2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
42 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44 #define NVME_Q_DEPTH 1024
45 #define NVME_AQ_DEPTH 64
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define ADMIN_TIMEOUT (admin_timeout * HZ)
49 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
50 #define IOD_TIMEOUT (retry_time * HZ)
52 static unsigned char admin_timeout
= 60;
53 module_param(admin_timeout
, byte
, 0644);
54 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
56 unsigned char nvme_io_timeout
= 30;
57 module_param_named(io_timeout
, nvme_io_timeout
, byte
, 0644);
58 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
60 static unsigned char retry_time
= 30;
61 module_param(retry_time
, byte
, 0644);
62 MODULE_PARM_DESC(retry_time
, "time in seconds to retry failed I/O");
64 static unsigned char shutdown_timeout
= 5;
65 module_param(shutdown_timeout
, byte
, 0644);
66 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
68 static int nvme_major
;
69 module_param(nvme_major
, int, 0);
71 static int use_threaded_interrupts
;
72 module_param(use_threaded_interrupts
, int, 0);
74 static DEFINE_SPINLOCK(dev_list_lock
);
75 static LIST_HEAD(dev_list
);
76 static struct task_struct
*nvme_thread
;
77 static struct workqueue_struct
*nvme_workq
;
78 static wait_queue_head_t nvme_kthread_wait
;
79 static struct notifier_block nvme_nb
;
81 static void nvme_reset_failed_dev(struct work_struct
*ws
);
82 static int nvme_process_cq(struct nvme_queue
*nvmeq
);
84 struct async_cmd_info
{
85 struct kthread_work work
;
86 struct kthread_worker
*worker
;
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
98 struct llist_node node
;
99 struct device
*q_dmadev
;
100 struct nvme_dev
*dev
;
101 char irqname
[24]; /* nvme4294967295-65535\0 */
103 struct nvme_command
*sq_cmds
;
104 volatile struct nvme_completion
*cqes
;
105 dma_addr_t sq_dma_addr
;
106 dma_addr_t cq_dma_addr
;
116 struct async_cmd_info cmdinfo
;
117 struct blk_mq_hw_ctx
*hctx
;
121 * Check we didin't inadvertently grow the command struct
123 static inline void _nvme_check_size(void)
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
139 typedef void (*nvme_completion_fn
)(struct nvme_queue
*, void *,
140 struct nvme_completion
*);
142 struct nvme_cmd_info
{
143 nvme_completion_fn fn
;
146 struct nvme_queue
*nvmeq
;
149 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
150 unsigned int hctx_idx
)
152 struct nvme_dev
*dev
= data
;
153 struct nvme_queue
*nvmeq
= dev
->queues
[0];
155 WARN_ON(nvmeq
->hctx
);
157 hctx
->driver_data
= nvmeq
;
161 static int nvme_admin_init_request(void *data
, struct request
*req
,
162 unsigned int hctx_idx
, unsigned int rq_idx
,
163 unsigned int numa_node
)
165 struct nvme_dev
*dev
= data
;
166 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
167 struct nvme_queue
*nvmeq
= dev
->queues
[0];
174 static void nvme_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
176 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
181 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
182 unsigned int hctx_idx
)
184 struct nvme_dev
*dev
= data
;
185 struct nvme_queue
*nvmeq
= dev
->queues
[
186 (hctx_idx
% dev
->queue_count
) + 1];
191 /* nvmeq queues are shared between namespaces. We assume here that
192 * blk-mq map the tags so they match up with the nvme queue tags. */
193 WARN_ON(nvmeq
->hctx
->tags
!= hctx
->tags
);
195 hctx
->driver_data
= nvmeq
;
199 static int nvme_init_request(void *data
, struct request
*req
,
200 unsigned int hctx_idx
, unsigned int rq_idx
,
201 unsigned int numa_node
)
203 struct nvme_dev
*dev
= data
;
204 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
205 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
212 static void nvme_set_info(struct nvme_cmd_info
*cmd
, void *ctx
,
213 nvme_completion_fn handler
)
218 blk_mq_start_request(blk_mq_rq_from_pdu(cmd
));
221 /* Special values must be less than 0x1000 */
222 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
223 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
224 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
225 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
227 static void special_completion(struct nvme_queue
*nvmeq
, void *ctx
,
228 struct nvme_completion
*cqe
)
230 if (ctx
== CMD_CTX_CANCELLED
)
232 if (ctx
== CMD_CTX_COMPLETED
) {
233 dev_warn(nvmeq
->q_dmadev
,
234 "completed id %d twice on queue %d\n",
235 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
238 if (ctx
== CMD_CTX_INVALID
) {
239 dev_warn(nvmeq
->q_dmadev
,
240 "invalid id %d completed on queue %d\n",
241 cqe
->command_id
, le16_to_cpup(&cqe
->sq_id
));
244 dev_warn(nvmeq
->q_dmadev
, "Unknown special completion %p\n", ctx
);
247 static void *cancel_cmd_info(struct nvme_cmd_info
*cmd
, nvme_completion_fn
*fn
)
254 cmd
->fn
= special_completion
;
255 cmd
->ctx
= CMD_CTX_CANCELLED
;
259 static void async_req_completion(struct nvme_queue
*nvmeq
, void *ctx
,
260 struct nvme_completion
*cqe
)
262 struct request
*req
= ctx
;
264 u32 result
= le32_to_cpup(&cqe
->result
);
265 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
267 if (status
== NVME_SC_SUCCESS
|| status
== NVME_SC_ABORT_REQ
)
268 ++nvmeq
->dev
->event_limit
;
269 if (status
== NVME_SC_SUCCESS
)
270 dev_warn(nvmeq
->q_dmadev
,
271 "async event result %08x\n", result
);
273 blk_mq_free_hctx_request(nvmeq
->hctx
, req
);
276 static void abort_completion(struct nvme_queue
*nvmeq
, void *ctx
,
277 struct nvme_completion
*cqe
)
279 struct request
*req
= ctx
;
281 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
282 u32 result
= le32_to_cpup(&cqe
->result
);
284 blk_mq_free_hctx_request(nvmeq
->hctx
, req
);
286 dev_warn(nvmeq
->q_dmadev
, "Abort status:%x result:%x", status
, result
);
287 ++nvmeq
->dev
->abort_limit
;
290 static void async_completion(struct nvme_queue
*nvmeq
, void *ctx
,
291 struct nvme_completion
*cqe
)
293 struct async_cmd_info
*cmdinfo
= ctx
;
294 cmdinfo
->result
= le32_to_cpup(&cqe
->result
);
295 cmdinfo
->status
= le16_to_cpup(&cqe
->status
) >> 1;
296 queue_kthread_work(cmdinfo
->worker
, &cmdinfo
->work
);
297 blk_mq_free_hctx_request(nvmeq
->hctx
, cmdinfo
->req
);
300 static inline struct nvme_cmd_info
*get_cmd_from_tag(struct nvme_queue
*nvmeq
,
303 struct blk_mq_hw_ctx
*hctx
= nvmeq
->hctx
;
304 struct request
*req
= blk_mq_tag_to_rq(hctx
->tags
, tag
);
306 return blk_mq_rq_to_pdu(req
);
310 * Called with local interrupts disabled and the q_lock held. May not sleep.
312 static void *nvme_finish_cmd(struct nvme_queue
*nvmeq
, int tag
,
313 nvme_completion_fn
*fn
)
315 struct nvme_cmd_info
*cmd
= get_cmd_from_tag(nvmeq
, tag
);
317 if (tag
>= nvmeq
->q_depth
) {
318 *fn
= special_completion
;
319 return CMD_CTX_INVALID
;
324 cmd
->fn
= special_completion
;
325 cmd
->ctx
= CMD_CTX_COMPLETED
;
330 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
331 * @nvmeq: The queue to use
332 * @cmd: The command to send
334 * Safe to use from interrupt context
336 static int __nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
338 u16 tail
= nvmeq
->sq_tail
;
340 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
341 if (++tail
== nvmeq
->q_depth
)
343 writel(tail
, nvmeq
->q_db
);
344 nvmeq
->sq_tail
= tail
;
349 static int nvme_submit_cmd(struct nvme_queue
*nvmeq
, struct nvme_command
*cmd
)
353 spin_lock_irqsave(&nvmeq
->q_lock
, flags
);
354 ret
= __nvme_submit_cmd(nvmeq
, cmd
);
355 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
359 static __le64
**iod_list(struct nvme_iod
*iod
)
361 return ((void *)iod
) + iod
->offset
;
365 * Will slightly overestimate the number of pages needed. This is OK
366 * as it only leads to a small amount of wasted memory for the lifetime of
369 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
371 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->page_size
, dev
->page_size
);
372 return DIV_ROUND_UP(8 * nprps
, dev
->page_size
- 8);
375 static struct nvme_iod
*
376 nvme_alloc_iod(unsigned nseg
, unsigned nbytes
, struct nvme_dev
*dev
, gfp_t gfp
)
378 struct nvme_iod
*iod
= kmalloc(sizeof(struct nvme_iod
) +
379 sizeof(__le64
*) * nvme_npages(nbytes
, dev
) +
380 sizeof(struct scatterlist
) * nseg
, gfp
);
383 iod
->offset
= offsetof(struct nvme_iod
, sg
[nseg
]);
385 iod
->length
= nbytes
;
387 iod
->first_dma
= 0ULL;
393 void nvme_free_iod(struct nvme_dev
*dev
, struct nvme_iod
*iod
)
395 const int last_prp
= dev
->page_size
/ 8 - 1;
397 __le64
**list
= iod_list(iod
);
398 dma_addr_t prp_dma
= iod
->first_dma
;
400 if (iod
->npages
== 0)
401 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
402 for (i
= 0; i
< iod
->npages
; i
++) {
403 __le64
*prp_list
= list
[i
];
404 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
405 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
406 prp_dma
= next_prp_dma
;
411 static int nvme_error_status(u16 status
)
413 switch (status
& 0x7ff) {
414 case NVME_SC_SUCCESS
:
416 case NVME_SC_CAP_EXCEEDED
:
423 static void req_completion(struct nvme_queue
*nvmeq
, void *ctx
,
424 struct nvme_completion
*cqe
)
426 struct nvme_iod
*iod
= ctx
;
427 struct request
*req
= iod
->private;
428 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
430 u16 status
= le16_to_cpup(&cqe
->status
) >> 1;
432 if (unlikely(status
)) {
433 if (!(status
& NVME_SC_DNR
|| blk_noretry_request(req
))
434 && (jiffies
- req
->start_time
) < req
->timeout
) {
437 blk_mq_requeue_request(req
);
438 spin_lock_irqsave(req
->q
->queue_lock
, flags
);
439 if (!blk_queue_stopped(req
->q
))
440 blk_mq_kick_requeue_list(req
->q
);
441 spin_unlock_irqrestore(req
->q
->queue_lock
, flags
);
444 req
->errors
= nvme_error_status(status
);
449 dev_warn(&nvmeq
->dev
->pci_dev
->dev
,
450 "completing aborted command with status:%04x\n",
454 dma_unmap_sg(&nvmeq
->dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
455 rq_data_dir(req
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
456 nvme_free_iod(nvmeq
->dev
, iod
);
458 blk_mq_complete_request(req
);
461 /* length is in bytes. gfp flags indicates whether we may sleep. */
462 int nvme_setup_prps(struct nvme_dev
*dev
, struct nvme_iod
*iod
, int total_len
,
465 struct dma_pool
*pool
;
466 int length
= total_len
;
467 struct scatterlist
*sg
= iod
->sg
;
468 int dma_len
= sg_dma_len(sg
);
469 u64 dma_addr
= sg_dma_address(sg
);
470 int offset
= offset_in_page(dma_addr
);
472 __le64
**list
= iod_list(iod
);
475 u32 page_size
= dev
->page_size
;
477 length
-= (page_size
- offset
);
481 dma_len
-= (page_size
- offset
);
483 dma_addr
+= (page_size
- offset
);
486 dma_addr
= sg_dma_address(sg
);
487 dma_len
= sg_dma_len(sg
);
490 if (length
<= page_size
) {
491 iod
->first_dma
= dma_addr
;
495 nprps
= DIV_ROUND_UP(length
, page_size
);
496 if (nprps
<= (256 / 8)) {
497 pool
= dev
->prp_small_pool
;
500 pool
= dev
->prp_page_pool
;
504 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
506 iod
->first_dma
= dma_addr
;
508 return (total_len
- length
) + page_size
;
511 iod
->first_dma
= prp_dma
;
514 if (i
== page_size
>> 3) {
515 __le64
*old_prp_list
= prp_list
;
516 prp_list
= dma_pool_alloc(pool
, gfp
, &prp_dma
);
518 return total_len
- length
;
519 list
[iod
->npages
++] = prp_list
;
520 prp_list
[0] = old_prp_list
[i
- 1];
521 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
524 prp_list
[i
++] = cpu_to_le64(dma_addr
);
525 dma_len
-= page_size
;
526 dma_addr
+= page_size
;
534 dma_addr
= sg_dma_address(sg
);
535 dma_len
= sg_dma_len(sg
);
542 * We reuse the small pool to allocate the 16-byte range here as it is not
543 * worth having a special pool for these or additional cases to handle freeing
546 static void nvme_submit_discard(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
547 struct request
*req
, struct nvme_iod
*iod
)
549 struct nvme_dsm_range
*range
=
550 (struct nvme_dsm_range
*)iod_list(iod
)[0];
551 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
553 range
->cattr
= cpu_to_le32(0);
554 range
->nlb
= cpu_to_le32(blk_rq_bytes(req
) >> ns
->lba_shift
);
555 range
->slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
557 memset(cmnd
, 0, sizeof(*cmnd
));
558 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
559 cmnd
->dsm
.command_id
= req
->tag
;
560 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->ns_id
);
561 cmnd
->dsm
.prp1
= cpu_to_le64(iod
->first_dma
);
563 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
565 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
567 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
570 static void nvme_submit_flush(struct nvme_queue
*nvmeq
, struct nvme_ns
*ns
,
573 struct nvme_command
*cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
575 memset(cmnd
, 0, sizeof(*cmnd
));
576 cmnd
->common
.opcode
= nvme_cmd_flush
;
577 cmnd
->common
.command_id
= cmdid
;
578 cmnd
->common
.nsid
= cpu_to_le32(ns
->ns_id
);
580 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
582 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
585 static int nvme_submit_iod(struct nvme_queue
*nvmeq
, struct nvme_iod
*iod
,
588 struct request
*req
= iod
->private;
589 struct nvme_command
*cmnd
;
593 if (req
->cmd_flags
& REQ_FUA
)
594 control
|= NVME_RW_FUA
;
595 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
596 control
|= NVME_RW_LR
;
598 if (req
->cmd_flags
& REQ_RAHEAD
)
599 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
601 cmnd
= &nvmeq
->sq_cmds
[nvmeq
->sq_tail
];
602 memset(cmnd
, 0, sizeof(*cmnd
));
604 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
605 cmnd
->rw
.command_id
= req
->tag
;
606 cmnd
->rw
.nsid
= cpu_to_le32(ns
->ns_id
);
607 cmnd
->rw
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
608 cmnd
->rw
.prp2
= cpu_to_le64(iod
->first_dma
);
609 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
610 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
611 cmnd
->rw
.control
= cpu_to_le16(control
);
612 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
614 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
616 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
621 static int nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
622 const struct blk_mq_queue_data
*bd
)
624 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
625 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
626 struct request
*req
= bd
->rq
;
627 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
628 struct nvme_iod
*iod
;
629 int psegs
= req
->nr_phys_segments
;
630 enum dma_data_direction dma_dir
;
631 unsigned size
= !(req
->cmd_flags
& REQ_DISCARD
) ? blk_rq_bytes(req
) :
632 sizeof(struct nvme_dsm_range
);
634 iod
= nvme_alloc_iod(psegs
, size
, ns
->dev
, GFP_ATOMIC
);
636 return BLK_MQ_RQ_QUEUE_BUSY
;
640 if (req
->cmd_flags
& REQ_DISCARD
) {
643 * We reuse the small pool to allocate the 16-byte range here
644 * as it is not worth having a special pool for these or
645 * additional cases to handle freeing the iod.
647 range
= dma_pool_alloc(nvmeq
->dev
->prp_small_pool
,
652 iod_list(iod
)[0] = (__le64
*)range
;
655 dma_dir
= rq_data_dir(req
) ? DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
657 sg_init_table(iod
->sg
, psegs
);
658 iod
->nents
= blk_rq_map_sg(req
->q
, req
, iod
->sg
);
662 if (!dma_map_sg(nvmeq
->q_dmadev
, iod
->sg
, iod
->nents
, dma_dir
))
665 if (blk_rq_bytes(req
) !=
666 nvme_setup_prps(nvmeq
->dev
, iod
, blk_rq_bytes(req
), GFP_ATOMIC
)) {
667 dma_unmap_sg(&nvmeq
->dev
->pci_dev
->dev
, iod
->sg
,
668 iod
->nents
, dma_dir
);
673 nvme_set_info(cmd
, iod
, req_completion
);
674 spin_lock_irq(&nvmeq
->q_lock
);
675 if (req
->cmd_flags
& REQ_DISCARD
)
676 nvme_submit_discard(nvmeq
, ns
, req
, iod
);
677 else if (req
->cmd_flags
& REQ_FLUSH
)
678 nvme_submit_flush(nvmeq
, ns
, req
->tag
);
680 nvme_submit_iod(nvmeq
, iod
, ns
);
682 nvme_process_cq(nvmeq
);
683 spin_unlock_irq(&nvmeq
->q_lock
);
684 return BLK_MQ_RQ_QUEUE_OK
;
687 nvme_free_iod(nvmeq
->dev
, iod
);
688 return BLK_MQ_RQ_QUEUE_ERROR
;
690 nvme_free_iod(nvmeq
->dev
, iod
);
691 return BLK_MQ_RQ_QUEUE_BUSY
;
694 static int nvme_process_cq(struct nvme_queue
*nvmeq
)
698 head
= nvmeq
->cq_head
;
699 phase
= nvmeq
->cq_phase
;
703 nvme_completion_fn fn
;
704 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
705 if ((le16_to_cpu(cqe
.status
) & 1) != phase
)
707 nvmeq
->sq_head
= le16_to_cpu(cqe
.sq_head
);
708 if (++head
== nvmeq
->q_depth
) {
712 ctx
= nvme_finish_cmd(nvmeq
, cqe
.command_id
, &fn
);
713 fn(nvmeq
, ctx
, &cqe
);
716 /* If the controller ignores the cq head doorbell and continuously
717 * writes to the queue, it is theoretically possible to wrap around
718 * the queue twice and mistakenly return IRQ_NONE. Linux only
719 * requires that 0.1% of your interrupts are handled, so this isn't
722 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
725 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
726 nvmeq
->cq_head
= head
;
727 nvmeq
->cq_phase
= phase
;
733 /* Admin queue isn't initialized as a request queue. If at some point this
734 * happens anyway, make sure to notify the user */
735 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx
*hctx
,
736 const struct blk_mq_queue_data
*bd
)
739 return BLK_MQ_RQ_QUEUE_ERROR
;
742 static irqreturn_t
nvme_irq(int irq
, void *data
)
745 struct nvme_queue
*nvmeq
= data
;
746 spin_lock(&nvmeq
->q_lock
);
747 nvme_process_cq(nvmeq
);
748 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
750 spin_unlock(&nvmeq
->q_lock
);
754 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
756 struct nvme_queue
*nvmeq
= data
;
757 struct nvme_completion cqe
= nvmeq
->cqes
[nvmeq
->cq_head
];
758 if ((le16_to_cpu(cqe
.status
) & 1) != nvmeq
->cq_phase
)
760 return IRQ_WAKE_THREAD
;
763 static void nvme_abort_cmd_info(struct nvme_queue
*nvmeq
, struct nvme_cmd_info
*
766 spin_lock_irq(&nvmeq
->q_lock
);
767 cancel_cmd_info(cmd_info
, NULL
);
768 spin_unlock_irq(&nvmeq
->q_lock
);
771 struct sync_cmd_info
{
772 struct task_struct
*task
;
777 static void sync_completion(struct nvme_queue
*nvmeq
, void *ctx
,
778 struct nvme_completion
*cqe
)
780 struct sync_cmd_info
*cmdinfo
= ctx
;
781 cmdinfo
->result
= le32_to_cpup(&cqe
->result
);
782 cmdinfo
->status
= le16_to_cpup(&cqe
->status
) >> 1;
783 wake_up_process(cmdinfo
->task
);
787 * Returns 0 on success. If the result is negative, it's a Linux error code;
788 * if the result is positive, it's an NVM Express status code
790 static int nvme_submit_sync_cmd(struct request
*req
, struct nvme_command
*cmd
,
791 u32
*result
, unsigned timeout
)
794 struct sync_cmd_info cmdinfo
;
795 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
796 struct nvme_queue
*nvmeq
= cmd_rq
->nvmeq
;
798 cmdinfo
.task
= current
;
799 cmdinfo
.status
= -EINTR
;
801 cmd
->common
.command_id
= req
->tag
;
803 nvme_set_info(cmd_rq
, &cmdinfo
, sync_completion
);
805 set_current_state(TASK_KILLABLE
);
806 ret
= nvme_submit_cmd(nvmeq
, cmd
);
808 nvme_finish_cmd(nvmeq
, req
->tag
, NULL
);
809 set_current_state(TASK_RUNNING
);
811 ret
= schedule_timeout(timeout
);
814 * Ensure that sync_completion has either run, or that it will
817 nvme_abort_cmd_info(nvmeq
, blk_mq_rq_to_pdu(req
));
820 * We never got the completion
822 if (cmdinfo
.status
== -EINTR
)
826 *result
= cmdinfo
.result
;
828 return cmdinfo
.status
;
831 static int nvme_submit_async_admin_req(struct nvme_dev
*dev
)
833 struct nvme_queue
*nvmeq
= dev
->queues
[0];
834 struct nvme_command c
;
835 struct nvme_cmd_info
*cmd_info
;
838 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_ATOMIC
, false);
842 req
->cmd_flags
|= REQ_NO_TIMEOUT
;
843 cmd_info
= blk_mq_rq_to_pdu(req
);
844 nvme_set_info(cmd_info
, req
, async_req_completion
);
846 memset(&c
, 0, sizeof(c
));
847 c
.common
.opcode
= nvme_admin_async_event
;
848 c
.common
.command_id
= req
->tag
;
850 return __nvme_submit_cmd(nvmeq
, &c
);
853 static int nvme_submit_admin_async_cmd(struct nvme_dev
*dev
,
854 struct nvme_command
*cmd
,
855 struct async_cmd_info
*cmdinfo
, unsigned timeout
)
857 struct nvme_queue
*nvmeq
= dev
->queues
[0];
859 struct nvme_cmd_info
*cmd_rq
;
861 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_KERNEL
, false);
865 req
->timeout
= timeout
;
866 cmd_rq
= blk_mq_rq_to_pdu(req
);
868 nvme_set_info(cmd_rq
, cmdinfo
, async_completion
);
869 cmdinfo
->status
= -EINTR
;
871 cmd
->common
.command_id
= req
->tag
;
873 return nvme_submit_cmd(nvmeq
, cmd
);
876 static int __nvme_submit_admin_cmd(struct nvme_dev
*dev
, struct nvme_command
*cmd
,
877 u32
*result
, unsigned timeout
)
882 req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_KERNEL
, false);
885 res
= nvme_submit_sync_cmd(req
, cmd
, result
, timeout
);
886 blk_mq_free_request(req
);
890 int nvme_submit_admin_cmd(struct nvme_dev
*dev
, struct nvme_command
*cmd
,
893 return __nvme_submit_admin_cmd(dev
, cmd
, result
, ADMIN_TIMEOUT
);
896 int nvme_submit_io_cmd(struct nvme_dev
*dev
, struct nvme_ns
*ns
,
897 struct nvme_command
*cmd
, u32
*result
)
902 req
= blk_mq_alloc_request(ns
->queue
, WRITE
, (GFP_KERNEL
|__GFP_WAIT
),
906 res
= nvme_submit_sync_cmd(req
, cmd
, result
, NVME_IO_TIMEOUT
);
907 blk_mq_free_request(req
);
911 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
913 struct nvme_command c
;
915 memset(&c
, 0, sizeof(c
));
916 c
.delete_queue
.opcode
= opcode
;
917 c
.delete_queue
.qid
= cpu_to_le16(id
);
919 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
922 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
923 struct nvme_queue
*nvmeq
)
925 struct nvme_command c
;
926 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
928 memset(&c
, 0, sizeof(c
));
929 c
.create_cq
.opcode
= nvme_admin_create_cq
;
930 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
931 c
.create_cq
.cqid
= cpu_to_le16(qid
);
932 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
933 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
934 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
936 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
939 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
940 struct nvme_queue
*nvmeq
)
942 struct nvme_command c
;
943 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
945 memset(&c
, 0, sizeof(c
));
946 c
.create_sq
.opcode
= nvme_admin_create_sq
;
947 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
948 c
.create_sq
.sqid
= cpu_to_le16(qid
);
949 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
950 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
951 c
.create_sq
.cqid
= cpu_to_le16(qid
);
953 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
956 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
958 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
961 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
963 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
966 int nvme_identify(struct nvme_dev
*dev
, unsigned nsid
, unsigned cns
,
969 struct nvme_command c
;
971 memset(&c
, 0, sizeof(c
));
972 c
.identify
.opcode
= nvme_admin_identify
;
973 c
.identify
.nsid
= cpu_to_le32(nsid
);
974 c
.identify
.prp1
= cpu_to_le64(dma_addr
);
975 c
.identify
.cns
= cpu_to_le32(cns
);
977 return nvme_submit_admin_cmd(dev
, &c
, NULL
);
980 int nvme_get_features(struct nvme_dev
*dev
, unsigned fid
, unsigned nsid
,
981 dma_addr_t dma_addr
, u32
*result
)
983 struct nvme_command c
;
985 memset(&c
, 0, sizeof(c
));
986 c
.features
.opcode
= nvme_admin_get_features
;
987 c
.features
.nsid
= cpu_to_le32(nsid
);
988 c
.features
.prp1
= cpu_to_le64(dma_addr
);
989 c
.features
.fid
= cpu_to_le32(fid
);
991 return nvme_submit_admin_cmd(dev
, &c
, result
);
994 int nvme_set_features(struct nvme_dev
*dev
, unsigned fid
, unsigned dword11
,
995 dma_addr_t dma_addr
, u32
*result
)
997 struct nvme_command c
;
999 memset(&c
, 0, sizeof(c
));
1000 c
.features
.opcode
= nvme_admin_set_features
;
1001 c
.features
.prp1
= cpu_to_le64(dma_addr
);
1002 c
.features
.fid
= cpu_to_le32(fid
);
1003 c
.features
.dword11
= cpu_to_le32(dword11
);
1005 return nvme_submit_admin_cmd(dev
, &c
, result
);
1009 * nvme_abort_req - Attempt aborting a request
1011 * Schedule controller reset if the command was already aborted once before and
1012 * still hasn't been returned to the driver, or if this is the admin queue.
1014 static void nvme_abort_req(struct request
*req
)
1016 struct nvme_cmd_info
*cmd_rq
= blk_mq_rq_to_pdu(req
);
1017 struct nvme_queue
*nvmeq
= cmd_rq
->nvmeq
;
1018 struct nvme_dev
*dev
= nvmeq
->dev
;
1019 struct request
*abort_req
;
1020 struct nvme_cmd_info
*abort_cmd
;
1021 struct nvme_command cmd
;
1023 if (!nvmeq
->qid
|| cmd_rq
->aborted
) {
1024 unsigned long flags
;
1026 spin_lock_irqsave(&dev_list_lock
, flags
);
1027 if (work_busy(&dev
->reset_work
))
1029 list_del_init(&dev
->node
);
1030 dev_warn(&dev
->pci_dev
->dev
,
1031 "I/O %d QID %d timeout, reset controller\n",
1032 req
->tag
, nvmeq
->qid
);
1033 dev
->reset_workfn
= nvme_reset_failed_dev
;
1034 queue_work(nvme_workq
, &dev
->reset_work
);
1036 spin_unlock_irqrestore(&dev_list_lock
, flags
);
1040 if (!dev
->abort_limit
)
1043 abort_req
= blk_mq_alloc_request(dev
->admin_q
, WRITE
, GFP_ATOMIC
,
1045 if (IS_ERR(abort_req
))
1048 abort_cmd
= blk_mq_rq_to_pdu(abort_req
);
1049 nvme_set_info(abort_cmd
, abort_req
, abort_completion
);
1051 memset(&cmd
, 0, sizeof(cmd
));
1052 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1053 cmd
.abort
.cid
= req
->tag
;
1054 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1055 cmd
.abort
.command_id
= abort_req
->tag
;
1058 cmd_rq
->aborted
= 1;
1060 dev_warn(nvmeq
->q_dmadev
, "Aborting I/O %d QID %d\n", req
->tag
,
1062 if (nvme_submit_cmd(dev
->queues
[0], &cmd
) < 0) {
1063 dev_warn(nvmeq
->q_dmadev
,
1064 "Could not abort I/O %d QID %d",
1065 req
->tag
, nvmeq
->qid
);
1066 blk_mq_free_request(abort_req
);
1070 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx
*hctx
,
1071 struct request
*req
, void *data
, bool reserved
)
1073 struct nvme_queue
*nvmeq
= data
;
1075 nvme_completion_fn fn
;
1076 struct nvme_cmd_info
*cmd
;
1077 struct nvme_completion cqe
;
1079 if (!blk_mq_request_started(req
))
1082 cmd
= blk_mq_rq_to_pdu(req
);
1084 if (cmd
->ctx
== CMD_CTX_CANCELLED
)
1087 if (blk_queue_dying(req
->q
))
1088 cqe
.status
= cpu_to_le16((NVME_SC_ABORT_REQ
| NVME_SC_DNR
) << 1);
1090 cqe
.status
= cpu_to_le16(NVME_SC_ABORT_REQ
<< 1);
1093 dev_warn(nvmeq
->q_dmadev
, "Cancelling I/O %d QID %d\n",
1094 req
->tag
, nvmeq
->qid
);
1095 ctx
= cancel_cmd_info(cmd
, &fn
);
1096 fn(nvmeq
, ctx
, &cqe
);
1099 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
1101 struct nvme_cmd_info
*cmd
= blk_mq_rq_to_pdu(req
);
1102 struct nvme_queue
*nvmeq
= cmd
->nvmeq
;
1105 * The aborted req will be completed on receiving the abort req.
1106 * We enable the timer again. If hit twice, it'll cause a device reset,
1107 * as the device then is in a faulty state.
1109 int ret
= BLK_EH_RESET_TIMER
;
1111 dev_warn(nvmeq
->q_dmadev
, "Timeout I/O %d QID %d\n", req
->tag
,
1114 spin_lock_irq(&nvmeq
->q_lock
);
1115 if (!nvmeq
->dev
->initialized
) {
1117 * Force cancelled command frees the request, which requires we
1118 * return BLK_EH_NOT_HANDLED.
1120 nvme_cancel_queue_ios(nvmeq
->hctx
, req
, nvmeq
, reserved
);
1121 ret
= BLK_EH_NOT_HANDLED
;
1123 nvme_abort_req(req
);
1124 spin_unlock_irq(&nvmeq
->q_lock
);
1129 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1131 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
1132 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1133 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
1134 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1138 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1141 struct nvme_queue
*nvmeq
, *next
;
1142 struct llist_node
*entry
;
1145 for (i
= dev
->queue_count
- 1; i
>= lowest
; i
--) {
1146 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1147 llist_add(&nvmeq
->node
, &q_list
);
1149 dev
->queues
[i
] = NULL
;
1152 entry
= llist_del_all(&q_list
);
1153 llist_for_each_entry_safe(nvmeq
, next
, entry
, node
)
1154 nvme_free_queue(nvmeq
);
1158 * nvme_suspend_queue - put queue into suspended state
1159 * @nvmeq - queue to suspend
1161 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
1165 spin_lock_irq(&nvmeq
->q_lock
);
1166 if (nvmeq
->cq_vector
== -1) {
1167 spin_unlock_irq(&nvmeq
->q_lock
);
1170 vector
= nvmeq
->dev
->entry
[nvmeq
->cq_vector
].vector
;
1171 nvmeq
->dev
->online_queues
--;
1172 nvmeq
->cq_vector
= -1;
1173 spin_unlock_irq(&nvmeq
->q_lock
);
1175 irq_set_affinity_hint(vector
, NULL
);
1176 free_irq(vector
, nvmeq
);
1181 static void nvme_clear_queue(struct nvme_queue
*nvmeq
)
1183 struct blk_mq_hw_ctx
*hctx
= nvmeq
->hctx
;
1185 spin_lock_irq(&nvmeq
->q_lock
);
1186 nvme_process_cq(nvmeq
);
1187 if (hctx
&& hctx
->tags
)
1188 blk_mq_tag_busy_iter(hctx
, nvme_cancel_queue_ios
, nvmeq
);
1189 spin_unlock_irq(&nvmeq
->q_lock
);
1192 static void nvme_disable_queue(struct nvme_dev
*dev
, int qid
)
1194 struct nvme_queue
*nvmeq
= dev
->queues
[qid
];
1198 if (nvme_suspend_queue(nvmeq
))
1201 /* Don't tell the adapter to delete the admin queue.
1202 * Don't tell a removed adapter to delete IO queues. */
1203 if (qid
&& readl(&dev
->bar
->csts
) != -1) {
1204 adapter_delete_sq(dev
, qid
);
1205 adapter_delete_cq(dev
, qid
);
1207 if (!qid
&& dev
->admin_q
)
1208 blk_mq_freeze_queue_start(dev
->admin_q
);
1209 nvme_clear_queue(nvmeq
);
1212 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1215 struct device
*dmadev
= &dev
->pci_dev
->dev
;
1216 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
), GFP_KERNEL
);
1220 nvmeq
->cqes
= dma_zalloc_coherent(dmadev
, CQ_SIZE(depth
),
1221 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1225 nvmeq
->sq_cmds
= dma_alloc_coherent(dmadev
, SQ_SIZE(depth
),
1226 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1227 if (!nvmeq
->sq_cmds
)
1230 nvmeq
->q_dmadev
= dmadev
;
1232 snprintf(nvmeq
->irqname
, sizeof(nvmeq
->irqname
), "nvme%dq%d",
1233 dev
->instance
, qid
);
1234 spin_lock_init(&nvmeq
->q_lock
);
1236 nvmeq
->cq_phase
= 1;
1237 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1238 nvmeq
->q_depth
= depth
;
1241 dev
->queues
[qid
] = nvmeq
;
1246 dma_free_coherent(dmadev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1247 nvmeq
->cq_dma_addr
);
1253 static int queue_request_irq(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1256 if (use_threaded_interrupts
)
1257 return request_threaded_irq(dev
->entry
[nvmeq
->cq_vector
].vector
,
1258 nvme_irq_check
, nvme_irq
, IRQF_SHARED
,
1260 return request_irq(dev
->entry
[nvmeq
->cq_vector
].vector
, nvme_irq
,
1261 IRQF_SHARED
, name
, nvmeq
);
1264 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1266 struct nvme_dev
*dev
= nvmeq
->dev
;
1268 spin_lock_irq(&nvmeq
->q_lock
);
1271 nvmeq
->cq_phase
= 1;
1272 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1273 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1274 dev
->online_queues
++;
1275 spin_unlock_irq(&nvmeq
->q_lock
);
1278 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1280 struct nvme_dev
*dev
= nvmeq
->dev
;
1283 nvmeq
->cq_vector
= qid
- 1;
1284 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1288 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1292 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1296 nvme_init_queue(nvmeq
, qid
);
1300 adapter_delete_sq(dev
, qid
);
1302 adapter_delete_cq(dev
, qid
);
1306 static int nvme_wait_ready(struct nvme_dev
*dev
, u64 cap
, bool enabled
)
1308 unsigned long timeout
;
1309 u32 bit
= enabled
? NVME_CSTS_RDY
: 0;
1311 timeout
= ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1313 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_RDY
) != bit
) {
1315 if (fatal_signal_pending(current
))
1317 if (time_after(jiffies
, timeout
)) {
1318 dev_err(&dev
->pci_dev
->dev
,
1319 "Device not ready; aborting %s\n", enabled
?
1320 "initialisation" : "reset");
1329 * If the device has been passed off to us in an enabled state, just clear
1330 * the enabled bit. The spec says we should set the 'shutdown notification
1331 * bits', but doing so may cause the device to complete commands to the
1332 * admin queue ... and we don't know what memory that might be pointing at!
1334 static int nvme_disable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1336 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1337 dev
->ctrl_config
&= ~NVME_CC_ENABLE
;
1338 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1340 return nvme_wait_ready(dev
, cap
, false);
1343 static int nvme_enable_ctrl(struct nvme_dev
*dev
, u64 cap
)
1345 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1346 dev
->ctrl_config
|= NVME_CC_ENABLE
;
1347 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1349 return nvme_wait_ready(dev
, cap
, true);
1352 static int nvme_shutdown_ctrl(struct nvme_dev
*dev
)
1354 unsigned long timeout
;
1356 dev
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1357 dev
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1359 writel(dev
->ctrl_config
, &dev
->bar
->cc
);
1361 timeout
= SHUTDOWN_TIMEOUT
+ jiffies
;
1362 while ((readl(&dev
->bar
->csts
) & NVME_CSTS_SHST_MASK
) !=
1363 NVME_CSTS_SHST_CMPLT
) {
1365 if (fatal_signal_pending(current
))
1367 if (time_after(jiffies
, timeout
)) {
1368 dev_err(&dev
->pci_dev
->dev
,
1369 "Device shutdown incomplete; abort shutdown\n");
1377 static struct blk_mq_ops nvme_mq_admin_ops
= {
1378 .queue_rq
= nvme_admin_queue_rq
,
1379 .map_queue
= blk_mq_map_queue
,
1380 .init_hctx
= nvme_admin_init_hctx
,
1381 .exit_hctx
= nvme_exit_hctx
,
1382 .init_request
= nvme_admin_init_request
,
1383 .timeout
= nvme_timeout
,
1386 static struct blk_mq_ops nvme_mq_ops
= {
1387 .queue_rq
= nvme_queue_rq
,
1388 .map_queue
= blk_mq_map_queue
,
1389 .init_hctx
= nvme_init_hctx
,
1390 .exit_hctx
= nvme_exit_hctx
,
1391 .init_request
= nvme_init_request
,
1392 .timeout
= nvme_timeout
,
1395 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1397 if (dev
->admin_q
&& !blk_queue_dying(dev
->admin_q
)) {
1398 blk_cleanup_queue(dev
->admin_q
);
1399 blk_mq_free_tag_set(&dev
->admin_tagset
);
1403 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1405 if (!dev
->admin_q
) {
1406 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1407 dev
->admin_tagset
.nr_hw_queues
= 1;
1408 dev
->admin_tagset
.queue_depth
= NVME_AQ_DEPTH
- 1;
1409 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1410 dev
->admin_tagset
.numa_node
= dev_to_node(&dev
->pci_dev
->dev
);
1411 dev
->admin_tagset
.cmd_size
= sizeof(struct nvme_cmd_info
);
1412 dev
->admin_tagset
.driver_data
= dev
;
1414 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1417 dev
->admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1418 if (IS_ERR(dev
->admin_q
)) {
1419 blk_mq_free_tag_set(&dev
->admin_tagset
);
1422 if (!blk_get_queue(dev
->admin_q
)) {
1423 nvme_dev_remove_admin(dev
);
1427 blk_mq_unfreeze_queue(dev
->admin_q
);
1432 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1436 u64 cap
= readq(&dev
->bar
->cap
);
1437 struct nvme_queue
*nvmeq
;
1438 unsigned page_shift
= PAGE_SHIFT
;
1439 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12;
1440 unsigned dev_page_max
= NVME_CAP_MPSMAX(cap
) + 12;
1442 if (page_shift
< dev_page_min
) {
1443 dev_err(&dev
->pci_dev
->dev
,
1444 "Minimum device page size (%u) too large for "
1445 "host (%u)\n", 1 << dev_page_min
,
1449 if (page_shift
> dev_page_max
) {
1450 dev_info(&dev
->pci_dev
->dev
,
1451 "Device maximum page size (%u) smaller than "
1452 "host (%u); enabling work-around\n",
1453 1 << dev_page_max
, 1 << page_shift
);
1454 page_shift
= dev_page_max
;
1457 result
= nvme_disable_ctrl(dev
, cap
);
1461 nvmeq
= dev
->queues
[0];
1463 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1468 aqa
= nvmeq
->q_depth
- 1;
1471 dev
->page_size
= 1 << page_shift
;
1473 dev
->ctrl_config
= NVME_CC_CSS_NVM
;
1474 dev
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1475 dev
->ctrl_config
|= NVME_CC_ARB_RR
| NVME_CC_SHN_NONE
;
1476 dev
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1478 writel(aqa
, &dev
->bar
->aqa
);
1479 writeq(nvmeq
->sq_dma_addr
, &dev
->bar
->asq
);
1480 writeq(nvmeq
->cq_dma_addr
, &dev
->bar
->acq
);
1482 result
= nvme_enable_ctrl(dev
, cap
);
1486 nvmeq
->cq_vector
= 0;
1487 result
= queue_request_irq(dev
, nvmeq
, nvmeq
->irqname
);
1494 nvme_free_queues(dev
, 0);
1498 struct nvme_iod
*nvme_map_user_pages(struct nvme_dev
*dev
, int write
,
1499 unsigned long addr
, unsigned length
)
1501 int i
, err
, count
, nents
, offset
;
1502 struct scatterlist
*sg
;
1503 struct page
**pages
;
1504 struct nvme_iod
*iod
;
1507 return ERR_PTR(-EINVAL
);
1508 if (!length
|| length
> INT_MAX
- PAGE_SIZE
)
1509 return ERR_PTR(-EINVAL
);
1511 offset
= offset_in_page(addr
);
1512 count
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1513 pages
= kcalloc(count
, sizeof(*pages
), GFP_KERNEL
);
1515 return ERR_PTR(-ENOMEM
);
1517 err
= get_user_pages_fast(addr
, count
, 1, pages
);
1525 iod
= nvme_alloc_iod(count
, length
, dev
, GFP_KERNEL
);
1530 sg_init_table(sg
, count
);
1531 for (i
= 0; i
< count
; i
++) {
1532 sg_set_page(&sg
[i
], pages
[i
],
1533 min_t(unsigned, length
, PAGE_SIZE
- offset
),
1535 length
-= (PAGE_SIZE
- offset
);
1538 sg_mark_end(&sg
[i
- 1]);
1541 nents
= dma_map_sg(&dev
->pci_dev
->dev
, sg
, count
,
1542 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1552 for (i
= 0; i
< count
; i
++)
1555 return ERR_PTR(err
);
1558 void nvme_unmap_user_pages(struct nvme_dev
*dev
, int write
,
1559 struct nvme_iod
*iod
)
1563 dma_unmap_sg(&dev
->pci_dev
->dev
, iod
->sg
, iod
->nents
,
1564 write
? DMA_TO_DEVICE
: DMA_FROM_DEVICE
);
1566 for (i
= 0; i
< iod
->nents
; i
++)
1567 put_page(sg_page(&iod
->sg
[i
]));
1570 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1572 struct nvme_dev
*dev
= ns
->dev
;
1573 struct nvme_user_io io
;
1574 struct nvme_command c
;
1575 unsigned length
, meta_len
;
1577 struct nvme_iod
*iod
, *meta_iod
= NULL
;
1578 dma_addr_t meta_dma_addr
;
1579 void *meta
, *uninitialized_var(meta_mem
);
1581 if (copy_from_user(&io
, uio
, sizeof(io
)))
1583 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1584 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1586 if (meta_len
&& ((io
.metadata
& 3) || !io
.metadata
))
1589 switch (io
.opcode
) {
1590 case nvme_cmd_write
:
1592 case nvme_cmd_compare
:
1593 iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.addr
, length
);
1600 return PTR_ERR(iod
);
1602 memset(&c
, 0, sizeof(c
));
1603 c
.rw
.opcode
= io
.opcode
;
1604 c
.rw
.flags
= io
.flags
;
1605 c
.rw
.nsid
= cpu_to_le32(ns
->ns_id
);
1606 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1607 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1608 c
.rw
.control
= cpu_to_le16(io
.control
);
1609 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1610 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1611 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1612 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1615 meta_iod
= nvme_map_user_pages(dev
, io
.opcode
& 1, io
.metadata
,
1617 if (IS_ERR(meta_iod
)) {
1618 status
= PTR_ERR(meta_iod
);
1623 meta_mem
= dma_alloc_coherent(&dev
->pci_dev
->dev
, meta_len
,
1624 &meta_dma_addr
, GFP_KERNEL
);
1630 if (io
.opcode
& 1) {
1631 int meta_offset
= 0;
1633 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1634 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1635 meta_iod
->sg
[i
].offset
;
1636 memcpy(meta_mem
+ meta_offset
, meta
,
1637 meta_iod
->sg
[i
].length
);
1638 kunmap_atomic(meta
);
1639 meta_offset
+= meta_iod
->sg
[i
].length
;
1643 c
.rw
.metadata
= cpu_to_le64(meta_dma_addr
);
1646 length
= nvme_setup_prps(dev
, iod
, length
, GFP_KERNEL
);
1647 c
.rw
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
1648 c
.rw
.prp2
= cpu_to_le64(iod
->first_dma
);
1650 if (length
!= (io
.nblocks
+ 1) << ns
->lba_shift
)
1653 status
= nvme_submit_io_cmd(dev
, ns
, &c
, NULL
);
1656 if (status
== NVME_SC_SUCCESS
&& !(io
.opcode
& 1)) {
1657 int meta_offset
= 0;
1659 for (i
= 0; i
< meta_iod
->nents
; i
++) {
1660 meta
= kmap_atomic(sg_page(&meta_iod
->sg
[i
])) +
1661 meta_iod
->sg
[i
].offset
;
1662 memcpy(meta
, meta_mem
+ meta_offset
,
1663 meta_iod
->sg
[i
].length
);
1664 kunmap_atomic(meta
);
1665 meta_offset
+= meta_iod
->sg
[i
].length
;
1669 dma_free_coherent(&dev
->pci_dev
->dev
, meta_len
, meta_mem
,
1674 nvme_unmap_user_pages(dev
, io
.opcode
& 1, iod
);
1675 nvme_free_iod(dev
, iod
);
1678 nvme_unmap_user_pages(dev
, io
.opcode
& 1, meta_iod
);
1679 nvme_free_iod(dev
, meta_iod
);
1685 static int nvme_user_cmd(struct nvme_dev
*dev
, struct nvme_ns
*ns
,
1686 struct nvme_passthru_cmd __user
*ucmd
)
1688 struct nvme_passthru_cmd cmd
;
1689 struct nvme_command c
;
1691 struct nvme_iod
*uninitialized_var(iod
);
1694 if (!capable(CAP_SYS_ADMIN
))
1696 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1699 memset(&c
, 0, sizeof(c
));
1700 c
.common
.opcode
= cmd
.opcode
;
1701 c
.common
.flags
= cmd
.flags
;
1702 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1703 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1704 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1705 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1706 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1707 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1708 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1709 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1710 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1712 length
= cmd
.data_len
;
1714 iod
= nvme_map_user_pages(dev
, cmd
.opcode
& 1, cmd
.addr
,
1717 return PTR_ERR(iod
);
1718 length
= nvme_setup_prps(dev
, iod
, length
, GFP_KERNEL
);
1719 c
.common
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
1720 c
.common
.prp2
= cpu_to_le64(iod
->first_dma
);
1723 timeout
= cmd
.timeout_ms
? msecs_to_jiffies(cmd
.timeout_ms
) :
1726 if (length
!= cmd
.data_len
)
1729 struct request
*req
;
1731 req
= blk_mq_alloc_request(ns
->queue
, WRITE
,
1732 (GFP_KERNEL
|__GFP_WAIT
), false);
1734 status
= PTR_ERR(req
);
1736 status
= nvme_submit_sync_cmd(req
, &c
, &cmd
.result
,
1738 blk_mq_free_request(req
);
1741 status
= __nvme_submit_admin_cmd(dev
, &c
, &cmd
.result
, timeout
);
1744 nvme_unmap_user_pages(dev
, cmd
.opcode
& 1, iod
);
1745 nvme_free_iod(dev
, iod
);
1748 if ((status
>= 0) && copy_to_user(&ucmd
->result
, &cmd
.result
,
1749 sizeof(cmd
.result
)))
1755 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
, unsigned int cmd
,
1758 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1762 force_successful_syscall_return();
1764 case NVME_IOCTL_ADMIN_CMD
:
1765 return nvme_user_cmd(ns
->dev
, NULL
, (void __user
*)arg
);
1766 case NVME_IOCTL_IO_CMD
:
1767 return nvme_user_cmd(ns
->dev
, ns
, (void __user
*)arg
);
1768 case NVME_IOCTL_SUBMIT_IO
:
1769 return nvme_submit_io(ns
, (void __user
*)arg
);
1770 case SG_GET_VERSION_NUM
:
1771 return nvme_sg_get_version_num((void __user
*)arg
);
1773 return nvme_sg_io(ns
, (void __user
*)arg
);
1779 #ifdef CONFIG_COMPAT
1780 static int nvme_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1781 unsigned int cmd
, unsigned long arg
)
1785 return -ENOIOCTLCMD
;
1787 return nvme_ioctl(bdev
, mode
, cmd
, arg
);
1790 #define nvme_compat_ioctl NULL
1793 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1798 spin_lock(&dev_list_lock
);
1799 ns
= bdev
->bd_disk
->private_data
;
1802 else if (!kref_get_unless_zero(&ns
->dev
->kref
))
1804 spin_unlock(&dev_list_lock
);
1809 static void nvme_free_dev(struct kref
*kref
);
1811 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1813 struct nvme_ns
*ns
= disk
->private_data
;
1814 struct nvme_dev
*dev
= ns
->dev
;
1816 kref_put(&dev
->kref
, nvme_free_dev
);
1819 static int nvme_getgeo(struct block_device
*bd
, struct hd_geometry
*geo
)
1821 /* some standard values */
1822 geo
->heads
= 1 << 6;
1823 geo
->sectors
= 1 << 5;
1824 geo
->cylinders
= get_capacity(bd
->bd_disk
) >> 11;
1828 static int nvme_revalidate_disk(struct gendisk
*disk
)
1830 struct nvme_ns
*ns
= disk
->private_data
;
1831 struct nvme_dev
*dev
= ns
->dev
;
1832 struct nvme_id_ns
*id
;
1833 dma_addr_t dma_addr
;
1836 id
= dma_alloc_coherent(&dev
->pci_dev
->dev
, 4096, &dma_addr
,
1839 dev_warn(&dev
->pci_dev
->dev
, "%s: Memory alocation failure\n",
1844 if (nvme_identify(dev
, ns
->ns_id
, 0, dma_addr
))
1847 lbaf
= id
->flbas
& 0xf;
1848 ns
->lba_shift
= id
->lbaf
[lbaf
].ds
;
1850 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
1851 set_capacity(disk
, le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9));
1853 dma_free_coherent(&dev
->pci_dev
->dev
, 4096, id
, dma_addr
);
1857 static const struct block_device_operations nvme_fops
= {
1858 .owner
= THIS_MODULE
,
1859 .ioctl
= nvme_ioctl
,
1860 .compat_ioctl
= nvme_compat_ioctl
,
1862 .release
= nvme_release
,
1863 .getgeo
= nvme_getgeo
,
1864 .revalidate_disk
= nvme_revalidate_disk
,
1867 static int nvme_kthread(void *data
)
1869 struct nvme_dev
*dev
, *next
;
1871 while (!kthread_should_stop()) {
1872 set_current_state(TASK_INTERRUPTIBLE
);
1873 spin_lock(&dev_list_lock
);
1874 list_for_each_entry_safe(dev
, next
, &dev_list
, node
) {
1876 if (readl(&dev
->bar
->csts
) & NVME_CSTS_CFS
&&
1878 if (work_busy(&dev
->reset_work
))
1880 list_del_init(&dev
->node
);
1881 dev_warn(&dev
->pci_dev
->dev
,
1882 "Failed status: %x, reset controller\n",
1883 readl(&dev
->bar
->csts
));
1884 dev
->reset_workfn
= nvme_reset_failed_dev
;
1885 queue_work(nvme_workq
, &dev
->reset_work
);
1888 for (i
= 0; i
< dev
->queue_count
; i
++) {
1889 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
1892 spin_lock_irq(&nvmeq
->q_lock
);
1893 nvme_process_cq(nvmeq
);
1895 while ((i
== 0) && (dev
->event_limit
> 0)) {
1896 if (nvme_submit_async_admin_req(dev
))
1900 spin_unlock_irq(&nvmeq
->q_lock
);
1903 spin_unlock(&dev_list_lock
);
1904 schedule_timeout(round_jiffies_relative(HZ
));
1909 static void nvme_config_discard(struct nvme_ns
*ns
)
1911 u32 logical_block_size
= queue_logical_block_size(ns
->queue
);
1912 ns
->queue
->limits
.discard_zeroes_data
= 0;
1913 ns
->queue
->limits
.discard_alignment
= logical_block_size
;
1914 ns
->queue
->limits
.discard_granularity
= logical_block_size
;
1915 ns
->queue
->limits
.max_discard_sectors
= 0xffffffff;
1916 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, ns
->queue
);
1919 static struct nvme_ns
*nvme_alloc_ns(struct nvme_dev
*dev
, unsigned nsid
,
1920 struct nvme_id_ns
*id
, struct nvme_lba_range_type
*rt
)
1923 struct gendisk
*disk
;
1924 int node
= dev_to_node(&dev
->pci_dev
->dev
);
1927 if (rt
->attributes
& NVME_LBART_ATTRIB_HIDE
)
1930 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
1933 ns
->queue
= blk_mq_init_queue(&dev
->tagset
);
1934 if (IS_ERR(ns
->queue
))
1936 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, ns
->queue
);
1937 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
1938 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS
, ns
->queue
);
1940 ns
->queue
->queuedata
= ns
;
1942 disk
= alloc_disk_node(0, node
);
1944 goto out_free_queue
;
1948 lbaf
= id
->flbas
& 0xf;
1949 ns
->lba_shift
= id
->lbaf
[lbaf
].ds
;
1950 ns
->ms
= le16_to_cpu(id
->lbaf
[lbaf
].ms
);
1951 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
1952 if (dev
->max_hw_sectors
)
1953 blk_queue_max_hw_sectors(ns
->queue
, dev
->max_hw_sectors
);
1954 if (dev
->stripe_size
)
1955 blk_queue_chunk_sectors(ns
->queue
, dev
->stripe_size
>> 9);
1956 if (dev
->vwc
& NVME_CTRL_VWC_PRESENT
)
1957 blk_queue_flush(ns
->queue
, REQ_FLUSH
| REQ_FUA
);
1959 disk
->major
= nvme_major
;
1960 disk
->first_minor
= 0;
1961 disk
->fops
= &nvme_fops
;
1962 disk
->private_data
= ns
;
1963 disk
->queue
= ns
->queue
;
1964 disk
->driverfs_dev
= &dev
->pci_dev
->dev
;
1965 disk
->flags
= GENHD_FL_EXT_DEVT
;
1966 sprintf(disk
->disk_name
, "nvme%dn%d", dev
->instance
, nsid
);
1967 set_capacity(disk
, le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9));
1969 if (dev
->oncs
& NVME_CTRL_ONCS_DSM
)
1970 nvme_config_discard(ns
);
1975 blk_cleanup_queue(ns
->queue
);
1981 static void nvme_create_io_queues(struct nvme_dev
*dev
)
1985 for (i
= dev
->queue_count
; i
<= dev
->max_qid
; i
++)
1986 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
))
1989 for (i
= dev
->online_queues
; i
<= dev
->queue_count
- 1; i
++)
1990 if (nvme_create_queue(dev
->queues
[i
], i
))
1994 static int set_queue_count(struct nvme_dev
*dev
, int count
)
1998 u32 q_count
= (count
- 1) | ((count
- 1) << 16);
2000 status
= nvme_set_features(dev
, NVME_FEAT_NUM_QUEUES
, q_count
, 0,
2005 dev_err(&dev
->pci_dev
->dev
, "Could not set queue count (%d)\n",
2009 return min(result
& 0xffff, result
>> 16) + 1;
2012 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
2014 return 4096 + ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
2017 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2019 struct nvme_queue
*adminq
= dev
->queues
[0];
2020 struct pci_dev
*pdev
= dev
->pci_dev
;
2021 int result
, i
, vecs
, nr_io_queues
, size
;
2023 nr_io_queues
= num_possible_cpus();
2024 result
= set_queue_count(dev
, nr_io_queues
);
2027 if (result
< nr_io_queues
)
2028 nr_io_queues
= result
;
2030 size
= db_bar_size(dev
, nr_io_queues
);
2034 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
2037 if (!--nr_io_queues
)
2039 size
= db_bar_size(dev
, nr_io_queues
);
2041 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
2042 adminq
->q_db
= dev
->dbs
;
2045 /* Deregister the admin queue's interrupt */
2046 free_irq(dev
->entry
[0].vector
, adminq
);
2049 * If we enable msix early due to not intx, disable it again before
2050 * setting up the full range we need.
2053 pci_disable_msix(pdev
);
2055 for (i
= 0; i
< nr_io_queues
; i
++)
2056 dev
->entry
[i
].entry
= i
;
2057 vecs
= pci_enable_msix_range(pdev
, dev
->entry
, 1, nr_io_queues
);
2059 vecs
= pci_enable_msi_range(pdev
, 1, min(nr_io_queues
, 32));
2063 for (i
= 0; i
< vecs
; i
++)
2064 dev
->entry
[i
].vector
= i
+ pdev
->irq
;
2069 * Should investigate if there's a performance win from allocating
2070 * more queues than interrupt vectors; it might allow the submission
2071 * path to scale better, even if the receive path is limited by the
2072 * number of interrupts.
2074 nr_io_queues
= vecs
;
2075 dev
->max_qid
= nr_io_queues
;
2077 result
= queue_request_irq(dev
, adminq
, adminq
->irqname
);
2081 /* Free previously allocated queues that are no longer usable */
2082 nvme_free_queues(dev
, nr_io_queues
+ 1);
2083 nvme_create_io_queues(dev
);
2088 nvme_free_queues(dev
, 1);
2093 * Return: error value if an error occurred setting up the queues or calling
2094 * Identify Device. 0 if these succeeded, even if adding some of the
2095 * namespaces failed. At the moment, these failures are silent. TBD which
2096 * failures should be reported.
2098 static int nvme_dev_add(struct nvme_dev
*dev
)
2100 struct pci_dev
*pdev
= dev
->pci_dev
;
2104 struct nvme_id_ctrl
*ctrl
;
2105 struct nvme_id_ns
*id_ns
;
2107 dma_addr_t dma_addr
;
2108 int shift
= NVME_CAP_MPSMIN(readq(&dev
->bar
->cap
)) + 12;
2110 mem
= dma_alloc_coherent(&pdev
->dev
, 8192, &dma_addr
, GFP_KERNEL
);
2114 res
= nvme_identify(dev
, 0, 1, dma_addr
);
2116 dev_err(&pdev
->dev
, "Identify Controller failed (%d)\n", res
);
2122 nn
= le32_to_cpup(&ctrl
->nn
);
2123 dev
->oncs
= le16_to_cpup(&ctrl
->oncs
);
2124 dev
->abort_limit
= ctrl
->acl
+ 1;
2125 dev
->vwc
= ctrl
->vwc
;
2126 dev
->event_limit
= min(ctrl
->aerl
+ 1, 8);
2127 memcpy(dev
->serial
, ctrl
->sn
, sizeof(ctrl
->sn
));
2128 memcpy(dev
->model
, ctrl
->mn
, sizeof(ctrl
->mn
));
2129 memcpy(dev
->firmware_rev
, ctrl
->fr
, sizeof(ctrl
->fr
));
2131 dev
->max_hw_sectors
= 1 << (ctrl
->mdts
+ shift
- 9);
2132 if ((pdev
->vendor
== PCI_VENDOR_ID_INTEL
) &&
2133 (pdev
->device
== 0x0953) && ctrl
->vs
[3]) {
2134 unsigned int max_hw_sectors
;
2136 dev
->stripe_size
= 1 << (ctrl
->vs
[3] + shift
);
2137 max_hw_sectors
= dev
->stripe_size
>> (shift
- 9);
2138 if (dev
->max_hw_sectors
) {
2139 dev
->max_hw_sectors
= min(max_hw_sectors
,
2140 dev
->max_hw_sectors
);
2142 dev
->max_hw_sectors
= max_hw_sectors
;
2145 dev
->tagset
.ops
= &nvme_mq_ops
;
2146 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
2147 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
2148 dev
->tagset
.numa_node
= dev_to_node(&dev
->pci_dev
->dev
);
2149 dev
->tagset
.queue_depth
=
2150 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
2151 dev
->tagset
.cmd_size
= sizeof(struct nvme_cmd_info
);
2152 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
2153 dev
->tagset
.driver_data
= dev
;
2155 if (blk_mq_alloc_tag_set(&dev
->tagset
))
2159 for (i
= 1; i
<= nn
; i
++) {
2160 res
= nvme_identify(dev
, i
, 0, dma_addr
);
2164 if (id_ns
->ncap
== 0)
2167 res
= nvme_get_features(dev
, NVME_FEAT_LBA_RANGE
, i
,
2168 dma_addr
+ 4096, NULL
);
2170 memset(mem
+ 4096, 0, 4096);
2172 ns
= nvme_alloc_ns(dev
, i
, mem
, mem
+ 4096);
2174 list_add_tail(&ns
->list
, &dev
->namespaces
);
2176 list_for_each_entry(ns
, &dev
->namespaces
, list
)
2181 dma_free_coherent(&dev
->pci_dev
->dev
, 8192, mem
, dma_addr
);
2185 static int nvme_dev_map(struct nvme_dev
*dev
)
2188 int bars
, result
= -ENOMEM
;
2189 struct pci_dev
*pdev
= dev
->pci_dev
;
2191 if (pci_enable_device_mem(pdev
))
2194 dev
->entry
[0].vector
= pdev
->irq
;
2195 pci_set_master(pdev
);
2196 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
2200 if (pci_request_selected_regions(pdev
, bars
, "nvme"))
2203 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64)) &&
2204 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32)))
2207 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
2211 if (readl(&dev
->bar
->csts
) == -1) {
2217 * Some devices don't advertse INTx interrupts, pre-enable a single
2218 * MSIX vec for setup. We'll adjust this later.
2221 result
= pci_enable_msix(pdev
, dev
->entry
, 1);
2226 cap
= readq(&dev
->bar
->cap
);
2227 dev
->q_depth
= min_t(int, NVME_CAP_MQES(cap
) + 1, NVME_Q_DEPTH
);
2228 dev
->db_stride
= 1 << NVME_CAP_STRIDE(cap
);
2229 dev
->dbs
= ((void __iomem
*)dev
->bar
) + 4096;
2237 pci_release_regions(pdev
);
2239 pci_disable_device(pdev
);
2243 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2245 if (dev
->pci_dev
->msi_enabled
)
2246 pci_disable_msi(dev
->pci_dev
);
2247 else if (dev
->pci_dev
->msix_enabled
)
2248 pci_disable_msix(dev
->pci_dev
);
2253 pci_release_regions(dev
->pci_dev
);
2256 if (pci_is_enabled(dev
->pci_dev
))
2257 pci_disable_device(dev
->pci_dev
);
2260 struct nvme_delq_ctx
{
2261 struct task_struct
*waiter
;
2262 struct kthread_worker
*worker
;
2266 static void nvme_wait_dq(struct nvme_delq_ctx
*dq
, struct nvme_dev
*dev
)
2268 dq
->waiter
= current
;
2272 set_current_state(TASK_KILLABLE
);
2273 if (!atomic_read(&dq
->refcount
))
2275 if (!schedule_timeout(ADMIN_TIMEOUT
) ||
2276 fatal_signal_pending(current
)) {
2278 * Disable the controller first since we can't trust it
2279 * at this point, but leave the admin queue enabled
2280 * until all queue deletion requests are flushed.
2281 * FIXME: This may take a while if there are more h/w
2282 * queues than admin tags.
2284 set_current_state(TASK_RUNNING
);
2285 nvme_disable_ctrl(dev
, readq(&dev
->bar
->cap
));
2286 nvme_clear_queue(dev
->queues
[0]);
2287 flush_kthread_worker(dq
->worker
);
2288 nvme_disable_queue(dev
, 0);
2292 set_current_state(TASK_RUNNING
);
2295 static void nvme_put_dq(struct nvme_delq_ctx
*dq
)
2297 atomic_dec(&dq
->refcount
);
2299 wake_up_process(dq
->waiter
);
2302 static struct nvme_delq_ctx
*nvme_get_dq(struct nvme_delq_ctx
*dq
)
2304 atomic_inc(&dq
->refcount
);
2308 static void nvme_del_queue_end(struct nvme_queue
*nvmeq
)
2310 struct nvme_delq_ctx
*dq
= nvmeq
->cmdinfo
.ctx
;
2312 nvme_clear_queue(nvmeq
);
2316 static int adapter_async_del_queue(struct nvme_queue
*nvmeq
, u8 opcode
,
2317 kthread_work_func_t fn
)
2319 struct nvme_command c
;
2321 memset(&c
, 0, sizeof(c
));
2322 c
.delete_queue
.opcode
= opcode
;
2323 c
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2325 init_kthread_work(&nvmeq
->cmdinfo
.work
, fn
);
2326 return nvme_submit_admin_async_cmd(nvmeq
->dev
, &c
, &nvmeq
->cmdinfo
,
2330 static void nvme_del_cq_work_handler(struct kthread_work
*work
)
2332 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2334 nvme_del_queue_end(nvmeq
);
2337 static int nvme_delete_cq(struct nvme_queue
*nvmeq
)
2339 return adapter_async_del_queue(nvmeq
, nvme_admin_delete_cq
,
2340 nvme_del_cq_work_handler
);
2343 static void nvme_del_sq_work_handler(struct kthread_work
*work
)
2345 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2347 int status
= nvmeq
->cmdinfo
.status
;
2350 status
= nvme_delete_cq(nvmeq
);
2352 nvme_del_queue_end(nvmeq
);
2355 static int nvme_delete_sq(struct nvme_queue
*nvmeq
)
2357 return adapter_async_del_queue(nvmeq
, nvme_admin_delete_sq
,
2358 nvme_del_sq_work_handler
);
2361 static void nvme_del_queue_start(struct kthread_work
*work
)
2363 struct nvme_queue
*nvmeq
= container_of(work
, struct nvme_queue
,
2365 if (nvme_delete_sq(nvmeq
))
2366 nvme_del_queue_end(nvmeq
);
2369 static void nvme_disable_io_queues(struct nvme_dev
*dev
)
2372 DEFINE_KTHREAD_WORKER_ONSTACK(worker
);
2373 struct nvme_delq_ctx dq
;
2374 struct task_struct
*kworker_task
= kthread_run(kthread_worker_fn
,
2375 &worker
, "nvme%d", dev
->instance
);
2377 if (IS_ERR(kworker_task
)) {
2378 dev_err(&dev
->pci_dev
->dev
,
2379 "Failed to create queue del task\n");
2380 for (i
= dev
->queue_count
- 1; i
> 0; i
--)
2381 nvme_disable_queue(dev
, i
);
2386 atomic_set(&dq
.refcount
, 0);
2387 dq
.worker
= &worker
;
2388 for (i
= dev
->queue_count
- 1; i
> 0; i
--) {
2389 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
2391 if (nvme_suspend_queue(nvmeq
))
2393 nvmeq
->cmdinfo
.ctx
= nvme_get_dq(&dq
);
2394 nvmeq
->cmdinfo
.worker
= dq
.worker
;
2395 init_kthread_work(&nvmeq
->cmdinfo
.work
, nvme_del_queue_start
);
2396 queue_kthread_work(dq
.worker
, &nvmeq
->cmdinfo
.work
);
2398 nvme_wait_dq(&dq
, dev
);
2399 kthread_stop(kworker_task
);
2403 * Remove the node from the device list and check
2404 * for whether or not we need to stop the nvme_thread.
2406 static void nvme_dev_list_remove(struct nvme_dev
*dev
)
2408 struct task_struct
*tmp
= NULL
;
2410 spin_lock(&dev_list_lock
);
2411 list_del_init(&dev
->node
);
2412 if (list_empty(&dev_list
) && !IS_ERR_OR_NULL(nvme_thread
)) {
2416 spin_unlock(&dev_list_lock
);
2422 static void nvme_freeze_queues(struct nvme_dev
*dev
)
2426 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2427 blk_mq_freeze_queue_start(ns
->queue
);
2429 spin_lock(ns
->queue
->queue_lock
);
2430 queue_flag_set(QUEUE_FLAG_STOPPED
, ns
->queue
);
2431 spin_unlock(ns
->queue
->queue_lock
);
2433 blk_mq_cancel_requeue_work(ns
->queue
);
2434 blk_mq_stop_hw_queues(ns
->queue
);
2438 static void nvme_unfreeze_queues(struct nvme_dev
*dev
)
2442 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2443 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED
, ns
->queue
);
2444 blk_mq_unfreeze_queue(ns
->queue
);
2445 blk_mq_start_stopped_hw_queues(ns
->queue
, true);
2446 blk_mq_kick_requeue_list(ns
->queue
);
2450 static void nvme_dev_shutdown(struct nvme_dev
*dev
)
2455 dev
->initialized
= 0;
2456 nvme_dev_list_remove(dev
);
2459 nvme_freeze_queues(dev
);
2460 csts
= readl(&dev
->bar
->csts
);
2462 if (csts
& NVME_CSTS_CFS
|| !(csts
& NVME_CSTS_RDY
)) {
2463 for (i
= dev
->queue_count
- 1; i
>= 0; i
--) {
2464 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
2465 nvme_suspend_queue(nvmeq
);
2466 nvme_clear_queue(nvmeq
);
2469 nvme_disable_io_queues(dev
);
2470 nvme_shutdown_ctrl(dev
);
2471 nvme_disable_queue(dev
, 0);
2473 nvme_dev_unmap(dev
);
2476 static void nvme_dev_remove(struct nvme_dev
*dev
)
2480 list_for_each_entry(ns
, &dev
->namespaces
, list
) {
2481 if (ns
->disk
->flags
& GENHD_FL_UP
)
2482 del_gendisk(ns
->disk
);
2483 if (!blk_queue_dying(ns
->queue
)) {
2484 blk_mq_abort_requeue_list(ns
->queue
);
2485 blk_cleanup_queue(ns
->queue
);
2490 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2492 struct device
*dmadev
= &dev
->pci_dev
->dev
;
2493 dev
->prp_page_pool
= dma_pool_create("prp list page", dmadev
,
2494 PAGE_SIZE
, PAGE_SIZE
, 0);
2495 if (!dev
->prp_page_pool
)
2498 /* Optimisation for I/Os between 4k and 128k */
2499 dev
->prp_small_pool
= dma_pool_create("prp list 256", dmadev
,
2501 if (!dev
->prp_small_pool
) {
2502 dma_pool_destroy(dev
->prp_page_pool
);
2508 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2510 dma_pool_destroy(dev
->prp_page_pool
);
2511 dma_pool_destroy(dev
->prp_small_pool
);
2514 static DEFINE_IDA(nvme_instance_ida
);
2516 static int nvme_set_instance(struct nvme_dev
*dev
)
2518 int instance
, error
;
2521 if (!ida_pre_get(&nvme_instance_ida
, GFP_KERNEL
))
2524 spin_lock(&dev_list_lock
);
2525 error
= ida_get_new(&nvme_instance_ida
, &instance
);
2526 spin_unlock(&dev_list_lock
);
2527 } while (error
== -EAGAIN
);
2532 dev
->instance
= instance
;
2536 static void nvme_release_instance(struct nvme_dev
*dev
)
2538 spin_lock(&dev_list_lock
);
2539 ida_remove(&nvme_instance_ida
, dev
->instance
);
2540 spin_unlock(&dev_list_lock
);
2543 static void nvme_free_namespaces(struct nvme_dev
*dev
)
2545 struct nvme_ns
*ns
, *next
;
2547 list_for_each_entry_safe(ns
, next
, &dev
->namespaces
, list
) {
2548 list_del(&ns
->list
);
2550 spin_lock(&dev_list_lock
);
2551 ns
->disk
->private_data
= NULL
;
2552 spin_unlock(&dev_list_lock
);
2559 static void nvme_free_dev(struct kref
*kref
)
2561 struct nvme_dev
*dev
= container_of(kref
, struct nvme_dev
, kref
);
2563 pci_dev_put(dev
->pci_dev
);
2564 nvme_free_namespaces(dev
);
2565 nvme_release_instance(dev
);
2566 blk_mq_free_tag_set(&dev
->tagset
);
2567 blk_put_queue(dev
->admin_q
);
2573 static int nvme_dev_open(struct inode
*inode
, struct file
*f
)
2575 struct nvme_dev
*dev
= container_of(f
->private_data
, struct nvme_dev
,
2577 kref_get(&dev
->kref
);
2578 f
->private_data
= dev
;
2582 static int nvme_dev_release(struct inode
*inode
, struct file
*f
)
2584 struct nvme_dev
*dev
= f
->private_data
;
2585 kref_put(&dev
->kref
, nvme_free_dev
);
2589 static long nvme_dev_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2591 struct nvme_dev
*dev
= f
->private_data
;
2595 case NVME_IOCTL_ADMIN_CMD
:
2596 return nvme_user_cmd(dev
, NULL
, (void __user
*)arg
);
2597 case NVME_IOCTL_IO_CMD
:
2598 if (list_empty(&dev
->namespaces
))
2600 ns
= list_first_entry(&dev
->namespaces
, struct nvme_ns
, list
);
2601 return nvme_user_cmd(dev
, ns
, (void __user
*)arg
);
2607 static const struct file_operations nvme_dev_fops
= {
2608 .owner
= THIS_MODULE
,
2609 .open
= nvme_dev_open
,
2610 .release
= nvme_dev_release
,
2611 .unlocked_ioctl
= nvme_dev_ioctl
,
2612 .compat_ioctl
= nvme_dev_ioctl
,
2615 static void nvme_set_irq_hints(struct nvme_dev
*dev
)
2617 struct nvme_queue
*nvmeq
;
2620 for (i
= 0; i
< dev
->online_queues
; i
++) {
2621 nvmeq
= dev
->queues
[i
];
2626 irq_set_affinity_hint(dev
->entry
[nvmeq
->cq_vector
].vector
,
2627 nvmeq
->hctx
->cpumask
);
2631 static int nvme_dev_start(struct nvme_dev
*dev
)
2634 bool start_thread
= false;
2636 result
= nvme_dev_map(dev
);
2640 result
= nvme_configure_admin_queue(dev
);
2644 spin_lock(&dev_list_lock
);
2645 if (list_empty(&dev_list
) && IS_ERR_OR_NULL(nvme_thread
)) {
2646 start_thread
= true;
2649 list_add(&dev
->node
, &dev_list
);
2650 spin_unlock(&dev_list_lock
);
2653 nvme_thread
= kthread_run(nvme_kthread
, NULL
, "nvme");
2654 wake_up_all(&nvme_kthread_wait
);
2656 wait_event_killable(nvme_kthread_wait
, nvme_thread
);
2658 if (IS_ERR_OR_NULL(nvme_thread
)) {
2659 result
= nvme_thread
? PTR_ERR(nvme_thread
) : -EINTR
;
2663 nvme_init_queue(dev
->queues
[0], 0);
2664 result
= nvme_alloc_admin_tags(dev
);
2668 result
= nvme_setup_io_queues(dev
);
2672 nvme_set_irq_hints(dev
);
2677 nvme_dev_remove_admin(dev
);
2679 nvme_disable_queue(dev
, 0);
2680 nvme_dev_list_remove(dev
);
2682 nvme_dev_unmap(dev
);
2686 static int nvme_remove_dead_ctrl(void *arg
)
2688 struct nvme_dev
*dev
= (struct nvme_dev
*)arg
;
2689 struct pci_dev
*pdev
= dev
->pci_dev
;
2691 if (pci_get_drvdata(pdev
))
2692 pci_stop_and_remove_bus_device_locked(pdev
);
2693 kref_put(&dev
->kref
, nvme_free_dev
);
2697 static void nvme_remove_disks(struct work_struct
*ws
)
2699 struct nvme_dev
*dev
= container_of(ws
, struct nvme_dev
, reset_work
);
2701 nvme_free_queues(dev
, 1);
2702 nvme_dev_remove(dev
);
2705 static int nvme_dev_resume(struct nvme_dev
*dev
)
2709 ret
= nvme_dev_start(dev
);
2712 if (dev
->online_queues
< 2) {
2713 spin_lock(&dev_list_lock
);
2714 dev
->reset_workfn
= nvme_remove_disks
;
2715 queue_work(nvme_workq
, &dev
->reset_work
);
2716 spin_unlock(&dev_list_lock
);
2718 nvme_unfreeze_queues(dev
);
2719 nvme_set_irq_hints(dev
);
2721 dev
->initialized
= 1;
2725 static void nvme_dev_reset(struct nvme_dev
*dev
)
2727 nvme_dev_shutdown(dev
);
2728 if (nvme_dev_resume(dev
)) {
2729 dev_warn(&dev
->pci_dev
->dev
, "Device failed to resume\n");
2730 kref_get(&dev
->kref
);
2731 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl
, dev
, "nvme%d",
2733 dev_err(&dev
->pci_dev
->dev
,
2734 "Failed to start controller remove task\n");
2735 kref_put(&dev
->kref
, nvme_free_dev
);
2740 static void nvme_reset_failed_dev(struct work_struct
*ws
)
2742 struct nvme_dev
*dev
= container_of(ws
, struct nvme_dev
, reset_work
);
2743 nvme_dev_reset(dev
);
2746 static void nvme_reset_workfn(struct work_struct
*work
)
2748 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, reset_work
);
2749 dev
->reset_workfn(work
);
2752 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2754 int node
, result
= -ENOMEM
;
2755 struct nvme_dev
*dev
;
2757 node
= dev_to_node(&pdev
->dev
);
2758 if (node
== NUMA_NO_NODE
)
2759 set_dev_node(&pdev
->dev
, 0);
2761 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
2764 dev
->entry
= kzalloc_node(num_possible_cpus() * sizeof(*dev
->entry
),
2768 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2773 INIT_LIST_HEAD(&dev
->namespaces
);
2774 dev
->reset_workfn
= nvme_reset_failed_dev
;
2775 INIT_WORK(&dev
->reset_work
, nvme_reset_workfn
);
2776 dev
->pci_dev
= pci_dev_get(pdev
);
2777 pci_set_drvdata(pdev
, dev
);
2778 result
= nvme_set_instance(dev
);
2782 result
= nvme_setup_prp_pools(dev
);
2786 kref_init(&dev
->kref
);
2787 result
= nvme_dev_start(dev
);
2791 if (dev
->online_queues
> 1)
2792 result
= nvme_dev_add(dev
);
2796 scnprintf(dev
->name
, sizeof(dev
->name
), "nvme%d", dev
->instance
);
2797 dev
->miscdev
.minor
= MISC_DYNAMIC_MINOR
;
2798 dev
->miscdev
.parent
= &pdev
->dev
;
2799 dev
->miscdev
.name
= dev
->name
;
2800 dev
->miscdev
.fops
= &nvme_dev_fops
;
2801 result
= misc_register(&dev
->miscdev
);
2805 nvme_set_irq_hints(dev
);
2807 dev
->initialized
= 1;
2811 nvme_dev_remove(dev
);
2812 nvme_dev_remove_admin(dev
);
2813 nvme_free_namespaces(dev
);
2815 nvme_dev_shutdown(dev
);
2817 nvme_free_queues(dev
, 0);
2818 nvme_release_prp_pools(dev
);
2820 nvme_release_instance(dev
);
2822 pci_dev_put(dev
->pci_dev
);
2830 static void nvme_reset_notify(struct pci_dev
*pdev
, bool prepare
)
2832 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2835 nvme_dev_shutdown(dev
);
2837 nvme_dev_resume(dev
);
2840 static void nvme_shutdown(struct pci_dev
*pdev
)
2842 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2843 nvme_dev_shutdown(dev
);
2846 static void nvme_remove(struct pci_dev
*pdev
)
2848 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2850 spin_lock(&dev_list_lock
);
2851 list_del_init(&dev
->node
);
2852 spin_unlock(&dev_list_lock
);
2854 pci_set_drvdata(pdev
, NULL
);
2855 flush_work(&dev
->reset_work
);
2856 misc_deregister(&dev
->miscdev
);
2857 nvme_dev_shutdown(dev
);
2858 nvme_dev_remove(dev
);
2859 nvme_dev_remove_admin(dev
);
2860 nvme_free_queues(dev
, 0);
2861 nvme_release_prp_pools(dev
);
2862 kref_put(&dev
->kref
, nvme_free_dev
);
2865 /* These functions are yet to be implemented */
2866 #define nvme_error_detected NULL
2867 #define nvme_dump_registers NULL
2868 #define nvme_link_reset NULL
2869 #define nvme_slot_reset NULL
2870 #define nvme_error_resume NULL
2872 #ifdef CONFIG_PM_SLEEP
2873 static int nvme_suspend(struct device
*dev
)
2875 struct pci_dev
*pdev
= to_pci_dev(dev
);
2876 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2878 nvme_dev_shutdown(ndev
);
2882 static int nvme_resume(struct device
*dev
)
2884 struct pci_dev
*pdev
= to_pci_dev(dev
);
2885 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2887 if (nvme_dev_resume(ndev
) && !work_busy(&ndev
->reset_work
)) {
2888 ndev
->reset_workfn
= nvme_reset_failed_dev
;
2889 queue_work(nvme_workq
, &ndev
->reset_work
);
2895 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2897 static const struct pci_error_handlers nvme_err_handler
= {
2898 .error_detected
= nvme_error_detected
,
2899 .mmio_enabled
= nvme_dump_registers
,
2900 .link_reset
= nvme_link_reset
,
2901 .slot_reset
= nvme_slot_reset
,
2902 .resume
= nvme_error_resume
,
2903 .reset_notify
= nvme_reset_notify
,
2906 /* Move to pci_ids.h later */
2907 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2909 static const struct pci_device_id nvme_id_table
[] = {
2910 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2913 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2915 static struct pci_driver nvme_driver
= {
2917 .id_table
= nvme_id_table
,
2918 .probe
= nvme_probe
,
2919 .remove
= nvme_remove
,
2920 .shutdown
= nvme_shutdown
,
2922 .pm
= &nvme_dev_pm_ops
,
2924 .err_handler
= &nvme_err_handler
,
2927 static int __init
nvme_init(void)
2931 init_waitqueue_head(&nvme_kthread_wait
);
2933 nvme_workq
= create_singlethread_workqueue("nvme");
2937 result
= register_blkdev(nvme_major
, "nvme");
2940 else if (result
> 0)
2941 nvme_major
= result
;
2943 result
= pci_register_driver(&nvme_driver
);
2945 goto unregister_blkdev
;
2949 unregister_blkdev(nvme_major
, "nvme");
2951 destroy_workqueue(nvme_workq
);
2955 static void __exit
nvme_exit(void)
2957 pci_unregister_driver(&nvme_driver
);
2958 unregister_hotcpu_notifier(&nvme_nb
);
2959 unregister_blkdev(nvme_major
, "nvme");
2960 destroy_workqueue(nvme_workq
);
2961 BUG_ON(nvme_thread
&& !IS_ERR(nvme_thread
));
2965 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2966 MODULE_LICENSE("GPL");
2967 MODULE_VERSION("1.0");
2968 module_init(nvme_init
);
2969 module_exit(nvme_exit
);