1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
88 #include <linux/uaccess.h>
91 /* One semaphore structure for each semaphore in the system. */
93 int semval
; /* current value */
95 * PID of the process that last modified the semaphore. For
96 * Linux, specifically these are:
98 * - semctl, via SETVAL and SETALL.
99 * - at task exit when performing undo adjustments (see exit_sem).
102 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
103 struct list_head pending_alter
; /* pending single-sop operations */
104 /* that alter the semaphore */
105 struct list_head pending_const
; /* pending single-sop operations */
106 /* that do not alter the semaphore*/
107 time_t sem_otime
; /* candidate for sem_otime */
108 } ____cacheline_aligned_in_smp
;
110 /* One sem_array data structure for each set of semaphores in the system. */
112 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
113 time64_t sem_ctime
; /* create/last semctl() time */
114 struct list_head pending_alter
; /* pending operations */
115 /* that alter the array */
116 struct list_head pending_const
; /* pending complex operations */
117 /* that do not alter semvals */
118 struct list_head list_id
; /* undo requests on this array */
119 int sem_nsems
; /* no. of semaphores in array */
120 int complex_count
; /* pending complex operations */
121 unsigned int use_global_lock
;/* >0: global lock required */
124 } __randomize_layout
;
126 /* One queue for each sleeping process in the system. */
128 struct list_head list
; /* queue of pending operations */
129 struct task_struct
*sleeper
; /* this process */
130 struct sem_undo
*undo
; /* undo structure */
131 struct pid
*pid
; /* process id of requesting process */
132 int status
; /* completion status of operation */
133 struct sembuf
*sops
; /* array of pending operations */
134 struct sembuf
*blocking
; /* the operation that blocked */
135 int nsops
; /* number of operations */
136 bool alter
; /* does *sops alter the array? */
137 bool dupsop
; /* sops on more than one sem_num */
140 /* Each task has a list of undo requests. They are executed automatically
141 * when the process exits.
144 struct list_head list_proc
; /* per-process list: *
145 * all undos from one process
147 struct rcu_head rcu
; /* rcu struct for sem_undo */
148 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
149 struct list_head list_id
; /* per semaphore array list:
150 * all undos for one array */
151 int semid
; /* semaphore set identifier */
152 short *semadj
; /* array of adjustments */
153 /* one per semaphore */
156 /* sem_undo_list controls shared access to the list of sem_undo structures
157 * that may be shared among all a CLONE_SYSVSEM task group.
159 struct sem_undo_list
{
162 struct list_head list_proc
;
166 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
168 static int newary(struct ipc_namespace
*, struct ipc_params
*);
169 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
170 #ifdef CONFIG_PROC_FS
171 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
174 #define SEMMSL_FAST 256 /* 512 bytes on stack */
175 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
178 * Switching from the mode suitable for simple ops
179 * to the mode for complex ops is costly. Therefore:
180 * use some hysteresis
182 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186 * a) global sem_lock() for read/write
188 * sem_array.complex_count,
189 * sem_array.pending{_alter,_const},
192 * b) global or semaphore sem_lock() for read/write:
193 * sem_array.sems[i].pending_{const,alter}:
196 * sem_undo_list.list_proc:
197 * * undo_list->lock for write
200 * * global sem_lock() for write
201 * * either local or global sem_lock() for read.
204 * Most ordering is enforced by using spin_lock() and spin_unlock().
205 * The special case is use_global_lock:
206 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
207 * using smp_store_release().
208 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
209 * smp_load_acquire().
210 * Setting it from 0 to non-zero must be ordered with regards to
211 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
212 * is inside a spin_lock() and after a write from 0 to non-zero a
213 * spin_lock()+spin_unlock() is done.
216 #define sc_semmsl sem_ctls[0]
217 #define sc_semmns sem_ctls[1]
218 #define sc_semopm sem_ctls[2]
219 #define sc_semmni sem_ctls[3]
221 int sem_init_ns(struct ipc_namespace
*ns
)
223 ns
->sc_semmsl
= SEMMSL
;
224 ns
->sc_semmns
= SEMMNS
;
225 ns
->sc_semopm
= SEMOPM
;
226 ns
->sc_semmni
= SEMMNI
;
228 return ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
232 void sem_exit_ns(struct ipc_namespace
*ns
)
234 free_ipcs(ns
, &sem_ids(ns
), freeary
);
235 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
236 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
240 int __init
sem_init(void)
242 const int err
= sem_init_ns(&init_ipc_ns
);
244 ipc_init_proc_interface("sysvipc/sem",
245 " key semid perms nsems uid gid cuid cgid otime ctime\n",
246 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
251 * unmerge_queues - unmerge queues, if possible.
252 * @sma: semaphore array
254 * The function unmerges the wait queues if complex_count is 0.
255 * It must be called prior to dropping the global semaphore array lock.
257 static void unmerge_queues(struct sem_array
*sma
)
259 struct sem_queue
*q
, *tq
;
261 /* complex operations still around? */
262 if (sma
->complex_count
)
265 * We will switch back to simple mode.
266 * Move all pending operation back into the per-semaphore
269 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
271 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
273 list_add_tail(&q
->list
, &curr
->pending_alter
);
275 INIT_LIST_HEAD(&sma
->pending_alter
);
279 * merge_queues - merge single semop queues into global queue
280 * @sma: semaphore array
282 * This function merges all per-semaphore queues into the global queue.
283 * It is necessary to achieve FIFO ordering for the pending single-sop
284 * operations when a multi-semop operation must sleep.
285 * Only the alter operations must be moved, the const operations can stay.
287 static void merge_queues(struct sem_array
*sma
)
290 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
291 struct sem
*sem
= &sma
->sems
[i
];
293 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
297 static void sem_rcu_free(struct rcu_head
*head
)
299 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
300 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
302 security_sem_free(&sma
->sem_perm
);
307 * Enter the mode suitable for non-simple operations:
308 * Caller must own sem_perm.lock.
310 static void complexmode_enter(struct sem_array
*sma
)
315 if (sma
->use_global_lock
> 0) {
317 * We are already in global lock mode.
318 * Nothing to do, just reset the
319 * counter until we return to simple mode.
321 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
324 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
326 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
328 spin_lock(&sem
->lock
);
329 spin_unlock(&sem
->lock
);
334 * Try to leave the mode that disallows simple operations:
335 * Caller must own sem_perm.lock.
337 static void complexmode_tryleave(struct sem_array
*sma
)
339 if (sma
->complex_count
) {
340 /* Complex ops are sleeping.
341 * We must stay in complex mode
345 if (sma
->use_global_lock
== 1) {
347 * Immediately after setting use_global_lock to 0,
348 * a simple op can start. Thus: all memory writes
349 * performed by the current operation must be visible
350 * before we set use_global_lock to 0.
352 smp_store_release(&sma
->use_global_lock
, 0);
354 sma
->use_global_lock
--;
358 #define SEM_GLOBAL_LOCK (-1)
360 * If the request contains only one semaphore operation, and there are
361 * no complex transactions pending, lock only the semaphore involved.
362 * Otherwise, lock the entire semaphore array, since we either have
363 * multiple semaphores in our own semops, or we need to look at
364 * semaphores from other pending complex operations.
366 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
372 /* Complex operation - acquire a full lock */
373 ipc_lock_object(&sma
->sem_perm
);
375 /* Prevent parallel simple ops */
376 complexmode_enter(sma
);
377 return SEM_GLOBAL_LOCK
;
381 * Only one semaphore affected - try to optimize locking.
382 * Optimized locking is possible if no complex operation
383 * is either enqueued or processed right now.
385 * Both facts are tracked by use_global_mode.
387 sem
= &sma
->sems
[sops
->sem_num
];
390 * Initial check for use_global_lock. Just an optimization,
391 * no locking, no memory barrier.
393 if (!sma
->use_global_lock
) {
395 * It appears that no complex operation is around.
396 * Acquire the per-semaphore lock.
398 spin_lock(&sem
->lock
);
400 /* pairs with smp_store_release() */
401 if (!smp_load_acquire(&sma
->use_global_lock
)) {
402 /* fast path successful! */
403 return sops
->sem_num
;
405 spin_unlock(&sem
->lock
);
408 /* slow path: acquire the full lock */
409 ipc_lock_object(&sma
->sem_perm
);
411 if (sma
->use_global_lock
== 0) {
413 * The use_global_lock mode ended while we waited for
414 * sma->sem_perm.lock. Thus we must switch to locking
416 * Unlike in the fast path, there is no need to recheck
417 * sma->use_global_lock after we have acquired sem->lock:
418 * We own sma->sem_perm.lock, thus use_global_lock cannot
421 spin_lock(&sem
->lock
);
423 ipc_unlock_object(&sma
->sem_perm
);
424 return sops
->sem_num
;
427 * Not a false alarm, thus continue to use the global lock
428 * mode. No need for complexmode_enter(), this was done by
429 * the caller that has set use_global_mode to non-zero.
431 return SEM_GLOBAL_LOCK
;
435 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
437 if (locknum
== SEM_GLOBAL_LOCK
) {
439 complexmode_tryleave(sma
);
440 ipc_unlock_object(&sma
->sem_perm
);
442 struct sem
*sem
= &sma
->sems
[locknum
];
443 spin_unlock(&sem
->lock
);
448 * sem_lock_(check_) routines are called in the paths where the rwsem
451 * The caller holds the RCU read lock.
453 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
455 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
458 return ERR_CAST(ipcp
);
460 return container_of(ipcp
, struct sem_array
, sem_perm
);
463 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
466 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
469 return ERR_CAST(ipcp
);
471 return container_of(ipcp
, struct sem_array
, sem_perm
);
474 static inline void sem_lock_and_putref(struct sem_array
*sma
)
476 sem_lock(sma
, NULL
, -1);
477 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
480 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
482 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
485 static struct sem_array
*sem_alloc(size_t nsems
)
487 struct sem_array
*sma
;
490 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
493 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
494 sma
= kvmalloc(size
, GFP_KERNEL
);
498 memset(sma
, 0, size
);
504 * newary - Create a new semaphore set
506 * @params: ptr to the structure that contains key, semflg and nsems
508 * Called with sem_ids.rwsem held (as a writer)
510 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
513 struct sem_array
*sma
;
514 key_t key
= params
->key
;
515 int nsems
= params
->u
.nsems
;
516 int semflg
= params
->flg
;
521 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
524 sma
= sem_alloc(nsems
);
528 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
529 sma
->sem_perm
.key
= key
;
531 sma
->sem_perm
.security
= NULL
;
532 retval
= security_sem_alloc(&sma
->sem_perm
);
538 for (i
= 0; i
< nsems
; i
++) {
539 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
540 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
541 spin_lock_init(&sma
->sems
[i
].lock
);
544 sma
->complex_count
= 0;
545 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
546 INIT_LIST_HEAD(&sma
->pending_alter
);
547 INIT_LIST_HEAD(&sma
->pending_const
);
548 INIT_LIST_HEAD(&sma
->list_id
);
549 sma
->sem_nsems
= nsems
;
550 sma
->sem_ctime
= ktime_get_real_seconds();
552 /* ipc_addid() locks sma upon success. */
553 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
555 call_rcu(&sma
->sem_perm
.rcu
, sem_rcu_free
);
558 ns
->used_sems
+= nsems
;
563 return sma
->sem_perm
.id
;
568 * Called with sem_ids.rwsem and ipcp locked.
570 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
571 struct ipc_params
*params
)
573 struct sem_array
*sma
;
575 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
576 if (params
->u
.nsems
> sma
->sem_nsems
)
582 long ksys_semget(key_t key
, int nsems
, int semflg
)
584 struct ipc_namespace
*ns
;
585 static const struct ipc_ops sem_ops
= {
587 .associate
= security_sem_associate
,
588 .more_checks
= sem_more_checks
,
590 struct ipc_params sem_params
;
592 ns
= current
->nsproxy
->ipc_ns
;
594 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
597 sem_params
.key
= key
;
598 sem_params
.flg
= semflg
;
599 sem_params
.u
.nsems
= nsems
;
601 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
604 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
606 return ksys_semget(key
, nsems
, semflg
);
610 * perform_atomic_semop[_slow] - Attempt to perform semaphore
611 * operations on a given array.
612 * @sma: semaphore array
613 * @q: struct sem_queue that describes the operation
615 * Caller blocking are as follows, based the value
616 * indicated by the semaphore operation (sem_op):
618 * (1) >0 never blocks.
619 * (2) 0 (wait-for-zero operation): semval is non-zero.
620 * (3) <0 attempting to decrement semval to a value smaller than zero.
622 * Returns 0 if the operation was possible.
623 * Returns 1 if the operation is impossible, the caller must sleep.
624 * Returns <0 for error codes.
626 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
628 int result
, sem_op
, nsops
;
639 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
640 curr
= &sma
->sems
[sop
->sem_num
];
641 sem_op
= sop
->sem_op
;
642 result
= curr
->semval
;
644 if (!sem_op
&& result
)
653 if (sop
->sem_flg
& SEM_UNDO
) {
654 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
655 /* Exceeding the undo range is an error. */
656 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
658 un
->semadj
[sop
->sem_num
] = undo
;
661 curr
->semval
= result
;
666 while (sop
>= sops
) {
667 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
680 if (sop
->sem_flg
& IPC_NOWAIT
)
687 while (sop
>= sops
) {
688 sem_op
= sop
->sem_op
;
689 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
690 if (sop
->sem_flg
& SEM_UNDO
)
691 un
->semadj
[sop
->sem_num
] += sem_op
;
698 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
700 int result
, sem_op
, nsops
;
710 if (unlikely(q
->dupsop
))
711 return perform_atomic_semop_slow(sma
, q
);
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
719 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
720 curr
= &sma
->sems
[sop
->sem_num
];
721 sem_op
= sop
->sem_op
;
722 result
= curr
->semval
;
724 if (!sem_op
&& result
)
725 goto would_block
; /* wait-for-zero */
734 if (sop
->sem_flg
& SEM_UNDO
) {
735 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
737 /* Exceeding the undo range is an error. */
738 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
743 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
744 curr
= &sma
->sems
[sop
->sem_num
];
745 sem_op
= sop
->sem_op
;
746 result
= curr
->semval
;
748 if (sop
->sem_flg
& SEM_UNDO
) {
749 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
751 un
->semadj
[sop
->sem_num
] = undo
;
753 curr
->semval
+= sem_op
;
754 ipc_update_pid(&curr
->sempid
, q
->pid
);
761 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
764 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
765 struct wake_q_head
*wake_q
)
767 wake_q_add(wake_q
, q
->sleeper
);
769 * Rely on the above implicit barrier, such that we can
770 * ensure that we hold reference to the task before setting
771 * q->status. Otherwise we could race with do_exit if the
772 * task is awoken by an external event before calling
775 WRITE_ONCE(q
->status
, error
);
778 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
782 sma
->complex_count
--;
785 /** check_restart(sma, q)
786 * @sma: semaphore array
787 * @q: the operation that just completed
789 * update_queue is O(N^2) when it restarts scanning the whole queue of
790 * waiting operations. Therefore this function checks if the restart is
791 * really necessary. It is called after a previously waiting operation
792 * modified the array.
793 * Note that wait-for-zero operations are handled without restart.
795 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
797 /* pending complex alter operations are too difficult to analyse */
798 if (!list_empty(&sma
->pending_alter
))
801 /* we were a sleeping complex operation. Too difficult */
805 /* It is impossible that someone waits for the new value:
806 * - complex operations always restart.
807 * - wait-for-zero are handled seperately.
808 * - q is a previously sleeping simple operation that
809 * altered the array. It must be a decrement, because
810 * simple increments never sleep.
811 * - If there are older (higher priority) decrements
812 * in the queue, then they have observed the original
813 * semval value and couldn't proceed. The operation
814 * decremented to value - thus they won't proceed either.
820 * wake_const_ops - wake up non-alter tasks
821 * @sma: semaphore array.
822 * @semnum: semaphore that was modified.
823 * @wake_q: lockless wake-queue head.
825 * wake_const_ops must be called after a semaphore in a semaphore array
826 * was set to 0. If complex const operations are pending, wake_const_ops must
827 * be called with semnum = -1, as well as with the number of each modified
829 * The tasks that must be woken up are added to @wake_q. The return code
830 * is stored in q->pid.
831 * The function returns 1 if at least one operation was completed successfully.
833 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
834 struct wake_q_head
*wake_q
)
836 struct sem_queue
*q
, *tmp
;
837 struct list_head
*pending_list
;
838 int semop_completed
= 0;
841 pending_list
= &sma
->pending_const
;
843 pending_list
= &sma
->sems
[semnum
].pending_const
;
845 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
846 int error
= perform_atomic_semop(sma
, q
);
850 /* operation completed, remove from queue & wakeup */
851 unlink_queue(sma
, q
);
853 wake_up_sem_queue_prepare(q
, error
, wake_q
);
858 return semop_completed
;
862 * do_smart_wakeup_zero - wakeup all wait for zero tasks
863 * @sma: semaphore array
864 * @sops: operations that were performed
865 * @nsops: number of operations
866 * @wake_q: lockless wake-queue head
868 * Checks all required queue for wait-for-zero operations, based
869 * on the actual changes that were performed on the semaphore array.
870 * The function returns 1 if at least one operation was completed successfully.
872 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
873 int nsops
, struct wake_q_head
*wake_q
)
876 int semop_completed
= 0;
879 /* first: the per-semaphore queues, if known */
881 for (i
= 0; i
< nsops
; i
++) {
882 int num
= sops
[i
].sem_num
;
884 if (sma
->sems
[num
].semval
== 0) {
886 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
891 * No sops means modified semaphores not known.
892 * Assume all were changed.
894 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
895 if (sma
->sems
[i
].semval
== 0) {
897 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
902 * If one of the modified semaphores got 0,
903 * then check the global queue, too.
906 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
908 return semop_completed
;
913 * update_queue - look for tasks that can be completed.
914 * @sma: semaphore array.
915 * @semnum: semaphore that was modified.
916 * @wake_q: lockless wake-queue head.
918 * update_queue must be called after a semaphore in a semaphore array
919 * was modified. If multiple semaphores were modified, update_queue must
920 * be called with semnum = -1, as well as with the number of each modified
922 * The tasks that must be woken up are added to @wake_q. The return code
923 * is stored in q->pid.
924 * The function internally checks if const operations can now succeed.
926 * The function return 1 if at least one semop was completed successfully.
928 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
930 struct sem_queue
*q
, *tmp
;
931 struct list_head
*pending_list
;
932 int semop_completed
= 0;
935 pending_list
= &sma
->pending_alter
;
937 pending_list
= &sma
->sems
[semnum
].pending_alter
;
940 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
943 /* If we are scanning the single sop, per-semaphore list of
944 * one semaphore and that semaphore is 0, then it is not
945 * necessary to scan further: simple increments
946 * that affect only one entry succeed immediately and cannot
947 * be in the per semaphore pending queue, and decrements
948 * cannot be successful if the value is already 0.
950 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
953 error
= perform_atomic_semop(sma
, q
);
955 /* Does q->sleeper still need to sleep? */
959 unlink_queue(sma
, q
);
965 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
966 restart
= check_restart(sma
, q
);
969 wake_up_sem_queue_prepare(q
, error
, wake_q
);
973 return semop_completed
;
977 * set_semotime - set sem_otime
978 * @sma: semaphore array
979 * @sops: operations that modified the array, may be NULL
981 * sem_otime is replicated to avoid cache line trashing.
982 * This function sets one instance to the current time.
984 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
987 sma
->sems
[0].sem_otime
= get_seconds();
989 sma
->sems
[sops
[0].sem_num
].sem_otime
=
995 * do_smart_update - optimized update_queue
996 * @sma: semaphore array
997 * @sops: operations that were performed
998 * @nsops: number of operations
999 * @otime: force setting otime
1000 * @wake_q: lockless wake-queue head
1002 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003 * based on the actual changes that were performed on the semaphore array.
1004 * Note that the function does not do the actual wake-up: the caller is
1005 * responsible for calling wake_up_q().
1006 * It is safe to perform this call after dropping all locks.
1008 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1009 int otime
, struct wake_q_head
*wake_q
)
1013 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1015 if (!list_empty(&sma
->pending_alter
)) {
1016 /* semaphore array uses the global queue - just process it. */
1017 otime
|= update_queue(sma
, -1, wake_q
);
1021 * No sops, thus the modified semaphores are not
1024 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1025 otime
|= update_queue(sma
, i
, wake_q
);
1028 * Check the semaphores that were increased:
1029 * - No complex ops, thus all sleeping ops are
1031 * - if we decreased the value, then any sleeping
1032 * semaphore ops wont be able to run: If the
1033 * previous value was too small, then the new
1034 * value will be too small, too.
1036 for (i
= 0; i
< nsops
; i
++) {
1037 if (sops
[i
].sem_op
> 0) {
1038 otime
|= update_queue(sma
,
1039 sops
[i
].sem_num
, wake_q
);
1045 set_semotime(sma
, sops
);
1049 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1051 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1054 struct sembuf
*sop
= q
->blocking
;
1057 * Linux always (since 0.99.10) reported a task as sleeping on all
1058 * semaphores. This violates SUS, therefore it was changed to the
1059 * standard compliant behavior.
1060 * Give the administrators a chance to notice that an application
1061 * might misbehave because it relies on the Linux behavior.
1063 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065 current
->comm
, task_pid_nr(current
));
1067 if (sop
->sem_num
!= semnum
)
1070 if (count_zero
&& sop
->sem_op
== 0)
1072 if (!count_zero
&& sop
->sem_op
< 0)
1078 /* The following counts are associated to each semaphore:
1079 * semncnt number of tasks waiting on semval being nonzero
1080 * semzcnt number of tasks waiting on semval being zero
1082 * Per definition, a task waits only on the semaphore of the first semop
1083 * that cannot proceed, even if additional operation would block, too.
1085 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1088 struct list_head
*l
;
1089 struct sem_queue
*q
;
1093 /* First: check the simple operations. They are easy to evaluate */
1095 l
= &sma
->sems
[semnum
].pending_const
;
1097 l
= &sma
->sems
[semnum
].pending_alter
;
1099 list_for_each_entry(q
, l
, list
) {
1100 /* all task on a per-semaphore list sleep on exactly
1106 /* Then: check the complex operations. */
1107 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1108 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1111 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1112 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1118 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1120 * remains locked on exit.
1122 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1124 struct sem_undo
*un
, *tu
;
1125 struct sem_queue
*q
, *tq
;
1126 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1128 DEFINE_WAKE_Q(wake_q
);
1130 /* Free the existing undo structures for this semaphore set. */
1131 ipc_assert_locked_object(&sma
->sem_perm
);
1132 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1133 list_del(&un
->list_id
);
1134 spin_lock(&un
->ulp
->lock
);
1136 list_del_rcu(&un
->list_proc
);
1137 spin_unlock(&un
->ulp
->lock
);
1141 /* Wake up all pending processes and let them fail with EIDRM. */
1142 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1143 unlink_queue(sma
, q
);
1144 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1147 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1148 unlink_queue(sma
, q
);
1149 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1151 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1152 struct sem
*sem
= &sma
->sems
[i
];
1153 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1154 unlink_queue(sma
, q
);
1155 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1157 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1158 unlink_queue(sma
, q
);
1159 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1161 ipc_update_pid(&sem
->sempid
, NULL
);
1164 /* Remove the semaphore set from the IDR */
1166 sem_unlock(sma
, -1);
1170 ns
->used_sems
-= sma
->sem_nsems
;
1171 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1174 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1178 return copy_to_user(buf
, in
, sizeof(*in
));
1181 struct semid_ds out
;
1183 memset(&out
, 0, sizeof(out
));
1185 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1187 out
.sem_otime
= in
->sem_otime
;
1188 out
.sem_ctime
= in
->sem_ctime
;
1189 out
.sem_nsems
= in
->sem_nsems
;
1191 return copy_to_user(buf
, &out
, sizeof(out
));
1198 static time64_t
get_semotime(struct sem_array
*sma
)
1203 res
= sma
->sems
[0].sem_otime
;
1204 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1205 time64_t to
= sma
->sems
[i
].sem_otime
;
1213 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1214 int cmd
, struct semid64_ds
*semid64
)
1216 struct sem_array
*sma
;
1220 memset(semid64
, 0, sizeof(*semid64
));
1223 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1224 sma
= sem_obtain_object(ns
, semid
);
1229 id
= sma
->sem_perm
.id
;
1230 } else { /* IPC_STAT */
1231 sma
= sem_obtain_object_check(ns
, semid
);
1238 /* see comment for SHM_STAT_ANY */
1239 if (cmd
== SEM_STAT_ANY
)
1240 audit_ipc_obj(&sma
->sem_perm
);
1243 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1247 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1251 ipc_lock_object(&sma
->sem_perm
);
1253 if (!ipc_valid_object(&sma
->sem_perm
)) {
1254 ipc_unlock_object(&sma
->sem_perm
);
1259 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1260 semid64
->sem_otime
= get_semotime(sma
);
1261 semid64
->sem_ctime
= sma
->sem_ctime
;
1262 semid64
->sem_nsems
= sma
->sem_nsems
;
1264 ipc_unlock_object(&sma
->sem_perm
);
1273 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1274 int cmd
, void __user
*p
)
1276 struct seminfo seminfo
;
1280 err
= security_sem_semctl(NULL
, cmd
);
1284 memset(&seminfo
, 0, sizeof(seminfo
));
1285 seminfo
.semmni
= ns
->sc_semmni
;
1286 seminfo
.semmns
= ns
->sc_semmns
;
1287 seminfo
.semmsl
= ns
->sc_semmsl
;
1288 seminfo
.semopm
= ns
->sc_semopm
;
1289 seminfo
.semvmx
= SEMVMX
;
1290 seminfo
.semmnu
= SEMMNU
;
1291 seminfo
.semmap
= SEMMAP
;
1292 seminfo
.semume
= SEMUME
;
1293 down_read(&sem_ids(ns
).rwsem
);
1294 if (cmd
== SEM_INFO
) {
1295 seminfo
.semusz
= sem_ids(ns
).in_use
;
1296 seminfo
.semaem
= ns
->used_sems
;
1298 seminfo
.semusz
= SEMUSZ
;
1299 seminfo
.semaem
= SEMAEM
;
1301 max_id
= ipc_get_maxid(&sem_ids(ns
));
1302 up_read(&sem_ids(ns
).rwsem
);
1303 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1305 return (max_id
< 0) ? 0 : max_id
;
1308 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1311 struct sem_undo
*un
;
1312 struct sem_array
*sma
;
1315 DEFINE_WAKE_Q(wake_q
);
1317 if (val
> SEMVMX
|| val
< 0)
1321 sma
= sem_obtain_object_check(ns
, semid
);
1324 return PTR_ERR(sma
);
1327 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1333 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1338 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1344 sem_lock(sma
, NULL
, -1);
1346 if (!ipc_valid_object(&sma
->sem_perm
)) {
1347 sem_unlock(sma
, -1);
1352 curr
= &sma
->sems
[semnum
];
1354 ipc_assert_locked_object(&sma
->sem_perm
);
1355 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1356 un
->semadj
[semnum
] = 0;
1359 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1360 sma
->sem_ctime
= ktime_get_real_seconds();
1361 /* maybe some queued-up processes were waiting for this */
1362 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1363 sem_unlock(sma
, -1);
1369 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1370 int cmd
, void __user
*p
)
1372 struct sem_array
*sma
;
1375 ushort fast_sem_io
[SEMMSL_FAST
];
1376 ushort
*sem_io
= fast_sem_io
;
1377 DEFINE_WAKE_Q(wake_q
);
1380 sma
= sem_obtain_object_check(ns
, semid
);
1383 return PTR_ERR(sma
);
1386 nsems
= sma
->sem_nsems
;
1389 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1390 goto out_rcu_wakeup
;
1392 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1394 goto out_rcu_wakeup
;
1400 ushort __user
*array
= p
;
1403 sem_lock(sma
, NULL
, -1);
1404 if (!ipc_valid_object(&sma
->sem_perm
)) {
1408 if (nsems
> SEMMSL_FAST
) {
1409 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1413 sem_unlock(sma
, -1);
1415 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1417 if (sem_io
== NULL
) {
1418 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1423 sem_lock_and_putref(sma
);
1424 if (!ipc_valid_object(&sma
->sem_perm
)) {
1429 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1430 sem_io
[i
] = sma
->sems
[i
].semval
;
1431 sem_unlock(sma
, -1);
1434 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1441 struct sem_undo
*un
;
1443 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1445 goto out_rcu_wakeup
;
1449 if (nsems
> SEMMSL_FAST
) {
1450 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1452 if (sem_io
== NULL
) {
1453 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1458 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1459 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1464 for (i
= 0; i
< nsems
; i
++) {
1465 if (sem_io
[i
] > SEMVMX
) {
1466 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1472 sem_lock_and_putref(sma
);
1473 if (!ipc_valid_object(&sma
->sem_perm
)) {
1478 for (i
= 0; i
< nsems
; i
++) {
1479 sma
->sems
[i
].semval
= sem_io
[i
];
1480 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1483 ipc_assert_locked_object(&sma
->sem_perm
);
1484 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1485 for (i
= 0; i
< nsems
; i
++)
1488 sma
->sem_ctime
= ktime_get_real_seconds();
1489 /* maybe some queued-up processes were waiting for this */
1490 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1494 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1497 if (semnum
< 0 || semnum
>= nsems
)
1498 goto out_rcu_wakeup
;
1500 sem_lock(sma
, NULL
, -1);
1501 if (!ipc_valid_object(&sma
->sem_perm
)) {
1505 curr
= &sma
->sems
[semnum
];
1512 err
= pid_vnr(curr
->sempid
);
1515 err
= count_semcnt(sma
, semnum
, 0);
1518 err
= count_semcnt(sma
, semnum
, 1);
1523 sem_unlock(sma
, -1);
1528 if (sem_io
!= fast_sem_io
)
1533 static inline unsigned long
1534 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1538 if (copy_from_user(out
, buf
, sizeof(*out
)))
1543 struct semid_ds tbuf_old
;
1545 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1548 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1549 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1550 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1560 * This function handles some semctl commands which require the rwsem
1561 * to be held in write mode.
1562 * NOTE: no locks must be held, the rwsem is taken inside this function.
1564 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1565 int cmd
, struct semid64_ds
*semid64
)
1567 struct sem_array
*sma
;
1569 struct kern_ipc_perm
*ipcp
;
1571 down_write(&sem_ids(ns
).rwsem
);
1574 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1575 &semid64
->sem_perm
, 0);
1577 err
= PTR_ERR(ipcp
);
1581 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1583 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1589 sem_lock(sma
, NULL
, -1);
1590 /* freeary unlocks the ipc object and rcu */
1594 sem_lock(sma
, NULL
, -1);
1595 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1598 sma
->sem_ctime
= ktime_get_real_seconds();
1606 sem_unlock(sma
, -1);
1610 up_write(&sem_ids(ns
).rwsem
);
1614 long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1617 struct ipc_namespace
*ns
;
1618 void __user
*p
= (void __user
*)arg
;
1619 struct semid64_ds semid64
;
1625 version
= ipc_parse_version(&cmd
);
1626 ns
= current
->nsproxy
->ipc_ns
;
1631 return semctl_info(ns
, semid
, cmd
, p
);
1635 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1638 if (copy_semid_to_user(p
, &semid64
, version
))
1647 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1650 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1651 /* big-endian 64bit */
1654 /* 32bit or little-endian 64bit */
1657 return semctl_setval(ns
, semid
, semnum
, val
);
1660 if (copy_semid_from_user(&semid64
, p
, version
))
1663 return semctl_down(ns
, semid
, cmd
, &semid64
);
1669 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1671 return ksys_semctl(semid
, semnum
, cmd
, arg
);
1674 #ifdef CONFIG_COMPAT
1676 struct compat_semid_ds
{
1677 struct compat_ipc_perm sem_perm
;
1678 compat_time_t sem_otime
;
1679 compat_time_t sem_ctime
;
1680 compat_uptr_t sem_base
;
1681 compat_uptr_t sem_pending
;
1682 compat_uptr_t sem_pending_last
;
1684 unsigned short sem_nsems
;
1687 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1690 memset(out
, 0, sizeof(*out
));
1691 if (version
== IPC_64
) {
1692 struct compat_semid64_ds __user
*p
= buf
;
1693 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1695 struct compat_semid_ds __user
*p
= buf
;
1696 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1700 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1703 if (version
== IPC_64
) {
1704 struct compat_semid64_ds v
;
1705 memset(&v
, 0, sizeof(v
));
1706 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1707 v
.sem_otime
= in
->sem_otime
;
1708 v
.sem_ctime
= in
->sem_ctime
;
1709 v
.sem_nsems
= in
->sem_nsems
;
1710 return copy_to_user(buf
, &v
, sizeof(v
));
1712 struct compat_semid_ds v
;
1713 memset(&v
, 0, sizeof(v
));
1714 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1715 v
.sem_otime
= in
->sem_otime
;
1716 v
.sem_ctime
= in
->sem_ctime
;
1717 v
.sem_nsems
= in
->sem_nsems
;
1718 return copy_to_user(buf
, &v
, sizeof(v
));
1722 long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
)
1724 void __user
*p
= compat_ptr(arg
);
1725 struct ipc_namespace
*ns
;
1726 struct semid64_ds semid64
;
1727 int version
= compat_ipc_parse_version(&cmd
);
1730 ns
= current
->nsproxy
->ipc_ns
;
1735 switch (cmd
& (~IPC_64
)) {
1738 return semctl_info(ns
, semid
, cmd
, p
);
1742 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1745 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1754 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1756 return semctl_setval(ns
, semid
, semnum
, arg
);
1758 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1762 return semctl_down(ns
, semid
, cmd
, &semid64
);
1768 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1770 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
);
1774 /* If the task doesn't already have a undo_list, then allocate one
1775 * here. We guarantee there is only one thread using this undo list,
1776 * and current is THE ONE
1778 * If this allocation and assignment succeeds, but later
1779 * portions of this code fail, there is no need to free the sem_undo_list.
1780 * Just let it stay associated with the task, and it'll be freed later
1783 * This can block, so callers must hold no locks.
1785 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1787 struct sem_undo_list
*undo_list
;
1789 undo_list
= current
->sysvsem
.undo_list
;
1791 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1792 if (undo_list
== NULL
)
1794 spin_lock_init(&undo_list
->lock
);
1795 refcount_set(&undo_list
->refcnt
, 1);
1796 INIT_LIST_HEAD(&undo_list
->list_proc
);
1798 current
->sysvsem
.undo_list
= undo_list
;
1800 *undo_listp
= undo_list
;
1804 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1806 struct sem_undo
*un
;
1808 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1809 if (un
->semid
== semid
)
1815 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1817 struct sem_undo
*un
;
1819 assert_spin_locked(&ulp
->lock
);
1821 un
= __lookup_undo(ulp
, semid
);
1823 list_del_rcu(&un
->list_proc
);
1824 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1830 * find_alloc_undo - lookup (and if not present create) undo array
1832 * @semid: semaphore array id
1834 * The function looks up (and if not present creates) the undo structure.
1835 * The size of the undo structure depends on the size of the semaphore
1836 * array, thus the alloc path is not that straightforward.
1837 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1838 * performs a rcu_read_lock().
1840 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1842 struct sem_array
*sma
;
1843 struct sem_undo_list
*ulp
;
1844 struct sem_undo
*un
, *new;
1847 error
= get_undo_list(&ulp
);
1849 return ERR_PTR(error
);
1852 spin_lock(&ulp
->lock
);
1853 un
= lookup_undo(ulp
, semid
);
1854 spin_unlock(&ulp
->lock
);
1855 if (likely(un
!= NULL
))
1858 /* no undo structure around - allocate one. */
1859 /* step 1: figure out the size of the semaphore array */
1860 sma
= sem_obtain_object_check(ns
, semid
);
1863 return ERR_CAST(sma
);
1866 nsems
= sma
->sem_nsems
;
1867 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1869 un
= ERR_PTR(-EIDRM
);
1874 /* step 2: allocate new undo structure */
1875 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1877 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1878 return ERR_PTR(-ENOMEM
);
1881 /* step 3: Acquire the lock on semaphore array */
1883 sem_lock_and_putref(sma
);
1884 if (!ipc_valid_object(&sma
->sem_perm
)) {
1885 sem_unlock(sma
, -1);
1888 un
= ERR_PTR(-EIDRM
);
1891 spin_lock(&ulp
->lock
);
1894 * step 4: check for races: did someone else allocate the undo struct?
1896 un
= lookup_undo(ulp
, semid
);
1901 /* step 5: initialize & link new undo structure */
1902 new->semadj
= (short *) &new[1];
1905 assert_spin_locked(&ulp
->lock
);
1906 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1907 ipc_assert_locked_object(&sma
->sem_perm
);
1908 list_add(&new->list_id
, &sma
->list_id
);
1912 spin_unlock(&ulp
->lock
);
1913 sem_unlock(sma
, -1);
1918 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1919 unsigned nsops
, const struct timespec64
*timeout
)
1921 int error
= -EINVAL
;
1922 struct sem_array
*sma
;
1923 struct sembuf fast_sops
[SEMOPM_FAST
];
1924 struct sembuf
*sops
= fast_sops
, *sop
;
1925 struct sem_undo
*un
;
1927 bool undos
= false, alter
= false, dupsop
= false;
1928 struct sem_queue queue
;
1929 unsigned long dup
= 0, jiffies_left
= 0;
1930 struct ipc_namespace
*ns
;
1932 ns
= current
->nsproxy
->ipc_ns
;
1934 if (nsops
< 1 || semid
< 0)
1936 if (nsops
> ns
->sc_semopm
)
1938 if (nsops
> SEMOPM_FAST
) {
1939 sops
= kvmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1944 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1950 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1951 timeout
->tv_nsec
>= 1000000000L) {
1955 jiffies_left
= timespec64_to_jiffies(timeout
);
1959 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1960 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1962 if (sop
->sem_num
>= max
)
1964 if (sop
->sem_flg
& SEM_UNDO
)
1968 * There was a previous alter access that appears
1969 * to have accessed the same semaphore, thus use
1970 * the dupsop logic. "appears", because the detection
1971 * can only check % BITS_PER_LONG.
1975 if (sop
->sem_op
!= 0) {
1982 /* On success, find_alloc_undo takes the rcu_read_lock */
1983 un
= find_alloc_undo(ns
, semid
);
1985 error
= PTR_ERR(un
);
1993 sma
= sem_obtain_object_check(ns
, semid
);
1996 error
= PTR_ERR(sma
);
2001 if (max
>= sma
->sem_nsems
) {
2007 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2012 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2019 locknum
= sem_lock(sma
, sops
, nsops
);
2021 * We eventually might perform the following check in a lockless
2022 * fashion, considering ipc_valid_object() locking constraints.
2023 * If nsops == 1 and there is no contention for sem_perm.lock, then
2024 * only a per-semaphore lock is held and it's OK to proceed with the
2025 * check below. More details on the fine grained locking scheme
2026 * entangled here and why it's RMID race safe on comments at sem_lock()
2028 if (!ipc_valid_object(&sma
->sem_perm
))
2029 goto out_unlock_free
;
2031 * semid identifiers are not unique - find_alloc_undo may have
2032 * allocated an undo structure, it was invalidated by an RMID
2033 * and now a new array with received the same id. Check and fail.
2034 * This case can be detected checking un->semid. The existence of
2035 * "un" itself is guaranteed by rcu.
2037 if (un
&& un
->semid
== -1)
2038 goto out_unlock_free
;
2041 queue
.nsops
= nsops
;
2043 queue
.pid
= task_tgid(current
);
2044 queue
.alter
= alter
;
2045 queue
.dupsop
= dupsop
;
2047 error
= perform_atomic_semop(sma
, &queue
);
2048 if (error
== 0) { /* non-blocking succesfull path */
2049 DEFINE_WAKE_Q(wake_q
);
2052 * If the operation was successful, then do
2053 * the required updates.
2056 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2058 set_semotime(sma
, sops
);
2060 sem_unlock(sma
, locknum
);
2066 if (error
< 0) /* non-blocking error path */
2067 goto out_unlock_free
;
2070 * We need to sleep on this operation, so we put the current
2071 * task into the pending queue and go to sleep.
2075 curr
= &sma
->sems
[sops
->sem_num
];
2078 if (sma
->complex_count
) {
2079 list_add_tail(&queue
.list
,
2080 &sma
->pending_alter
);
2083 list_add_tail(&queue
.list
,
2084 &curr
->pending_alter
);
2087 list_add_tail(&queue
.list
, &curr
->pending_const
);
2090 if (!sma
->complex_count
)
2094 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2096 list_add_tail(&queue
.list
, &sma
->pending_const
);
2098 sma
->complex_count
++;
2102 queue
.status
= -EINTR
;
2103 queue
.sleeper
= current
;
2105 __set_current_state(TASK_INTERRUPTIBLE
);
2106 sem_unlock(sma
, locknum
);
2110 jiffies_left
= schedule_timeout(jiffies_left
);
2115 * fastpath: the semop has completed, either successfully or
2116 * not, from the syscall pov, is quite irrelevant to us at this
2117 * point; we're done.
2119 * We _do_ care, nonetheless, about being awoken by a signal or
2120 * spuriously. The queue.status is checked again in the
2121 * slowpath (aka after taking sem_lock), such that we can detect
2122 * scenarios where we were awakened externally, during the
2123 * window between wake_q_add() and wake_up_q().
2125 error
= READ_ONCE(queue
.status
);
2126 if (error
!= -EINTR
) {
2128 * User space could assume that semop() is a memory
2129 * barrier: Without the mb(), the cpu could
2130 * speculatively read in userspace stale data that was
2131 * overwritten by the previous owner of the semaphore.
2138 locknum
= sem_lock(sma
, sops
, nsops
);
2140 if (!ipc_valid_object(&sma
->sem_perm
))
2141 goto out_unlock_free
;
2143 error
= READ_ONCE(queue
.status
);
2146 * If queue.status != -EINTR we are woken up by another process.
2147 * Leave without unlink_queue(), but with sem_unlock().
2149 if (error
!= -EINTR
)
2150 goto out_unlock_free
;
2153 * If an interrupt occurred we have to clean up the queue.
2155 if (timeout
&& jiffies_left
== 0)
2157 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2159 unlink_queue(sma
, &queue
);
2162 sem_unlock(sma
, locknum
);
2165 if (sops
!= fast_sops
)
2170 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2171 unsigned int nsops
, const struct timespec __user
*timeout
)
2174 struct timespec64 ts
;
2175 if (get_timespec64(&ts
, timeout
))
2177 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2179 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2182 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2183 unsigned int, nsops
, const struct timespec __user
*, timeout
)
2185 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2188 #ifdef CONFIG_COMPAT
2189 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2191 const struct compat_timespec __user
*timeout
)
2194 struct timespec64 ts
;
2195 if (compat_get_timespec64(&ts
, timeout
))
2197 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2199 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2202 COMPAT_SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsems
,
2203 unsigned int, nsops
,
2204 const struct compat_timespec __user
*, timeout
)
2206 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2210 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2213 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2216 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2217 * parent and child tasks.
2220 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2222 struct sem_undo_list
*undo_list
;
2225 if (clone_flags
& CLONE_SYSVSEM
) {
2226 error
= get_undo_list(&undo_list
);
2229 refcount_inc(&undo_list
->refcnt
);
2230 tsk
->sysvsem
.undo_list
= undo_list
;
2232 tsk
->sysvsem
.undo_list
= NULL
;
2238 * add semadj values to semaphores, free undo structures.
2239 * undo structures are not freed when semaphore arrays are destroyed
2240 * so some of them may be out of date.
2241 * IMPLEMENTATION NOTE: There is some confusion over whether the
2242 * set of adjustments that needs to be done should be done in an atomic
2243 * manner or not. That is, if we are attempting to decrement the semval
2244 * should we queue up and wait until we can do so legally?
2245 * The original implementation attempted to do this (queue and wait).
2246 * The current implementation does not do so. The POSIX standard
2247 * and SVID should be consulted to determine what behavior is mandated.
2249 void exit_sem(struct task_struct
*tsk
)
2251 struct sem_undo_list
*ulp
;
2253 ulp
= tsk
->sysvsem
.undo_list
;
2256 tsk
->sysvsem
.undo_list
= NULL
;
2258 if (!refcount_dec_and_test(&ulp
->refcnt
))
2262 struct sem_array
*sma
;
2263 struct sem_undo
*un
;
2265 DEFINE_WAKE_Q(wake_q
);
2270 un
= list_entry_rcu(ulp
->list_proc
.next
,
2271 struct sem_undo
, list_proc
);
2272 if (&un
->list_proc
== &ulp
->list_proc
) {
2274 * We must wait for freeary() before freeing this ulp,
2275 * in case we raced with last sem_undo. There is a small
2276 * possibility where we exit while freeary() didn't
2277 * finish unlocking sem_undo_list.
2279 spin_lock(&ulp
->lock
);
2280 spin_unlock(&ulp
->lock
);
2284 spin_lock(&ulp
->lock
);
2286 spin_unlock(&ulp
->lock
);
2288 /* exit_sem raced with IPC_RMID, nothing to do */
2294 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2295 /* exit_sem raced with IPC_RMID, nothing to do */
2301 sem_lock(sma
, NULL
, -1);
2302 /* exit_sem raced with IPC_RMID, nothing to do */
2303 if (!ipc_valid_object(&sma
->sem_perm
)) {
2304 sem_unlock(sma
, -1);
2308 un
= __lookup_undo(ulp
, semid
);
2310 /* exit_sem raced with IPC_RMID+semget() that created
2311 * exactly the same semid. Nothing to do.
2313 sem_unlock(sma
, -1);
2318 /* remove un from the linked lists */
2319 ipc_assert_locked_object(&sma
->sem_perm
);
2320 list_del(&un
->list_id
);
2322 /* we are the last process using this ulp, acquiring ulp->lock
2323 * isn't required. Besides that, we are also protected against
2324 * IPC_RMID as we hold sma->sem_perm lock now
2326 list_del_rcu(&un
->list_proc
);
2328 /* perform adjustments registered in un */
2329 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2330 struct sem
*semaphore
= &sma
->sems
[i
];
2331 if (un
->semadj
[i
]) {
2332 semaphore
->semval
+= un
->semadj
[i
];
2334 * Range checks of the new semaphore value,
2335 * not defined by sus:
2336 * - Some unices ignore the undo entirely
2337 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2338 * - some cap the value (e.g. FreeBSD caps
2339 * at 0, but doesn't enforce SEMVMX)
2341 * Linux caps the semaphore value, both at 0
2344 * Manfred <manfred@colorfullife.com>
2346 if (semaphore
->semval
< 0)
2347 semaphore
->semval
= 0;
2348 if (semaphore
->semval
> SEMVMX
)
2349 semaphore
->semval
= SEMVMX
;
2350 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2353 /* maybe some queued-up processes were waiting for this */
2354 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2355 sem_unlock(sma
, -1);
2364 #ifdef CONFIG_PROC_FS
2365 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2367 struct user_namespace
*user_ns
= seq_user_ns(s
);
2368 struct kern_ipc_perm
*ipcp
= it
;
2369 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2373 * The proc interface isn't aware of sem_lock(), it calls
2374 * ipc_lock_object() directly (in sysvipc_find_ipc).
2375 * In order to stay compatible with sem_lock(), we must
2376 * enter / leave complex_mode.
2378 complexmode_enter(sma
);
2380 sem_otime
= get_semotime(sma
);
2383 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2388 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2389 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2390 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2391 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2395 complexmode_tryleave(sma
);