1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup
*target_mem_cgroup
;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage
:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap
:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap
:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab
:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim
:1;
100 unsigned int memcg_low_skipped
:1;
102 unsigned int hibernation_mode
:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready
:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned
;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed
;
127 unsigned int unqueued_dirty
;
128 unsigned int congested
;
129 unsigned int writeback
;
130 unsigned int immediate
;
131 unsigned int file_taken
;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness
= 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages
;
174 static LIST_HEAD(shrinker_list
);
175 static DECLARE_RWSEM(shrinker_rwsem
);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr
);
193 static int shrinker_nr_max
;
195 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
197 int id
, ret
= -ENOMEM
;
199 down_write(&shrinker_rwsem
);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
205 if (id
>= shrinker_nr_max
) {
206 if (memcg_expand_shrinker_maps(id
)) {
207 idr_remove(&shrinker_idr
, id
);
211 shrinker_nr_max
= id
+ 1;
216 up_write(&shrinker_rwsem
);
220 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
222 int id
= shrinker
->id
;
226 down_write(&shrinker_rwsem
);
227 idr_remove(&shrinker_idr
, id
);
228 up_write(&shrinker_rwsem
);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
236 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control
*sc
)
244 return !sc
->target_mem_cgroup
;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control
*sc
)
262 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
273 static void set_memcg_congestion(pg_data_t
*pgdat
,
274 struct mem_cgroup
*memcg
,
277 struct mem_cgroup_per_node
*mn
;
282 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
283 WRITE_ONCE(mn
->congested
, congested
);
286 static bool memcg_congested(pg_data_t
*pgdat
,
287 struct mem_cgroup
*memcg
)
289 struct mem_cgroup_per_node
*mn
;
291 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
292 return READ_ONCE(mn
->congested
);
296 static bool global_reclaim(struct scan_control
*sc
)
301 static bool sane_reclaim(struct scan_control
*sc
)
306 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
307 struct mem_cgroup
*memcg
, bool congested
)
311 static inline bool memcg_congested(struct pglist_data
*pgdat
,
312 struct mem_cgroup
*memcg
)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone
*zone
)
328 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
329 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
330 if (get_nr_swap_pages() > 0)
331 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
332 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
345 unsigned long lru_size
;
348 if (!mem_cgroup_disabled())
349 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
351 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
353 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
354 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
357 if (!managed_zone(zone
))
360 if (!mem_cgroup_disabled())
361 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
363 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
364 NR_ZONE_LRU_BASE
+ lru
);
365 lru_size
-= min(size
, lru_size
);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker
*shrinker
)
377 size_t size
= sizeof(*shrinker
->nr_deferred
);
379 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
382 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
383 if (!shrinker
->nr_deferred
)
386 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
387 if (prealloc_memcg_shrinker(shrinker
))
394 kfree(shrinker
->nr_deferred
);
395 shrinker
->nr_deferred
= NULL
;
399 void free_prealloced_shrinker(struct shrinker
*shrinker
)
401 if (!shrinker
->nr_deferred
)
404 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
405 unregister_memcg_shrinker(shrinker
);
407 kfree(shrinker
->nr_deferred
);
408 shrinker
->nr_deferred
= NULL
;
411 void register_shrinker_prepared(struct shrinker
*shrinker
)
413 down_write(&shrinker_rwsem
);
414 list_add_tail(&shrinker
->list
, &shrinker_list
);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
417 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
419 up_write(&shrinker_rwsem
);
422 int register_shrinker(struct shrinker
*shrinker
)
424 int err
= prealloc_shrinker(shrinker
);
428 register_shrinker_prepared(shrinker
);
431 EXPORT_SYMBOL(register_shrinker
);
436 void unregister_shrinker(struct shrinker
*shrinker
)
438 if (!shrinker
->nr_deferred
)
440 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
441 unregister_memcg_shrinker(shrinker
);
442 down_write(&shrinker_rwsem
);
443 list_del(&shrinker
->list
);
444 up_write(&shrinker_rwsem
);
445 kfree(shrinker
->nr_deferred
);
446 shrinker
->nr_deferred
= NULL
;
448 EXPORT_SYMBOL(unregister_shrinker
);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
453 struct shrinker
*shrinker
, int priority
)
455 unsigned long freed
= 0;
456 unsigned long long delta
;
461 int nid
= shrinkctl
->nid
;
462 long batch_size
= shrinker
->batch
? shrinker
->batch
464 long scanned
= 0, next_deferred
;
466 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
469 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
470 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
481 if (shrinker
->seeks
) {
482 delta
= freeable
>> priority
;
484 do_div(delta
, shrinker
->seeks
);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta
= freeable
/ 2;
495 * Make sure we apply some minimal pressure on default priority
496 * even on small cgroups. Stale objects are not only consuming memory
497 * by themselves, but can also hold a reference to a dying cgroup,
498 * preventing it from being reclaimed. A dying cgroup with all
499 * corresponding structures like per-cpu stats and kmem caches
500 * can be really big, so it may lead to a significant waste of memory.
502 delta
= max_t(unsigned long long, delta
, min(freeable
, batch_size
));
505 if (total_scan
< 0) {
506 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
507 shrinker
->scan_objects
, total_scan
);
508 total_scan
= freeable
;
511 next_deferred
= total_scan
;
514 * We need to avoid excessive windup on filesystem shrinkers
515 * due to large numbers of GFP_NOFS allocations causing the
516 * shrinkers to return -1 all the time. This results in a large
517 * nr being built up so when a shrink that can do some work
518 * comes along it empties the entire cache due to nr >>>
519 * freeable. This is bad for sustaining a working set in
522 * Hence only allow the shrinker to scan the entire cache when
523 * a large delta change is calculated directly.
525 if (delta
< freeable
/ 4)
526 total_scan
= min(total_scan
, freeable
/ 2);
529 * Avoid risking looping forever due to too large nr value:
530 * never try to free more than twice the estimate number of
533 if (total_scan
> freeable
* 2)
534 total_scan
= freeable
* 2;
536 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
537 freeable
, delta
, total_scan
, priority
);
540 * Normally, we should not scan less than batch_size objects in one
541 * pass to avoid too frequent shrinker calls, but if the slab has less
542 * than batch_size objects in total and we are really tight on memory,
543 * we will try to reclaim all available objects, otherwise we can end
544 * up failing allocations although there are plenty of reclaimable
545 * objects spread over several slabs with usage less than the
548 * We detect the "tight on memory" situations by looking at the total
549 * number of objects we want to scan (total_scan). If it is greater
550 * than the total number of objects on slab (freeable), we must be
551 * scanning at high prio and therefore should try to reclaim as much as
554 while (total_scan
>= batch_size
||
555 total_scan
>= freeable
) {
557 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
559 shrinkctl
->nr_to_scan
= nr_to_scan
;
560 shrinkctl
->nr_scanned
= nr_to_scan
;
561 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
562 if (ret
== SHRINK_STOP
)
566 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
567 total_scan
-= shrinkctl
->nr_scanned
;
568 scanned
+= shrinkctl
->nr_scanned
;
573 if (next_deferred
>= scanned
)
574 next_deferred
-= scanned
;
578 * move the unused scan count back into the shrinker in a
579 * manner that handles concurrent updates. If we exhausted the
580 * scan, there is no need to do an update.
582 if (next_deferred
> 0)
583 new_nr
= atomic_long_add_return(next_deferred
,
584 &shrinker
->nr_deferred
[nid
]);
586 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
588 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
592 #ifdef CONFIG_MEMCG_KMEM
593 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
594 struct mem_cgroup
*memcg
, int priority
)
596 struct memcg_shrinker_map
*map
;
597 unsigned long ret
, freed
= 0;
600 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
603 if (!down_read_trylock(&shrinker_rwsem
))
606 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
611 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
612 struct shrink_control sc
= {
613 .gfp_mask
= gfp_mask
,
617 struct shrinker
*shrinker
;
619 shrinker
= idr_find(&shrinker_idr
, i
);
620 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
622 clear_bit(i
, map
->map
);
626 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
627 if (ret
== SHRINK_EMPTY
) {
628 clear_bit(i
, map
->map
);
630 * After the shrinker reported that it had no objects to
631 * free, but before we cleared the corresponding bit in
632 * the memcg shrinker map, a new object might have been
633 * added. To make sure, we have the bit set in this
634 * case, we invoke the shrinker one more time and reset
635 * the bit if it reports that it is not empty anymore.
636 * The memory barrier here pairs with the barrier in
637 * memcg_set_shrinker_bit():
639 * list_lru_add() shrink_slab_memcg()
640 * list_add_tail() clear_bit()
642 * set_bit() do_shrink_slab()
644 smp_mb__after_atomic();
645 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
646 if (ret
== SHRINK_EMPTY
)
649 memcg_set_shrinker_bit(memcg
, nid
, i
);
653 if (rwsem_is_contended(&shrinker_rwsem
)) {
659 up_read(&shrinker_rwsem
);
662 #else /* CONFIG_MEMCG_KMEM */
663 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
664 struct mem_cgroup
*memcg
, int priority
)
668 #endif /* CONFIG_MEMCG_KMEM */
671 * shrink_slab - shrink slab caches
672 * @gfp_mask: allocation context
673 * @nid: node whose slab caches to target
674 * @memcg: memory cgroup whose slab caches to target
675 * @priority: the reclaim priority
677 * Call the shrink functions to age shrinkable caches.
679 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
680 * unaware shrinkers will receive a node id of 0 instead.
682 * @memcg specifies the memory cgroup to target. Unaware shrinkers
683 * are called only if it is the root cgroup.
685 * @priority is sc->priority, we take the number of objects and >> by priority
686 * in order to get the scan target.
688 * Returns the number of reclaimed slab objects.
690 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
691 struct mem_cgroup
*memcg
,
694 unsigned long ret
, freed
= 0;
695 struct shrinker
*shrinker
;
697 if (!mem_cgroup_is_root(memcg
))
698 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
700 if (!down_read_trylock(&shrinker_rwsem
))
703 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
704 struct shrink_control sc
= {
705 .gfp_mask
= gfp_mask
,
710 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
711 if (ret
== SHRINK_EMPTY
)
715 * Bail out if someone want to register a new shrinker to
716 * prevent the regsitration from being stalled for long periods
717 * by parallel ongoing shrinking.
719 if (rwsem_is_contended(&shrinker_rwsem
)) {
725 up_read(&shrinker_rwsem
);
731 void drop_slab_node(int nid
)
736 struct mem_cgroup
*memcg
= NULL
;
739 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
741 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
742 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
743 } while (freed
> 10);
750 for_each_online_node(nid
)
754 static inline int is_page_cache_freeable(struct page
*page
)
757 * A freeable page cache page is referenced only by the caller
758 * that isolated the page, the page cache and optional buffer
759 * heads at page->private.
761 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
763 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
766 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
768 if (current
->flags
& PF_SWAPWRITE
)
770 if (!inode_write_congested(inode
))
772 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
778 * We detected a synchronous write error writing a page out. Probably
779 * -ENOSPC. We need to propagate that into the address_space for a subsequent
780 * fsync(), msync() or close().
782 * The tricky part is that after writepage we cannot touch the mapping: nothing
783 * prevents it from being freed up. But we have a ref on the page and once
784 * that page is locked, the mapping is pinned.
786 * We're allowed to run sleeping lock_page() here because we know the caller has
789 static void handle_write_error(struct address_space
*mapping
,
790 struct page
*page
, int error
)
793 if (page_mapping(page
) == mapping
)
794 mapping_set_error(mapping
, error
);
798 /* possible outcome of pageout() */
800 /* failed to write page out, page is locked */
802 /* move page to the active list, page is locked */
804 /* page has been sent to the disk successfully, page is unlocked */
806 /* page is clean and locked */
811 * pageout is called by shrink_page_list() for each dirty page.
812 * Calls ->writepage().
814 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
815 struct scan_control
*sc
)
818 * If the page is dirty, only perform writeback if that write
819 * will be non-blocking. To prevent this allocation from being
820 * stalled by pagecache activity. But note that there may be
821 * stalls if we need to run get_block(). We could test
822 * PagePrivate for that.
824 * If this process is currently in __generic_file_write_iter() against
825 * this page's queue, we can perform writeback even if that
828 * If the page is swapcache, write it back even if that would
829 * block, for some throttling. This happens by accident, because
830 * swap_backing_dev_info is bust: it doesn't reflect the
831 * congestion state of the swapdevs. Easy to fix, if needed.
833 if (!is_page_cache_freeable(page
))
837 * Some data journaling orphaned pages can have
838 * page->mapping == NULL while being dirty with clean buffers.
840 if (page_has_private(page
)) {
841 if (try_to_free_buffers(page
)) {
842 ClearPageDirty(page
);
843 pr_info("%s: orphaned page\n", __func__
);
849 if (mapping
->a_ops
->writepage
== NULL
)
850 return PAGE_ACTIVATE
;
851 if (!may_write_to_inode(mapping
->host
, sc
))
854 if (clear_page_dirty_for_io(page
)) {
856 struct writeback_control wbc
= {
857 .sync_mode
= WB_SYNC_NONE
,
858 .nr_to_write
= SWAP_CLUSTER_MAX
,
860 .range_end
= LLONG_MAX
,
864 SetPageReclaim(page
);
865 res
= mapping
->a_ops
->writepage(page
, &wbc
);
867 handle_write_error(mapping
, page
, res
);
868 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
869 ClearPageReclaim(page
);
870 return PAGE_ACTIVATE
;
873 if (!PageWriteback(page
)) {
874 /* synchronous write or broken a_ops? */
875 ClearPageReclaim(page
);
877 trace_mm_vmscan_writepage(page
);
878 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
886 * Same as remove_mapping, but if the page is removed from the mapping, it
887 * gets returned with a refcount of 0.
889 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
895 BUG_ON(!PageLocked(page
));
896 BUG_ON(mapping
!= page_mapping(page
));
898 xa_lock_irqsave(&mapping
->i_pages
, flags
);
900 * The non racy check for a busy page.
902 * Must be careful with the order of the tests. When someone has
903 * a ref to the page, it may be possible that they dirty it then
904 * drop the reference. So if PageDirty is tested before page_count
905 * here, then the following race may occur:
907 * get_user_pages(&page);
908 * [user mapping goes away]
910 * !PageDirty(page) [good]
911 * SetPageDirty(page);
913 * !page_count(page) [good, discard it]
915 * [oops, our write_to data is lost]
917 * Reversing the order of the tests ensures such a situation cannot
918 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
919 * load is not satisfied before that of page->_refcount.
921 * Note that if SetPageDirty is always performed via set_page_dirty,
922 * and thus under the i_pages lock, then this ordering is not required.
924 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
925 refcount
= 1 + HPAGE_PMD_NR
;
928 if (!page_ref_freeze(page
, refcount
))
930 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
931 if (unlikely(PageDirty(page
))) {
932 page_ref_unfreeze(page
, refcount
);
936 if (PageSwapCache(page
)) {
937 swp_entry_t swap
= { .val
= page_private(page
) };
938 mem_cgroup_swapout(page
, swap
);
939 __delete_from_swap_cache(page
, swap
);
940 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
941 put_swap_page(page
, swap
);
943 void (*freepage
)(struct page
*);
946 freepage
= mapping
->a_ops
->freepage
;
948 * Remember a shadow entry for reclaimed file cache in
949 * order to detect refaults, thus thrashing, later on.
951 * But don't store shadows in an address space that is
952 * already exiting. This is not just an optizimation,
953 * inode reclaim needs to empty out the radix tree or
954 * the nodes are lost. Don't plant shadows behind its
957 * We also don't store shadows for DAX mappings because the
958 * only page cache pages found in these are zero pages
959 * covering holes, and because we don't want to mix DAX
960 * exceptional entries and shadow exceptional entries in the
961 * same address_space.
963 if (reclaimed
&& page_is_file_cache(page
) &&
964 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
965 shadow
= workingset_eviction(mapping
, page
);
966 __delete_from_page_cache(page
, shadow
);
967 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
969 if (freepage
!= NULL
)
976 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
981 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
982 * someone else has a ref on the page, abort and return 0. If it was
983 * successfully detached, return 1. Assumes the caller has a single ref on
986 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
988 if (__remove_mapping(mapping
, page
, false)) {
990 * Unfreezing the refcount with 1 rather than 2 effectively
991 * drops the pagecache ref for us without requiring another
994 page_ref_unfreeze(page
, 1);
1001 * putback_lru_page - put previously isolated page onto appropriate LRU list
1002 * @page: page to be put back to appropriate lru list
1004 * Add previously isolated @page to appropriate LRU list.
1005 * Page may still be unevictable for other reasons.
1007 * lru_lock must not be held, interrupts must be enabled.
1009 void putback_lru_page(struct page
*page
)
1011 lru_cache_add(page
);
1012 put_page(page
); /* drop ref from isolate */
1015 enum page_references
{
1017 PAGEREF_RECLAIM_CLEAN
,
1022 static enum page_references
page_check_references(struct page
*page
,
1023 struct scan_control
*sc
)
1025 int referenced_ptes
, referenced_page
;
1026 unsigned long vm_flags
;
1028 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1030 referenced_page
= TestClearPageReferenced(page
);
1033 * Mlock lost the isolation race with us. Let try_to_unmap()
1034 * move the page to the unevictable list.
1036 if (vm_flags
& VM_LOCKED
)
1037 return PAGEREF_RECLAIM
;
1039 if (referenced_ptes
) {
1040 if (PageSwapBacked(page
))
1041 return PAGEREF_ACTIVATE
;
1043 * All mapped pages start out with page table
1044 * references from the instantiating fault, so we need
1045 * to look twice if a mapped file page is used more
1048 * Mark it and spare it for another trip around the
1049 * inactive list. Another page table reference will
1050 * lead to its activation.
1052 * Note: the mark is set for activated pages as well
1053 * so that recently deactivated but used pages are
1054 * quickly recovered.
1056 SetPageReferenced(page
);
1058 if (referenced_page
|| referenced_ptes
> 1)
1059 return PAGEREF_ACTIVATE
;
1062 * Activate file-backed executable pages after first usage.
1064 if (vm_flags
& VM_EXEC
)
1065 return PAGEREF_ACTIVATE
;
1067 return PAGEREF_KEEP
;
1070 /* Reclaim if clean, defer dirty pages to writeback */
1071 if (referenced_page
&& !PageSwapBacked(page
))
1072 return PAGEREF_RECLAIM_CLEAN
;
1074 return PAGEREF_RECLAIM
;
1077 /* Check if a page is dirty or under writeback */
1078 static void page_check_dirty_writeback(struct page
*page
,
1079 bool *dirty
, bool *writeback
)
1081 struct address_space
*mapping
;
1084 * Anonymous pages are not handled by flushers and must be written
1085 * from reclaim context. Do not stall reclaim based on them
1087 if (!page_is_file_cache(page
) ||
1088 (PageAnon(page
) && !PageSwapBacked(page
))) {
1094 /* By default assume that the page flags are accurate */
1095 *dirty
= PageDirty(page
);
1096 *writeback
= PageWriteback(page
);
1098 /* Verify dirty/writeback state if the filesystem supports it */
1099 if (!page_has_private(page
))
1102 mapping
= page_mapping(page
);
1103 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1104 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1108 * shrink_page_list() returns the number of reclaimed pages
1110 static unsigned long shrink_page_list(struct list_head
*page_list
,
1111 struct pglist_data
*pgdat
,
1112 struct scan_control
*sc
,
1113 enum ttu_flags ttu_flags
,
1114 struct reclaim_stat
*stat
,
1117 LIST_HEAD(ret_pages
);
1118 LIST_HEAD(free_pages
);
1120 unsigned nr_unqueued_dirty
= 0;
1121 unsigned nr_dirty
= 0;
1122 unsigned nr_congested
= 0;
1123 unsigned nr_reclaimed
= 0;
1124 unsigned nr_writeback
= 0;
1125 unsigned nr_immediate
= 0;
1126 unsigned nr_ref_keep
= 0;
1127 unsigned nr_unmap_fail
= 0;
1131 while (!list_empty(page_list
)) {
1132 struct address_space
*mapping
;
1135 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1136 bool dirty
, writeback
;
1140 page
= lru_to_page(page_list
);
1141 list_del(&page
->lru
);
1143 if (!trylock_page(page
))
1146 VM_BUG_ON_PAGE(PageActive(page
), page
);
1150 if (unlikely(!page_evictable(page
)))
1151 goto activate_locked
;
1153 if (!sc
->may_unmap
&& page_mapped(page
))
1156 /* Double the slab pressure for mapped and swapcache pages */
1157 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1158 !(PageAnon(page
) && !PageSwapBacked(page
)))
1161 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1162 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1165 * The number of dirty pages determines if a node is marked
1166 * reclaim_congested which affects wait_iff_congested. kswapd
1167 * will stall and start writing pages if the tail of the LRU
1168 * is all dirty unqueued pages.
1170 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1171 if (dirty
|| writeback
)
1174 if (dirty
&& !writeback
)
1175 nr_unqueued_dirty
++;
1178 * Treat this page as congested if the underlying BDI is or if
1179 * pages are cycling through the LRU so quickly that the
1180 * pages marked for immediate reclaim are making it to the
1181 * end of the LRU a second time.
1183 mapping
= page_mapping(page
);
1184 if (((dirty
|| writeback
) && mapping
&&
1185 inode_write_congested(mapping
->host
)) ||
1186 (writeback
&& PageReclaim(page
)))
1190 * If a page at the tail of the LRU is under writeback, there
1191 * are three cases to consider.
1193 * 1) If reclaim is encountering an excessive number of pages
1194 * under writeback and this page is both under writeback and
1195 * PageReclaim then it indicates that pages are being queued
1196 * for IO but are being recycled through the LRU before the
1197 * IO can complete. Waiting on the page itself risks an
1198 * indefinite stall if it is impossible to writeback the
1199 * page due to IO error or disconnected storage so instead
1200 * note that the LRU is being scanned too quickly and the
1201 * caller can stall after page list has been processed.
1203 * 2) Global or new memcg reclaim encounters a page that is
1204 * not marked for immediate reclaim, or the caller does not
1205 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1206 * not to fs). In this case mark the page for immediate
1207 * reclaim and continue scanning.
1209 * Require may_enter_fs because we would wait on fs, which
1210 * may not have submitted IO yet. And the loop driver might
1211 * enter reclaim, and deadlock if it waits on a page for
1212 * which it is needed to do the write (loop masks off
1213 * __GFP_IO|__GFP_FS for this reason); but more thought
1214 * would probably show more reasons.
1216 * 3) Legacy memcg encounters a page that is already marked
1217 * PageReclaim. memcg does not have any dirty pages
1218 * throttling so we could easily OOM just because too many
1219 * pages are in writeback and there is nothing else to
1220 * reclaim. Wait for the writeback to complete.
1222 * In cases 1) and 2) we activate the pages to get them out of
1223 * the way while we continue scanning for clean pages on the
1224 * inactive list and refilling from the active list. The
1225 * observation here is that waiting for disk writes is more
1226 * expensive than potentially causing reloads down the line.
1227 * Since they're marked for immediate reclaim, they won't put
1228 * memory pressure on the cache working set any longer than it
1229 * takes to write them to disk.
1231 if (PageWriteback(page
)) {
1233 if (current_is_kswapd() &&
1234 PageReclaim(page
) &&
1235 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1237 goto activate_locked
;
1240 } else if (sane_reclaim(sc
) ||
1241 !PageReclaim(page
) || !may_enter_fs
) {
1243 * This is slightly racy - end_page_writeback()
1244 * might have just cleared PageReclaim, then
1245 * setting PageReclaim here end up interpreted
1246 * as PageReadahead - but that does not matter
1247 * enough to care. What we do want is for this
1248 * page to have PageReclaim set next time memcg
1249 * reclaim reaches the tests above, so it will
1250 * then wait_on_page_writeback() to avoid OOM;
1251 * and it's also appropriate in global reclaim.
1253 SetPageReclaim(page
);
1255 goto activate_locked
;
1260 wait_on_page_writeback(page
);
1261 /* then go back and try same page again */
1262 list_add_tail(&page
->lru
, page_list
);
1268 references
= page_check_references(page
, sc
);
1270 switch (references
) {
1271 case PAGEREF_ACTIVATE
:
1272 goto activate_locked
;
1276 case PAGEREF_RECLAIM
:
1277 case PAGEREF_RECLAIM_CLEAN
:
1278 ; /* try to reclaim the page below */
1282 * Anonymous process memory has backing store?
1283 * Try to allocate it some swap space here.
1284 * Lazyfree page could be freed directly
1286 if (PageAnon(page
) && PageSwapBacked(page
)) {
1287 if (!PageSwapCache(page
)) {
1288 if (!(sc
->gfp_mask
& __GFP_IO
))
1290 if (PageTransHuge(page
)) {
1291 /* cannot split THP, skip it */
1292 if (!can_split_huge_page(page
, NULL
))
1293 goto activate_locked
;
1295 * Split pages without a PMD map right
1296 * away. Chances are some or all of the
1297 * tail pages can be freed without IO.
1299 if (!compound_mapcount(page
) &&
1300 split_huge_page_to_list(page
,
1302 goto activate_locked
;
1304 if (!add_to_swap(page
)) {
1305 if (!PageTransHuge(page
))
1306 goto activate_locked
;
1307 /* Fallback to swap normal pages */
1308 if (split_huge_page_to_list(page
,
1310 goto activate_locked
;
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 count_vm_event(THP_SWPOUT_FALLBACK
);
1314 if (!add_to_swap(page
))
1315 goto activate_locked
;
1320 /* Adding to swap updated mapping */
1321 mapping
= page_mapping(page
);
1323 } else if (unlikely(PageTransHuge(page
))) {
1324 /* Split file THP */
1325 if (split_huge_page_to_list(page
, page_list
))
1330 * The page is mapped into the page tables of one or more
1331 * processes. Try to unmap it here.
1333 if (page_mapped(page
)) {
1334 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1336 if (unlikely(PageTransHuge(page
)))
1337 flags
|= TTU_SPLIT_HUGE_PMD
;
1338 if (!try_to_unmap(page
, flags
)) {
1340 goto activate_locked
;
1344 if (PageDirty(page
)) {
1346 * Only kswapd can writeback filesystem pages
1347 * to avoid risk of stack overflow. But avoid
1348 * injecting inefficient single-page IO into
1349 * flusher writeback as much as possible: only
1350 * write pages when we've encountered many
1351 * dirty pages, and when we've already scanned
1352 * the rest of the LRU for clean pages and see
1353 * the same dirty pages again (PageReclaim).
1355 if (page_is_file_cache(page
) &&
1356 (!current_is_kswapd() || !PageReclaim(page
) ||
1357 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1359 * Immediately reclaim when written back.
1360 * Similar in principal to deactivate_page()
1361 * except we already have the page isolated
1362 * and know it's dirty
1364 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1365 SetPageReclaim(page
);
1367 goto activate_locked
;
1370 if (references
== PAGEREF_RECLAIM_CLEAN
)
1374 if (!sc
->may_writepage
)
1378 * Page is dirty. Flush the TLB if a writable entry
1379 * potentially exists to avoid CPU writes after IO
1380 * starts and then write it out here.
1382 try_to_unmap_flush_dirty();
1383 switch (pageout(page
, mapping
, sc
)) {
1387 goto activate_locked
;
1389 if (PageWriteback(page
))
1391 if (PageDirty(page
))
1395 * A synchronous write - probably a ramdisk. Go
1396 * ahead and try to reclaim the page.
1398 if (!trylock_page(page
))
1400 if (PageDirty(page
) || PageWriteback(page
))
1402 mapping
= page_mapping(page
);
1404 ; /* try to free the page below */
1409 * If the page has buffers, try to free the buffer mappings
1410 * associated with this page. If we succeed we try to free
1413 * We do this even if the page is PageDirty().
1414 * try_to_release_page() does not perform I/O, but it is
1415 * possible for a page to have PageDirty set, but it is actually
1416 * clean (all its buffers are clean). This happens if the
1417 * buffers were written out directly, with submit_bh(). ext3
1418 * will do this, as well as the blockdev mapping.
1419 * try_to_release_page() will discover that cleanness and will
1420 * drop the buffers and mark the page clean - it can be freed.
1422 * Rarely, pages can have buffers and no ->mapping. These are
1423 * the pages which were not successfully invalidated in
1424 * truncate_complete_page(). We try to drop those buffers here
1425 * and if that worked, and the page is no longer mapped into
1426 * process address space (page_count == 1) it can be freed.
1427 * Otherwise, leave the page on the LRU so it is swappable.
1429 if (page_has_private(page
)) {
1430 if (!try_to_release_page(page
, sc
->gfp_mask
))
1431 goto activate_locked
;
1432 if (!mapping
&& page_count(page
) == 1) {
1434 if (put_page_testzero(page
))
1438 * rare race with speculative reference.
1439 * the speculative reference will free
1440 * this page shortly, so we may
1441 * increment nr_reclaimed here (and
1442 * leave it off the LRU).
1450 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1451 /* follow __remove_mapping for reference */
1452 if (!page_ref_freeze(page
, 1))
1454 if (PageDirty(page
)) {
1455 page_ref_unfreeze(page
, 1);
1459 count_vm_event(PGLAZYFREED
);
1460 count_memcg_page_event(page
, PGLAZYFREED
);
1461 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1469 * Is there need to periodically free_page_list? It would
1470 * appear not as the counts should be low
1472 if (unlikely(PageTransHuge(page
))) {
1473 mem_cgroup_uncharge(page
);
1474 (*get_compound_page_dtor(page
))(page
);
1476 list_add(&page
->lru
, &free_pages
);
1480 /* Not a candidate for swapping, so reclaim swap space. */
1481 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1483 try_to_free_swap(page
);
1484 VM_BUG_ON_PAGE(PageActive(page
), page
);
1485 if (!PageMlocked(page
)) {
1486 SetPageActive(page
);
1488 count_memcg_page_event(page
, PGACTIVATE
);
1493 list_add(&page
->lru
, &ret_pages
);
1494 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1497 mem_cgroup_uncharge_list(&free_pages
);
1498 try_to_unmap_flush();
1499 free_unref_page_list(&free_pages
);
1501 list_splice(&ret_pages
, page_list
);
1502 count_vm_events(PGACTIVATE
, pgactivate
);
1505 stat
->nr_dirty
= nr_dirty
;
1506 stat
->nr_congested
= nr_congested
;
1507 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1508 stat
->nr_writeback
= nr_writeback
;
1509 stat
->nr_immediate
= nr_immediate
;
1510 stat
->nr_activate
= pgactivate
;
1511 stat
->nr_ref_keep
= nr_ref_keep
;
1512 stat
->nr_unmap_fail
= nr_unmap_fail
;
1514 return nr_reclaimed
;
1517 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1518 struct list_head
*page_list
)
1520 struct scan_control sc
= {
1521 .gfp_mask
= GFP_KERNEL
,
1522 .priority
= DEF_PRIORITY
,
1526 struct page
*page
, *next
;
1527 LIST_HEAD(clean_pages
);
1529 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1530 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1531 !__PageMovable(page
)) {
1532 ClearPageActive(page
);
1533 list_move(&page
->lru
, &clean_pages
);
1537 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1538 TTU_IGNORE_ACCESS
, NULL
, true);
1539 list_splice(&clean_pages
, page_list
);
1540 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1545 * Attempt to remove the specified page from its LRU. Only take this page
1546 * if it is of the appropriate PageActive status. Pages which are being
1547 * freed elsewhere are also ignored.
1549 * page: page to consider
1550 * mode: one of the LRU isolation modes defined above
1552 * returns 0 on success, -ve errno on failure.
1554 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1558 /* Only take pages on the LRU. */
1562 /* Compaction should not handle unevictable pages but CMA can do so */
1563 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1569 * To minimise LRU disruption, the caller can indicate that it only
1570 * wants to isolate pages it will be able to operate on without
1571 * blocking - clean pages for the most part.
1573 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1574 * that it is possible to migrate without blocking
1576 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1577 /* All the caller can do on PageWriteback is block */
1578 if (PageWriteback(page
))
1581 if (PageDirty(page
)) {
1582 struct address_space
*mapping
;
1586 * Only pages without mappings or that have a
1587 * ->migratepage callback are possible to migrate
1588 * without blocking. However, we can be racing with
1589 * truncation so it's necessary to lock the page
1590 * to stabilise the mapping as truncation holds
1591 * the page lock until after the page is removed
1592 * from the page cache.
1594 if (!trylock_page(page
))
1597 mapping
= page_mapping(page
);
1598 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1605 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1608 if (likely(get_page_unless_zero(page
))) {
1610 * Be careful not to clear PageLRU until after we're
1611 * sure the page is not being freed elsewhere -- the
1612 * page release code relies on it.
1623 * Update LRU sizes after isolating pages. The LRU size updates must
1624 * be complete before mem_cgroup_update_lru_size due to a santity check.
1626 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1627 enum lru_list lru
, unsigned long *nr_zone_taken
)
1631 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1632 if (!nr_zone_taken
[zid
])
1635 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1637 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1644 * zone_lru_lock is heavily contended. Some of the functions that
1645 * shrink the lists perform better by taking out a batch of pages
1646 * and working on them outside the LRU lock.
1648 * For pagecache intensive workloads, this function is the hottest
1649 * spot in the kernel (apart from copy_*_user functions).
1651 * Appropriate locks must be held before calling this function.
1653 * @nr_to_scan: The number of eligible pages to look through on the list.
1654 * @lruvec: The LRU vector to pull pages from.
1655 * @dst: The temp list to put pages on to.
1656 * @nr_scanned: The number of pages that were scanned.
1657 * @sc: The scan_control struct for this reclaim session
1658 * @mode: One of the LRU isolation modes
1659 * @lru: LRU list id for isolating
1661 * returns how many pages were moved onto *@dst.
1663 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1664 struct lruvec
*lruvec
, struct list_head
*dst
,
1665 unsigned long *nr_scanned
, struct scan_control
*sc
,
1666 isolate_mode_t mode
, enum lru_list lru
)
1668 struct list_head
*src
= &lruvec
->lists
[lru
];
1669 unsigned long nr_taken
= 0;
1670 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1671 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1672 unsigned long skipped
= 0;
1673 unsigned long scan
, total_scan
, nr_pages
;
1674 LIST_HEAD(pages_skipped
);
1677 for (total_scan
= 0;
1678 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1682 page
= lru_to_page(src
);
1683 prefetchw_prev_lru_page(page
, src
, flags
);
1685 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1687 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1688 list_move(&page
->lru
, &pages_skipped
);
1689 nr_skipped
[page_zonenum(page
)]++;
1694 * Do not count skipped pages because that makes the function
1695 * return with no isolated pages if the LRU mostly contains
1696 * ineligible pages. This causes the VM to not reclaim any
1697 * pages, triggering a premature OOM.
1700 switch (__isolate_lru_page(page
, mode
)) {
1702 nr_pages
= hpage_nr_pages(page
);
1703 nr_taken
+= nr_pages
;
1704 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1705 list_move(&page
->lru
, dst
);
1709 /* else it is being freed elsewhere */
1710 list_move(&page
->lru
, src
);
1719 * Splice any skipped pages to the start of the LRU list. Note that
1720 * this disrupts the LRU order when reclaiming for lower zones but
1721 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1722 * scanning would soon rescan the same pages to skip and put the
1723 * system at risk of premature OOM.
1725 if (!list_empty(&pages_skipped
)) {
1728 list_splice(&pages_skipped
, src
);
1729 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1730 if (!nr_skipped
[zid
])
1733 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1734 skipped
+= nr_skipped
[zid
];
1737 *nr_scanned
= total_scan
;
1738 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1739 total_scan
, skipped
, nr_taken
, mode
, lru
);
1740 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1745 * isolate_lru_page - tries to isolate a page from its LRU list
1746 * @page: page to isolate from its LRU list
1748 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1749 * vmstat statistic corresponding to whatever LRU list the page was on.
1751 * Returns 0 if the page was removed from an LRU list.
1752 * Returns -EBUSY if the page was not on an LRU list.
1754 * The returned page will have PageLRU() cleared. If it was found on
1755 * the active list, it will have PageActive set. If it was found on
1756 * the unevictable list, it will have the PageUnevictable bit set. That flag
1757 * may need to be cleared by the caller before letting the page go.
1759 * The vmstat statistic corresponding to the list on which the page was
1760 * found will be decremented.
1764 * (1) Must be called with an elevated refcount on the page. This is a
1765 * fundamentnal difference from isolate_lru_pages (which is called
1766 * without a stable reference).
1767 * (2) the lru_lock must not be held.
1768 * (3) interrupts must be enabled.
1770 int isolate_lru_page(struct page
*page
)
1774 VM_BUG_ON_PAGE(!page_count(page
), page
);
1775 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1777 if (PageLRU(page
)) {
1778 struct zone
*zone
= page_zone(page
);
1779 struct lruvec
*lruvec
;
1781 spin_lock_irq(zone_lru_lock(zone
));
1782 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1783 if (PageLRU(page
)) {
1784 int lru
= page_lru(page
);
1787 del_page_from_lru_list(page
, lruvec
, lru
);
1790 spin_unlock_irq(zone_lru_lock(zone
));
1796 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1797 * then get resheduled. When there are massive number of tasks doing page
1798 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1799 * the LRU list will go small and be scanned faster than necessary, leading to
1800 * unnecessary swapping, thrashing and OOM.
1802 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1803 struct scan_control
*sc
)
1805 unsigned long inactive
, isolated
;
1807 if (current_is_kswapd())
1810 if (!sane_reclaim(sc
))
1814 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1815 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1817 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1818 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1822 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1823 * won't get blocked by normal direct-reclaimers, forming a circular
1826 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1829 return isolated
> inactive
;
1832 static noinline_for_stack
void
1833 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1835 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1836 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1837 LIST_HEAD(pages_to_free
);
1840 * Put back any unfreeable pages.
1842 while (!list_empty(page_list
)) {
1843 struct page
*page
= lru_to_page(page_list
);
1846 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1847 list_del(&page
->lru
);
1848 if (unlikely(!page_evictable(page
))) {
1849 spin_unlock_irq(&pgdat
->lru_lock
);
1850 putback_lru_page(page
);
1851 spin_lock_irq(&pgdat
->lru_lock
);
1855 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1858 lru
= page_lru(page
);
1859 add_page_to_lru_list(page
, lruvec
, lru
);
1861 if (is_active_lru(lru
)) {
1862 int file
= is_file_lru(lru
);
1863 int numpages
= hpage_nr_pages(page
);
1864 reclaim_stat
->recent_rotated
[file
] += numpages
;
1866 if (put_page_testzero(page
)) {
1867 __ClearPageLRU(page
);
1868 __ClearPageActive(page
);
1869 del_page_from_lru_list(page
, lruvec
, lru
);
1871 if (unlikely(PageCompound(page
))) {
1872 spin_unlock_irq(&pgdat
->lru_lock
);
1873 mem_cgroup_uncharge(page
);
1874 (*get_compound_page_dtor(page
))(page
);
1875 spin_lock_irq(&pgdat
->lru_lock
);
1877 list_add(&page
->lru
, &pages_to_free
);
1882 * To save our caller's stack, now use input list for pages to free.
1884 list_splice(&pages_to_free
, page_list
);
1888 * If a kernel thread (such as nfsd for loop-back mounts) services
1889 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1890 * In that case we should only throttle if the backing device it is
1891 * writing to is congested. In other cases it is safe to throttle.
1893 static int current_may_throttle(void)
1895 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1896 current
->backing_dev_info
== NULL
||
1897 bdi_write_congested(current
->backing_dev_info
);
1901 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1902 * of reclaimed pages
1904 static noinline_for_stack
unsigned long
1905 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1906 struct scan_control
*sc
, enum lru_list lru
)
1908 LIST_HEAD(page_list
);
1909 unsigned long nr_scanned
;
1910 unsigned long nr_reclaimed
= 0;
1911 unsigned long nr_taken
;
1912 struct reclaim_stat stat
= {};
1913 isolate_mode_t isolate_mode
= 0;
1914 int file
= is_file_lru(lru
);
1915 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1916 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1917 bool stalled
= false;
1919 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1923 /* wait a bit for the reclaimer. */
1927 /* We are about to die and free our memory. Return now. */
1928 if (fatal_signal_pending(current
))
1929 return SWAP_CLUSTER_MAX
;
1935 isolate_mode
|= ISOLATE_UNMAPPED
;
1937 spin_lock_irq(&pgdat
->lru_lock
);
1939 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1940 &nr_scanned
, sc
, isolate_mode
, lru
);
1942 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1943 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1945 if (current_is_kswapd()) {
1946 if (global_reclaim(sc
))
1947 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1948 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1951 if (global_reclaim(sc
))
1952 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1953 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1956 spin_unlock_irq(&pgdat
->lru_lock
);
1961 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1964 spin_lock_irq(&pgdat
->lru_lock
);
1966 if (current_is_kswapd()) {
1967 if (global_reclaim(sc
))
1968 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1969 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1972 if (global_reclaim(sc
))
1973 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1974 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1978 putback_inactive_pages(lruvec
, &page_list
);
1980 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1982 spin_unlock_irq(&pgdat
->lru_lock
);
1984 mem_cgroup_uncharge_list(&page_list
);
1985 free_unref_page_list(&page_list
);
1988 * If dirty pages are scanned that are not queued for IO, it
1989 * implies that flushers are not doing their job. This can
1990 * happen when memory pressure pushes dirty pages to the end of
1991 * the LRU before the dirty limits are breached and the dirty
1992 * data has expired. It can also happen when the proportion of
1993 * dirty pages grows not through writes but through memory
1994 * pressure reclaiming all the clean cache. And in some cases,
1995 * the flushers simply cannot keep up with the allocation
1996 * rate. Nudge the flusher threads in case they are asleep.
1998 if (stat
.nr_unqueued_dirty
== nr_taken
)
1999 wakeup_flusher_threads(WB_REASON_VMSCAN
);
2001 sc
->nr
.dirty
+= stat
.nr_dirty
;
2002 sc
->nr
.congested
+= stat
.nr_congested
;
2003 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
2004 sc
->nr
.writeback
+= stat
.nr_writeback
;
2005 sc
->nr
.immediate
+= stat
.nr_immediate
;
2006 sc
->nr
.taken
+= nr_taken
;
2008 sc
->nr
.file_taken
+= nr_taken
;
2010 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2011 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2012 return nr_reclaimed
;
2016 * This moves pages from the active list to the inactive list.
2018 * We move them the other way if the page is referenced by one or more
2019 * processes, from rmap.
2021 * If the pages are mostly unmapped, the processing is fast and it is
2022 * appropriate to hold zone_lru_lock across the whole operation. But if
2023 * the pages are mapped, the processing is slow (page_referenced()) so we
2024 * should drop zone_lru_lock around each page. It's impossible to balance
2025 * this, so instead we remove the pages from the LRU while processing them.
2026 * It is safe to rely on PG_active against the non-LRU pages in here because
2027 * nobody will play with that bit on a non-LRU page.
2029 * The downside is that we have to touch page->_refcount against each page.
2030 * But we had to alter page->flags anyway.
2032 * Returns the number of pages moved to the given lru.
2035 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
2036 struct list_head
*list
,
2037 struct list_head
*pages_to_free
,
2040 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2045 while (!list_empty(list
)) {
2046 page
= lru_to_page(list
);
2047 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2049 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2052 nr_pages
= hpage_nr_pages(page
);
2053 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
2054 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
2056 if (put_page_testzero(page
)) {
2057 __ClearPageLRU(page
);
2058 __ClearPageActive(page
);
2059 del_page_from_lru_list(page
, lruvec
, lru
);
2061 if (unlikely(PageCompound(page
))) {
2062 spin_unlock_irq(&pgdat
->lru_lock
);
2063 mem_cgroup_uncharge(page
);
2064 (*get_compound_page_dtor(page
))(page
);
2065 spin_lock_irq(&pgdat
->lru_lock
);
2067 list_add(&page
->lru
, pages_to_free
);
2069 nr_moved
+= nr_pages
;
2073 if (!is_active_lru(lru
)) {
2074 __count_vm_events(PGDEACTIVATE
, nr_moved
);
2075 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
2082 static void shrink_active_list(unsigned long nr_to_scan
,
2083 struct lruvec
*lruvec
,
2084 struct scan_control
*sc
,
2087 unsigned long nr_taken
;
2088 unsigned long nr_scanned
;
2089 unsigned long vm_flags
;
2090 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2091 LIST_HEAD(l_active
);
2092 LIST_HEAD(l_inactive
);
2094 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2095 unsigned nr_deactivate
, nr_activate
;
2096 unsigned nr_rotated
= 0;
2097 isolate_mode_t isolate_mode
= 0;
2098 int file
= is_file_lru(lru
);
2099 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2104 isolate_mode
|= ISOLATE_UNMAPPED
;
2106 spin_lock_irq(&pgdat
->lru_lock
);
2108 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2109 &nr_scanned
, sc
, isolate_mode
, lru
);
2111 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2112 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2114 __count_vm_events(PGREFILL
, nr_scanned
);
2115 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2117 spin_unlock_irq(&pgdat
->lru_lock
);
2119 while (!list_empty(&l_hold
)) {
2121 page
= lru_to_page(&l_hold
);
2122 list_del(&page
->lru
);
2124 if (unlikely(!page_evictable(page
))) {
2125 putback_lru_page(page
);
2129 if (unlikely(buffer_heads_over_limit
)) {
2130 if (page_has_private(page
) && trylock_page(page
)) {
2131 if (page_has_private(page
))
2132 try_to_release_page(page
, 0);
2137 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2139 nr_rotated
+= hpage_nr_pages(page
);
2141 * Identify referenced, file-backed active pages and
2142 * give them one more trip around the active list. So
2143 * that executable code get better chances to stay in
2144 * memory under moderate memory pressure. Anon pages
2145 * are not likely to be evicted by use-once streaming
2146 * IO, plus JVM can create lots of anon VM_EXEC pages,
2147 * so we ignore them here.
2149 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2150 list_add(&page
->lru
, &l_active
);
2155 ClearPageActive(page
); /* we are de-activating */
2156 SetPageWorkingset(page
);
2157 list_add(&page
->lru
, &l_inactive
);
2161 * Move pages back to the lru list.
2163 spin_lock_irq(&pgdat
->lru_lock
);
2165 * Count referenced pages from currently used mappings as rotated,
2166 * even though only some of them are actually re-activated. This
2167 * helps balance scan pressure between file and anonymous pages in
2170 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2172 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2173 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2174 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2175 spin_unlock_irq(&pgdat
->lru_lock
);
2177 mem_cgroup_uncharge_list(&l_hold
);
2178 free_unref_page_list(&l_hold
);
2179 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2180 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2184 * The inactive anon list should be small enough that the VM never has
2185 * to do too much work.
2187 * The inactive file list should be small enough to leave most memory
2188 * to the established workingset on the scan-resistant active list,
2189 * but large enough to avoid thrashing the aggregate readahead window.
2191 * Both inactive lists should also be large enough that each inactive
2192 * page has a chance to be referenced again before it is reclaimed.
2194 * If that fails and refaulting is observed, the inactive list grows.
2196 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2197 * on this LRU, maintained by the pageout code. An inactive_ratio
2198 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2201 * memory ratio inactive
2202 * -------------------------------------
2211 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2212 struct mem_cgroup
*memcg
,
2213 struct scan_control
*sc
, bool actual_reclaim
)
2215 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2216 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2217 enum lru_list inactive_lru
= file
* LRU_FILE
;
2218 unsigned long inactive
, active
;
2219 unsigned long inactive_ratio
;
2220 unsigned long refaults
;
2224 * If we don't have swap space, anonymous page deactivation
2227 if (!file
&& !total_swap_pages
)
2230 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2231 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2234 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2236 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2239 * When refaults are being observed, it means a new workingset
2240 * is being established. Disable active list protection to get
2241 * rid of the stale workingset quickly.
2243 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2246 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2248 inactive_ratio
= int_sqrt(10 * gb
);
2254 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2255 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2256 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2257 inactive_ratio
, file
);
2259 return inactive
* inactive_ratio
< active
;
2262 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2263 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2264 struct scan_control
*sc
)
2266 if (is_active_lru(lru
)) {
2267 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2269 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2273 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2284 * Determine how aggressively the anon and file LRU lists should be
2285 * scanned. The relative value of each set of LRU lists is determined
2286 * by looking at the fraction of the pages scanned we did rotate back
2287 * onto the active list instead of evict.
2289 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2290 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2292 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2293 struct scan_control
*sc
, unsigned long *nr
,
2294 unsigned long *lru_pages
)
2296 int swappiness
= mem_cgroup_swappiness(memcg
);
2297 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2299 u64 denominator
= 0; /* gcc */
2300 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2301 unsigned long anon_prio
, file_prio
;
2302 enum scan_balance scan_balance
;
2303 unsigned long anon
, file
;
2304 unsigned long ap
, fp
;
2307 /* If we have no swap space, do not bother scanning anon pages. */
2308 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2309 scan_balance
= SCAN_FILE
;
2314 * Global reclaim will swap to prevent OOM even with no
2315 * swappiness, but memcg users want to use this knob to
2316 * disable swapping for individual groups completely when
2317 * using the memory controller's swap limit feature would be
2320 if (!global_reclaim(sc
) && !swappiness
) {
2321 scan_balance
= SCAN_FILE
;
2326 * Do not apply any pressure balancing cleverness when the
2327 * system is close to OOM, scan both anon and file equally
2328 * (unless the swappiness setting disagrees with swapping).
2330 if (!sc
->priority
&& swappiness
) {
2331 scan_balance
= SCAN_EQUAL
;
2336 * Prevent the reclaimer from falling into the cache trap: as
2337 * cache pages start out inactive, every cache fault will tip
2338 * the scan balance towards the file LRU. And as the file LRU
2339 * shrinks, so does the window for rotation from references.
2340 * This means we have a runaway feedback loop where a tiny
2341 * thrashing file LRU becomes infinitely more attractive than
2342 * anon pages. Try to detect this based on file LRU size.
2344 if (global_reclaim(sc
)) {
2345 unsigned long pgdatfile
;
2346 unsigned long pgdatfree
;
2348 unsigned long total_high_wmark
= 0;
2350 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2351 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2352 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2354 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2355 struct zone
*zone
= &pgdat
->node_zones
[z
];
2356 if (!managed_zone(zone
))
2359 total_high_wmark
+= high_wmark_pages(zone
);
2362 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2364 * Force SCAN_ANON if there are enough inactive
2365 * anonymous pages on the LRU in eligible zones.
2366 * Otherwise, the small LRU gets thrashed.
2368 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2369 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2371 scan_balance
= SCAN_ANON
;
2378 * If there is enough inactive page cache, i.e. if the size of the
2379 * inactive list is greater than that of the active list *and* the
2380 * inactive list actually has some pages to scan on this priority, we
2381 * do not reclaim anything from the anonymous working set right now.
2382 * Without the second condition we could end up never scanning an
2383 * lruvec even if it has plenty of old anonymous pages unless the
2384 * system is under heavy pressure.
2386 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2387 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2388 scan_balance
= SCAN_FILE
;
2392 scan_balance
= SCAN_FRACT
;
2395 * With swappiness at 100, anonymous and file have the same priority.
2396 * This scanning priority is essentially the inverse of IO cost.
2398 anon_prio
= swappiness
;
2399 file_prio
= 200 - anon_prio
;
2402 * OK, so we have swap space and a fair amount of page cache
2403 * pages. We use the recently rotated / recently scanned
2404 * ratios to determine how valuable each cache is.
2406 * Because workloads change over time (and to avoid overflow)
2407 * we keep these statistics as a floating average, which ends
2408 * up weighing recent references more than old ones.
2410 * anon in [0], file in [1]
2413 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2414 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2415 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2416 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2418 spin_lock_irq(&pgdat
->lru_lock
);
2419 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2420 reclaim_stat
->recent_scanned
[0] /= 2;
2421 reclaim_stat
->recent_rotated
[0] /= 2;
2424 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2425 reclaim_stat
->recent_scanned
[1] /= 2;
2426 reclaim_stat
->recent_rotated
[1] /= 2;
2430 * The amount of pressure on anon vs file pages is inversely
2431 * proportional to the fraction of recently scanned pages on
2432 * each list that were recently referenced and in active use.
2434 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2435 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2437 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2438 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2439 spin_unlock_irq(&pgdat
->lru_lock
);
2443 denominator
= ap
+ fp
+ 1;
2446 for_each_evictable_lru(lru
) {
2447 int file
= is_file_lru(lru
);
2451 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2452 scan
= size
>> sc
->priority
;
2454 * If the cgroup's already been deleted, make sure to
2455 * scrape out the remaining cache.
2457 if (!scan
&& !mem_cgroup_online(memcg
))
2458 scan
= min(size
, SWAP_CLUSTER_MAX
);
2460 switch (scan_balance
) {
2462 /* Scan lists relative to size */
2466 * Scan types proportional to swappiness and
2467 * their relative recent reclaim efficiency.
2468 * Make sure we don't miss the last page
2469 * because of a round-off error.
2471 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2476 /* Scan one type exclusively */
2477 if ((scan_balance
== SCAN_FILE
) != file
) {
2483 /* Look ma, no brain */
2493 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2495 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2496 struct scan_control
*sc
, unsigned long *lru_pages
)
2498 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2499 unsigned long nr
[NR_LRU_LISTS
];
2500 unsigned long targets
[NR_LRU_LISTS
];
2501 unsigned long nr_to_scan
;
2503 unsigned long nr_reclaimed
= 0;
2504 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2505 struct blk_plug plug
;
2508 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2510 /* Record the original scan target for proportional adjustments later */
2511 memcpy(targets
, nr
, sizeof(nr
));
2514 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2515 * event that can occur when there is little memory pressure e.g.
2516 * multiple streaming readers/writers. Hence, we do not abort scanning
2517 * when the requested number of pages are reclaimed when scanning at
2518 * DEF_PRIORITY on the assumption that the fact we are direct
2519 * reclaiming implies that kswapd is not keeping up and it is best to
2520 * do a batch of work at once. For memcg reclaim one check is made to
2521 * abort proportional reclaim if either the file or anon lru has already
2522 * dropped to zero at the first pass.
2524 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2525 sc
->priority
== DEF_PRIORITY
);
2527 blk_start_plug(&plug
);
2528 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2529 nr
[LRU_INACTIVE_FILE
]) {
2530 unsigned long nr_anon
, nr_file
, percentage
;
2531 unsigned long nr_scanned
;
2533 for_each_evictable_lru(lru
) {
2535 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2536 nr
[lru
] -= nr_to_scan
;
2538 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2545 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2549 * For kswapd and memcg, reclaim at least the number of pages
2550 * requested. Ensure that the anon and file LRUs are scanned
2551 * proportionally what was requested by get_scan_count(). We
2552 * stop reclaiming one LRU and reduce the amount scanning
2553 * proportional to the original scan target.
2555 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2556 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2559 * It's just vindictive to attack the larger once the smaller
2560 * has gone to zero. And given the way we stop scanning the
2561 * smaller below, this makes sure that we only make one nudge
2562 * towards proportionality once we've got nr_to_reclaim.
2564 if (!nr_file
|| !nr_anon
)
2567 if (nr_file
> nr_anon
) {
2568 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2569 targets
[LRU_ACTIVE_ANON
] + 1;
2571 percentage
= nr_anon
* 100 / scan_target
;
2573 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2574 targets
[LRU_ACTIVE_FILE
] + 1;
2576 percentage
= nr_file
* 100 / scan_target
;
2579 /* Stop scanning the smaller of the LRU */
2581 nr
[lru
+ LRU_ACTIVE
] = 0;
2584 * Recalculate the other LRU scan count based on its original
2585 * scan target and the percentage scanning already complete
2587 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2588 nr_scanned
= targets
[lru
] - nr
[lru
];
2589 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2590 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2593 nr_scanned
= targets
[lru
] - nr
[lru
];
2594 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2595 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2597 scan_adjusted
= true;
2599 blk_finish_plug(&plug
);
2600 sc
->nr_reclaimed
+= nr_reclaimed
;
2603 * Even if we did not try to evict anon pages at all, we want to
2604 * rebalance the anon lru active/inactive ratio.
2606 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2607 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2608 sc
, LRU_ACTIVE_ANON
);
2611 /* Use reclaim/compaction for costly allocs or under memory pressure */
2612 static bool in_reclaim_compaction(struct scan_control
*sc
)
2614 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2615 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2616 sc
->priority
< DEF_PRIORITY
- 2))
2623 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2624 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2625 * true if more pages should be reclaimed such that when the page allocator
2626 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2627 * It will give up earlier than that if there is difficulty reclaiming pages.
2629 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2630 unsigned long nr_reclaimed
,
2631 unsigned long nr_scanned
,
2632 struct scan_control
*sc
)
2634 unsigned long pages_for_compaction
;
2635 unsigned long inactive_lru_pages
;
2638 /* If not in reclaim/compaction mode, stop */
2639 if (!in_reclaim_compaction(sc
))
2642 /* Consider stopping depending on scan and reclaim activity */
2643 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2645 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2646 * full LRU list has been scanned and we are still failing
2647 * to reclaim pages. This full LRU scan is potentially
2648 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2650 if (!nr_reclaimed
&& !nr_scanned
)
2654 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2655 * fail without consequence, stop if we failed to reclaim
2656 * any pages from the last SWAP_CLUSTER_MAX number of
2657 * pages that were scanned. This will return to the
2658 * caller faster at the risk reclaim/compaction and
2659 * the resulting allocation attempt fails
2666 * If we have not reclaimed enough pages for compaction and the
2667 * inactive lists are large enough, continue reclaiming
2669 pages_for_compaction
= compact_gap(sc
->order
);
2670 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2671 if (get_nr_swap_pages() > 0)
2672 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2673 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2674 inactive_lru_pages
> pages_for_compaction
)
2677 /* If compaction would go ahead or the allocation would succeed, stop */
2678 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2679 struct zone
*zone
= &pgdat
->node_zones
[z
];
2680 if (!managed_zone(zone
))
2683 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2684 case COMPACT_SUCCESS
:
2685 case COMPACT_CONTINUE
:
2688 /* check next zone */
2695 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2697 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2698 (memcg
&& memcg_congested(pgdat
, memcg
));
2701 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2703 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2704 unsigned long nr_reclaimed
, nr_scanned
;
2705 bool reclaimable
= false;
2708 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2709 struct mem_cgroup_reclaim_cookie reclaim
= {
2711 .priority
= sc
->priority
,
2713 unsigned long node_lru_pages
= 0;
2714 struct mem_cgroup
*memcg
;
2716 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2718 nr_reclaimed
= sc
->nr_reclaimed
;
2719 nr_scanned
= sc
->nr_scanned
;
2721 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2723 unsigned long lru_pages
;
2724 unsigned long reclaimed
;
2725 unsigned long scanned
;
2727 switch (mem_cgroup_protected(root
, memcg
)) {
2728 case MEMCG_PROT_MIN
:
2731 * If there is no reclaimable memory, OOM.
2734 case MEMCG_PROT_LOW
:
2737 * Respect the protection only as long as
2738 * there is an unprotected supply
2739 * of reclaimable memory from other cgroups.
2741 if (!sc
->memcg_low_reclaim
) {
2742 sc
->memcg_low_skipped
= 1;
2745 memcg_memory_event(memcg
, MEMCG_LOW
);
2747 case MEMCG_PROT_NONE
:
2751 reclaimed
= sc
->nr_reclaimed
;
2752 scanned
= sc
->nr_scanned
;
2753 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2754 node_lru_pages
+= lru_pages
;
2756 if (sc
->may_shrinkslab
) {
2757 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2758 memcg
, sc
->priority
);
2761 /* Record the group's reclaim efficiency */
2762 vmpressure(sc
->gfp_mask
, memcg
, false,
2763 sc
->nr_scanned
- scanned
,
2764 sc
->nr_reclaimed
- reclaimed
);
2767 * Direct reclaim and kswapd have to scan all memory
2768 * cgroups to fulfill the overall scan target for the
2771 * Limit reclaim, on the other hand, only cares about
2772 * nr_to_reclaim pages to be reclaimed and it will
2773 * retry with decreasing priority if one round over the
2774 * whole hierarchy is not sufficient.
2776 if (!global_reclaim(sc
) &&
2777 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2778 mem_cgroup_iter_break(root
, memcg
);
2781 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2783 if (reclaim_state
) {
2784 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2785 reclaim_state
->reclaimed_slab
= 0;
2788 /* Record the subtree's reclaim efficiency */
2789 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2790 sc
->nr_scanned
- nr_scanned
,
2791 sc
->nr_reclaimed
- nr_reclaimed
);
2793 if (sc
->nr_reclaimed
- nr_reclaimed
)
2796 if (current_is_kswapd()) {
2798 * If reclaim is isolating dirty pages under writeback,
2799 * it implies that the long-lived page allocation rate
2800 * is exceeding the page laundering rate. Either the
2801 * global limits are not being effective at throttling
2802 * processes due to the page distribution throughout
2803 * zones or there is heavy usage of a slow backing
2804 * device. The only option is to throttle from reclaim
2805 * context which is not ideal as there is no guarantee
2806 * the dirtying process is throttled in the same way
2807 * balance_dirty_pages() manages.
2809 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2810 * count the number of pages under pages flagged for
2811 * immediate reclaim and stall if any are encountered
2812 * in the nr_immediate check below.
2814 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2815 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2818 * Tag a node as congested if all the dirty pages
2819 * scanned were backed by a congested BDI and
2820 * wait_iff_congested will stall.
2822 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2823 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2825 /* Allow kswapd to start writing pages during reclaim.*/
2826 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2827 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2830 * If kswapd scans pages marked marked for immediate
2831 * reclaim and under writeback (nr_immediate), it
2832 * implies that pages are cycling through the LRU
2833 * faster than they are written so also forcibly stall.
2835 if (sc
->nr
.immediate
)
2836 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2840 * Legacy memcg will stall in page writeback so avoid forcibly
2841 * stalling in wait_iff_congested().
2843 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2844 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2845 set_memcg_congestion(pgdat
, root
, true);
2848 * Stall direct reclaim for IO completions if underlying BDIs
2849 * and node is congested. Allow kswapd to continue until it
2850 * starts encountering unqueued dirty pages or cycling through
2851 * the LRU too quickly.
2853 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2854 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2855 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2857 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2858 sc
->nr_scanned
- nr_scanned
, sc
));
2861 * Kswapd gives up on balancing particular nodes after too
2862 * many failures to reclaim anything from them and goes to
2863 * sleep. On reclaim progress, reset the failure counter. A
2864 * successful direct reclaim run will revive a dormant kswapd.
2867 pgdat
->kswapd_failures
= 0;
2873 * Returns true if compaction should go ahead for a costly-order request, or
2874 * the allocation would already succeed without compaction. Return false if we
2875 * should reclaim first.
2877 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2879 unsigned long watermark
;
2880 enum compact_result suitable
;
2882 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2883 if (suitable
== COMPACT_SUCCESS
)
2884 /* Allocation should succeed already. Don't reclaim. */
2886 if (suitable
== COMPACT_SKIPPED
)
2887 /* Compaction cannot yet proceed. Do reclaim. */
2891 * Compaction is already possible, but it takes time to run and there
2892 * are potentially other callers using the pages just freed. So proceed
2893 * with reclaim to make a buffer of free pages available to give
2894 * compaction a reasonable chance of completing and allocating the page.
2895 * Note that we won't actually reclaim the whole buffer in one attempt
2896 * as the target watermark in should_continue_reclaim() is lower. But if
2897 * we are already above the high+gap watermark, don't reclaim at all.
2899 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2901 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2905 * This is the direct reclaim path, for page-allocating processes. We only
2906 * try to reclaim pages from zones which will satisfy the caller's allocation
2909 * If a zone is deemed to be full of pinned pages then just give it a light
2910 * scan then give up on it.
2912 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2916 unsigned long nr_soft_reclaimed
;
2917 unsigned long nr_soft_scanned
;
2919 pg_data_t
*last_pgdat
= NULL
;
2922 * If the number of buffer_heads in the machine exceeds the maximum
2923 * allowed level, force direct reclaim to scan the highmem zone as
2924 * highmem pages could be pinning lowmem pages storing buffer_heads
2926 orig_mask
= sc
->gfp_mask
;
2927 if (buffer_heads_over_limit
) {
2928 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2929 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2932 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2933 sc
->reclaim_idx
, sc
->nodemask
) {
2935 * Take care memory controller reclaiming has small influence
2938 if (global_reclaim(sc
)) {
2939 if (!cpuset_zone_allowed(zone
,
2940 GFP_KERNEL
| __GFP_HARDWALL
))
2944 * If we already have plenty of memory free for
2945 * compaction in this zone, don't free any more.
2946 * Even though compaction is invoked for any
2947 * non-zero order, only frequent costly order
2948 * reclamation is disruptive enough to become a
2949 * noticeable problem, like transparent huge
2952 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2953 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2954 compaction_ready(zone
, sc
)) {
2955 sc
->compaction_ready
= true;
2960 * Shrink each node in the zonelist once. If the
2961 * zonelist is ordered by zone (not the default) then a
2962 * node may be shrunk multiple times but in that case
2963 * the user prefers lower zones being preserved.
2965 if (zone
->zone_pgdat
== last_pgdat
)
2969 * This steals pages from memory cgroups over softlimit
2970 * and returns the number of reclaimed pages and
2971 * scanned pages. This works for global memory pressure
2972 * and balancing, not for a memcg's limit.
2974 nr_soft_scanned
= 0;
2975 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2976 sc
->order
, sc
->gfp_mask
,
2978 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2979 sc
->nr_scanned
+= nr_soft_scanned
;
2980 /* need some check for avoid more shrink_zone() */
2983 /* See comment about same check for global reclaim above */
2984 if (zone
->zone_pgdat
== last_pgdat
)
2986 last_pgdat
= zone
->zone_pgdat
;
2987 shrink_node(zone
->zone_pgdat
, sc
);
2991 * Restore to original mask to avoid the impact on the caller if we
2992 * promoted it to __GFP_HIGHMEM.
2994 sc
->gfp_mask
= orig_mask
;
2997 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2999 struct mem_cgroup
*memcg
;
3001 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
3003 unsigned long refaults
;
3004 struct lruvec
*lruvec
;
3007 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
3009 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
3011 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3012 lruvec
->refaults
= refaults
;
3013 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
3017 * This is the main entry point to direct page reclaim.
3019 * If a full scan of the inactive list fails to free enough memory then we
3020 * are "out of memory" and something needs to be killed.
3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023 * high - the zone may be full of dirty or under-writeback pages, which this
3024 * caller can't do much about. We kick the writeback threads and take explicit
3025 * naps in the hope that some of these pages can be written. But if the
3026 * allocating task holds filesystem locks which prevent writeout this might not
3027 * work, and the allocation attempt will fail.
3029 * returns: 0, if no pages reclaimed
3030 * else, the number of pages reclaimed
3032 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3033 struct scan_control
*sc
)
3035 int initial_priority
= sc
->priority
;
3036 pg_data_t
*last_pgdat
;
3040 delayacct_freepages_start();
3042 if (global_reclaim(sc
))
3043 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3046 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3049 shrink_zones(zonelist
, sc
);
3051 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3054 if (sc
->compaction_ready
)
3058 * If we're getting trouble reclaiming, start doing
3059 * writepage even in laptop mode.
3061 if (sc
->priority
< DEF_PRIORITY
- 2)
3062 sc
->may_writepage
= 1;
3063 } while (--sc
->priority
>= 0);
3066 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3068 if (zone
->zone_pgdat
== last_pgdat
)
3070 last_pgdat
= zone
->zone_pgdat
;
3071 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3072 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3075 delayacct_freepages_end();
3077 if (sc
->nr_reclaimed
)
3078 return sc
->nr_reclaimed
;
3080 /* Aborted reclaim to try compaction? don't OOM, then */
3081 if (sc
->compaction_ready
)
3084 /* Untapped cgroup reserves? Don't OOM, retry. */
3085 if (sc
->memcg_low_skipped
) {
3086 sc
->priority
= initial_priority
;
3087 sc
->memcg_low_reclaim
= 1;
3088 sc
->memcg_low_skipped
= 0;
3095 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3098 unsigned long pfmemalloc_reserve
= 0;
3099 unsigned long free_pages
= 0;
3103 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3106 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3107 zone
= &pgdat
->node_zones
[i
];
3108 if (!managed_zone(zone
))
3111 if (!zone_reclaimable_pages(zone
))
3114 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3115 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3118 /* If there are no reserves (unexpected config) then do not throttle */
3119 if (!pfmemalloc_reserve
)
3122 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3124 /* kswapd must be awake if processes are being throttled */
3125 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3126 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3127 (enum zone_type
)ZONE_NORMAL
);
3128 wake_up_interruptible(&pgdat
->kswapd_wait
);
3135 * Throttle direct reclaimers if backing storage is backed by the network
3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137 * depleted. kswapd will continue to make progress and wake the processes
3138 * when the low watermark is reached.
3140 * Returns true if a fatal signal was delivered during throttling. If this
3141 * happens, the page allocator should not consider triggering the OOM killer.
3143 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3144 nodemask_t
*nodemask
)
3148 pg_data_t
*pgdat
= NULL
;
3151 * Kernel threads should not be throttled as they may be indirectly
3152 * responsible for cleaning pages necessary for reclaim to make forward
3153 * progress. kjournald for example may enter direct reclaim while
3154 * committing a transaction where throttling it could forcing other
3155 * processes to block on log_wait_commit().
3157 if (current
->flags
& PF_KTHREAD
)
3161 * If a fatal signal is pending, this process should not throttle.
3162 * It should return quickly so it can exit and free its memory
3164 if (fatal_signal_pending(current
))
3168 * Check if the pfmemalloc reserves are ok by finding the first node
3169 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170 * GFP_KERNEL will be required for allocating network buffers when
3171 * swapping over the network so ZONE_HIGHMEM is unusable.
3173 * Throttling is based on the first usable node and throttled processes
3174 * wait on a queue until kswapd makes progress and wakes them. There
3175 * is an affinity then between processes waking up and where reclaim
3176 * progress has been made assuming the process wakes on the same node.
3177 * More importantly, processes running on remote nodes will not compete
3178 * for remote pfmemalloc reserves and processes on different nodes
3179 * should make reasonable progress.
3181 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3182 gfp_zone(gfp_mask
), nodemask
) {
3183 if (zone_idx(zone
) > ZONE_NORMAL
)
3186 /* Throttle based on the first usable node */
3187 pgdat
= zone
->zone_pgdat
;
3188 if (allow_direct_reclaim(pgdat
))
3193 /* If no zone was usable by the allocation flags then do not throttle */
3197 /* Account for the throttling */
3198 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3201 * If the caller cannot enter the filesystem, it's possible that it
3202 * is due to the caller holding an FS lock or performing a journal
3203 * transaction in the case of a filesystem like ext[3|4]. In this case,
3204 * it is not safe to block on pfmemalloc_wait as kswapd could be
3205 * blocked waiting on the same lock. Instead, throttle for up to a
3206 * second before continuing.
3208 if (!(gfp_mask
& __GFP_FS
)) {
3209 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3210 allow_direct_reclaim(pgdat
), HZ
);
3215 /* Throttle until kswapd wakes the process */
3216 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3217 allow_direct_reclaim(pgdat
));
3220 if (fatal_signal_pending(current
))
3227 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3228 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3230 unsigned long nr_reclaimed
;
3231 struct scan_control sc
= {
3232 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3233 .gfp_mask
= current_gfp_context(gfp_mask
),
3234 .reclaim_idx
= gfp_zone(gfp_mask
),
3236 .nodemask
= nodemask
,
3237 .priority
= DEF_PRIORITY
,
3238 .may_writepage
= !laptop_mode
,
3241 .may_shrinkslab
= 1,
3245 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3246 * Confirm they are large enough for max values.
3248 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3249 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3250 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3253 * Do not enter reclaim if fatal signal was delivered while throttled.
3254 * 1 is returned so that the page allocator does not OOM kill at this
3257 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3260 trace_mm_vmscan_direct_reclaim_begin(order
,
3265 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3269 return nr_reclaimed
;
3274 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3275 gfp_t gfp_mask
, bool noswap
,
3277 unsigned long *nr_scanned
)
3279 struct scan_control sc
= {
3280 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3281 .target_mem_cgroup
= memcg
,
3282 .may_writepage
= !laptop_mode
,
3284 .reclaim_idx
= MAX_NR_ZONES
- 1,
3285 .may_swap
= !noswap
,
3286 .may_shrinkslab
= 1,
3288 unsigned long lru_pages
;
3290 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3291 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3293 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3299 * NOTE: Although we can get the priority field, using it
3300 * here is not a good idea, since it limits the pages we can scan.
3301 * if we don't reclaim here, the shrink_node from balance_pgdat
3302 * will pick up pages from other mem cgroup's as well. We hack
3303 * the priority and make it zero.
3305 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3307 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3309 *nr_scanned
= sc
.nr_scanned
;
3310 return sc
.nr_reclaimed
;
3313 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3314 unsigned long nr_pages
,
3318 struct zonelist
*zonelist
;
3319 unsigned long nr_reclaimed
;
3320 unsigned long pflags
;
3322 unsigned int noreclaim_flag
;
3323 struct scan_control sc
= {
3324 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3325 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3326 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3327 .reclaim_idx
= MAX_NR_ZONES
- 1,
3328 .target_mem_cgroup
= memcg
,
3329 .priority
= DEF_PRIORITY
,
3330 .may_writepage
= !laptop_mode
,
3332 .may_swap
= may_swap
,
3333 .may_shrinkslab
= 1,
3337 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3338 * take care of from where we get pages. So the node where we start the
3339 * scan does not need to be the current node.
3341 nid
= mem_cgroup_select_victim_node(memcg
);
3343 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3345 trace_mm_vmscan_memcg_reclaim_begin(0,
3350 psi_memstall_enter(&pflags
);
3351 noreclaim_flag
= memalloc_noreclaim_save();
3353 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3355 memalloc_noreclaim_restore(noreclaim_flag
);
3356 psi_memstall_leave(&pflags
);
3358 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3360 return nr_reclaimed
;
3364 static void age_active_anon(struct pglist_data
*pgdat
,
3365 struct scan_control
*sc
)
3367 struct mem_cgroup
*memcg
;
3369 if (!total_swap_pages
)
3372 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3374 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3376 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3377 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3378 sc
, LRU_ACTIVE_ANON
);
3380 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3384 static bool pgdat_watermark_boosted(pg_data_t
*pgdat
, int classzone_idx
)
3390 * Check for watermark boosts top-down as the higher zones
3391 * are more likely to be boosted. Both watermarks and boosts
3392 * should not be checked at the time time as reclaim would
3393 * start prematurely when there is no boosting and a lower
3396 for (i
= classzone_idx
; i
>= 0; i
--) {
3397 zone
= pgdat
->node_zones
+ i
;
3398 if (!managed_zone(zone
))
3401 if (zone
->watermark_boost
)
3409 * Returns true if there is an eligible zone balanced for the request order
3412 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3415 unsigned long mark
= -1;
3419 * Check watermarks bottom-up as lower zones are more likely to
3422 for (i
= 0; i
<= classzone_idx
; i
++) {
3423 zone
= pgdat
->node_zones
+ i
;
3425 if (!managed_zone(zone
))
3428 mark
= high_wmark_pages(zone
);
3429 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3434 * If a node has no populated zone within classzone_idx, it does not
3435 * need balancing by definition. This can happen if a zone-restricted
3436 * allocation tries to wake a remote kswapd.
3444 /* Clear pgdat state for congested, dirty or under writeback. */
3445 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3447 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3448 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3449 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3453 * Prepare kswapd for sleeping. This verifies that there are no processes
3454 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3456 * Returns true if kswapd is ready to sleep
3458 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3461 * The throttled processes are normally woken up in balance_pgdat() as
3462 * soon as allow_direct_reclaim() is true. But there is a potential
3463 * race between when kswapd checks the watermarks and a process gets
3464 * throttled. There is also a potential race if processes get
3465 * throttled, kswapd wakes, a large process exits thereby balancing the
3466 * zones, which causes kswapd to exit balance_pgdat() before reaching
3467 * the wake up checks. If kswapd is going to sleep, no process should
3468 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3469 * the wake up is premature, processes will wake kswapd and get
3470 * throttled again. The difference from wake ups in balance_pgdat() is
3471 * that here we are under prepare_to_wait().
3473 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3474 wake_up_all(&pgdat
->pfmemalloc_wait
);
3476 /* Hopeless node, leave it to direct reclaim */
3477 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3480 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3481 clear_pgdat_congested(pgdat
);
3489 * kswapd shrinks a node of pages that are at or below the highest usable
3490 * zone that is currently unbalanced.
3492 * Returns true if kswapd scanned at least the requested number of pages to
3493 * reclaim or if the lack of progress was due to pages under writeback.
3494 * This is used to determine if the scanning priority needs to be raised.
3496 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3497 struct scan_control
*sc
)
3502 /* Reclaim a number of pages proportional to the number of zones */
3503 sc
->nr_to_reclaim
= 0;
3504 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3505 zone
= pgdat
->node_zones
+ z
;
3506 if (!managed_zone(zone
))
3509 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3513 * Historically care was taken to put equal pressure on all zones but
3514 * now pressure is applied based on node LRU order.
3516 shrink_node(pgdat
, sc
);
3519 * Fragmentation may mean that the system cannot be rebalanced for
3520 * high-order allocations. If twice the allocation size has been
3521 * reclaimed then recheck watermarks only at order-0 to prevent
3522 * excessive reclaim. Assume that a process requested a high-order
3523 * can direct reclaim/compact.
3525 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3528 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3532 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3533 * that are eligible for use by the caller until at least one zone is
3536 * Returns the order kswapd finished reclaiming at.
3538 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3539 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3540 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3541 * or lower is eligible for reclaim until at least one usable zone is
3544 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3547 unsigned long nr_soft_reclaimed
;
3548 unsigned long nr_soft_scanned
;
3549 unsigned long pflags
;
3550 unsigned long nr_boost_reclaim
;
3551 unsigned long zone_boosts
[MAX_NR_ZONES
] = { 0, };
3554 struct scan_control sc
= {
3555 .gfp_mask
= GFP_KERNEL
,
3560 psi_memstall_enter(&pflags
);
3561 __fs_reclaim_acquire();
3563 count_vm_event(PAGEOUTRUN
);
3566 * Account for the reclaim boost. Note that the zone boost is left in
3567 * place so that parallel allocations that are near the watermark will
3568 * stall or direct reclaim until kswapd is finished.
3570 nr_boost_reclaim
= 0;
3571 for (i
= 0; i
<= classzone_idx
; i
++) {
3572 zone
= pgdat
->node_zones
+ i
;
3573 if (!managed_zone(zone
))
3576 nr_boost_reclaim
+= zone
->watermark_boost
;
3577 zone_boosts
[i
] = zone
->watermark_boost
;
3579 boosted
= nr_boost_reclaim
;
3582 sc
.priority
= DEF_PRIORITY
;
3584 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3585 bool raise_priority
= true;
3589 sc
.reclaim_idx
= classzone_idx
;
3592 * If the number of buffer_heads exceeds the maximum allowed
3593 * then consider reclaiming from all zones. This has a dual
3594 * purpose -- on 64-bit systems it is expected that
3595 * buffer_heads are stripped during active rotation. On 32-bit
3596 * systems, highmem pages can pin lowmem memory and shrinking
3597 * buffers can relieve lowmem pressure. Reclaim may still not
3598 * go ahead if all eligible zones for the original allocation
3599 * request are balanced to avoid excessive reclaim from kswapd.
3601 if (buffer_heads_over_limit
) {
3602 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3603 zone
= pgdat
->node_zones
+ i
;
3604 if (!managed_zone(zone
))
3613 * If the pgdat is imbalanced then ignore boosting and preserve
3614 * the watermarks for a later time and restart. Note that the
3615 * zone watermarks will be still reset at the end of balancing
3616 * on the grounds that the normal reclaim should be enough to
3617 * re-evaluate if boosting is required when kswapd next wakes.
3619 balanced
= pgdat_balanced(pgdat
, sc
.order
, classzone_idx
);
3620 if (!balanced
&& nr_boost_reclaim
) {
3621 nr_boost_reclaim
= 0;
3626 * If boosting is not active then only reclaim if there are no
3627 * eligible zones. Note that sc.reclaim_idx is not used as
3628 * buffer_heads_over_limit may have adjusted it.
3630 if (!nr_boost_reclaim
&& balanced
)
3633 /* Limit the priority of boosting to avoid reclaim writeback */
3634 if (nr_boost_reclaim
&& sc
.priority
== DEF_PRIORITY
- 2)
3635 raise_priority
= false;
3638 * Do not writeback or swap pages for boosted reclaim. The
3639 * intent is to relieve pressure not issue sub-optimal IO
3640 * from reclaim context. If no pages are reclaimed, the
3641 * reclaim will be aborted.
3643 sc
.may_writepage
= !laptop_mode
&& !nr_boost_reclaim
;
3644 sc
.may_swap
= !nr_boost_reclaim
;
3645 sc
.may_shrinkslab
= !nr_boost_reclaim
;
3648 * Do some background aging of the anon list, to give
3649 * pages a chance to be referenced before reclaiming. All
3650 * pages are rotated regardless of classzone as this is
3651 * about consistent aging.
3653 age_active_anon(pgdat
, &sc
);
3656 * If we're getting trouble reclaiming, start doing writepage
3657 * even in laptop mode.
3659 if (sc
.priority
< DEF_PRIORITY
- 2)
3660 sc
.may_writepage
= 1;
3662 /* Call soft limit reclaim before calling shrink_node. */
3664 nr_soft_scanned
= 0;
3665 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3666 sc
.gfp_mask
, &nr_soft_scanned
);
3667 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3670 * There should be no need to raise the scanning priority if
3671 * enough pages are already being scanned that that high
3672 * watermark would be met at 100% efficiency.
3674 if (kswapd_shrink_node(pgdat
, &sc
))
3675 raise_priority
= false;
3678 * If the low watermark is met there is no need for processes
3679 * to be throttled on pfmemalloc_wait as they should not be
3680 * able to safely make forward progress. Wake them
3682 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3683 allow_direct_reclaim(pgdat
))
3684 wake_up_all(&pgdat
->pfmemalloc_wait
);
3686 /* Check if kswapd should be suspending */
3687 __fs_reclaim_release();
3688 ret
= try_to_freeze();
3689 __fs_reclaim_acquire();
3690 if (ret
|| kthread_should_stop())
3694 * Raise priority if scanning rate is too low or there was no
3695 * progress in reclaiming pages
3697 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3698 nr_boost_reclaim
-= min(nr_boost_reclaim
, nr_reclaimed
);
3701 * If reclaim made no progress for a boost, stop reclaim as
3702 * IO cannot be queued and it could be an infinite loop in
3703 * extreme circumstances.
3705 if (nr_boost_reclaim
&& !nr_reclaimed
)
3708 if (raise_priority
|| !nr_reclaimed
)
3710 } while (sc
.priority
>= 1);
3712 if (!sc
.nr_reclaimed
)
3713 pgdat
->kswapd_failures
++;
3716 /* If reclaim was boosted, account for the reclaim done in this pass */
3718 unsigned long flags
;
3720 for (i
= 0; i
<= classzone_idx
; i
++) {
3721 if (!zone_boosts
[i
])
3724 /* Increments are under the zone lock */
3725 zone
= pgdat
->node_zones
+ i
;
3726 spin_lock_irqsave(&zone
->lock
, flags
);
3727 zone
->watermark_boost
-= min(zone
->watermark_boost
, zone_boosts
[i
]);
3728 spin_unlock_irqrestore(&zone
->lock
, flags
);
3732 * As there is now likely space, wakeup kcompact to defragment
3735 wakeup_kcompactd(pgdat
, pageblock_order
, classzone_idx
);
3738 snapshot_refaults(NULL
, pgdat
);
3739 __fs_reclaim_release();
3740 psi_memstall_leave(&pflags
);
3742 * Return the order kswapd stopped reclaiming at as
3743 * prepare_kswapd_sleep() takes it into account. If another caller
3744 * entered the allocator slow path while kswapd was awake, order will
3745 * remain at the higher level.
3751 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3752 * allocation request woke kswapd for. When kswapd has not woken recently,
3753 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3754 * given classzone and returns it or the highest classzone index kswapd
3755 * was recently woke for.
3757 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3758 enum zone_type classzone_idx
)
3760 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3761 return classzone_idx
;
3763 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3766 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3767 unsigned int classzone_idx
)
3772 if (freezing(current
) || kthread_should_stop())
3775 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3778 * Try to sleep for a short interval. Note that kcompactd will only be
3779 * woken if it is possible to sleep for a short interval. This is
3780 * deliberate on the assumption that if reclaim cannot keep an
3781 * eligible zone balanced that it's also unlikely that compaction will
3784 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3786 * Compaction records what page blocks it recently failed to
3787 * isolate pages from and skips them in the future scanning.
3788 * When kswapd is going to sleep, it is reasonable to assume
3789 * that pages and compaction may succeed so reset the cache.
3791 reset_isolation_suitable(pgdat
);
3794 * We have freed the memory, now we should compact it to make
3795 * allocation of the requested order possible.
3797 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3799 remaining
= schedule_timeout(HZ
/10);
3802 * If woken prematurely then reset kswapd_classzone_idx and
3803 * order. The values will either be from a wakeup request or
3804 * the previous request that slept prematurely.
3807 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3808 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3811 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3812 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3816 * After a short sleep, check if it was a premature sleep. If not, then
3817 * go fully to sleep until explicitly woken up.
3820 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3821 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3824 * vmstat counters are not perfectly accurate and the estimated
3825 * value for counters such as NR_FREE_PAGES can deviate from the
3826 * true value by nr_online_cpus * threshold. To avoid the zone
3827 * watermarks being breached while under pressure, we reduce the
3828 * per-cpu vmstat threshold while kswapd is awake and restore
3829 * them before going back to sleep.
3831 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3833 if (!kthread_should_stop())
3836 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3839 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3841 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3843 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3847 * The background pageout daemon, started as a kernel thread
3848 * from the init process.
3850 * This basically trickles out pages so that we have _some_
3851 * free memory available even if there is no other activity
3852 * that frees anything up. This is needed for things like routing
3853 * etc, where we otherwise might have all activity going on in
3854 * asynchronous contexts that cannot page things out.
3856 * If there are applications that are active memory-allocators
3857 * (most normal use), this basically shouldn't matter.
3859 static int kswapd(void *p
)
3861 unsigned int alloc_order
, reclaim_order
;
3862 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3863 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3864 struct task_struct
*tsk
= current
;
3866 struct reclaim_state reclaim_state
= {
3867 .reclaimed_slab
= 0,
3869 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3871 if (!cpumask_empty(cpumask
))
3872 set_cpus_allowed_ptr(tsk
, cpumask
);
3873 current
->reclaim_state
= &reclaim_state
;
3876 * Tell the memory management that we're a "memory allocator",
3877 * and that if we need more memory we should get access to it
3878 * regardless (see "__alloc_pages()"). "kswapd" should
3879 * never get caught in the normal page freeing logic.
3881 * (Kswapd normally doesn't need memory anyway, but sometimes
3882 * you need a small amount of memory in order to be able to
3883 * page out something else, and this flag essentially protects
3884 * us from recursively trying to free more memory as we're
3885 * trying to free the first piece of memory in the first place).
3887 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3890 pgdat
->kswapd_order
= 0;
3891 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3895 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3896 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3899 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3902 /* Read the new order and classzone_idx */
3903 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3904 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3905 pgdat
->kswapd_order
= 0;
3906 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3908 ret
= try_to_freeze();
3909 if (kthread_should_stop())
3913 * We can speed up thawing tasks if we don't call balance_pgdat
3914 * after returning from the refrigerator
3920 * Reclaim begins at the requested order but if a high-order
3921 * reclaim fails then kswapd falls back to reclaiming for
3922 * order-0. If that happens, kswapd will consider sleeping
3923 * for the order it finished reclaiming at (reclaim_order)
3924 * but kcompactd is woken to compact for the original
3925 * request (alloc_order).
3927 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3929 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3930 if (reclaim_order
< alloc_order
)
3931 goto kswapd_try_sleep
;
3934 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3935 current
->reclaim_state
= NULL
;
3941 * A zone is low on free memory or too fragmented for high-order memory. If
3942 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3943 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3944 * has failed or is not needed, still wake up kcompactd if only compaction is
3947 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3948 enum zone_type classzone_idx
)
3952 if (!managed_zone(zone
))
3955 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3957 pgdat
= zone
->zone_pgdat
;
3958 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3960 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3961 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3964 /* Hopeless node, leave it to direct reclaim if possible */
3965 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3966 (pgdat_balanced(pgdat
, order
, classzone_idx
) &&
3967 !pgdat_watermark_boosted(pgdat
, classzone_idx
))) {
3969 * There may be plenty of free memory available, but it's too
3970 * fragmented for high-order allocations. Wake up kcompactd
3971 * and rely on compaction_suitable() to determine if it's
3972 * needed. If it fails, it will defer subsequent attempts to
3973 * ratelimit its work.
3975 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3976 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3980 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3982 wake_up_interruptible(&pgdat
->kswapd_wait
);
3985 #ifdef CONFIG_HIBERNATION
3987 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3990 * Rather than trying to age LRUs the aim is to preserve the overall
3991 * LRU order by reclaiming preferentially
3992 * inactive > active > active referenced > active mapped
3994 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3996 struct reclaim_state reclaim_state
;
3997 struct scan_control sc
= {
3998 .nr_to_reclaim
= nr_to_reclaim
,
3999 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
4000 .reclaim_idx
= MAX_NR_ZONES
- 1,
4001 .priority
= DEF_PRIORITY
,
4005 .hibernation_mode
= 1,
4007 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
4008 struct task_struct
*p
= current
;
4009 unsigned long nr_reclaimed
;
4010 unsigned int noreclaim_flag
;
4012 fs_reclaim_acquire(sc
.gfp_mask
);
4013 noreclaim_flag
= memalloc_noreclaim_save();
4014 reclaim_state
.reclaimed_slab
= 0;
4015 p
->reclaim_state
= &reclaim_state
;
4017 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
4019 p
->reclaim_state
= NULL
;
4020 memalloc_noreclaim_restore(noreclaim_flag
);
4021 fs_reclaim_release(sc
.gfp_mask
);
4023 return nr_reclaimed
;
4025 #endif /* CONFIG_HIBERNATION */
4027 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4028 not required for correctness. So if the last cpu in a node goes
4029 away, we get changed to run anywhere: as the first one comes back,
4030 restore their cpu bindings. */
4031 static int kswapd_cpu_online(unsigned int cpu
)
4035 for_each_node_state(nid
, N_MEMORY
) {
4036 pg_data_t
*pgdat
= NODE_DATA(nid
);
4037 const struct cpumask
*mask
;
4039 mask
= cpumask_of_node(pgdat
->node_id
);
4041 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
4042 /* One of our CPUs online: restore mask */
4043 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
4049 * This kswapd start function will be called by init and node-hot-add.
4050 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4052 int kswapd_run(int nid
)
4054 pg_data_t
*pgdat
= NODE_DATA(nid
);
4060 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
4061 if (IS_ERR(pgdat
->kswapd
)) {
4062 /* failure at boot is fatal */
4063 BUG_ON(system_state
< SYSTEM_RUNNING
);
4064 pr_err("Failed to start kswapd on node %d\n", nid
);
4065 ret
= PTR_ERR(pgdat
->kswapd
);
4066 pgdat
->kswapd
= NULL
;
4072 * Called by memory hotplug when all memory in a node is offlined. Caller must
4073 * hold mem_hotplug_begin/end().
4075 void kswapd_stop(int nid
)
4077 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
4080 kthread_stop(kswapd
);
4081 NODE_DATA(nid
)->kswapd
= NULL
;
4085 static int __init
kswapd_init(void)
4090 for_each_node_state(nid
, N_MEMORY
)
4092 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
4093 "mm/vmscan:online", kswapd_cpu_online
,
4099 module_init(kswapd_init
)
4105 * If non-zero call node_reclaim when the number of free pages falls below
4108 int node_reclaim_mode __read_mostly
;
4110 #define RECLAIM_OFF 0
4111 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4112 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4113 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4116 * Priority for NODE_RECLAIM. This determines the fraction of pages
4117 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4120 #define NODE_RECLAIM_PRIORITY 4
4123 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4126 int sysctl_min_unmapped_ratio
= 1;
4129 * If the number of slab pages in a zone grows beyond this percentage then
4130 * slab reclaim needs to occur.
4132 int sysctl_min_slab_ratio
= 5;
4134 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4136 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4137 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4138 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4141 * It's possible for there to be more file mapped pages than
4142 * accounted for by the pages on the file LRU lists because
4143 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4145 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4148 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4149 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4151 unsigned long nr_pagecache_reclaimable
;
4152 unsigned long delta
= 0;
4155 * If RECLAIM_UNMAP is set, then all file pages are considered
4156 * potentially reclaimable. Otherwise, we have to worry about
4157 * pages like swapcache and node_unmapped_file_pages() provides
4160 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4161 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4163 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4165 /* If we can't clean pages, remove dirty pages from consideration */
4166 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4167 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4169 /* Watch for any possible underflows due to delta */
4170 if (unlikely(delta
> nr_pagecache_reclaimable
))
4171 delta
= nr_pagecache_reclaimable
;
4173 return nr_pagecache_reclaimable
- delta
;
4177 * Try to free up some pages from this node through reclaim.
4179 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4181 /* Minimum pages needed in order to stay on node */
4182 const unsigned long nr_pages
= 1 << order
;
4183 struct task_struct
*p
= current
;
4184 struct reclaim_state reclaim_state
;
4185 unsigned int noreclaim_flag
;
4186 struct scan_control sc
= {
4187 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4188 .gfp_mask
= current_gfp_context(gfp_mask
),
4190 .priority
= NODE_RECLAIM_PRIORITY
,
4191 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4192 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4194 .reclaim_idx
= gfp_zone(gfp_mask
),
4198 fs_reclaim_acquire(sc
.gfp_mask
);
4200 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4201 * and we also need to be able to write out pages for RECLAIM_WRITE
4202 * and RECLAIM_UNMAP.
4204 noreclaim_flag
= memalloc_noreclaim_save();
4205 p
->flags
|= PF_SWAPWRITE
;
4206 reclaim_state
.reclaimed_slab
= 0;
4207 p
->reclaim_state
= &reclaim_state
;
4209 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4211 * Free memory by calling shrink node with increasing
4212 * priorities until we have enough memory freed.
4215 shrink_node(pgdat
, &sc
);
4216 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4219 p
->reclaim_state
= NULL
;
4220 current
->flags
&= ~PF_SWAPWRITE
;
4221 memalloc_noreclaim_restore(noreclaim_flag
);
4222 fs_reclaim_release(sc
.gfp_mask
);
4223 return sc
.nr_reclaimed
>= nr_pages
;
4226 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4231 * Node reclaim reclaims unmapped file backed pages and
4232 * slab pages if we are over the defined limits.
4234 * A small portion of unmapped file backed pages is needed for
4235 * file I/O otherwise pages read by file I/O will be immediately
4236 * thrown out if the node is overallocated. So we do not reclaim
4237 * if less than a specified percentage of the node is used by
4238 * unmapped file backed pages.
4240 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4241 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4242 return NODE_RECLAIM_FULL
;
4245 * Do not scan if the allocation should not be delayed.
4247 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4248 return NODE_RECLAIM_NOSCAN
;
4251 * Only run node reclaim on the local node or on nodes that do not
4252 * have associated processors. This will favor the local processor
4253 * over remote processors and spread off node memory allocations
4254 * as wide as possible.
4256 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4257 return NODE_RECLAIM_NOSCAN
;
4259 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4260 return NODE_RECLAIM_NOSCAN
;
4262 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4263 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4266 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4273 * page_evictable - test whether a page is evictable
4274 * @page: the page to test
4276 * Test whether page is evictable--i.e., should be placed on active/inactive
4277 * lists vs unevictable list.
4279 * Reasons page might not be evictable:
4280 * (1) page's mapping marked unevictable
4281 * (2) page is part of an mlocked VMA
4284 int page_evictable(struct page
*page
)
4288 /* Prevent address_space of inode and swap cache from being freed */
4290 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4296 * check_move_unevictable_pages - check pages for evictability and move to
4297 * appropriate zone lru list
4298 * @pvec: pagevec with lru pages to check
4300 * Checks pages for evictability, if an evictable page is in the unevictable
4301 * lru list, moves it to the appropriate evictable lru list. This function
4302 * should be only used for lru pages.
4304 void check_move_unevictable_pages(struct pagevec
*pvec
)
4306 struct lruvec
*lruvec
;
4307 struct pglist_data
*pgdat
= NULL
;
4312 for (i
= 0; i
< pvec
->nr
; i
++) {
4313 struct page
*page
= pvec
->pages
[i
];
4314 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4317 if (pagepgdat
!= pgdat
) {
4319 spin_unlock_irq(&pgdat
->lru_lock
);
4321 spin_lock_irq(&pgdat
->lru_lock
);
4323 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4325 if (!PageLRU(page
) || !PageUnevictable(page
))
4328 if (page_evictable(page
)) {
4329 enum lru_list lru
= page_lru_base_type(page
);
4331 VM_BUG_ON_PAGE(PageActive(page
), page
);
4332 ClearPageUnevictable(page
);
4333 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4334 add_page_to_lru_list(page
, lruvec
, lru
);
4340 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4341 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4342 spin_unlock_irq(&pgdat
->lru_lock
);
4345 EXPORT_SYMBOL_GPL(check_move_unevictable_pages
);