_ptl);
3338 if (cow)
3339 mmu_notifier_invalidate_range_end(&range);
3340 else
3341 i_mmap_unlock_read(mapping);
3343 return ret;
3346 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3347 unsigned long start, unsigned long end,
3348 struct page *ref_page)
3350 struct mm_struct *mm = vma->vm_mm;
3351 unsigned long address;
3352 pte_t *ptep;
3353 pte_t pte;
3354 spinlock_t *ptl;
3355 struct page *page;
3356 struct hstate *h = hstate_vma(vma);
3357 unsigned long sz = huge_page_size(h);
3358 struct mmu_notifier_range range;
3360 WARN_ON(!is_vm_hugetlb_page(vma));
3361 BUG_ON(start & ~huge_page_mask(h));
3362 BUG_ON(end & ~huge_page_mask(h));
3365 * This is a hugetlb vma, all the pte entries should point
3366 * to huge page.
3368 tlb_remove_check_page_size_change(tlb, sz);
3369 tlb_start_vma(tlb, vma);
3372 * If sharing possible, alert mmu notifiers of worst case.
3374 mmu_notifier_range_init(&range, mm, start, end);
3375 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3376 mmu_notifier_invalidate_range_start(&range);
3377 address = start;
3378 for (; address < end; address += sz) {
3379 ptep = huge_pte_offset(mm, address, sz);
3380 if (!ptep)
3381 continue;
3383 ptl = huge_pte_lock(h, mm, ptep);
3384 if (huge_pmd_unshare(mm, &address, ptep)) {
3385 spin_unlock(ptl);
3387 * We just unmapped a page of PMDs by clearing a PUD.
3388 * The caller's TLB flush range should cover this area.
3390 continue;
3393 pte = huge_ptep_get(ptep);
3394 if (huge_pte_none(pte)) {
3395 spin_unlock(ptl);
3396 continue;
3400 * Migrating hugepage or HWPoisoned hugepage is already
3401 * unmapped and its refcount is dropped, so just clear pte here.
3403 if (unlikely(!pte_present(pte))) {
3404 huge_pte_clear(mm, address, ptep, sz);
3405 spin_unlock(ptl);
3406 continue;
3409 page = pte_page(pte);
3411 * If a reference page is supplied, it is because a specific
3412 * page is being unmapped, not a range. Ensure the page we
3413 * are about to unmap is the actual page of interest.
3415 if (ref_page) {
3416 if (page != ref_page) {
3417 spin_unlock(ptl);
3418 continue;
3421 * Mark the VMA as having unmapped its page so that
3422 * future faults in this VMA will fail rather than
3423 * looking like data was lost
3425 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3428 pte = huge_ptep_get_and_clear(mm, address, ptep);
3429 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3430 if (huge_pte_dirty(pte))
3431 set_page_dirty(page);
3433 hugetlb_count_sub(pages_per_huge_page(h), mm);
3434 page_remove_rmap(page, true);
3436 spin_unlock(ptl);
3437 tlb_remove_page_size(tlb, page, huge_page_size(h));
3439 * Bail out after unmapping reference page if supplied
3441 if (ref_page)
3442 break;
3444 mmu_notifier_invalidate_range_end(&range);
3445 tlb_end_vma(tlb, vma);
3448 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3449 struct vm_area_struct *vma, unsigned long start,
3450 unsigned long end, struct page *ref_page)
3452 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3455 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3456 * test will fail on a vma being torn down, and not grab a page table
3457 * on its way out. We're lucky that the flag has such an appropriate
3458 * name, and can in fact be safely cleared here. We could clear it
3459 * before the __unmap_hugepage_range above, but all that's necessary
3460 * is to clear it before releasing the i_mmap_rwsem. This works
3461 * because in the context this is called, the VMA is about to be
3462 * destroyed and the i_mmap_rwsem is held.
3464 vma->vm_flags &= ~VM_MAYSHARE;
3467 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3468 unsigned long end, struct page *ref_page)
3470 struct mm_struct *mm;
3471 struct mmu_gather tlb;
3472 unsigned long tlb_start = start;
3473 unsigned long tlb_end = end;
3476 * If shared PMDs were possibly used within this vma range, adjust
3477 * start/end for worst case tlb flushing.
3478 * Note that we can not be sure if PMDs are shared until we try to
3479 * unmap pages. However, we want to make sure TLB flushing covers
3480 * the largest possible range.
3482 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3484 mm = vma->vm_mm;
3486 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3487 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3488 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3492 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3493 * mappping it owns the reserve page for. The intention is to unmap the page
3494 * from other VMAs and let the children be SIGKILLed if they are faulting the
3495 * same region.
3497 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3498 struct page *page, unsigned long address)
3500 struct hstate *h = hstate_vma(vma);
3501 struct vm_area_struct *iter_vma;
3502 struct address_space *mapping;
3503 pgoff_t pgoff;
3506 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3507 * from page cache lookup which is in HPAGE_SIZE units.
3509 address = address & huge_page_mask(h);
3510 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3511 vma->vm_pgoff;
3512 mapping = vma->vm_file->f_mapping;
3515 * Take the mapping lock for the duration of the table walk. As
3516 * this mapping should be shared between all the VMAs,
3517 * __unmap_hugepage_range() is called as the lock is already held
3519 i_mmap_lock_write(mapping);
3520 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3521 /* Do not unmap the current VMA */
3522 if (iter_vma == vma)
3523 continue;
3526 * Shared VMAs have their own reserves and do not affect
3527 * MAP_PRIVATE accounting but it is possible that a shared
3528 * VMA is using the same page so check and skip such VMAs.
3530 if (iter_vma->vm_flags & VM_MAYSHARE)
3531 continue;
3534 * Unmap the page from other VMAs without their own reserves.
3535 * They get marked to be SIGKILLed if they fault in these
3536 * areas. This is because a future no-page fault on this VMA
3537 * could insert a zeroed page instead of the data existing
3538 * from the time of fork. This would look like data corruption
3540 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3541 unmap_hugepage_range(iter_vma, address,
3542 address + huge_page_size(h), page);
3544 i_mmap_unlock_write(mapping);
3548 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3549 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3550 * cannot race with other handlers or page migration.
3551 * Keep the pte_same checks anyway to make transition from the mutex easier.
3553 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3554 unsigned long address, pte_t *ptep,
3555 struct page *pagecache_page, spinlock_t *ptl)
3557 pte_t pte;
3558 struct hstate *h = hstate_vma(vma);
3559 struct page *old_page, *new_page;
3560 int outside_reserve = 0;
3561 vm_fault_t ret = 0;
3562 unsigned long haddr = address & huge_page_mask(h);
3563 struct mmu_notifier_range range;
3565 pte = huge_ptep_get(ptep);
3566 old_page = pte_page(pte);
3568 retry_avoidcopy:
3569 /* If no-one else is actually using this page, avoid the copy
3570 * and just make the page writable */
3571 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3572 page_move_anon_rmap(old_page, vma);
3573 set_huge_ptep_writable(vma, haddr, ptep);
3574 return 0;
3578 * If the process that created a MAP_PRIVATE mapping is about to
3579 * perform a COW due to a shared page count, attempt to satisfy
3580 * the allocation without using the existing reserves. The pagecache
3581 * page is used to determine if the reserve at this address was
3582 * consumed or not. If reserves were used, a partial faulted mapping
3583 * at the time of fork() could consume its reserves on COW instead
3584 * of the full address range.
3586 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3587 old_page != pagecache_page)
3588 outside_reserve = 1;
3590 get_page(old_page);
3593 * Drop page table lock as buddy allocator may be called. It will
3594 * be acquired again before returning to the caller, as expected.
3596 spin_unlock(ptl);
3597 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3599 if (IS_ERR(new_page)) {
3601 * If a process owning a MAP_PRIVATE mapping fails to COW,
3602 * it is due to references held by a child and an insufficient
3603 * huge page pool. To guarantee the original mappers
3604 * reliability, unmap the page from child processes. The child
3605 * may get SIGKILLed if it later faults.
3607 if (outside_reserve) {
3608 put_page(old_page);
3609 BUG_ON(huge_pte_none(pte));
3610 unmap_ref_private(mm, vma, old_page, haddr);
3611 BUG_ON(huge_pte_none(pte));
3612 spin_lock(ptl);
3613 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3614 if (likely(ptep &&
3615 pte_same(huge_ptep_get(ptep), pte)))
3616 goto retry_avoidcopy;
3618 * race occurs while re-acquiring page table
3619 * lock, and our job is done.
3621 return 0;
3624 ret = vmf_error(PTR_ERR(new_page));
3625 goto out_release_old;
3629 * When the original hugepage is shared one, it does not have
3630 * anon_vma prepared.
3632 if (unlikely(anon_vma_prepare(vma))) {
3633 ret = VM_FAULT_OOM;
3634 goto out_release_all;
3637 copy_user_huge_page(new_page, old_page, address, vma,
3638 pages_per_huge_page(h));
3639 __SetPageUptodate(new_page);
3640 set_page_huge_active(new_page);
3642 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3643 mmu_notifier_invalidate_range_start(&range);
3646 * Retake the page table lock to check for racing updates
3647 * before the page tables are altered
3649 spin_lock(ptl);
3650 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3651 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3652 ClearPagePrivate(new_page);
3654 /* Break COW */
3655 huge_ptep_clear_flush(vma, haddr, ptep);
3656 mmu_notifier_invalidate_range(mm, range.start, range.end);
3657 set_huge_pte_at(mm, haddr, ptep,
3658 make_huge_pte(vma, new_page, 1));
3659 page_remove_rmap(old_page, true);
3660 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3661 /* Make the old page be freed below */
3662 new_page = old_page;
3664 spin_unlock(ptl);
3665 mmu_notifier_invalidate_range_end(&range);
3666 out_release_all:
3667 restore_reserve_on_error(h, vma, haddr, new_page);
3668 put_page(new_page);
3669 out_release_old:
3670 put_page(old_page);
3672 spin_lock(ptl); /* Caller expects lock to be held */
3673 return ret;
3676 /* Return the pagecache page at a given address within a VMA */
3677 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3678 struct vm_area_struct *vma, unsigned long address)
3680 struct address_space *mapping;
3681 pgoff_t idx;
3683 mapping = vma->vm_file->f_mapping;
3684 idx = vma_hugecache_offset(h, vma, address);
3686 return find_lock_page(mapping, idx);
3690 * Return whether there is a pagecache page to back given address within VMA.
3691 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3693 static bool hugetlbfs_pagecache_present(struct hstate *h,
3694 struct vm_area_struct *vma, unsigned long address)
3696 struct address_space *mapping;
3697 pgoff_t idx;
3698 struct page *page;
3700 mapping = vma->vm_file->f_mapping;
3701 idx = vma_hugecache_offset(h, vma, address);
3703 page = find_get_page(mapping, idx);
3704 if (page)
3705 put_page(page);
3706 return page != NULL;
3709 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3710 pgoff_t idx)
3712 struct inode *inode = mapping->host;
3713 struct hstate *h = hstate_inode(inode);
3714 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3716 if (err)
3717 return err;
3718 ClearPagePrivate(page);
3721 * set page dirty so that it will not be removed from cache/file
3722 * by non-hugetlbfs specific code paths.
3724 set_page_dirty(page);
3726 spin_lock(&inode->i_lock);
3727 inode->i_blocks += blocks_per_huge_page(h);
3728 spin_unlock(&inode->i_lock);
3729 return 0;
3732 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3733 struct vm_area_struct *vma,
3734 struct address_space *mapping, pgoff_t idx,
3735 unsigned long address, pte_t *ptep, unsigned int flags)
3737 struct hstate *h = hstate_vma(vma);
3738 vm_fault_t ret = VM_FAULT_SIGBUS;
3739 int anon_rmap = 0;
3740 unsigned long size;
3741 struct page *page;
3742 pte_t new_pte;
3743 spinlock_t *ptl;
3744 unsigned long haddr = address & huge_page_mask(h);
3747 * Currently, we are forced to kill the process in the event the
3748 * original mapper has unmapped pages from the child due to a failed
3749 * COW. Warn that such a situation has occurred as it may not be obvious
3751 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3752 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3753 current->pid);
3754 return ret;
3758 * We can not race with truncation due to holding i_mmap_rwsem.
3759 * Check once here for faults beyond end of file.
3761 size = i_size_read(mapping->host) >> huge_page_shift(h);
3762 if (idx >= size)
3763 goto out;
3765 retry:
3766 page = find_lock_page(mapping, idx);
3767 if (!page) {
3769 * Check for page in userfault range
3771 if (userfaultfd_missing(vma)) {
3772 u32 hash;
3773 struct vm_fault vmf = {
3774 .vma = vma,
3775 .address = haddr,
3776 .flags = flags,
3778 * Hard to debug if it ends up being
3779 * used by a callee that assumes
3780 * something about the other
3781 * uninitialized fields... same as in
3782 * memory.c
3787 * hugetlb_fault_mutex and i_mmap_rwsem must be
3788 * dropped before handling userfault. Reacquire
3789 * after handling fault to make calling code simpler.
3791 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3792 idx, haddr);
3793 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3794 i_mmap_unlock_read(mapping);
3796 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3798 i_mmap_lock_read(mapping);
3799 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3800 goto out;
3803 page = alloc_huge_page(vma, haddr, 0);
3804 if (IS_ERR(page)) {
3805 ret = vmf_error(PTR_ERR(page));
3806 goto out;
3808 clear_huge_page(page, address, pages_per_huge_page(h));
3809 __SetPageUptodate(page);
3810 set_page_huge_active(page);
3812 if (vma->vm_flags & VM_MAYSHARE) {
3813 int err = huge_add_to_page_cache(page, mapping, idx);
3814 if (err) {
3815 put_page(page);
3816 if (err == -EEXIST)
3817 goto retry;
3818 goto out;
3820 } else {
3821 lock_page(page);
3822 if (unlikely(anon_vma_prepare(vma))) {
3823 ret = VM_FAULT_OOM;
3824 goto backout_unlocked;
3826 anon_rmap = 1;
3828 } else {
3830 * If memory error occurs between mmap() and fault, some process
3831 * don't have hwpoisoned swap entry for errored virtual address.
3832 * So we need to block hugepage fault by PG_hwpoison bit check.
3834 if (unlikely(PageHWPoison(page))) {
3835 ret = VM_FAULT_HWPOISON |
3836 VM_FAULT_SET_HINDEX(hstate_index(h));
3837 goto backout_unlocked;
3842 * If we are going to COW a private mapping later, we examine the
3843 * pending reservations for this page now. This will ensure that
3844 * any allocations necessary to record that reservation occur outside
3845 * the spinlock.
3847 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3848 if (vma_needs_reservation(h, vma, haddr) < 0) {
3849 ret = VM_FAULT_OOM;
3850 goto backout_unlocked;
3852 /* Just decrements count, does not deallocate */
3853 vma_end_reservation(h, vma, haddr);
3856 ptl = huge_pte_lock(h, mm, ptep);
3858 ret = 0;
3859 if (!huge_pte_none(huge_ptep_get(ptep)))
3860 goto backout;
3862 if (anon_rmap) {
3863 ClearPagePrivate(page);
3864 hugepage_add_new_anon_rmap(page, vma, haddr);
3865 } else
3866 page_dup_rmap(page, true);
3867 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3868 && (vma->vm_flags & VM_SHARED)));
3869 set_huge_pte_at(mm, haddr, ptep, new_pte);
3871 hugetlb_count_add(pages_per_huge_page(h), mm);
3872 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3873 /* Optimization, do the COW without a second fault */
3874 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3877 spin_unlock(ptl);
3878 unlock_page(page);
3879 out:
3880 return ret;
3882 backout:
3883 spin_unlock(ptl);
3884 backout_unlocked:
3885 unlock_page(page);
3886 restore_reserve_on_error(h, vma, haddr, page);
3887 put_page(page);
3888 goto out;
3891 #ifdef CONFIG_SMP
3892 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3893 struct vm_area_struct *vma,
3894 struct address_space *mapping,
3895 pgoff_t idx, unsigned long address)
3897 unsigned long key[2];
3898 u32 hash;
3900 if (vma->vm_flags & VM_SHARED) {
3901 key[0] = (unsigned long) mapping;
3902 key[1] = idx;
3903 } else {
3904 key[0] = (unsigned long) mm;
3905 key[1] = address >> huge_page_shift(h);
3908 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3910 return hash & (num_fault_mutexes - 1);
3912 #else
3914 * For uniprocesor systems we always use a single mutex, so just
3915 * return 0 and avoid the hashing overhead.
3917 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3918 struct vm_area_struct *vma,
3919 struct address_space *mapping,
3920 pgoff_t idx, unsigned long address)
3922 return 0;
3924 #endif
3926 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3927 unsigned long address, unsigned int flags)
3929 pte_t *ptep, entry;
3930 spinlock_t *ptl;
3931 vm_fault_t ret;
3932 u32 hash;
3933 pgoff_t idx;
3934 struct page *page = NULL;
3935 struct page *pagecache_page = NULL;
3936 struct hstate *h = hstate_vma(vma);
3937 struct address_space *mapping;
3938 int need_wait_lock = 0;
3939 unsigned long haddr = address & huge_page_mask(h);
3941 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3942 if (ptep) {
3944 * Since we hold no locks, ptep could be stale. That is
3945 * OK as we are only making decisions based on content and
3946 * not actually modifying content here.
3948 entry = huge_ptep_get(ptep);
3949 if (unlikely(is_hugetlb_entry_migration(entry))) {
3950 migration_entry_wait_huge(vma, mm, ptep);
3951 return 0;
3952 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3953 return VM_FAULT_HWPOISON_LARGE |
3954 VM_FAULT_SET_HINDEX(hstate_index(h));
3958 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
3959 * until finished with ptep. This serves two purposes:
3960 * 1) It prevents huge_pmd_unshare from being called elsewhere
3961 * and making the ptep no longer valid.
3962 * 2) It synchronizes us with file truncation.
3964 * ptep could have already be assigned via huge_pte_offset. That
3965 * is OK, as huge_pte_alloc will return the same value unless
3966 * something changed.
3968 mapping = vma->vm_file->f_mapping;
3969 i_mmap_lock_read(mapping);
3970 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3971 if (!ptep) {
3972 i_mmap_unlock_read(mapping);
3973 return VM_FAULT_OOM;
3977 * Serialize hugepage allocation and instantiation, so that we don't
3978 * get spurious allocation failures if two CPUs race to instantiate
3979 * the same page in the page cache.
3981 idx = vma_hugecache_offset(h, vma, haddr);
3982 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3983 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3985 entry = huge_ptep_get(ptep);
3986 if (huge_pte_none(entry)) {
3987 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3988 goto out_mutex;
3991 ret = 0;
3994 * entry could be a migration/hwpoison entry at this point, so this
3995 * check prevents the kernel from going below assuming that we have
3996 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3997 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3998 * handle it.
4000 if (!pte_present(entry))
4001 goto out_mutex;
4004 * If we are going to COW the mapping later, we examine the pending
4005 * reservations for this page now. This will ensure that any
4006 * allocations necessary to record that reservation occur outside the
4007 * spinlock. For private mappings, we also lookup the pagecache
4008 * page now as it is used to determine if a reservation has been
4009 * consumed.
4011 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4012 if (vma_needs_reservation(h, vma, haddr) < 0) {
4013 ret = VM_FAULT_OOM;
4014 goto out_mutex;
4016 /* Just decrements count, does not deallocate */
4017 vma_end_reservation(h, vma, haddr);
4019 if (!(vma->vm_flags & VM_MAYSHARE))
4020 pagecache_page = hugetlbfs_pagecache_page(h,
4021 vma, haddr);
4024 ptl = huge_pte_lock(h, mm, ptep);
4026 /* Check for a racing update before calling hugetlb_cow */
4027 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4028 goto out_ptl;
4031 * hugetlb_cow() requires page locks of pte_page(entry) and
4032 * pagecache_page, so here we need take the former one
4033 * when page != pagecache_page or !pagecache_page.
4035 page = pte_page(entry);
4036 if (page != pagecache_page)
4037 if (!trylock_page(page)) {
4038 need_wait_lock = 1;
4039 goto out_ptl;
4042 get_page(page);
4044 if (flags & FAULT_FLAG_WRITE) {
4045 if (!huge_pte_write(entry)) {
4046 ret = hugetlb_cow(mm, vma, address, ptep,
4047 pagecache_page, ptl);
4048 goto out_put_page;
4050 entry = huge_pte_mkdirty(entry);
4052 entry = pte_mkyoung(entry);
4053 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4054 flags & FAULT_FLAG_WRITE))
4055 update_mmu_cache(vma, haddr, ptep);
4056 out_put_page:
4057 if (page != pagecache_page)
4058 unlock_page(page);
4059 put_page(page);
4060 out_ptl:
4061 spin_unlock(ptl);
4063 if (pagecache_page) {
4064 unlock_page(pagecache_page);
4065 put_page(pagecache_page);
4067 out_mutex:
4068 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4069 i_mmap_unlock_read(mapping);
4071 * Generally it's safe to hold refcount during waiting page lock. But
4072 * here we just wait to defer the next page fault to avoid busy loop and
4073 * the page is not used after unlocked before returning from the current
4074 * page fault. So we are safe from accessing freed page, even if we wait
4075 * here without taking refcount.
4077 if (need_wait_lock)
4078 wait_on_page_locked(page);
4079 return ret;
4083 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4084 * modifications for huge pages.
4086 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4087 pte_t *dst_pte,
4088 struct vm_area_struct *dst_vma,
4089 unsigned long dst_addr,
4090 unsigned long src_addr,
4091 struct page **pagep)
4093 struct address_space *mapping;
4094 pgoff_t idx;
4095 unsigned long size;
4096 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4097 struct hstate *h = hstate_vma(dst_vma);
4098 pte_t _dst_pte;
4099 spinlock_t *ptl;
4100 int ret;
4101 struct page *page;
4103 if (!*pagep) {
4104 ret = -ENOMEM;
4105 page = alloc_huge_page(dst_vma, dst_addr, 0);
4106 if (IS_ERR(page))
4107 goto out;
4109 ret = copy_huge_page_from_user(page,
4110 (const void __user *) src_addr,
4111 pages_per_huge_page(h), false);
4113 /* fallback to copy_from_user outside mmap_sem */
4114 if (unlikely(ret)) {
4115 ret = -ENOENT;
4116 *pagep = page;
4117 /* don't free the page */
4118 goto out;
4120 } else {
4121 page = *pagep;
4122 *pagep = NULL;
4126 * The memory barrier inside __SetPageUptodate makes sure that
4127 * preceding stores to the page contents become visible before
4128 * the set_pte_at() write.
4130 __SetPageUptodate(page);
4131 set_page_huge_active(page);
4133 mapping = dst_vma->vm_file->f_mapping;
4134 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4137 * If shared, add to page cache
4139 if (vm_shared) {
4140 size = i_size_read(mapping->host) >> huge_page_shift(h);
4141 ret = -EFAULT;
4142 if (idx >= size)
4143 goto out_release_nounlock;
4146 * Serialization between remove_inode_hugepages() and
4147 * huge_add_to_page_cache() below happens through the
4148 * hugetlb_fault_mutex_table that here must be hold by
4149 * the caller.
4151 ret = huge_add_to_page_cache(page, mapping, idx);
4152 if (ret)
4153 goto out_release_nounlock;
4156 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4157 spin_lock(ptl);
4160 * Recheck the i_size after holding PT lock to make sure not
4161 * to leave any page mapped (as page_mapped()) beyond the end
4162 * of the i_size (remove_inode_hugepages() is strict about
4163 * enforcing that). If we bail out here, we'll also leave a
4164 * page in the radix tree in the vm_shared case beyond the end
4165 * of the i_size, but remove_inode_hugepages() will take care
4166 * of it as soon as we drop the hugetlb_fault_mutex_table.
4168 size = i_size_read(mapping->host) >> huge_page_shift(h);
4169 ret = -EFAULT;
4170 if (idx >= size)
4171 goto out_release_unlock;
4173 ret = -EEXIST;
4174 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4175 goto out_release_unlock;
4177 if (vm_shared) {
4178 page_dup_rmap(page, true);
4179 } else {
4180 ClearPagePrivate(page);
4181 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4184 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4185 if (dst_vma->vm_flags & VM_WRITE)
4186 _dst_pte = huge_pte_mkdirty(_dst_pte);
4187 _dst_pte = pte_mkyoung(_dst_pte);
4189 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4191 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4192 dst_vma->vm_flags & VM_WRITE);
4193 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4195 /* No need to invalidate - it was non-present before */
4196 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4198 spin_unlock(ptl);
4199 if (vm_shared)
4200 unlock_page(page);
4201 ret = 0;
4202 out:
4203 return ret;
4204 out_release_unlock:
4205 spin_unlock(ptl);
4206 if (vm_shared)
4207 unlock_page(page);
4208 out_release_nounlock:
4209 put_page(page);
4210 goto out;
4213 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4214 struct page **pages, struct vm_area_struct **vmas,
4215 unsigned long *position, unsigned long *nr_pages,
4216 long i, unsigned int flags, int *nonblocking)
4218 unsigned long pfn_offset;
4219 unsigned long vaddr = *position;
4220 unsigned long remainder = *nr_pages;
4221 struct hstate *h = hstate_vma(vma);
4222 int err = -EFAULT;
4224 while (vaddr < vma->vm_end && remainder) {
4225 pte_t *pte;
4226 spinlock_t *ptl = NULL;
4227 int absent;
4228 struct page *page;
4231 * If we have a pending SIGKILL, don't keep faulting pages and
4232 * potentially allocating memory.
4234 if (unlikely(fatal_signal_pending(current))) {
4235 remainder = 0;
4236 break;
4240 * Some archs (sparc64, sh*) have multiple pte_ts to
4241 * each hugepage. We have to make sure we get the
4242 * first, for the page indexing below to work.
4244 * Note that page table lock is not held when pte is null.
4246 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4247 huge_page_size(h));
4248 if (pte)
4249 ptl = huge_pte_lock(h, mm, pte);
4250 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4253 * When coredumping, it suits get_dump_page if we just return
4254 * an error where there's an empty slot with no huge pagecache
4255 * to back it. This way, we avoid allocating a hugepage, and
4256 * the sparse dumpfile avoids allocating disk blocks, but its
4257 * huge holes still show up with zeroes where they need to be.
4259 if (absent && (flags & FOLL_DUMP) &&
4260 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4261 if (pte)
4262 spin_unlock(ptl);
4263 remainder = 0;
4264 break;
4268 * We need call hugetlb_fault for both hugepages under migration
4269 * (in which case hugetlb_fault waits for the migration,) and
4270 * hwpoisoned hugepages (in which case we need to prevent the
4271 * caller from accessing to them.) In order to do this, we use
4272 * here is_swap_pte instead of is_hugetlb_entry_migration and
4273 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4274 * both cases, and because we can't follow correct pages
4275 * directly from any kind of swap entries.
4277 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4278 ((flags & FOLL_WRITE) &&
4279 !huge_pte_write(huge_ptep_get(pte)))) {
4280 vm_fault_t ret;
4281 unsigned int fault_flags = 0;
4283 if (pte)
4284 spin_unlock(ptl);
4285 if (flags & FOLL_WRITE)
4286 fault_flags |= FAULT_FLAG_WRITE;
4287 if (nonblocking)
4288 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4289 if (flags & FOLL_NOWAIT)
4290 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4291 FAULT_FLAG_RETRY_NOWAIT;
4292 if (flags & FOLL_TRIED) {
4293 VM_WARN_ON_ONCE(fault_flags &
4294 FAULT_FLAG_ALLOW_RETRY);
4295 fault_flags |= FAULT_FLAG_TRIED;
4297 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4298 if (ret & VM_FAULT_ERROR) {
4299 err = vm_fault_to_errno(ret, flags);
4300 remainder = 0;
4301 break;
4303 if (ret & VM_FAULT_RETRY) {
4304 if (nonblocking)
4305 *nonblocking = 0;
4306 *nr_pages = 0;
4308 * VM_FAULT_RETRY must not return an
4309 * error, it will return zero
4310 * instead.
4312 * No need to update "position" as the
4313 * caller will not check it after
4314 * *nr_pages is set to 0.
4316 return i;
4318 continue;
4321 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4322 page = pte_page(huge_ptep_get(pte));
4323 same_page:
4324 if (pages) {
4325 pages[i] = mem_map_offset(page, pfn_offset);
4326 get_page(pages[i]);
4329 if (vmas)
4330 vmas[i] = vma;
4332 vaddr += PAGE_SIZE;
4333 ++pfn_offset;
4334 --remainder;
4335 ++i;
4336 if (vaddr < vma->vm_end && remainder &&
4337 pfn_offset < pages_per_huge_page(h)) {
4339 * We use pfn_offset to avoid touching the pageframes
4340 * of this compound page.
4342 goto same_page;
4344 spin_unlock(ptl);
4346 *nr_pages = remainder;
4348 * setting position is actually required only if remainder is
4349 * not zero but it's faster not to add a "if (remainder)"
4350 * branch.
4352 *position = vaddr;
4354 return i ? i : err;
4357 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4359 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4360 * implement this.
4362 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4363 #endif
4365 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4366 unsigned long address, unsigned long end, pgprot_t newprot)
4368 struct mm_struct *mm = vma->vm_mm;
4369 unsigned long start = address;
4370 pte_t *ptep;
4371 pte_t pte;
4372 struct hstate *h = hstate_vma(vma);
4373 unsigned long pages = 0;
4374 bool shared_pmd = false;
4375 struct mmu_notifier_range range;
4378 * In the case of shared PMDs, the area to flush could be beyond
4379 * start/end. Set range.start/range.end to cover the maximum possible
4380 * range if PMD sharing is possible.
4382 mmu_notifier_range_init(&range, mm, start, end);
4383 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4385 BUG_ON(address >= end);
4386 flush_cache_range(vma, range.start, range.end);
4388 mmu_notifier_invalidate_range_start(&range);
4389 i_mmap_lock_write(vma->vm_file->f_mapping);
4390 for (; address < end; address += huge_page_size(h)) {
4391 spinlock_t *ptl;
4392 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4393 if (!ptep)
4394 continue;
4395 ptl = huge_pte_lock(h, mm, ptep);
4396 if (huge_pmd_unshare(mm, &address, ptep)) {
4397 pages++;
4398 spin_unlock(ptl);
4399 shared_pmd = true;
4400 continue;
4402 pte = huge_ptep_get(ptep);
4403 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4404 spin_unlock(ptl);
4405 continue;
4407 if (unlikely(is_hugetlb_entry_migration(pte))) {
4408 swp_entry_t entry = pte_to_swp_entry(pte);
4410 if (is_write_migration_entry(entry)) {
4411 pte_t newpte;
4413 make_migration_entry_read(&entry);
4414 newpte = swp_entry_to_pte(entry);
4415 set_huge_swap_pte_at(mm, address, ptep,
4416 newpte, huge_page_size(h));
4417 pages++;
4419 spin_unlock(ptl);
4420 continue;
4422 if (!huge_pte_none(pte)) {
4423 pte = huge_ptep_get_and_clear(mm, address, ptep);
4424 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4425 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4426 set_huge_pte_at(mm, address, ptep, pte);
4427 pages++;
4429 spin_unlock(ptl);
4432 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4433 * may have cleared our pud entry and done put_page on the page table:
4434 * once we release i_mmap_rwsem, another task can do the final put_page
4435 * and that page table be reused and filled with junk. If we actually
4436 * did unshare a page of pmds, flush the range corresponding to the pud.
4438 if (shared_pmd)
4439 flush_hugetlb_tlb_range(vma, range.start, range.end);
4440 else
4441 flush_hugetlb_tlb_range(vma, start, end);
4443 * No need to call mmu_notifier_invalidate_range() we are downgrading
4444 * page table protection not changing it to point to a new page.
4446 * See Documentation/vm/mmu_notifier.rst
4448 i_mmap_unlock_write(vma->vm_file->f_mapping);
4449 mmu_notifier_invalidate_range_end(&range);
4451 return pages << h->order;
4454 int hugetlb_reserve_pages(struct inode *inode,
4455 long from, long to,
4456 struct vm_area_struct *vma,
4457 vm_flags_t vm_flags)
4459 long ret, chg;
4460 struct hstate *h = hstate_inode(inode);
4461 struct hugepage_subpool *spool = subpool_inode(inode);
4462 struct resv_map *resv_map;
4463 long gbl_reserve;
4465 /* This should never happen */
4466 if (from > to) {
4467 VM_WARN(1, "%s called with a negative range\n", __func__);
4468 return -EINVAL;
4472 * Only apply hugepage reservation if asked. At fault time, an
4473 * attempt will be made for VM_NORESERVE to allocate a page
4474 * without using reserves
4476 if (vm_flags & VM_NORESERVE)
4477 return 0;
4480 * Shared mappings base their reservation on the number of pages that
4481 * are already allocated on behalf of the file. Private mappings need
4482 * to reserve the full area even if read-only as mprotect() may be
4483 * called to make the mapping read-write. Assume !vma is a shm mapping
4485 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4486 resv_map = inode_resv_map(inode);
4488 chg = region_chg(resv_map, from, to);
4490 } else {
4491 resv_map = resv_map_alloc();
4492 if (!resv_map)
4493 return -ENOMEM;
4495 chg = to - from;
4497 set_vma_resv_map(vma, resv_map);
4498 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4501 if (chg < 0) {
4502 ret = chg;
4503 goto out_err;
4507 * There must be enough pages in the subpool for the mapping. If
4508 * the subpool has a minimum size, there may be some global
4509 * reservations already in place (gbl_reserve).
4511 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4512 if (gbl_reserve < 0) {
4513 ret = -ENOSPC;
4514 goto out_err;
4518 * Check enough hugepages are available for the reservation.
4519 * Hand the pages back to the subpool if there are not
4521 ret = hugetlb_acct_memory(h, gbl_reserve);
4522 if (ret < 0) {
4523 /* put back original number of pages, chg */
4524 (void)hugepage_subpool_put_pages(spool, chg);
4525 goto out_err;
4529 * Account for the reservations made. Shared mappings record regions
4530 * that have reservations as they are shared by multiple VMAs.
4531 * When the last VMA disappears, the region map says how much
4532 * the reservation was and the page cache tells how much of
4533 * the reservation was consumed. Private mappings are per-VMA and
4534 * only the consumed reservations are tracked. When the VMA
4535 * disappears, the original reservation is the VMA size and the
4536 * consumed reservations are stored in the map. Hence, nothing
4537 * else has to be done for private mappings here
4539 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4540 long add = region_add(resv_map, from, to);
4542 if (unlikely(chg > add)) {
4544 * pages in this range were added to the reserve
4545 * map between region_chg and region_add. This
4546 * indicates a race with alloc_huge_page. Adjust
4547 * the subpool and reserve counts modified above
4548 * based on the difference.
4550 long rsv_adjust;
4552 rsv_adjust = hugepage_subpool_put_pages(spool,
4553 chg - add);
4554 hugetlb_acct_memory(h, -rsv_adjust);
4557 return 0;
4558 out_err:
4559 if (!vma || vma->vm_flags & VM_MAYSHARE)
4560 /* Don't call region_abort if region_chg failed */
4561 if (chg >= 0)
4562 region_abort(resv_map, from, to);
4563 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4564 kref_put(&resv_map->refs, resv_map_release);
4565 return ret;
4568 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4569 long freed)
4571 struct hstate *h = hstate_inode(inode);
4572 struct resv_map *resv_map = inode_resv_map(inode);
4573 long chg = 0;
4574 struct hugepage_subpool *spool = subpool_inode(inode);
4575 long gbl_reserve;
4577 if (resv_map) {
4578 chg = region_del(resv_map, start, end);
4580 * region_del() can fail in the rare case where a region
4581 * must be split and another region descriptor can not be
4582 * allocated. If end == LONG_MAX, it will not fail.
4584 if (chg < 0)
4585 return chg;
4588 spin_lock(&inode->i_lock);
4589 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4590 spin_unlock(&inode->i_lock);
4593 * If the subpool has a minimum size, the number of global
4594 * reservations to be released may be adjusted.
4596 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4597 hugetlb_acct_memory(h, -gbl_reserve);
4599 return 0;
4602 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4603 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4604 struct vm_area_struct *vma,
4605 unsigned long addr, pgoff_t idx)
4607 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4608 svma->vm_start;
4609 unsigned long sbase = saddr & PUD_MASK;
4610 unsigned long s_end = sbase + PUD_SIZE;
4612 /* Allow segments to share if only one is marked locked */
4613 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4614 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4617 * match the virtual addresses, permission and the alignment of the
4618 * page table page.
4620 if (pmd_index(addr) != pmd_index(saddr) ||
4621 vm_flags != svm_flags ||
4622 sbase < svma->vm_start || svma->vm_end < s_end)
4623 return 0;
4625 return saddr;
4628 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4630 unsigned long base = addr & PUD_MASK;
4631 unsigned long end = base + PUD_SIZE;
4634 * check on proper vm_flags and page table alignment
4636 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4637 return true;
4638 return false;
4642 * Determine if start,end range within vma could be mapped by shared pmd.
4643 * If yes, adjust start and end to cover range associated with possible
4644 * shared pmd mappings.
4646 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4647 unsigned long *start, unsigned long *end)
4649 unsigned long check_addr = *start;
4651 if (!(vma->vm_flags & VM_MAYSHARE))
4652 return;
4654 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4655 unsigned long a_start = check_addr & PUD_MASK;
4656 unsigned long a_end = a_start + PUD_SIZE;
4659 * If sharing is possible, adjust start/end if necessary.
4661 if (range_in_vma(vma, a_start, a_end)) {
4662 if (a_start < *start)
4663 *start = a_start;
4664 if (a_end > *end)
4665 *end = a_end;
4671 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4672 * and returns the corresponding pte. While this is not necessary for the
4673 * !shared pmd case because we can allocate the pmd later as well, it makes the
4674 * code much cleaner.
4676 * This routine must be called with i_mmap_rwsem held in at least read mode.
4677 * For hugetlbfs, this prevents removal of any page table entries associated
4678 * with the address space. This is important as we are setting up sharing
4679 * based on existing page table entries (mappings).
4681 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4683 struct vm_area_struct *vma = find_vma(mm, addr);
4684 struct address_space *mapping = vma->vm_file->f_mapping;
4685 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4686 vma->vm_pgoff;
4687 struct vm_area_struct *svma;
4688 unsigned long saddr;
4689 pte_t *spte = NULL;
4690 pte_t *pte;
4691 spinlock_t *ptl;
4693 if (!vma_shareable(vma, addr))
4694 return (pte_t *)pmd_alloc(mm, pud, addr);
4696 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4697 if (svma == vma)
4698 continue;
4700 saddr = page_table_shareable(svma, vma, addr, idx);
4701 if (saddr) {
4702 spte = huge_pte_offset(svma->vm_mm, saddr,
4703 vma_mmu_pagesize(svma));
4704 if (spte) {
4705 get_page(virt_to_page(spte));
4706 break;
4711 if (!spte)
4712 goto out;
4714 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4715 if (pud_none(*pud)) {
4716 pud_populate(mm, pud,
4717 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4718 mm_inc_nr_pmds(mm);
4719 } else {
4720 put_page(virt_to_page(spte));
4722 spin_unlock(ptl);
4723 out:
4724 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4725 return pte;
4729 * unmap huge page backed by shared pte.
4731 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4732 * indicated by page_count > 1, unmap is achieved by clearing pud and
4733 * decrementing the ref count. If count == 1, the pte page is not shared.
4735 * Called with page table lock held and i_mmap_rwsem held in write mode.
4737 * returns: 1 successfully unmapped a shared pte page
4738 * 0 the underlying pte page is not shared, or it is the last user
4740 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4742 pgd_t *pgd = pgd_offset(mm, *addr);
4743 p4d_t *p4d = p4d_offset(pgd, *addr);
4744 pud_t *pud = pud_offset(p4d, *addr);
4746 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4747 if (page_count(virt_to_page(ptep)) == 1)
4748 return 0;
4750 pud_clear(pud);
4751 put_page(virt_to_page(ptep));
4752 mm_dec_nr_pmds(mm);
4753 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4754 return 1;
4756 #define want_pmd_share() (1)
4757 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4758 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4760 return NULL;
4763 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4765 return 0;
4768 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4769 unsigned long *start, unsigned long *end)
4772 #define want_pmd_share() (0)
4773 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4775 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4776 pte_t *huge_pte_alloc(struct mm_struct *mm,
4777 unsigned long addr, unsigned long sz)
4779 pgd_t *pgd;
4780 p4d_t *p4d;
4781 pud_t *pud;
4782 pte_t *pte = NULL;
4784 pgd = pgd_offset(mm, addr);
4785 p4d = p4d_alloc(mm, pgd, addr);
4786 if (!p4d)
4787 return NULL;
4788 pud = pud_alloc(mm, p4d, addr);
4789 if (pud) {
4790 if (sz == PUD_SIZE) {
4791 pte = (pte_t *)pud;
4792 } else {
4793 BUG_ON(sz != PMD_SIZE);
4794 if (want_pmd_share() && pud_none(*pud))
4795 pte = huge_pmd_share(mm, addr, pud);
4796 else
4797 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4800 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4802 return pte;
4806 * huge_pte_offset() - Walk the page table to resolve the hugepage
4807 * entry at address @addr
4809 * Return: Pointer to page table or swap entry (PUD or PMD) for
4810 * address @addr, or NULL if a p*d_none() entry is encountered and the
4811 * size @sz doesn't match the hugepage size at this level of the page
4812 * table.
4814 pte_t *huge_pte_offset(struct mm_struct *mm,
4815 unsigned long addr, unsigned long sz)
4817 pgd_t *pgd;
4818 p4d_t *p4d;
4819 pud_t *pud;
4820 pmd_t *pmd;
4822 pgd = pgd_offset(mm, addr);
4823 if (!pgd_present(*pgd))
4824 return NULL;
4825 p4d = p4d_offset(pgd, addr);
4826 if (!p4d_present(*p4d))
4827 return NULL;
4829 pud = pud_offset(p4d, addr);
4830 if (sz != PUD_SIZE && pud_none(*pud))
4831 return NULL;
4832 /* hugepage or swap? */
4833 if (pud_huge(*pud) || !pud_present(*pud))
4834 return (pte_t *)pud;
4836 pmd = pmd_offset(pud, addr);
4837 if (sz != PMD_SIZE && pmd_none(*pmd))
4838 return NULL;
4839 /* hugepage or swap? */
4840 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4841 return (pte_t *)pmd;
4843 return NULL;
4846 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4849 * These functions are overwritable if your architecture needs its own
4850 * behavior.
4852 struct page * __weak
4853 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4854 int write)
4856 return ERR_PTR(-EINVAL);
4859 struct page * __weak
4860 follow_huge_pd(struct vm_area_struct *vma,
4861 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4863 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4864 return NULL;
4867 struct page * __weak
4868 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4869 pmd_t *pmd, int flags)
4871 struct page *page = NULL;
4872 spinlock_t *ptl;
4873 pte_t pte;
4874 retry:
4875 ptl = pmd_lockptr(mm, pmd);
4876 spin_lock(ptl);
4878 * make sure that the address range covered by this pmd is not
4879 * unmapped from other threads.
4881 if (!pmd_huge(*pmd))
4882 goto out;
4883 pte = huge_ptep_get((pte_t *)pmd);
4884 if (pte_present(pte)) {
4885 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4886 if (flags & FOLL_GET)
4887 get_page(page);
4888 } else {
4889 if (is_hugetlb_entry_migration(pte)) {
4890 spin_unlock(ptl);
4891 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4892 goto retry;
4895 * hwpoisoned entry is treated as no_page_table in
4896 * follow_page_mask().
4899 out:
4900 spin_unlock(ptl);
4901 return page;
4904 struct page * __weak
4905 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4906 pud_t *pud, int flags)
4908 if (flags & FOLL_GET)
4909 return NULL;
4911 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4914 struct page * __weak
4915 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4917 if (flags & FOLL_GET)
4918 return NULL;
4920 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4923 bool isolate_huge_page(struct page *page, struct list_head *list)
4925 bool ret = true;
4927 VM_BUG_ON_PAGE(!PageHead(page), page);
4928 spin_lock(&hugetlb_lock);
4929 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4930 ret = false;
4931 goto unlock;
4933 clear_page_huge_active(page);
4934 list_move_tail(&page->lru, list);
4935 unlock:
4936 spin_unlock(&hugetlb_lock);
4937 return ret;
4940 void putback_active_hugepage(struct page *page)
4942 VM_BUG_ON_PAGE(!PageHead(page), page);
4943 spin_lock(&hugetlb_lock);
4944 set_page_huge_active(page);
4945 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4946 spin_unlock(&hugetlb_lock);
4947 put_page(page);
4950 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4952 struct hstate *h = page_hstate(oldpage);
4954 hugetlb_cgroup_migrate(oldpage, newpage);
4955 set_page_owner_migrate_reason(newpage, reason);
4958 * transfer temporary state of the new huge page. This is
4959 * reverse to other transitions because the newpage is going to
4960 * be final while the old one will be freed so it takes over
4961 * the temporary status.
4963 * Also note that we have to transfer the per-node surplus state
4964 * here as well otherwise the global surplus count will not match
4965 * the per-node's.
4967 if (PageHugeTemporary(newpage)) {
4968 int old_nid = page_to_nid(oldpage);
4969 int new_nid = page_to_nid(newpage);
4971 SetPageHugeTemporary(oldpage);
4972 ClearPageHugeTemporary(newpage);
4974 spin_lock(&hugetlb_lock);
4975 if (h->surplus_huge_pages_node[old_nid]) {
4976 h->surplus_huge_pages_node[old_nid]--;
4977 h->surplus_huge_pages_node[new_nid]++;
4979 spin_unlock(&hugetlb_lock);