MAINTAINERS: Update megaraid maintainers list
[linux/fpc-iii.git] / net / mac80211 / key.c
blobedd6f2945f694f1fc6103caad0b04856a9cd5875
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2015 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/list.h>
17 #include <linux/rcupdate.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <asm/unaligned.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "debugfs_key.h"
26 #include "aes_ccm.h"
27 #include "aes_cmac.h"
28 #include "aes_gmac.h"
29 #include "aes_gcm.h"
32 /**
33 * DOC: Key handling basics
35 * Key handling in mac80211 is done based on per-interface (sub_if_data)
36 * keys and per-station keys. Since each station belongs to an interface,
37 * each station key also belongs to that interface.
39 * Hardware acceleration is done on a best-effort basis for algorithms
40 * that are implemented in software, for each key the hardware is asked
41 * to enable that key for offloading but if it cannot do that the key is
42 * simply kept for software encryption (unless it is for an algorithm
43 * that isn't implemented in software).
44 * There is currently no way of knowing whether a key is handled in SW
45 * or HW except by looking into debugfs.
47 * All key management is internally protected by a mutex. Within all
48 * other parts of mac80211, key references are, just as STA structure
49 * references, protected by RCU. Note, however, that some things are
50 * unprotected, namely the key->sta dereferences within the hardware
51 * acceleration functions. This means that sta_info_destroy() must
52 * remove the key which waits for an RCU grace period.
55 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
57 static void assert_key_lock(struct ieee80211_local *local)
59 lockdep_assert_held(&local->key_mtx);
62 static void
63 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
65 struct ieee80211_sub_if_data *vlan;
67 if (sdata->vif.type != NL80211_IFTYPE_AP)
68 return;
70 /* crypto_tx_tailroom_needed_cnt is protected by this */
71 assert_key_lock(sdata->local);
73 rcu_read_lock();
75 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
76 vlan->crypto_tx_tailroom_needed_cnt += delta;
78 rcu_read_unlock();
81 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
84 * When this count is zero, SKB resizing for allocating tailroom
85 * for IV or MMIC is skipped. But, this check has created two race
86 * cases in xmit path while transiting from zero count to one:
88 * 1. SKB resize was skipped because no key was added but just before
89 * the xmit key is added and SW encryption kicks off.
91 * 2. SKB resize was skipped because all the keys were hw planted but
92 * just before xmit one of the key is deleted and SW encryption kicks
93 * off.
95 * In both the above case SW encryption will find not enough space for
96 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
98 * Solution has been explained at
99 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
102 assert_key_lock(sdata->local);
104 update_vlan_tailroom_need_count(sdata, 1);
106 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
108 * Flush all XMIT packets currently using HW encryption or no
109 * encryption at all if the count transition is from 0 -> 1.
111 synchronize_net();
115 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
116 int delta)
118 assert_key_lock(sdata->local);
120 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
122 update_vlan_tailroom_need_count(sdata, -delta);
123 sdata->crypto_tx_tailroom_needed_cnt -= delta;
126 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
128 struct ieee80211_sub_if_data *sdata;
129 struct sta_info *sta;
130 int ret = -EOPNOTSUPP;
132 might_sleep();
134 if (key->flags & KEY_FLAG_TAINTED) {
135 /* If we get here, it's during resume and the key is
136 * tainted so shouldn't be used/programmed any more.
137 * However, its flags may still indicate that it was
138 * programmed into the device (since we're in resume)
139 * so clear that flag now to avoid trying to remove
140 * it again later.
142 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
143 return -EINVAL;
146 if (!key->local->ops->set_key)
147 goto out_unsupported;
149 assert_key_lock(key->local);
151 sta = key->sta;
154 * If this is a per-STA GTK, check if it
155 * is supported; if not, return.
157 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
158 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
159 goto out_unsupported;
161 if (sta && !sta->uploaded)
162 goto out_unsupported;
164 sdata = key->sdata;
165 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
167 * The driver doesn't know anything about VLAN interfaces.
168 * Hence, don't send GTKs for VLAN interfaces to the driver.
170 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
171 goto out_unsupported;
174 ret = drv_set_key(key->local, SET_KEY, sdata,
175 sta ? &sta->sta : NULL, &key->conf);
177 if (!ret) {
178 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
180 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
181 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
182 decrease_tailroom_need_count(sdata, 1);
184 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
185 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
187 return 0;
190 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
191 sdata_err(sdata,
192 "failed to set key (%d, %pM) to hardware (%d)\n",
193 key->conf.keyidx,
194 sta ? sta->sta.addr : bcast_addr, ret);
196 out_unsupported:
197 switch (key->conf.cipher) {
198 case WLAN_CIPHER_SUITE_WEP40:
199 case WLAN_CIPHER_SUITE_WEP104:
200 case WLAN_CIPHER_SUITE_TKIP:
201 case WLAN_CIPHER_SUITE_CCMP:
202 case WLAN_CIPHER_SUITE_CCMP_256:
203 case WLAN_CIPHER_SUITE_AES_CMAC:
204 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
206 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
207 case WLAN_CIPHER_SUITE_GCMP:
208 case WLAN_CIPHER_SUITE_GCMP_256:
209 /* all of these we can do in software - if driver can */
210 if (ret == 1)
211 return 0;
212 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
213 return -EINVAL;
214 return 0;
215 default:
216 return -EINVAL;
220 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
222 struct ieee80211_sub_if_data *sdata;
223 struct sta_info *sta;
224 int ret;
226 might_sleep();
228 if (!key || !key->local->ops->set_key)
229 return;
231 assert_key_lock(key->local);
233 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
234 return;
236 sta = key->sta;
237 sdata = key->sdata;
239 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
240 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
241 increment_tailroom_need_count(sdata);
243 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
244 sta ? &sta->sta : NULL, &key->conf);
246 if (ret)
247 sdata_err(sdata,
248 "failed to remove key (%d, %pM) from hardware (%d)\n",
249 key->conf.keyidx,
250 sta ? sta->sta.addr : bcast_addr, ret);
252 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
256 int idx, bool uni, bool multi)
258 struct ieee80211_key *key = NULL;
260 assert_key_lock(sdata->local);
262 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
263 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
265 if (uni) {
266 rcu_assign_pointer(sdata->default_unicast_key, key);
267 ieee80211_check_fast_xmit_iface(sdata);
268 drv_set_default_unicast_key(sdata->local, sdata, idx);
271 if (multi)
272 rcu_assign_pointer(sdata->default_multicast_key, key);
274 ieee80211_debugfs_key_update_default(sdata);
277 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
278 bool uni, bool multi)
280 mutex_lock(&sdata->local->key_mtx);
281 __ieee80211_set_default_key(sdata, idx, uni, multi);
282 mutex_unlock(&sdata->local->key_mtx);
285 static void
286 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
288 struct ieee80211_key *key = NULL;
290 assert_key_lock(sdata->local);
292 if (idx >= NUM_DEFAULT_KEYS &&
293 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
294 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
296 rcu_assign_pointer(sdata->default_mgmt_key, key);
298 ieee80211_debugfs_key_update_default(sdata);
301 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
302 int idx)
304 mutex_lock(&sdata->local->key_mtx);
305 __ieee80211_set_default_mgmt_key(sdata, idx);
306 mutex_unlock(&sdata->local->key_mtx);
310 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
311 struct sta_info *sta,
312 bool pairwise,
313 struct ieee80211_key *old,
314 struct ieee80211_key *new)
316 int idx;
317 bool defunikey, defmultikey, defmgmtkey;
319 /* caller must provide at least one old/new */
320 if (WARN_ON(!new && !old))
321 return;
323 if (new)
324 list_add_tail_rcu(&new->list, &sdata->key_list);
326 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
328 if (old)
329 idx = old->conf.keyidx;
330 else
331 idx = new->conf.keyidx;
333 if (sta) {
334 if (pairwise) {
335 rcu_assign_pointer(sta->ptk[idx], new);
336 sta->ptk_idx = idx;
337 ieee80211_check_fast_xmit(sta);
338 } else {
339 rcu_assign_pointer(sta->gtk[idx], new);
341 ieee80211_check_fast_rx(sta);
342 } else {
343 defunikey = old &&
344 old == key_mtx_dereference(sdata->local,
345 sdata->default_unicast_key);
346 defmultikey = old &&
347 old == key_mtx_dereference(sdata->local,
348 sdata->default_multicast_key);
349 defmgmtkey = old &&
350 old == key_mtx_dereference(sdata->local,
351 sdata->default_mgmt_key);
353 if (defunikey && !new)
354 __ieee80211_set_default_key(sdata, -1, true, false);
355 if (defmultikey && !new)
356 __ieee80211_set_default_key(sdata, -1, false, true);
357 if (defmgmtkey && !new)
358 __ieee80211_set_default_mgmt_key(sdata, -1);
360 rcu_assign_pointer(sdata->keys[idx], new);
361 if (defunikey && new)
362 __ieee80211_set_default_key(sdata, new->conf.keyidx,
363 true, false);
364 if (defmultikey && new)
365 __ieee80211_set_default_key(sdata, new->conf.keyidx,
366 false, true);
367 if (defmgmtkey && new)
368 __ieee80211_set_default_mgmt_key(sdata,
369 new->conf.keyidx);
372 if (old)
373 list_del_rcu(&old->list);
376 struct ieee80211_key *
377 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
378 const u8 *key_data,
379 size_t seq_len, const u8 *seq,
380 const struct ieee80211_cipher_scheme *cs)
382 struct ieee80211_key *key;
383 int i, j, err;
385 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
386 return ERR_PTR(-EINVAL);
388 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
389 if (!key)
390 return ERR_PTR(-ENOMEM);
393 * Default to software encryption; we'll later upload the
394 * key to the hardware if possible.
396 key->conf.flags = 0;
397 key->flags = 0;
399 key->conf.cipher = cipher;
400 key->conf.keyidx = idx;
401 key->conf.keylen = key_len;
402 switch (cipher) {
403 case WLAN_CIPHER_SUITE_WEP40:
404 case WLAN_CIPHER_SUITE_WEP104:
405 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
406 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
407 break;
408 case WLAN_CIPHER_SUITE_TKIP:
409 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
410 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
411 if (seq) {
412 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
413 key->u.tkip.rx[i].iv32 =
414 get_unaligned_le32(&seq[2]);
415 key->u.tkip.rx[i].iv16 =
416 get_unaligned_le16(seq);
419 spin_lock_init(&key->u.tkip.txlock);
420 break;
421 case WLAN_CIPHER_SUITE_CCMP:
422 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
423 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
424 if (seq) {
425 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
426 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
427 key->u.ccmp.rx_pn[i][j] =
428 seq[IEEE80211_CCMP_PN_LEN - j - 1];
431 * Initialize AES key state here as an optimization so that
432 * it does not need to be initialized for every packet.
434 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
435 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
436 if (IS_ERR(key->u.ccmp.tfm)) {
437 err = PTR_ERR(key->u.ccmp.tfm);
438 kfree(key);
439 return ERR_PTR(err);
441 break;
442 case WLAN_CIPHER_SUITE_CCMP_256:
443 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
444 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
445 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
446 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
447 key->u.ccmp.rx_pn[i][j] =
448 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
449 /* Initialize AES key state here as an optimization so that
450 * it does not need to be initialized for every packet.
452 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
453 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
454 if (IS_ERR(key->u.ccmp.tfm)) {
455 err = PTR_ERR(key->u.ccmp.tfm);
456 kfree(key);
457 return ERR_PTR(err);
459 break;
460 case WLAN_CIPHER_SUITE_AES_CMAC:
461 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
462 key->conf.iv_len = 0;
463 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
464 key->conf.icv_len = sizeof(struct ieee80211_mmie);
465 else
466 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
467 if (seq)
468 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
469 key->u.aes_cmac.rx_pn[j] =
470 seq[IEEE80211_CMAC_PN_LEN - j - 1];
472 * Initialize AES key state here as an optimization so that
473 * it does not need to be initialized for every packet.
475 key->u.aes_cmac.tfm =
476 ieee80211_aes_cmac_key_setup(key_data, key_len);
477 if (IS_ERR(key->u.aes_cmac.tfm)) {
478 err = PTR_ERR(key->u.aes_cmac.tfm);
479 kfree(key);
480 return ERR_PTR(err);
482 break;
483 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
484 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
485 key->conf.iv_len = 0;
486 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
487 if (seq)
488 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
489 key->u.aes_gmac.rx_pn[j] =
490 seq[IEEE80211_GMAC_PN_LEN - j - 1];
491 /* Initialize AES key state here as an optimization so that
492 * it does not need to be initialized for every packet.
494 key->u.aes_gmac.tfm =
495 ieee80211_aes_gmac_key_setup(key_data, key_len);
496 if (IS_ERR(key->u.aes_gmac.tfm)) {
497 err = PTR_ERR(key->u.aes_gmac.tfm);
498 kfree(key);
499 return ERR_PTR(err);
501 break;
502 case WLAN_CIPHER_SUITE_GCMP:
503 case WLAN_CIPHER_SUITE_GCMP_256:
504 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
505 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
506 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
507 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
508 key->u.gcmp.rx_pn[i][j] =
509 seq[IEEE80211_GCMP_PN_LEN - j - 1];
510 /* Initialize AES key state here as an optimization so that
511 * it does not need to be initialized for every packet.
513 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
514 key_len);
515 if (IS_ERR(key->u.gcmp.tfm)) {
516 err = PTR_ERR(key->u.gcmp.tfm);
517 kfree(key);
518 return ERR_PTR(err);
520 break;
521 default:
522 if (cs) {
523 if (seq_len && seq_len != cs->pn_len) {
524 kfree(key);
525 return ERR_PTR(-EINVAL);
528 key->conf.iv_len = cs->hdr_len;
529 key->conf.icv_len = cs->mic_len;
530 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
531 for (j = 0; j < seq_len; j++)
532 key->u.gen.rx_pn[i][j] =
533 seq[seq_len - j - 1];
534 key->flags |= KEY_FLAG_CIPHER_SCHEME;
537 memcpy(key->conf.key, key_data, key_len);
538 INIT_LIST_HEAD(&key->list);
540 return key;
543 static void ieee80211_key_free_common(struct ieee80211_key *key)
545 switch (key->conf.cipher) {
546 case WLAN_CIPHER_SUITE_CCMP:
547 case WLAN_CIPHER_SUITE_CCMP_256:
548 ieee80211_aes_key_free(key->u.ccmp.tfm);
549 break;
550 case WLAN_CIPHER_SUITE_AES_CMAC:
551 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
552 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
553 break;
554 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
555 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
556 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
557 break;
558 case WLAN_CIPHER_SUITE_GCMP:
559 case WLAN_CIPHER_SUITE_GCMP_256:
560 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
561 break;
563 kzfree(key);
566 static void __ieee80211_key_destroy(struct ieee80211_key *key,
567 bool delay_tailroom)
569 if (key->local)
570 ieee80211_key_disable_hw_accel(key);
572 if (key->local) {
573 struct ieee80211_sub_if_data *sdata = key->sdata;
575 ieee80211_debugfs_key_remove(key);
577 if (delay_tailroom) {
578 /* see ieee80211_delayed_tailroom_dec */
579 sdata->crypto_tx_tailroom_pending_dec++;
580 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
581 HZ/2);
582 } else {
583 decrease_tailroom_need_count(sdata, 1);
587 ieee80211_key_free_common(key);
590 static void ieee80211_key_destroy(struct ieee80211_key *key,
591 bool delay_tailroom)
593 if (!key)
594 return;
597 * Synchronize so the TX path and rcu key iterators
598 * can no longer be using this key before we free/remove it.
600 synchronize_net();
602 __ieee80211_key_destroy(key, delay_tailroom);
605 void ieee80211_key_free_unused(struct ieee80211_key *key)
607 WARN_ON(key->sdata || key->local);
608 ieee80211_key_free_common(key);
611 int ieee80211_key_link(struct ieee80211_key *key,
612 struct ieee80211_sub_if_data *sdata,
613 struct sta_info *sta)
615 struct ieee80211_local *local = sdata->local;
616 struct ieee80211_key *old_key;
617 int idx, ret;
618 bool pairwise;
620 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
621 idx = key->conf.keyidx;
622 key->local = sdata->local;
623 key->sdata = sdata;
624 key->sta = sta;
626 mutex_lock(&sdata->local->key_mtx);
628 if (sta && pairwise)
629 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
630 else if (sta)
631 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
632 else
633 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
635 increment_tailroom_need_count(sdata);
637 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
638 ieee80211_key_destroy(old_key, true);
640 ieee80211_debugfs_key_add(key);
642 if (!local->wowlan) {
643 ret = ieee80211_key_enable_hw_accel(key);
644 if (ret)
645 ieee80211_key_free(key, true);
646 } else {
647 ret = 0;
650 mutex_unlock(&sdata->local->key_mtx);
652 return ret;
655 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
657 if (!key)
658 return;
661 * Replace key with nothingness if it was ever used.
663 if (key->sdata)
664 ieee80211_key_replace(key->sdata, key->sta,
665 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
666 key, NULL);
667 ieee80211_key_destroy(key, delay_tailroom);
670 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
672 struct ieee80211_key *key;
673 struct ieee80211_sub_if_data *vlan;
675 ASSERT_RTNL();
677 if (WARN_ON(!ieee80211_sdata_running(sdata)))
678 return;
680 mutex_lock(&sdata->local->key_mtx);
682 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
683 sdata->crypto_tx_tailroom_pending_dec);
685 if (sdata->vif.type == NL80211_IFTYPE_AP) {
686 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
687 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
688 vlan->crypto_tx_tailroom_pending_dec);
691 list_for_each_entry(key, &sdata->key_list, list) {
692 increment_tailroom_need_count(sdata);
693 ieee80211_key_enable_hw_accel(key);
696 mutex_unlock(&sdata->local->key_mtx);
699 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
701 struct ieee80211_sub_if_data *vlan;
703 mutex_lock(&sdata->local->key_mtx);
705 sdata->crypto_tx_tailroom_needed_cnt = 0;
707 if (sdata->vif.type == NL80211_IFTYPE_AP) {
708 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
709 vlan->crypto_tx_tailroom_needed_cnt = 0;
712 mutex_unlock(&sdata->local->key_mtx);
715 void ieee80211_iter_keys(struct ieee80211_hw *hw,
716 struct ieee80211_vif *vif,
717 void (*iter)(struct ieee80211_hw *hw,
718 struct ieee80211_vif *vif,
719 struct ieee80211_sta *sta,
720 struct ieee80211_key_conf *key,
721 void *data),
722 void *iter_data)
724 struct ieee80211_local *local = hw_to_local(hw);
725 struct ieee80211_key *key, *tmp;
726 struct ieee80211_sub_if_data *sdata;
728 ASSERT_RTNL();
730 mutex_lock(&local->key_mtx);
731 if (vif) {
732 sdata = vif_to_sdata(vif);
733 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
734 iter(hw, &sdata->vif,
735 key->sta ? &key->sta->sta : NULL,
736 &key->conf, iter_data);
737 } else {
738 list_for_each_entry(sdata, &local->interfaces, list)
739 list_for_each_entry_safe(key, tmp,
740 &sdata->key_list, list)
741 iter(hw, &sdata->vif,
742 key->sta ? &key->sta->sta : NULL,
743 &key->conf, iter_data);
745 mutex_unlock(&local->key_mtx);
747 EXPORT_SYMBOL(ieee80211_iter_keys);
749 static void
750 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
751 struct ieee80211_sub_if_data *sdata,
752 void (*iter)(struct ieee80211_hw *hw,
753 struct ieee80211_vif *vif,
754 struct ieee80211_sta *sta,
755 struct ieee80211_key_conf *key,
756 void *data),
757 void *iter_data)
759 struct ieee80211_key *key;
761 list_for_each_entry_rcu(key, &sdata->key_list, list) {
762 /* skip keys of station in removal process */
763 if (key->sta && key->sta->removed)
764 continue;
765 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
766 continue;
768 iter(hw, &sdata->vif,
769 key->sta ? &key->sta->sta : NULL,
770 &key->conf, iter_data);
774 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
775 struct ieee80211_vif *vif,
776 void (*iter)(struct ieee80211_hw *hw,
777 struct ieee80211_vif *vif,
778 struct ieee80211_sta *sta,
779 struct ieee80211_key_conf *key,
780 void *data),
781 void *iter_data)
783 struct ieee80211_local *local = hw_to_local(hw);
784 struct ieee80211_sub_if_data *sdata;
786 if (vif) {
787 sdata = vif_to_sdata(vif);
788 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
789 } else {
790 list_for_each_entry_rcu(sdata, &local->interfaces, list)
791 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
794 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
796 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
797 struct list_head *keys)
799 struct ieee80211_key *key, *tmp;
801 decrease_tailroom_need_count(sdata,
802 sdata->crypto_tx_tailroom_pending_dec);
803 sdata->crypto_tx_tailroom_pending_dec = 0;
805 ieee80211_debugfs_key_remove_mgmt_default(sdata);
807 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
808 ieee80211_key_replace(key->sdata, key->sta,
809 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
810 key, NULL);
811 list_add_tail(&key->list, keys);
814 ieee80211_debugfs_key_update_default(sdata);
817 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
818 bool force_synchronize)
820 struct ieee80211_local *local = sdata->local;
821 struct ieee80211_sub_if_data *vlan;
822 struct ieee80211_sub_if_data *master;
823 struct ieee80211_key *key, *tmp;
824 LIST_HEAD(keys);
826 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
828 mutex_lock(&local->key_mtx);
830 ieee80211_free_keys_iface(sdata, &keys);
832 if (sdata->vif.type == NL80211_IFTYPE_AP) {
833 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
834 ieee80211_free_keys_iface(vlan, &keys);
837 if (!list_empty(&keys) || force_synchronize)
838 synchronize_net();
839 list_for_each_entry_safe(key, tmp, &keys, list)
840 __ieee80211_key_destroy(key, false);
842 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
843 if (sdata->bss) {
844 master = container_of(sdata->bss,
845 struct ieee80211_sub_if_data,
846 u.ap);
848 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
849 master->crypto_tx_tailroom_needed_cnt);
851 } else {
852 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
853 sdata->crypto_tx_tailroom_pending_dec);
856 if (sdata->vif.type == NL80211_IFTYPE_AP) {
857 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
858 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
859 vlan->crypto_tx_tailroom_pending_dec);
862 mutex_unlock(&local->key_mtx);
865 void ieee80211_free_sta_keys(struct ieee80211_local *local,
866 struct sta_info *sta)
868 struct ieee80211_key *key;
869 int i;
871 mutex_lock(&local->key_mtx);
872 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
873 key = key_mtx_dereference(local, sta->gtk[i]);
874 if (!key)
875 continue;
876 ieee80211_key_replace(key->sdata, key->sta,
877 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
878 key, NULL);
879 __ieee80211_key_destroy(key, true);
882 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
883 key = key_mtx_dereference(local, sta->ptk[i]);
884 if (!key)
885 continue;
886 ieee80211_key_replace(key->sdata, key->sta,
887 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
888 key, NULL);
889 __ieee80211_key_destroy(key, true);
892 mutex_unlock(&local->key_mtx);
895 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
897 struct ieee80211_sub_if_data *sdata;
899 sdata = container_of(wk, struct ieee80211_sub_if_data,
900 dec_tailroom_needed_wk.work);
903 * The reason for the delayed tailroom needed decrementing is to
904 * make roaming faster: during roaming, all keys are first deleted
905 * and then new keys are installed. The first new key causes the
906 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
907 * the cost of synchronize_net() (which can be slow). Avoid this
908 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
909 * key removal for a while, so if we roam the value is larger than
910 * zero and no 0->1 transition happens.
912 * The cost is that if the AP switching was from an AP with keys
913 * to one without, we still allocate tailroom while it would no
914 * longer be needed. However, in the typical (fast) roaming case
915 * within an ESS this usually won't happen.
918 mutex_lock(&sdata->local->key_mtx);
919 decrease_tailroom_need_count(sdata,
920 sdata->crypto_tx_tailroom_pending_dec);
921 sdata->crypto_tx_tailroom_pending_dec = 0;
922 mutex_unlock(&sdata->local->key_mtx);
925 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
926 const u8 *replay_ctr, gfp_t gfp)
928 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
930 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
932 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
934 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
936 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
937 int tid, struct ieee80211_key_seq *seq)
939 struct ieee80211_key *key;
940 const u8 *pn;
942 key = container_of(keyconf, struct ieee80211_key, conf);
944 switch (key->conf.cipher) {
945 case WLAN_CIPHER_SUITE_TKIP:
946 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
947 return;
948 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
949 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
950 break;
951 case WLAN_CIPHER_SUITE_CCMP:
952 case WLAN_CIPHER_SUITE_CCMP_256:
953 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
954 return;
955 if (tid < 0)
956 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
957 else
958 pn = key->u.ccmp.rx_pn[tid];
959 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
960 break;
961 case WLAN_CIPHER_SUITE_AES_CMAC:
962 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
963 if (WARN_ON(tid != 0))
964 return;
965 pn = key->u.aes_cmac.rx_pn;
966 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
967 break;
968 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
969 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
970 if (WARN_ON(tid != 0))
971 return;
972 pn = key->u.aes_gmac.rx_pn;
973 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
974 break;
975 case WLAN_CIPHER_SUITE_GCMP:
976 case WLAN_CIPHER_SUITE_GCMP_256:
977 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
978 return;
979 if (tid < 0)
980 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
981 else
982 pn = key->u.gcmp.rx_pn[tid];
983 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
984 break;
987 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
989 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
990 int tid, struct ieee80211_key_seq *seq)
992 struct ieee80211_key *key;
993 u8 *pn;
995 key = container_of(keyconf, struct ieee80211_key, conf);
997 switch (key->conf.cipher) {
998 case WLAN_CIPHER_SUITE_TKIP:
999 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1000 return;
1001 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1002 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1003 break;
1004 case WLAN_CIPHER_SUITE_CCMP:
1005 case WLAN_CIPHER_SUITE_CCMP_256:
1006 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1007 return;
1008 if (tid < 0)
1009 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1010 else
1011 pn = key->u.ccmp.rx_pn[tid];
1012 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1013 break;
1014 case WLAN_CIPHER_SUITE_AES_CMAC:
1015 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1016 if (WARN_ON(tid != 0))
1017 return;
1018 pn = key->u.aes_cmac.rx_pn;
1019 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1020 break;
1021 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1022 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1023 if (WARN_ON(tid != 0))
1024 return;
1025 pn = key->u.aes_gmac.rx_pn;
1026 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1027 break;
1028 case WLAN_CIPHER_SUITE_GCMP:
1029 case WLAN_CIPHER_SUITE_GCMP_256:
1030 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1031 return;
1032 if (tid < 0)
1033 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1034 else
1035 pn = key->u.gcmp.rx_pn[tid];
1036 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1037 break;
1038 default:
1039 WARN_ON(1);
1040 break;
1043 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1045 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1047 struct ieee80211_key *key;
1049 key = container_of(keyconf, struct ieee80211_key, conf);
1051 assert_key_lock(key->local);
1054 * if key was uploaded, we assume the driver will/has remove(d)
1055 * it, so adjust bookkeeping accordingly
1057 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1058 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1060 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1061 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1062 increment_tailroom_need_count(key->sdata);
1065 ieee80211_key_free(key, false);
1067 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1069 struct ieee80211_key_conf *
1070 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1071 struct ieee80211_key_conf *keyconf)
1073 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1074 struct ieee80211_local *local = sdata->local;
1075 struct ieee80211_key *key;
1076 int err;
1078 if (WARN_ON(!local->wowlan))
1079 return ERR_PTR(-EINVAL);
1081 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1082 return ERR_PTR(-EINVAL);
1084 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1085 keyconf->keylen, keyconf->key,
1086 0, NULL, NULL);
1087 if (IS_ERR(key))
1088 return ERR_CAST(key);
1090 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1091 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1093 err = ieee80211_key_link(key, sdata, NULL);
1094 if (err)
1095 return ERR_PTR(err);
1097 return &key->conf;
1099 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);