2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
37 static inline void ieee80211_rx_stats(struct net_device
*dev
, u32 len
)
39 struct pcpu_sw_netstats
*tstats
= this_cpu_ptr(dev
->tstats
);
41 u64_stats_update_begin(&tstats
->syncp
);
43 tstats
->rx_bytes
+= len
;
44 u64_stats_update_end(&tstats
->syncp
);
47 static u8
*ieee80211_get_bssid(struct ieee80211_hdr
*hdr
, size_t len
,
48 enum nl80211_iftype type
)
50 __le16 fc
= hdr
->frame_control
;
52 if (ieee80211_is_data(fc
)) {
53 if (len
< 24) /* drop incorrect hdr len (data) */
56 if (ieee80211_has_a4(fc
))
58 if (ieee80211_has_tods(fc
))
60 if (ieee80211_has_fromds(fc
))
66 if (ieee80211_is_mgmt(fc
)) {
67 if (len
< 24) /* drop incorrect hdr len (mgmt) */
72 if (ieee80211_is_ctl(fc
)) {
73 if (ieee80211_is_pspoll(fc
))
76 if (ieee80211_is_back_req(fc
)) {
78 case NL80211_IFTYPE_STATION
:
80 case NL80211_IFTYPE_AP
:
81 case NL80211_IFTYPE_AP_VLAN
:
84 break; /* fall through to the return */
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
100 unsigned int rtap_vendor_space
)
102 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)) {
103 if (likely(skb
->len
> FCS_LEN
))
104 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
113 __pskb_pull(skb
, rtap_vendor_space
);
118 static inline bool should_drop_frame(struct sk_buff
*skb
, int present_fcs_len
,
119 unsigned int rtap_vendor_space
)
121 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
122 struct ieee80211_hdr
*hdr
;
124 hdr
= (void *)(skb
->data
+ rtap_vendor_space
);
126 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
|
127 RX_FLAG_FAILED_PLCP_CRC
|
128 RX_FLAG_ONLY_MONITOR
))
131 if (unlikely(skb
->len
< 16 + present_fcs_len
+ rtap_vendor_space
))
134 if (ieee80211_is_ctl(hdr
->frame_control
) &&
135 !ieee80211_is_pspoll(hdr
->frame_control
) &&
136 !ieee80211_is_back_req(hdr
->frame_control
))
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local
*local
,
144 struct ieee80211_rx_status
*status
,
149 /* always present fields */
150 len
= sizeof(struct ieee80211_radiotap_header
) + 8;
152 /* allocate extra bitmaps */
154 len
+= 4 * hweight8(status
->chains
);
156 if (ieee80211_have_rx_timestamp(status
)) {
160 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
))
163 /* antenna field, if we don't have per-chain info */
167 /* padding for RX_FLAGS if necessary */
170 if (status
->flag
& RX_FLAG_HT
) /* HT info */
173 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
178 if (status
->flag
& RX_FLAG_VHT
) {
183 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
188 if (status
->chains
) {
189 /* antenna and antenna signal fields */
190 len
+= 2 * hweight8(status
->chains
);
193 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
194 struct ieee80211_vendor_radiotap
*rtap
= (void *)skb
->data
;
196 /* vendor presence bitmap */
198 /* alignment for fixed 6-byte vendor data header */
200 /* vendor data header */
202 if (WARN_ON(rtap
->align
== 0))
204 len
= ALIGN(len
, rtap
->align
);
205 len
+= rtap
->len
+ rtap
->pad
;
212 * ieee80211_add_rx_radiotap_header - add radiotap header
214 * add a radiotap header containing all the fields which the hardware provided.
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
219 struct ieee80211_rate
*rate
,
220 int rtap_len
, bool has_fcs
)
222 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
223 struct ieee80211_radiotap_header
*rthdr
;
228 u16 channel_flags
= 0;
230 unsigned long chains
= status
->chains
;
231 struct ieee80211_vendor_radiotap rtap
= {};
233 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
234 rtap
= *(struct ieee80211_vendor_radiotap
*)skb
->data
;
235 /* rtap.len and rtap.pad are undone immediately */
236 skb_pull(skb
, sizeof(rtap
) + rtap
.len
+ rtap
.pad
);
240 if (!(has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)))
243 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
244 memset(rthdr
, 0, rtap_len
- rtap
.len
- rtap
.pad
);
245 it_present
= &rthdr
->it_present
;
247 /* radiotap header, set always present flags */
248 rthdr
->it_len
= cpu_to_le16(rtap_len
);
249 it_present_val
= BIT(IEEE80211_RADIOTAP_FLAGS
) |
250 BIT(IEEE80211_RADIOTAP_CHANNEL
) |
251 BIT(IEEE80211_RADIOTAP_RX_FLAGS
);
254 it_present_val
|= BIT(IEEE80211_RADIOTAP_ANTENNA
);
256 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
258 BIT(IEEE80211_RADIOTAP_EXT
) |
259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE
);
260 put_unaligned_le32(it_present_val
, it_present
);
262 it_present_val
= BIT(IEEE80211_RADIOTAP_ANTENNA
) |
263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
266 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
267 it_present_val
|= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
) |
268 BIT(IEEE80211_RADIOTAP_EXT
);
269 put_unaligned_le32(it_present_val
, it_present
);
271 it_present_val
= rtap
.present
;
274 put_unaligned_le32(it_present_val
, it_present
);
276 pos
= (void *)(it_present
+ 1);
278 /* the order of the following fields is important */
280 /* IEEE80211_RADIOTAP_TSFT */
281 if (ieee80211_have_rx_timestamp(status
)) {
283 while ((pos
- (u8
*)rthdr
) & 7)
286 ieee80211_calculate_rx_timestamp(local
, status
,
289 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
293 /* IEEE80211_RADIOTAP_FLAGS */
294 if (has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
295 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
296 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
297 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
298 if (status
->flag
& RX_FLAG_SHORTPRE
)
299 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
302 /* IEEE80211_RADIOTAP_RATE */
303 if (!rate
|| status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
)) {
305 * Without rate information don't add it. If we have,
306 * MCS information is a separate field in radiotap,
307 * added below. The byte here is needed as padding
308 * for the channel though, so initialise it to 0.
313 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
314 if (status
->flag
& RX_FLAG_10MHZ
)
316 else if (status
->flag
& RX_FLAG_5MHZ
)
318 *pos
= DIV_ROUND_UP(rate
->bitrate
, 5 * (1 << shift
));
322 /* IEEE80211_RADIOTAP_CHANNEL */
323 put_unaligned_le16(status
->freq
, pos
);
325 if (status
->flag
& RX_FLAG_10MHZ
)
326 channel_flags
|= IEEE80211_CHAN_HALF
;
327 else if (status
->flag
& RX_FLAG_5MHZ
)
328 channel_flags
|= IEEE80211_CHAN_QUARTER
;
330 if (status
->band
== NL80211_BAND_5GHZ
)
331 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
;
332 else if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
333 channel_flags
|= IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
334 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
335 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
;
337 channel_flags
|= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
;
339 channel_flags
|= IEEE80211_CHAN_2GHZ
;
340 put_unaligned_le16(channel_flags
, pos
);
343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
) &&
345 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
346 *pos
= status
->signal
;
348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
354 if (!status
->chains
) {
355 /* IEEE80211_RADIOTAP_ANTENNA */
356 *pos
= status
->antenna
;
360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
362 /* IEEE80211_RADIOTAP_RX_FLAGS */
363 /* ensure 2 byte alignment for the 2 byte field as required */
364 if ((pos
- (u8
*)rthdr
) & 1)
366 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
367 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
368 put_unaligned_le16(rx_flags
, pos
);
371 if (status
->flag
& RX_FLAG_HT
) {
374 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
375 *pos
++ = local
->hw
.radiotap_mcs_details
;
377 if (status
->flag
& RX_FLAG_SHORT_GI
)
378 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
379 if (status
->flag
& RX_FLAG_40MHZ
)
380 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
381 if (status
->flag
& RX_FLAG_HT_GF
)
382 *pos
|= IEEE80211_RADIOTAP_MCS_FMT_GF
;
383 if (status
->flag
& RX_FLAG_LDPC
)
384 *pos
|= IEEE80211_RADIOTAP_MCS_FEC_LDPC
;
385 stbc
= (status
->flag
& RX_FLAG_STBC_MASK
) >> RX_FLAG_STBC_SHIFT
;
386 *pos
|= stbc
<< IEEE80211_RADIOTAP_MCS_STBC_SHIFT
;
388 *pos
++ = status
->rate_idx
;
391 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
394 /* ensure 4 byte alignment */
395 while ((pos
- (u8
*)rthdr
) & 3)
398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS
);
399 put_unaligned_le32(status
->ampdu_reference
, pos
);
401 if (status
->flag
& RX_FLAG_AMPDU_LAST_KNOWN
)
402 flags
|= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN
;
403 if (status
->flag
& RX_FLAG_AMPDU_IS_LAST
)
404 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_LAST
;
405 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_ERROR
)
406 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR
;
407 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
408 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN
;
409 put_unaligned_le16(flags
, pos
);
411 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
412 *pos
++ = status
->ampdu_delimiter_crc
;
418 if (status
->flag
& RX_FLAG_VHT
) {
419 u16 known
= local
->hw
.radiotap_vht_details
;
421 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT
);
422 put_unaligned_le16(known
, pos
);
425 if (status
->flag
& RX_FLAG_SHORT_GI
)
426 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_SGI
;
427 /* in VHT, STBC is binary */
428 if (status
->flag
& RX_FLAG_STBC_MASK
)
429 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_STBC
;
430 if (status
->vht_flag
& RX_VHT_FLAG_BF
)
431 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED
;
434 if (status
->vht_flag
& RX_VHT_FLAG_80MHZ
)
436 else if (status
->vht_flag
& RX_VHT_FLAG_160MHZ
)
438 else if (status
->flag
& RX_FLAG_40MHZ
)
443 *pos
= (status
->rate_idx
<< 4) | status
->vht_nss
;
446 if (status
->flag
& RX_FLAG_LDPC
)
447 *pos
|= IEEE80211_RADIOTAP_CODING_LDPC_USER0
;
455 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
457 u8 flags
= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT
;
460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP
);
462 /* ensure 8 byte alignment */
463 while ((pos
- (u8
*)rthdr
) & 7)
466 put_unaligned_le64(status
->device_timestamp
, pos
);
469 if (local
->hw
.radiotap_timestamp
.accuracy
>= 0) {
470 accuracy
= local
->hw
.radiotap_timestamp
.accuracy
;
471 flags
|= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY
;
473 put_unaligned_le16(accuracy
, pos
);
476 *pos
++ = local
->hw
.radiotap_timestamp
.units_pos
;
480 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
481 *pos
++ = status
->chain_signal
[chain
];
485 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
486 /* ensure 2 byte alignment for the vendor field as required */
487 if ((pos
- (u8
*)rthdr
) & 1)
489 *pos
++ = rtap
.oui
[0];
490 *pos
++ = rtap
.oui
[1];
491 *pos
++ = rtap
.oui
[2];
493 put_unaligned_le16(rtap
.len
, pos
);
495 /* align the actual payload as requested */
496 while ((pos
- (u8
*)rthdr
) & (rtap
.align
- 1))
498 /* data (and possible padding) already follows */
503 * This function copies a received frame to all monitor interfaces and
504 * returns a cleaned-up SKB that no longer includes the FCS nor the
505 * radiotap header the driver might have added.
507 static struct sk_buff
*
508 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
509 struct ieee80211_rate
*rate
)
511 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
512 struct ieee80211_sub_if_data
*sdata
;
513 int rt_hdrlen
, needed_headroom
;
514 struct sk_buff
*skb
, *skb2
;
515 struct net_device
*prev_dev
= NULL
;
516 int present_fcs_len
= 0;
517 unsigned int rtap_vendor_space
= 0;
518 struct ieee80211_mgmt
*mgmt
;
519 struct ieee80211_sub_if_data
*monitor_sdata
=
520 rcu_dereference(local
->monitor_sdata
);
522 if (unlikely(status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)) {
523 struct ieee80211_vendor_radiotap
*rtap
= (void *)origskb
->data
;
525 rtap_vendor_space
= sizeof(*rtap
) + rtap
->len
+ rtap
->pad
;
529 * First, we may need to make a copy of the skb because
530 * (1) we need to modify it for radiotap (if not present), and
531 * (2) the other RX handlers will modify the skb we got.
533 * We don't need to, of course, if we aren't going to return
534 * the SKB because it has a bad FCS/PLCP checksum.
537 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
538 present_fcs_len
= FCS_LEN
;
540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 if (!pskb_may_pull(origskb
, 2 + rtap_vendor_space
)) {
542 dev_kfree_skb(origskb
);
546 if (!local
->monitors
|| (status
->flag
& RX_FLAG_SKIP_MONITOR
)) {
547 if (should_drop_frame(origskb
, present_fcs_len
,
548 rtap_vendor_space
)) {
549 dev_kfree_skb(origskb
);
553 return remove_monitor_info(local
, origskb
, rtap_vendor_space
);
556 /* room for the radiotap header based on driver features */
557 rt_hdrlen
= ieee80211_rx_radiotap_hdrlen(local
, status
, origskb
);
558 needed_headroom
= rt_hdrlen
- rtap_vendor_space
;
560 if (should_drop_frame(origskb
, present_fcs_len
, rtap_vendor_space
)) {
561 /* only need to expand headroom if necessary */
566 * This shouldn't trigger often because most devices have an
567 * RX header they pull before we get here, and that should
568 * be big enough for our radiotap information. We should
569 * probably export the length to drivers so that we can have
570 * them allocate enough headroom to start with.
572 if (skb_headroom(skb
) < needed_headroom
&&
573 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
579 * Need to make a copy and possibly remove radiotap header
580 * and FCS from the original.
582 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
584 origskb
= remove_monitor_info(local
, origskb
,
591 /* prepend radiotap information */
592 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, rt_hdrlen
, true);
594 skb_reset_mac_header(skb
);
595 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
596 skb
->pkt_type
= PACKET_OTHERHOST
;
597 skb
->protocol
= htons(ETH_P_802_2
);
599 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
600 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
603 if (sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
)
606 if (!ieee80211_sdata_running(sdata
))
610 skb2
= skb_clone(skb
, GFP_ATOMIC
);
612 skb2
->dev
= prev_dev
;
613 netif_receive_skb(skb2
);
617 prev_dev
= sdata
->dev
;
618 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
621 mgmt
= (void *)skb
->data
;
623 skb
->len
>= IEEE80211_MIN_ACTION_SIZE
+ 1 + VHT_MUMIMO_GROUPS_DATA_LEN
&&
624 ieee80211_is_action(mgmt
->frame_control
) &&
625 mgmt
->u
.action
.category
== WLAN_CATEGORY_VHT
&&
626 mgmt
->u
.action
.u
.vht_group_notif
.action_code
== WLAN_VHT_ACTION_GROUPID_MGMT
&&
627 is_valid_ether_addr(monitor_sdata
->u
.mntr
.mu_follow_addr
) &&
628 ether_addr_equal(mgmt
->da
, monitor_sdata
->u
.mntr
.mu_follow_addr
)) {
629 struct sk_buff
*mu_skb
= skb_copy(skb
, GFP_ATOMIC
);
632 mu_skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
633 skb_queue_tail(&monitor_sdata
->skb_queue
, mu_skb
);
634 ieee80211_queue_work(&local
->hw
, &monitor_sdata
->work
);
640 netif_receive_skb(skb
);
647 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
649 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
650 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
651 int tid
, seqno_idx
, security_idx
;
653 /* does the frame have a qos control field? */
654 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
655 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
656 /* frame has qos control */
657 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
658 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
659 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
667 * Sequence numbers for management frames, QoS data
668 * frames with a broadcast/multicast address in the
669 * Address 1 field, and all non-QoS data frames sent
670 * by QoS STAs are assigned using an additional single
671 * modulo-4096 counter, [...]
673 * We also use that counter for non-QoS STAs.
675 seqno_idx
= IEEE80211_NUM_TIDS
;
677 if (ieee80211_is_mgmt(hdr
->frame_control
))
678 security_idx
= IEEE80211_NUM_TIDS
;
682 rx
->seqno_idx
= seqno_idx
;
683 rx
->security_idx
= security_idx
;
684 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 * For now, set skb->priority to 0 for other cases. */
686 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
690 * DOC: Packet alignment
692 * Drivers always need to pass packets that are aligned to two-byte boundaries
695 * Additionally, should, if possible, align the payload data in a way that
696 * guarantees that the contained IP header is aligned to a four-byte
697 * boundary. In the case of regular frames, this simply means aligning the
698 * payload to a four-byte boundary (because either the IP header is directly
699 * contained, or IV/RFC1042 headers that have a length divisible by four are
700 * in front of it). If the payload data is not properly aligned and the
701 * architecture doesn't support efficient unaligned operations, mac80211
702 * will align the data.
704 * With A-MSDU frames, however, the payload data address must yield two modulo
705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706 * push the IP header further back to a multiple of four again. Thankfully, the
707 * specs were sane enough this time around to require padding each A-MSDU
708 * subframe to a length that is a multiple of four.
710 * Padding like Atheros hardware adds which is between the 802.11 header and
711 * the payload is not supported, the driver is required to move the 802.11
712 * header to be directly in front of the payload in that case.
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 WARN_ON_ONCE((unsigned long)rx
->skb
->data
& 1);
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
726 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
728 if (is_multicast_ether_addr(hdr
->addr1
))
731 return ieee80211_is_robust_mgmt_frame(skb
);
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
737 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
739 if (!is_multicast_ether_addr(hdr
->addr1
))
742 return ieee80211_is_robust_mgmt_frame(skb
);
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
749 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
750 struct ieee80211_mmie
*mmie
;
751 struct ieee80211_mmie_16
*mmie16
;
753 if (skb
->len
< 24 + sizeof(*mmie
) || !is_multicast_ether_addr(hdr
->da
))
756 if (!ieee80211_is_robust_mgmt_frame(skb
))
757 return -1; /* not a robust management frame */
759 mmie
= (struct ieee80211_mmie
*)
760 (skb
->data
+ skb
->len
- sizeof(*mmie
));
761 if (mmie
->element_id
== WLAN_EID_MMIE
&&
762 mmie
->length
== sizeof(*mmie
) - 2)
763 return le16_to_cpu(mmie
->key_id
);
765 mmie16
= (struct ieee80211_mmie_16
*)
766 (skb
->data
+ skb
->len
- sizeof(*mmie16
));
767 if (skb
->len
>= 24 + sizeof(*mmie16
) &&
768 mmie16
->element_id
== WLAN_EID_MMIE
&&
769 mmie16
->length
== sizeof(*mmie16
) - 2)
770 return le16_to_cpu(mmie16
->key_id
);
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme
*cs
,
778 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
783 fc
= hdr
->frame_control
;
784 hdrlen
= ieee80211_hdrlen(fc
);
786 if (skb
->len
< hdrlen
+ cs
->hdr_len
)
789 skb_copy_bits(skb
, hdrlen
+ cs
->key_idx_off
, &keyid
, 1);
790 keyid
&= cs
->key_idx_mask
;
791 keyid
>>= cs
->key_idx_shift
;
796 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
798 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
799 char *dev_addr
= rx
->sdata
->vif
.addr
;
801 if (ieee80211_is_data(hdr
->frame_control
)) {
802 if (is_multicast_ether_addr(hdr
->addr1
)) {
803 if (ieee80211_has_tods(hdr
->frame_control
) ||
804 !ieee80211_has_fromds(hdr
->frame_control
))
805 return RX_DROP_MONITOR
;
806 if (ether_addr_equal(hdr
->addr3
, dev_addr
))
807 return RX_DROP_MONITOR
;
809 if (!ieee80211_has_a4(hdr
->frame_control
))
810 return RX_DROP_MONITOR
;
811 if (ether_addr_equal(hdr
->addr4
, dev_addr
))
812 return RX_DROP_MONITOR
;
816 /* If there is not an established peer link and this is not a peer link
817 * establisment frame, beacon or probe, drop the frame.
820 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
821 struct ieee80211_mgmt
*mgmt
;
823 if (!ieee80211_is_mgmt(hdr
->frame_control
))
824 return RX_DROP_MONITOR
;
826 if (ieee80211_is_action(hdr
->frame_control
)) {
829 /* make sure category field is present */
830 if (rx
->skb
->len
< IEEE80211_MIN_ACTION_SIZE
)
831 return RX_DROP_MONITOR
;
833 mgmt
= (struct ieee80211_mgmt
*)hdr
;
834 category
= mgmt
->u
.action
.category
;
835 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
836 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
837 return RX_DROP_MONITOR
;
841 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
842 ieee80211_is_probe_resp(hdr
->frame_control
) ||
843 ieee80211_is_beacon(hdr
->frame_control
) ||
844 ieee80211_is_auth(hdr
->frame_control
))
847 return RX_DROP_MONITOR
;
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx
*tid_agg_rx
,
856 struct sk_buff_head
*frames
= &tid_agg_rx
->reorder_buf
[index
];
857 struct sk_buff
*tail
= skb_peek_tail(frames
);
858 struct ieee80211_rx_status
*status
;
860 if (tid_agg_rx
->reorder_buf_filtered
& BIT_ULL(index
))
866 status
= IEEE80211_SKB_RXCB(tail
);
867 if (status
->flag
& RX_FLAG_AMSDU_MORE
)
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data
*sdata
,
874 struct tid_ampdu_rx
*tid_agg_rx
,
876 struct sk_buff_head
*frames
)
878 struct sk_buff_head
*skb_list
= &tid_agg_rx
->reorder_buf
[index
];
880 struct ieee80211_rx_status
*status
;
882 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
884 if (skb_queue_empty(skb_list
))
887 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
888 __skb_queue_purge(skb_list
);
892 /* release frames from the reorder ring buffer */
893 tid_agg_rx
->stored_mpdu_num
--;
894 while ((skb
= __skb_dequeue(skb_list
))) {
895 status
= IEEE80211_SKB_RXCB(skb
);
896 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
897 __skb_queue_tail(frames
, skb
);
901 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
902 tid_agg_rx
->head_seq_num
= ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data
*sdata
,
906 struct tid_ampdu_rx
*tid_agg_rx
,
908 struct sk_buff_head
*frames
)
912 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
914 while (ieee80211_sn_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
915 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
916 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923 * the skb was added to the buffer longer than this time ago, the earlier
924 * frames that have not yet been received are assumed to be lost and the skb
925 * can be released for processing. This may also release other skb's from the
926 * reorder buffer if there are no additional gaps between the frames.
928 * Callers must hold tid_agg_rx->reorder_lock.
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data
*sdata
,
933 struct tid_ampdu_rx
*tid_agg_rx
,
934 struct sk_buff_head
*frames
)
938 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
940 /* release the buffer until next missing frame */
941 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
942 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
) &&
943 tid_agg_rx
->stored_mpdu_num
) {
945 * No buffers ready to be released, but check whether any
946 * frames in the reorder buffer have timed out.
949 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
950 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
951 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, j
)) {
956 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
957 HT_RX_REORDER_BUF_TIMEOUT
))
958 goto set_release_timer
;
960 /* don't leave incomplete A-MSDUs around */
961 for (i
= (index
+ 1) % tid_agg_rx
->buf_size
; i
!= j
;
962 i
= (i
+ 1) % tid_agg_rx
->buf_size
)
963 __skb_queue_purge(&tid_agg_rx
->reorder_buf
[i
]);
965 ht_dbg_ratelimited(sdata
,
966 "release an RX reorder frame due to timeout on earlier frames\n");
967 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, j
,
971 * Increment the head seq# also for the skipped slots.
973 tid_agg_rx
->head_seq_num
=
974 (tid_agg_rx
->head_seq_num
+
975 skipped
) & IEEE80211_SN_MASK
;
978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
979 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
981 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
984 if (tid_agg_rx
->stored_mpdu_num
) {
985 j
= index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
987 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
988 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
989 if (ieee80211_rx_reorder_ready(tid_agg_rx
, j
))
995 if (!tid_agg_rx
->removed
)
996 mod_timer(&tid_agg_rx
->reorder_timer
,
997 tid_agg_rx
->reorder_time
[j
] + 1 +
998 HT_RX_REORDER_BUF_TIMEOUT
);
1000 del_timer(&tid_agg_rx
->reorder_timer
);
1005 * As this function belongs to the RX path it must be under
1006 * rcu_read_lock protection. It returns false if the frame
1007 * can be processed immediately, true if it was consumed.
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data
*sdata
,
1010 struct tid_ampdu_rx
*tid_agg_rx
,
1011 struct sk_buff
*skb
,
1012 struct sk_buff_head
*frames
)
1014 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1015 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1016 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1017 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1018 u16 head_seq_num
, buf_size
;
1022 spin_lock(&tid_agg_rx
->reorder_lock
);
1025 * Offloaded BA sessions have no known starting sequence number so pick
1026 * one from first Rxed frame for this tid after BA was started.
1028 if (unlikely(tid_agg_rx
->auto_seq
)) {
1029 tid_agg_rx
->auto_seq
= false;
1030 tid_agg_rx
->ssn
= mpdu_seq_num
;
1031 tid_agg_rx
->head_seq_num
= mpdu_seq_num
;
1034 buf_size
= tid_agg_rx
->buf_size
;
1035 head_seq_num
= tid_agg_rx
->head_seq_num
;
1037 /* frame with out of date sequence number */
1038 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1044 * If frame the sequence number exceeds our buffering window
1045 * size release some previous frames to make room for this one.
1047 if (!ieee80211_sn_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
1048 head_seq_num
= ieee80211_sn_inc(
1049 ieee80211_sn_sub(mpdu_seq_num
, buf_size
));
1050 /* release stored frames up to new head to stack */
1051 ieee80211_release_reorder_frames(sdata
, tid_agg_rx
,
1052 head_seq_num
, frames
);
1055 /* Now the new frame is always in the range of the reordering buffer */
1057 index
= mpdu_seq_num
% tid_agg_rx
->buf_size
;
1059 /* check if we already stored this frame */
1060 if (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1066 * If the current MPDU is in the right order and nothing else
1067 * is stored we can process it directly, no need to buffer it.
1068 * If it is first but there's something stored, we may be able
1069 * to release frames after this one.
1071 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
1072 tid_agg_rx
->stored_mpdu_num
== 0) {
1073 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
))
1074 tid_agg_rx
->head_seq_num
=
1075 ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1080 /* put the frame in the reordering buffer */
1081 __skb_queue_tail(&tid_agg_rx
->reorder_buf
[index
], skb
);
1082 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1083 tid_agg_rx
->reorder_time
[index
] = jiffies
;
1084 tid_agg_rx
->stored_mpdu_num
++;
1085 ieee80211_sta_reorder_release(sdata
, tid_agg_rx
, frames
);
1089 spin_unlock(&tid_agg_rx
->reorder_lock
);
1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1095 * true if the MPDU was buffered, false if it should be processed.
1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
1098 struct sk_buff_head
*frames
)
1100 struct sk_buff
*skb
= rx
->skb
;
1101 struct ieee80211_local
*local
= rx
->local
;
1102 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1103 struct sta_info
*sta
= rx
->sta
;
1104 struct tid_ampdu_rx
*tid_agg_rx
;
1108 if (!ieee80211_is_data_qos(hdr
->frame_control
) ||
1109 is_multicast_ether_addr(hdr
->addr1
))
1113 * filter the QoS data rx stream according to
1114 * STA/TID and check if this STA/TID is on aggregation
1120 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
1122 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1124 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
1126 if (ack_policy
== IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1127 !test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
1128 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
1129 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
1130 WLAN_BACK_RECIPIENT
,
1131 WLAN_REASON_QSTA_REQUIRE_SETUP
);
1135 /* qos null data frames are excluded */
1136 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
1139 /* not part of a BA session */
1140 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1141 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
1144 /* new, potentially un-ordered, ampdu frame - process it */
1146 /* reset session timer */
1147 if (tid_agg_rx
->timeout
)
1148 tid_agg_rx
->last_rx
= jiffies
;
1150 /* if this mpdu is fragmented - terminate rx aggregation session */
1151 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1152 if (sc
& IEEE80211_SCTL_FRAG
) {
1153 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
1154 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
1155 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
1160 * No locking needed -- we will only ever process one
1161 * RX packet at a time, and thus own tid_agg_rx. All
1162 * other code manipulating it needs to (and does) make
1163 * sure that we cannot get to it any more before doing
1166 if (ieee80211_sta_manage_reorder_buf(rx
->sdata
, tid_agg_rx
, skb
,
1171 __skb_queue_tail(frames
, skb
);
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data
*rx
)
1177 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1178 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1180 if (status
->flag
& RX_FLAG_DUP_VALIDATED
)
1184 * Drop duplicate 802.11 retransmissions
1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1188 if (rx
->skb
->len
< 24)
1191 if (ieee80211_is_ctl(hdr
->frame_control
) ||
1192 ieee80211_is_qos_nullfunc(hdr
->frame_control
) ||
1193 is_multicast_ether_addr(hdr
->addr1
))
1199 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
1200 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] == hdr
->seq_ctrl
)) {
1201 I802_DEBUG_INC(rx
->local
->dot11FrameDuplicateCount
);
1202 rx
->sta
->rx_stats
.num_duplicates
++;
1203 return RX_DROP_UNUSABLE
;
1204 } else if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1205 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
1214 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1216 /* Drop disallowed frame classes based on STA auth/assoc state;
1217 * IEEE 802.11, Chap 5.5.
1219 * mac80211 filters only based on association state, i.e. it drops
1220 * Class 3 frames from not associated stations. hostapd sends
1221 * deauth/disassoc frames when needed. In addition, hostapd is
1222 * responsible for filtering on both auth and assoc states.
1225 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1226 return ieee80211_rx_mesh_check(rx
);
1228 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
1229 ieee80211_is_pspoll(hdr
->frame_control
)) &&
1230 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
1231 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
1232 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
1233 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
1235 * accept port control frames from the AP even when it's not
1236 * yet marked ASSOC to prevent a race where we don't set the
1237 * assoc bit quickly enough before it sends the first frame
1239 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1240 ieee80211_is_data_present(hdr
->frame_control
)) {
1241 unsigned int hdrlen
;
1244 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1246 if (rx
->skb
->len
< hdrlen
+ 8)
1247 return RX_DROP_MONITOR
;
1249 skb_copy_bits(rx
->skb
, hdrlen
+ 6, ðertype
, 2);
1250 if (ethertype
== rx
->sdata
->control_port_protocol
)
1254 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
1255 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
1258 return RX_DROP_UNUSABLE
;
1260 return RX_DROP_MONITOR
;
1267 static ieee80211_rx_result debug_noinline
1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1270 struct ieee80211_local
*local
;
1271 struct ieee80211_hdr
*hdr
;
1272 struct sk_buff
*skb
;
1276 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1278 if (!local
->pspolling
)
1281 if (!ieee80211_has_fromds(hdr
->frame_control
))
1282 /* this is not from AP */
1285 if (!ieee80211_is_data(hdr
->frame_control
))
1288 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1289 /* AP has no more frames buffered for us */
1290 local
->pspolling
= false;
1294 /* more data bit is set, let's request a new frame from the AP */
1295 ieee80211_send_pspoll(local
, rx
->sdata
);
1300 static void sta_ps_start(struct sta_info
*sta
)
1302 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1303 struct ieee80211_local
*local
= sdata
->local
;
1307 if (sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1308 sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
1309 ps
= &sdata
->bss
->ps
;
1313 atomic_inc(&ps
->num_sta_ps
);
1314 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1315 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
1316 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1317 ps_dbg(sdata
, "STA %pM aid %d enters power save mode\n",
1318 sta
->sta
.addr
, sta
->sta
.aid
);
1320 ieee80211_clear_fast_xmit(sta
);
1322 if (!sta
->sta
.txq
[0])
1325 for (tid
= 0; tid
< ARRAY_SIZE(sta
->sta
.txq
); tid
++) {
1326 if (txq_has_queue(sta
->sta
.txq
[tid
]))
1327 set_bit(tid
, &sta
->txq_buffered_tids
);
1329 clear_bit(tid
, &sta
->txq_buffered_tids
);
1333 static void sta_ps_end(struct sta_info
*sta
)
1335 ps_dbg(sta
->sdata
, "STA %pM aid %d exits power save mode\n",
1336 sta
->sta
.addr
, sta
->sta
.aid
);
1338 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1340 * Clear the flag only if the other one is still set
1341 * so that the TX path won't start TX'ing new frames
1342 * directly ... In the case that the driver flag isn't
1343 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1345 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1346 ps_dbg(sta
->sdata
, "STA %pM aid %d driver-ps-blocked\n",
1347 sta
->sta
.addr
, sta
->sta
.aid
);
1351 set_sta_flag(sta
, WLAN_STA_PS_DELIVER
);
1352 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1353 ieee80211_sta_ps_deliver_wakeup(sta
);
1356 int ieee80211_sta_ps_transition(struct ieee80211_sta
*pubsta
, bool start
)
1358 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1361 WARN_ON(!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
));
1363 /* Don't let the same PS state be set twice */
1364 in_ps
= test_sta_flag(sta
, WLAN_STA_PS_STA
);
1365 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1377 void ieee80211_sta_pspoll(struct ieee80211_sta
*pubsta
)
1379 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1381 if (test_sta_flag(sta
, WLAN_STA_SP
))
1384 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1385 ieee80211_sta_ps_deliver_poll_response(sta
);
1387 set_sta_flag(sta
, WLAN_STA_PSPOLL
);
1389 EXPORT_SYMBOL(ieee80211_sta_pspoll
);
1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta
*pubsta
, u8 tid
)
1393 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1394 u8 ac
= ieee802_1d_to_ac
[tid
& 7];
1397 * If this AC is not trigger-enabled do nothing.
1399 * NB: This could/should check a separate bitmap of trigger-
1400 * enabled queues, but for now we only implement uAPSD w/o
1401 * TSPEC changes to the ACs, so they're always the same.
1403 if (!(sta
->sta
.uapsd_queues
& BIT(ac
)))
1406 /* if we are in a service period, do nothing */
1407 if (test_sta_flag(sta
, WLAN_STA_SP
))
1410 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1411 ieee80211_sta_ps_deliver_uapsd(sta
);
1413 set_sta_flag(sta
, WLAN_STA_UAPSD
);
1415 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger
);
1417 static ieee80211_rx_result debug_noinline
1418 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1420 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1421 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1422 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1427 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1428 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1432 * The device handles station powersave, so don't do anything about
1433 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1434 * it to mac80211 since they're handled.)
1436 if (ieee80211_hw_check(&sdata
->local
->hw
, AP_LINK_PS
))
1440 * Don't do anything if the station isn't already asleep. In
1441 * the uAPSD case, the station will probably be marked asleep,
1442 * in the PS-Poll case the station must be confused ...
1444 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1447 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1448 ieee80211_sta_pspoll(&rx
->sta
->sta
);
1450 /* Free PS Poll skb here instead of returning RX_DROP that would
1451 * count as an dropped frame. */
1452 dev_kfree_skb(rx
->skb
);
1455 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1456 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1457 ieee80211_has_pm(hdr
->frame_control
) &&
1458 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1459 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1462 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1464 ieee80211_sta_uapsd_trigger(&rx
->sta
->sta
, tid
);
1470 static ieee80211_rx_result debug_noinline
1471 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1473 struct sta_info
*sta
= rx
->sta
;
1474 struct sk_buff
*skb
= rx
->skb
;
1475 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1476 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1483 * Update last_rx only for IBSS packets which are for the current
1484 * BSSID and for station already AUTHORIZED to avoid keeping the
1485 * current IBSS network alive in cases where other STAs start
1486 * using different BSSID. This will also give the station another
1487 * chance to restart the authentication/authorization in case
1488 * something went wrong the first time.
1490 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1491 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1492 NL80211_IFTYPE_ADHOC
);
1493 if (ether_addr_equal(bssid
, rx
->sdata
->u
.ibss
.bssid
) &&
1494 test_sta_flag(sta
, WLAN_STA_AUTHORIZED
)) {
1495 sta
->rx_stats
.last_rx
= jiffies
;
1496 if (ieee80211_is_data(hdr
->frame_control
) &&
1497 !is_multicast_ether_addr(hdr
->addr1
))
1498 sta
->rx_stats
.last_rate
=
1499 sta_stats_encode_rate(status
);
1501 } else if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_OCB
) {
1502 sta
->rx_stats
.last_rx
= jiffies
;
1503 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1505 * Mesh beacons will update last_rx when if they are found to
1506 * match the current local configuration when processed.
1508 sta
->rx_stats
.last_rx
= jiffies
;
1509 if (ieee80211_is_data(hdr
->frame_control
))
1510 sta
->rx_stats
.last_rate
= sta_stats_encode_rate(status
);
1513 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1514 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1516 sta
->rx_stats
.fragments
++;
1518 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
1519 sta
->rx_stats
.bytes
+= rx
->skb
->len
;
1520 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
1522 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
1523 sta
->rx_stats
.last_signal
= status
->signal
;
1524 ewma_signal_add(&sta
->rx_stats_avg
.signal
, -status
->signal
);
1527 if (status
->chains
) {
1528 sta
->rx_stats
.chains
= status
->chains
;
1529 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
1530 int signal
= status
->chain_signal
[i
];
1532 if (!(status
->chains
& BIT(i
)))
1535 sta
->rx_stats
.chain_signal_last
[i
] = signal
;
1536 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
1542 * Change STA power saving mode only at the end of a frame
1543 * exchange sequence.
1545 if (!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
) &&
1546 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1547 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1548 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1549 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1550 /* PM bit is only checked in frames where it isn't reserved,
1551 * in AP mode it's reserved in non-bufferable management frames
1552 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1554 (!ieee80211_is_mgmt(hdr
->frame_control
) ||
1555 ieee80211_is_bufferable_mmpdu(hdr
->frame_control
))) {
1556 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1557 if (!ieee80211_has_pm(hdr
->frame_control
))
1560 if (ieee80211_has_pm(hdr
->frame_control
))
1565 /* mesh power save support */
1566 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1567 ieee80211_mps_rx_h_sta_process(sta
, hdr
);
1570 * Drop (qos-)data::nullfunc frames silently, since they
1571 * are used only to control station power saving mode.
1573 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1574 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1575 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1578 * If we receive a 4-addr nullfunc frame from a STA
1579 * that was not moved to a 4-addr STA vlan yet send
1580 * the event to userspace and for older hostapd drop
1581 * the frame to the monitor interface.
1583 if (ieee80211_has_a4(hdr
->frame_control
) &&
1584 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1585 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1586 !rx
->sdata
->u
.vlan
.sta
))) {
1587 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1588 cfg80211_rx_unexpected_4addr_frame(
1589 rx
->sdata
->dev
, sta
->sta
.addr
,
1591 return RX_DROP_MONITOR
;
1594 * Update counter and free packet here to avoid
1595 * counting this as a dropped packed.
1597 sta
->rx_stats
.packets
++;
1598 dev_kfree_skb(rx
->skb
);
1603 } /* ieee80211_rx_h_sta_process */
1605 static ieee80211_rx_result debug_noinline
1606 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
1608 struct sk_buff
*skb
= rx
->skb
;
1609 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1610 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1613 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
1614 struct ieee80211_key
*sta_ptk
= NULL
;
1615 int mmie_keyidx
= -1;
1617 const struct ieee80211_cipher_scheme
*cs
= NULL
;
1622 * There are four types of keys:
1623 * - GTK (group keys)
1624 * - IGTK (group keys for management frames)
1625 * - PTK (pairwise keys)
1626 * - STK (station-to-station pairwise keys)
1628 * When selecting a key, we have to distinguish between multicast
1629 * (including broadcast) and unicast frames, the latter can only
1630 * use PTKs and STKs while the former always use GTKs and IGTKs.
1631 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1632 * unicast frames can also use key indices like GTKs. Hence, if we
1633 * don't have a PTK/STK we check the key index for a WEP key.
1635 * Note that in a regular BSS, multicast frames are sent by the
1636 * AP only, associated stations unicast the frame to the AP first
1637 * which then multicasts it on their behalf.
1639 * There is also a slight problem in IBSS mode: GTKs are negotiated
1640 * with each station, that is something we don't currently handle.
1641 * The spec seems to expect that one negotiates the same key with
1642 * every station but there's no such requirement; VLANs could be
1646 /* start without a key */
1648 fc
= hdr
->frame_control
;
1651 int keyid
= rx
->sta
->ptk_idx
;
1653 if (ieee80211_has_protected(fc
) && rx
->sta
->cipher_scheme
) {
1654 cs
= rx
->sta
->cipher_scheme
;
1655 keyid
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1656 if (unlikely(keyid
< 0))
1657 return RX_DROP_UNUSABLE
;
1659 sta_ptk
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1662 if (!ieee80211_has_protected(fc
))
1663 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
1665 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
1667 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1668 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1670 /* Skip decryption if the frame is not protected. */
1671 if (!ieee80211_has_protected(fc
))
1673 } else if (mmie_keyidx
>= 0) {
1674 /* Broadcast/multicast robust management frame / BIP */
1675 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1676 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1679 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
1680 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
1681 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
1683 if (ieee80211_is_group_privacy_action(skb
) &&
1684 test_sta_flag(rx
->sta
, WLAN_STA_MFP
))
1685 return RX_DROP_MONITOR
;
1687 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
1690 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
1691 } else if (!ieee80211_has_protected(fc
)) {
1693 * The frame was not protected, so skip decryption. However, we
1694 * need to set rx->key if there is a key that could have been
1695 * used so that the frame may be dropped if encryption would
1696 * have been expected.
1698 struct ieee80211_key
*key
= NULL
;
1699 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1702 if (ieee80211_is_mgmt(fc
) &&
1703 is_multicast_ether_addr(hdr
->addr1
) &&
1704 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
1708 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1709 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
1715 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1716 key
= rcu_dereference(sdata
->keys
[i
]);
1729 * The device doesn't give us the IV so we won't be
1730 * able to look up the key. That's ok though, we
1731 * don't need to decrypt the frame, we just won't
1732 * be able to keep statistics accurate.
1733 * Except for key threshold notifications, should
1734 * we somehow allow the driver to tell us which key
1735 * the hardware used if this flag is set?
1737 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1738 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1741 hdrlen
= ieee80211_hdrlen(fc
);
1744 keyidx
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1746 if (unlikely(keyidx
< 0))
1747 return RX_DROP_UNUSABLE
;
1749 if (rx
->skb
->len
< 8 + hdrlen
)
1750 return RX_DROP_UNUSABLE
; /* TODO: count this? */
1752 * no need to call ieee80211_wep_get_keyidx,
1753 * it verifies a bunch of things we've done already
1755 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1756 keyidx
= keyid
>> 6;
1759 /* check per-station GTK first, if multicast packet */
1760 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1761 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1763 /* if not found, try default key */
1765 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1768 * RSNA-protected unicast frames should always be
1769 * sent with pairwise or station-to-station keys,
1770 * but for WEP we allow using a key index as well.
1773 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1774 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1775 !is_multicast_ether_addr(hdr
->addr1
))
1781 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1782 return RX_DROP_MONITOR
;
1784 /* TODO: add threshold stuff again */
1786 return RX_DROP_MONITOR
;
1789 switch (rx
->key
->conf
.cipher
) {
1790 case WLAN_CIPHER_SUITE_WEP40
:
1791 case WLAN_CIPHER_SUITE_WEP104
:
1792 result
= ieee80211_crypto_wep_decrypt(rx
);
1794 case WLAN_CIPHER_SUITE_TKIP
:
1795 result
= ieee80211_crypto_tkip_decrypt(rx
);
1797 case WLAN_CIPHER_SUITE_CCMP
:
1798 result
= ieee80211_crypto_ccmp_decrypt(
1799 rx
, IEEE80211_CCMP_MIC_LEN
);
1801 case WLAN_CIPHER_SUITE_CCMP_256
:
1802 result
= ieee80211_crypto_ccmp_decrypt(
1803 rx
, IEEE80211_CCMP_256_MIC_LEN
);
1805 case WLAN_CIPHER_SUITE_AES_CMAC
:
1806 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1808 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1809 result
= ieee80211_crypto_aes_cmac_256_decrypt(rx
);
1811 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1812 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1813 result
= ieee80211_crypto_aes_gmac_decrypt(rx
);
1815 case WLAN_CIPHER_SUITE_GCMP
:
1816 case WLAN_CIPHER_SUITE_GCMP_256
:
1817 result
= ieee80211_crypto_gcmp_decrypt(rx
);
1820 result
= ieee80211_crypto_hw_decrypt(rx
);
1823 /* the hdr variable is invalid after the decrypt handlers */
1825 /* either the frame has been decrypted or will be dropped */
1826 status
->flag
|= RX_FLAG_DECRYPTED
;
1831 static inline struct ieee80211_fragment_entry
*
1832 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1833 unsigned int frag
, unsigned int seq
, int rx_queue
,
1834 struct sk_buff
**skb
)
1836 struct ieee80211_fragment_entry
*entry
;
1838 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1839 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1840 sdata
->fragment_next
= 0;
1842 if (!skb_queue_empty(&entry
->skb_list
))
1843 __skb_queue_purge(&entry
->skb_list
);
1845 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1847 entry
->first_frag_time
= jiffies
;
1849 entry
->rx_queue
= rx_queue
;
1850 entry
->last_frag
= frag
;
1851 entry
->check_sequential_pn
= false;
1852 entry
->extra_len
= 0;
1857 static inline struct ieee80211_fragment_entry
*
1858 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1859 unsigned int frag
, unsigned int seq
,
1860 int rx_queue
, struct ieee80211_hdr
*hdr
)
1862 struct ieee80211_fragment_entry
*entry
;
1865 idx
= sdata
->fragment_next
;
1866 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1867 struct ieee80211_hdr
*f_hdr
;
1871 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1873 entry
= &sdata
->fragments
[idx
];
1874 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1875 entry
->rx_queue
!= rx_queue
||
1876 entry
->last_frag
+ 1 != frag
)
1879 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1882 * Check ftype and addresses are equal, else check next fragment
1884 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1885 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1886 !ether_addr_equal(hdr
->addr1
, f_hdr
->addr1
) ||
1887 !ether_addr_equal(hdr
->addr2
, f_hdr
->addr2
))
1890 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1891 __skb_queue_purge(&entry
->skb_list
);
1900 static ieee80211_rx_result debug_noinline
1901 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1903 struct ieee80211_hdr
*hdr
;
1906 unsigned int frag
, seq
;
1907 struct ieee80211_fragment_entry
*entry
;
1908 struct sk_buff
*skb
;
1909 struct ieee80211_rx_status
*status
;
1911 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1912 fc
= hdr
->frame_control
;
1914 if (ieee80211_is_ctl(fc
))
1917 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1918 frag
= sc
& IEEE80211_SCTL_FRAG
;
1920 if (is_multicast_ether_addr(hdr
->addr1
)) {
1921 I802_DEBUG_INC(rx
->local
->dot11MulticastReceivedFrameCount
);
1925 if (likely(!ieee80211_has_morefrags(fc
) && frag
== 0))
1928 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1930 if (skb_linearize(rx
->skb
))
1931 return RX_DROP_UNUSABLE
;
1934 * skb_linearize() might change the skb->data and
1935 * previously cached variables (in this case, hdr) need to
1936 * be refreshed with the new data.
1938 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1939 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1942 /* This is the first fragment of a new frame. */
1943 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1944 rx
->seqno_idx
, &(rx
->skb
));
1946 (rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
||
1947 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP_256
||
1948 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP
||
1949 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP_256
) &&
1950 ieee80211_has_protected(fc
)) {
1951 int queue
= rx
->security_idx
;
1953 /* Store CCMP/GCMP PN so that we can verify that the
1954 * next fragment has a sequential PN value.
1956 entry
->check_sequential_pn
= true;
1957 memcpy(entry
->last_pn
,
1958 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1959 IEEE80211_CCMP_PN_LEN
);
1960 BUILD_BUG_ON(offsetof(struct ieee80211_key
,
1962 offsetof(struct ieee80211_key
,
1964 BUILD_BUG_ON(sizeof(rx
->key
->u
.ccmp
.rx_pn
[queue
]) !=
1965 sizeof(rx
->key
->u
.gcmp
.rx_pn
[queue
]));
1966 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN
!=
1967 IEEE80211_GCMP_PN_LEN
);
1972 /* This is a fragment for a frame that should already be pending in
1973 * fragment cache. Add this fragment to the end of the pending entry.
1975 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
1976 rx
->seqno_idx
, hdr
);
1978 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1979 return RX_DROP_MONITOR
;
1982 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1983 * MPDU PN values are not incrementing in steps of 1."
1984 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1985 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1987 if (entry
->check_sequential_pn
) {
1989 u8 pn
[IEEE80211_CCMP_PN_LEN
], *rpn
;
1993 (rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
&&
1994 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP_256
&&
1995 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP
&&
1996 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP_256
))
1997 return RX_DROP_UNUSABLE
;
1998 memcpy(pn
, entry
->last_pn
, IEEE80211_CCMP_PN_LEN
);
1999 for (i
= IEEE80211_CCMP_PN_LEN
- 1; i
>= 0; i
--) {
2004 queue
= rx
->security_idx
;
2005 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
2006 if (memcmp(pn
, rpn
, IEEE80211_CCMP_PN_LEN
))
2007 return RX_DROP_UNUSABLE
;
2008 memcpy(entry
->last_pn
, pn
, IEEE80211_CCMP_PN_LEN
);
2011 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
2012 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
2013 entry
->last_frag
= frag
;
2014 entry
->extra_len
+= rx
->skb
->len
;
2015 if (ieee80211_has_morefrags(fc
)) {
2020 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
2021 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
2022 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head_defrag
);
2023 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
2025 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2026 __skb_queue_purge(&entry
->skb_list
);
2027 return RX_DROP_UNUSABLE
;
2030 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
2031 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
2035 /* Complete frame has been reassembled - process it now */
2036 status
= IEEE80211_SKB_RXCB(rx
->skb
);
2039 ieee80211_led_rx(rx
->local
);
2042 rx
->sta
->rx_stats
.packets
++;
2046 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
2048 if (unlikely(!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
2054 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
2056 struct sk_buff
*skb
= rx
->skb
;
2057 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2060 * Pass through unencrypted frames if the hardware has
2061 * decrypted them already.
2063 if (status
->flag
& RX_FLAG_DECRYPTED
)
2066 /* Drop unencrypted frames if key is set. */
2067 if (unlikely(!ieee80211_has_protected(fc
) &&
2068 !ieee80211_is_nullfunc(fc
) &&
2069 ieee80211_is_data(fc
) && rx
->key
))
2075 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
2077 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2078 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2079 __le16 fc
= hdr
->frame_control
;
2082 * Pass through unencrypted frames if the hardware has
2083 * decrypted them already.
2085 if (status
->flag
& RX_FLAG_DECRYPTED
)
2088 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
2089 if (unlikely(!ieee80211_has_protected(fc
) &&
2090 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
2092 if (ieee80211_is_deauth(fc
) ||
2093 ieee80211_is_disassoc(fc
))
2094 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2099 /* BIP does not use Protected field, so need to check MMIE */
2100 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
2101 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
2102 if (ieee80211_is_deauth(fc
) ||
2103 ieee80211_is_disassoc(fc
))
2104 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2110 * When using MFP, Action frames are not allowed prior to
2111 * having configured keys.
2113 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
2114 ieee80211_is_robust_mgmt_frame(rx
->skb
)))
2122 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
2124 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2125 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2126 bool check_port_control
= false;
2127 struct ethhdr
*ehdr
;
2130 *port_control
= false;
2131 if (ieee80211_has_a4(hdr
->frame_control
) &&
2132 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
2135 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
2136 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
2138 if (!sdata
->u
.mgd
.use_4addr
)
2141 check_port_control
= true;
2144 if (is_multicast_ether_addr(hdr
->addr1
) &&
2145 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
2148 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
2152 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2153 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
2154 *port_control
= true;
2155 else if (check_port_control
)
2162 * requires that rx->skb is a frame with ethernet header
2164 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
2166 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
2167 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2168 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2171 * Allow EAPOL frames to us/the PAE group address regardless
2172 * of whether the frame was encrypted or not.
2174 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
2175 (ether_addr_equal(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) ||
2176 ether_addr_equal(ehdr
->h_dest
, pae_group_addr
)))
2179 if (ieee80211_802_1x_port_control(rx
) ||
2180 ieee80211_drop_unencrypted(rx
, fc
))
2187 * requires that rx->skb is a frame with ethernet header
2190 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
2192 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2193 struct net_device
*dev
= sdata
->dev
;
2194 struct sk_buff
*skb
, *xmit_skb
;
2195 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2196 struct sta_info
*dsta
;
2201 ieee80211_rx_stats(dev
, skb
->len
);
2204 /* The seqno index has the same property as needed
2205 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2206 * for non-QoS-data frames. Here we know it's a data
2207 * frame, so count MSDUs.
2209 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
2210 rx
->sta
->rx_stats
.msdu
[rx
->seqno_idx
]++;
2211 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
2214 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2215 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
2216 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
2217 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
2218 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
2220 * send multicast frames both to higher layers in
2221 * local net stack and back to the wireless medium
2223 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
2225 net_info_ratelimited("%s: failed to clone multicast frame\n",
2228 dsta
= sta_info_get(sdata
, skb
->data
);
2231 * The destination station is associated to
2232 * this AP (in this VLAN), so send the frame
2233 * directly to it and do not pass it to local
2242 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2244 /* 'align' will only take the values 0 or 2 here since all
2245 * frames are required to be aligned to 2-byte boundaries
2246 * when being passed to mac80211; the code here works just
2247 * as well if that isn't true, but mac80211 assumes it can
2248 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2252 align
= (unsigned long)(skb
->data
+ sizeof(struct ethhdr
)) & 3;
2254 if (WARN_ON(skb_headroom(skb
) < 3)) {
2258 u8
*data
= skb
->data
;
2259 size_t len
= skb_headlen(skb
);
2261 memmove(skb
->data
, data
, len
);
2262 skb_set_tail_pointer(skb
, len
);
2269 /* deliver to local stack */
2270 skb
->protocol
= eth_type_trans(skb
, dev
);
2271 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2273 napi_gro_receive(rx
->napi
, skb
);
2275 netif_receive_skb(skb
);
2280 * Send to wireless media and increase priority by 256 to
2281 * keep the received priority instead of reclassifying
2282 * the frame (see cfg80211_classify8021d).
2284 xmit_skb
->priority
+= 256;
2285 xmit_skb
->protocol
= htons(ETH_P_802_3
);
2286 skb_reset_network_header(xmit_skb
);
2287 skb_reset_mac_header(xmit_skb
);
2288 dev_queue_xmit(xmit_skb
);
2292 static ieee80211_rx_result debug_noinline
2293 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
2295 struct net_device
*dev
= rx
->sdata
->dev
;
2296 struct sk_buff
*skb
= rx
->skb
;
2297 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2298 __le16 fc
= hdr
->frame_control
;
2299 struct sk_buff_head frame_list
;
2300 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2301 struct ethhdr ethhdr
;
2302 const u8
*check_da
= ethhdr
.h_dest
, *check_sa
= ethhdr
.h_source
;
2304 if (unlikely(!ieee80211_is_data(fc
)))
2307 if (unlikely(!ieee80211_is_data_present(fc
)))
2308 return RX_DROP_MONITOR
;
2310 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
2313 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2314 switch (rx
->sdata
->vif
.type
) {
2315 case NL80211_IFTYPE_AP_VLAN
:
2316 if (!rx
->sdata
->u
.vlan
.sta
)
2317 return RX_DROP_UNUSABLE
;
2319 case NL80211_IFTYPE_STATION
:
2320 if (!rx
->sdata
->u
.mgd
.use_4addr
)
2321 return RX_DROP_UNUSABLE
;
2324 return RX_DROP_UNUSABLE
;
2328 } else switch (rx
->sdata
->vif
.type
) {
2329 case NL80211_IFTYPE_AP
:
2330 case NL80211_IFTYPE_AP_VLAN
:
2333 case NL80211_IFTYPE_STATION
:
2335 !test_sta_flag(rx
->sta
, WLAN_STA_TDLS_PEER
))
2338 case NL80211_IFTYPE_MESH_POINT
:
2345 if (is_multicast_ether_addr(hdr
->addr1
))
2346 return RX_DROP_UNUSABLE
;
2349 __skb_queue_head_init(&frame_list
);
2351 if (ieee80211_data_to_8023_exthdr(skb
, ðhdr
,
2352 rx
->sdata
->vif
.addr
,
2353 rx
->sdata
->vif
.type
))
2354 return RX_DROP_UNUSABLE
;
2356 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
2357 rx
->sdata
->vif
.type
,
2358 rx
->local
->hw
.extra_tx_headroom
,
2359 check_da
, check_sa
);
2361 while (!skb_queue_empty(&frame_list
)) {
2362 rx
->skb
= __skb_dequeue(&frame_list
);
2364 if (!ieee80211_frame_allowed(rx
, fc
)) {
2365 dev_kfree_skb(rx
->skb
);
2369 ieee80211_deliver_skb(rx
);
2375 #ifdef CONFIG_MAC80211_MESH
2376 static ieee80211_rx_result
2377 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
2379 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
2380 struct ieee80211_tx_info
*info
;
2381 struct ieee80211s_hdr
*mesh_hdr
;
2382 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
2383 struct ieee80211_local
*local
= rx
->local
;
2384 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2385 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
2388 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2389 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2391 /* make sure fixed part of mesh header is there, also checks skb len */
2392 if (!pskb_may_pull(rx
->skb
, hdrlen
+ 6))
2393 return RX_DROP_MONITOR
;
2395 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2397 /* make sure full mesh header is there, also checks skb len */
2398 if (!pskb_may_pull(rx
->skb
,
2399 hdrlen
+ ieee80211_get_mesh_hdrlen(mesh_hdr
)))
2400 return RX_DROP_MONITOR
;
2402 /* reload pointers */
2403 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2404 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2406 if (ieee80211_drop_unencrypted(rx
, hdr
->frame_control
))
2407 return RX_DROP_MONITOR
;
2409 /* frame is in RMC, don't forward */
2410 if (ieee80211_is_data(hdr
->frame_control
) &&
2411 is_multicast_ether_addr(hdr
->addr1
) &&
2412 mesh_rmc_check(rx
->sdata
, hdr
->addr3
, mesh_hdr
))
2413 return RX_DROP_MONITOR
;
2415 if (!ieee80211_is_data(hdr
->frame_control
))
2419 return RX_DROP_MONITOR
;
2421 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
2422 struct mesh_path
*mppath
;
2426 if (is_multicast_ether_addr(hdr
->addr1
)) {
2427 mpp_addr
= hdr
->addr3
;
2428 proxied_addr
= mesh_hdr
->eaddr1
;
2429 } else if (mesh_hdr
->flags
& MESH_FLAGS_AE_A5_A6
) {
2430 /* has_a4 already checked in ieee80211_rx_mesh_check */
2431 mpp_addr
= hdr
->addr4
;
2432 proxied_addr
= mesh_hdr
->eaddr2
;
2434 return RX_DROP_MONITOR
;
2438 mppath
= mpp_path_lookup(sdata
, proxied_addr
);
2440 mpp_path_add(sdata
, proxied_addr
, mpp_addr
);
2442 spin_lock_bh(&mppath
->state_lock
);
2443 if (!ether_addr_equal(mppath
->mpp
, mpp_addr
))
2444 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
2445 mppath
->exp_time
= jiffies
;
2446 spin_unlock_bh(&mppath
->state_lock
);
2451 /* Frame has reached destination. Don't forward */
2452 if (!is_multicast_ether_addr(hdr
->addr1
) &&
2453 ether_addr_equal(sdata
->vif
.addr
, hdr
->addr3
))
2456 ac
= ieee80211_select_queue_80211(sdata
, skb
, hdr
);
2457 q
= sdata
->vif
.hw_queue
[ac
];
2458 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
2459 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
2460 return RX_DROP_MONITOR
;
2462 skb_set_queue_mapping(skb
, q
);
2464 if (!--mesh_hdr
->ttl
) {
2465 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_ttl
);
2469 if (!ifmsh
->mshcfg
.dot11MeshForwarding
)
2472 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
2474 net_info_ratelimited("%s: failed to clone mesh frame\n",
2479 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
2480 fwd_hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_FCTL_RETRY
);
2481 info
= IEEE80211_SKB_CB(fwd_skb
);
2482 memset(info
, 0, sizeof(*info
));
2483 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
2484 info
->control
.vif
= &rx
->sdata
->vif
;
2485 info
->control
.jiffies
= jiffies
;
2486 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
2487 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
2488 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
2489 /* update power mode indication when forwarding */
2490 ieee80211_mps_set_frame_flags(sdata
, NULL
, fwd_hdr
);
2491 } else if (!mesh_nexthop_lookup(sdata
, fwd_skb
)) {
2492 /* mesh power mode flags updated in mesh_nexthop_lookup */
2493 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
2495 /* unable to resolve next hop */
2496 mesh_path_error_tx(sdata
, ifmsh
->mshcfg
.element_ttl
,
2498 WLAN_REASON_MESH_PATH_NOFORWARD
,
2500 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
2502 return RX_DROP_MONITOR
;
2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
2506 ieee80211_add_pending_skb(local
, fwd_skb
);
2508 if (is_multicast_ether_addr(hdr
->addr1
))
2510 return RX_DROP_MONITOR
;
2514 static ieee80211_rx_result debug_noinline
2515 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2517 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2518 struct ieee80211_local
*local
= rx
->local
;
2519 struct net_device
*dev
= sdata
->dev
;
2520 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2521 __le16 fc
= hdr
->frame_control
;
2525 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2528 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2529 return RX_DROP_MONITOR
;
2532 * Send unexpected-4addr-frame event to hostapd. For older versions,
2533 * also drop the frame to cooked monitor interfaces.
2535 if (ieee80211_has_a4(hdr
->frame_control
) &&
2536 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2538 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2539 cfg80211_rx_unexpected_4addr_frame(
2540 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2541 return RX_DROP_MONITOR
;
2544 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2546 return RX_DROP_UNUSABLE
;
2548 if (!ieee80211_frame_allowed(rx
, fc
))
2549 return RX_DROP_MONITOR
;
2551 /* directly handle TDLS channel switch requests/responses */
2552 if (unlikely(((struct ethhdr
*)rx
->skb
->data
)->h_proto
==
2553 cpu_to_be16(ETH_P_TDLS
))) {
2554 struct ieee80211_tdls_data
*tf
= (void *)rx
->skb
->data
;
2556 if (pskb_may_pull(rx
->skb
,
2557 offsetof(struct ieee80211_tdls_data
, u
)) &&
2558 tf
->payload_type
== WLAN_TDLS_SNAP_RFTYPE
&&
2559 tf
->category
== WLAN_CATEGORY_TDLS
&&
2560 (tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_REQUEST
||
2561 tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_RESPONSE
)) {
2562 skb_queue_tail(&local
->skb_queue_tdls_chsw
, rx
->skb
);
2563 schedule_work(&local
->tdls_chsw_work
);
2565 rx
->sta
->rx_stats
.packets
++;
2571 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2572 unlikely(port_control
) && sdata
->bss
) {
2573 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2581 if (!ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
) &&
2582 local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2583 !is_multicast_ether_addr(
2584 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2585 (!local
->scanning
&&
2586 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
)))
2587 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2588 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2590 ieee80211_deliver_skb(rx
);
2595 static ieee80211_rx_result debug_noinline
2596 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
2598 struct sk_buff
*skb
= rx
->skb
;
2599 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2600 struct tid_ampdu_rx
*tid_agg_rx
;
2604 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2607 if (ieee80211_is_back_req(bar
->frame_control
)) {
2609 __le16 control
, start_seq_num
;
2610 } __packed bar_data
;
2611 struct ieee80211_event event
= {
2612 .type
= BAR_RX_EVENT
,
2616 return RX_DROP_MONITOR
;
2618 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2619 &bar_data
, sizeof(bar_data
)))
2620 return RX_DROP_MONITOR
;
2622 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2624 if (!test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
2625 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
2626 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
2627 WLAN_BACK_RECIPIENT
,
2628 WLAN_REASON_QSTA_REQUIRE_SETUP
);
2630 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2632 return RX_DROP_MONITOR
;
2634 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2635 event
.u
.ba
.tid
= tid
;
2636 event
.u
.ba
.ssn
= start_seq_num
;
2637 event
.u
.ba
.sta
= &rx
->sta
->sta
;
2639 /* reset session timer */
2640 if (tid_agg_rx
->timeout
)
2641 mod_timer(&tid_agg_rx
->session_timer
,
2642 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2644 spin_lock(&tid_agg_rx
->reorder_lock
);
2645 /* release stored frames up to start of BAR */
2646 ieee80211_release_reorder_frames(rx
->sdata
, tid_agg_rx
,
2647 start_seq_num
, frames
);
2648 spin_unlock(&tid_agg_rx
->reorder_lock
);
2650 drv_event_callback(rx
->local
, rx
->sdata
, &event
);
2657 * After this point, we only want management frames,
2658 * so we can drop all remaining control frames to
2659 * cooked monitor interfaces.
2661 return RX_DROP_MONITOR
;
2664 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2665 struct ieee80211_mgmt
*mgmt
,
2668 struct ieee80211_local
*local
= sdata
->local
;
2669 struct sk_buff
*skb
;
2670 struct ieee80211_mgmt
*resp
;
2672 if (!ether_addr_equal(mgmt
->da
, sdata
->vif
.addr
)) {
2673 /* Not to own unicast address */
2677 if (!ether_addr_equal(mgmt
->sa
, sdata
->u
.mgd
.bssid
) ||
2678 !ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
)) {
2679 /* Not from the current AP or not associated yet. */
2683 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2684 /* Too short SA Query request frame */
2688 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2692 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2693 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2694 memset(resp
, 0, 24);
2695 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2696 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2697 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2698 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2699 IEEE80211_STYPE_ACTION
);
2700 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2701 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2702 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2703 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2704 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2705 WLAN_SA_QUERY_TR_ID_LEN
);
2707 ieee80211_tx_skb(sdata
, skb
);
2710 static ieee80211_rx_result debug_noinline
2711 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2713 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2714 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2717 * From here on, look only at management frames.
2718 * Data and control frames are already handled,
2719 * and unknown (reserved) frames are useless.
2721 if (rx
->skb
->len
< 24)
2722 return RX_DROP_MONITOR
;
2724 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2725 return RX_DROP_MONITOR
;
2727 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
2728 ieee80211_is_beacon(mgmt
->frame_control
) &&
2729 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
2732 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
))
2733 sig
= status
->signal
;
2735 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
2736 rx
->skb
->data
, rx
->skb
->len
,
2738 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
2741 if (ieee80211_drop_unencrypted_mgmt(rx
))
2742 return RX_DROP_UNUSABLE
;
2747 static ieee80211_rx_result debug_noinline
2748 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2750 struct ieee80211_local
*local
= rx
->local
;
2751 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2752 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2753 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2754 int len
= rx
->skb
->len
;
2756 if (!ieee80211_is_action(mgmt
->frame_control
))
2759 /* drop too small frames */
2760 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2761 return RX_DROP_UNUSABLE
;
2763 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
&&
2764 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SELF_PROTECTED
&&
2765 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SPECTRUM_MGMT
)
2766 return RX_DROP_UNUSABLE
;
2768 switch (mgmt
->u
.action
.category
) {
2769 case WLAN_CATEGORY_HT
:
2770 /* reject HT action frames from stations not supporting HT */
2771 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
2774 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2775 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2776 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2777 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2778 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2781 /* verify action & smps_control/chanwidth are present */
2782 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2785 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
2786 case WLAN_HT_ACTION_SMPS
: {
2787 struct ieee80211_supported_band
*sband
;
2788 enum ieee80211_smps_mode smps_mode
;
2790 /* convert to HT capability */
2791 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
2792 case WLAN_HT_SMPS_CONTROL_DISABLED
:
2793 smps_mode
= IEEE80211_SMPS_OFF
;
2795 case WLAN_HT_SMPS_CONTROL_STATIC
:
2796 smps_mode
= IEEE80211_SMPS_STATIC
;
2798 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
2799 smps_mode
= IEEE80211_SMPS_DYNAMIC
;
2805 /* if no change do nothing */
2806 if (rx
->sta
->sta
.smps_mode
== smps_mode
)
2808 rx
->sta
->sta
.smps_mode
= smps_mode
;
2810 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2812 rate_control_rate_update(local
, sband
, rx
->sta
,
2813 IEEE80211_RC_SMPS_CHANGED
);
2816 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH
: {
2817 struct ieee80211_supported_band
*sband
;
2818 u8 chanwidth
= mgmt
->u
.action
.u
.ht_notify_cw
.chanwidth
;
2819 enum ieee80211_sta_rx_bandwidth max_bw
, new_bw
;
2821 /* If it doesn't support 40 MHz it can't change ... */
2822 if (!(rx
->sta
->sta
.ht_cap
.cap
&
2823 IEEE80211_HT_CAP_SUP_WIDTH_20_40
))
2826 if (chanwidth
== IEEE80211_HT_CHANWIDTH_20MHZ
)
2827 max_bw
= IEEE80211_STA_RX_BW_20
;
2829 max_bw
= ieee80211_sta_cap_rx_bw(rx
->sta
);
2831 /* set cur_max_bandwidth and recalc sta bw */
2832 rx
->sta
->cur_max_bandwidth
= max_bw
;
2833 new_bw
= ieee80211_sta_cur_vht_bw(rx
->sta
);
2835 if (rx
->sta
->sta
.bandwidth
== new_bw
)
2838 rx
->sta
->sta
.bandwidth
= new_bw
;
2839 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2841 rate_control_rate_update(local
, sband
, rx
->sta
,
2842 IEEE80211_RC_BW_CHANGED
);
2850 case WLAN_CATEGORY_PUBLIC
:
2851 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2853 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2857 if (!ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
2859 if (mgmt
->u
.action
.u
.ext_chan_switch
.action_code
!=
2860 WLAN_PUB_ACTION_EXT_CHANSW_ANN
)
2862 if (len
< offsetof(struct ieee80211_mgmt
,
2863 u
.action
.u
.ext_chan_switch
.variable
))
2866 case WLAN_CATEGORY_VHT
:
2867 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2868 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2869 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2870 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2871 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2874 /* verify action code is present */
2875 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2878 switch (mgmt
->u
.action
.u
.vht_opmode_notif
.action_code
) {
2879 case WLAN_VHT_ACTION_OPMODE_NOTIF
: {
2882 /* verify opmode is present */
2883 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2886 opmode
= mgmt
->u
.action
.u
.vht_opmode_notif
.operating_mode
;
2888 ieee80211_vht_handle_opmode(rx
->sdata
, rx
->sta
,
2889 opmode
, status
->band
);
2892 case WLAN_VHT_ACTION_GROUPID_MGMT
: {
2893 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 25)
2901 case WLAN_CATEGORY_BACK
:
2902 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2903 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2904 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2905 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2906 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2909 /* verify action_code is present */
2910 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2913 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2914 case WLAN_ACTION_ADDBA_REQ
:
2915 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2916 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2919 case WLAN_ACTION_ADDBA_RESP
:
2920 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2921 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2924 case WLAN_ACTION_DELBA
:
2925 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2926 sizeof(mgmt
->u
.action
.u
.delba
)))
2934 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2935 /* verify action_code is present */
2936 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2939 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2940 case WLAN_ACTION_SPCT_MSR_REQ
:
2941 if (status
->band
!= NL80211_BAND_5GHZ
)
2944 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2945 sizeof(mgmt
->u
.action
.u
.measurement
)))
2948 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2951 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2953 case WLAN_ACTION_SPCT_CHL_SWITCH
: {
2955 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2956 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2959 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2960 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2961 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
2964 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
2965 bssid
= sdata
->u
.mgd
.bssid
;
2966 else if (sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
)
2967 bssid
= sdata
->u
.ibss
.bssid
;
2968 else if (sdata
->vif
.type
== NL80211_IFTYPE_MESH_POINT
)
2973 if (!ether_addr_equal(mgmt
->bssid
, bssid
))
2980 case WLAN_CATEGORY_SA_QUERY
:
2981 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2982 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2985 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2986 case WLAN_ACTION_SA_QUERY_REQUEST
:
2987 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2989 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2993 case WLAN_CATEGORY_SELF_PROTECTED
:
2994 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2995 sizeof(mgmt
->u
.action
.u
.self_prot
.action_code
)))
2998 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
2999 case WLAN_SP_MESH_PEERING_OPEN
:
3000 case WLAN_SP_MESH_PEERING_CLOSE
:
3001 case WLAN_SP_MESH_PEERING_CONFIRM
:
3002 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3004 if (sdata
->u
.mesh
.user_mpm
)
3005 /* userspace handles this frame */
3008 case WLAN_SP_MGK_INFORM
:
3009 case WLAN_SP_MGK_ACK
:
3010 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3015 case WLAN_CATEGORY_MESH_ACTION
:
3016 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3017 sizeof(mgmt
->u
.action
.u
.mesh_action
.action_code
)))
3020 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3022 if (mesh_action_is_path_sel(mgmt
) &&
3023 !mesh_path_sel_is_hwmp(sdata
))
3031 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
3032 /* will return in the next handlers */
3037 rx
->sta
->rx_stats
.packets
++;
3038 dev_kfree_skb(rx
->skb
);
3042 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
3043 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3044 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
3046 rx
->sta
->rx_stats
.packets
++;
3050 static ieee80211_rx_result debug_noinline
3051 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
3053 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3056 /* skip known-bad action frames and return them in the next handler */
3057 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
3061 * Getting here means the kernel doesn't know how to handle
3062 * it, but maybe userspace does ... include returned frames
3063 * so userspace can register for those to know whether ones
3064 * it transmitted were processed or returned.
3067 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
))
3068 sig
= status
->signal
;
3070 if (cfg80211_rx_mgmt(&rx
->sdata
->wdev
, status
->freq
, sig
,
3071 rx
->skb
->data
, rx
->skb
->len
, 0)) {
3073 rx
->sta
->rx_stats
.packets
++;
3074 dev_kfree_skb(rx
->skb
);
3081 static ieee80211_rx_result debug_noinline
3082 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
3084 struct ieee80211_local
*local
= rx
->local
;
3085 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3086 struct sk_buff
*nskb
;
3087 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3088 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3090 if (!ieee80211_is_action(mgmt
->frame_control
))
3094 * For AP mode, hostapd is responsible for handling any action
3095 * frames that we didn't handle, including returning unknown
3096 * ones. For all other modes we will return them to the sender,
3097 * setting the 0x80 bit in the action category, as required by
3098 * 802.11-2012 9.24.4.
3099 * Newer versions of hostapd shall also use the management frame
3100 * registration mechanisms, but older ones still use cooked
3101 * monitor interfaces so push all frames there.
3103 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
3104 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
3105 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
3106 return RX_DROP_MONITOR
;
3108 if (is_multicast_ether_addr(mgmt
->da
))
3109 return RX_DROP_MONITOR
;
3111 /* do not return rejected action frames */
3112 if (mgmt
->u
.action
.category
& 0x80)
3113 return RX_DROP_UNUSABLE
;
3115 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
3118 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
3120 nmgmt
->u
.action
.category
|= 0x80;
3121 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
3122 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
3124 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
3126 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_P2P_DEVICE
) {
3127 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(nskb
);
3129 info
->flags
= IEEE80211_TX_CTL_TX_OFFCHAN
|
3130 IEEE80211_TX_INTFL_OFFCHAN_TX_OK
|
3131 IEEE80211_TX_CTL_NO_CCK_RATE
;
3132 if (ieee80211_hw_check(&local
->hw
, QUEUE_CONTROL
))
3134 local
->hw
.offchannel_tx_hw_queue
;
3137 __ieee80211_tx_skb_tid_band(rx
->sdata
, nskb
, 7,
3140 dev_kfree_skb(rx
->skb
);
3144 static ieee80211_rx_result debug_noinline
3145 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
3147 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3148 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
3151 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
3153 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
3154 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3155 sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
3156 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3157 return RX_DROP_MONITOR
;
3160 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
3161 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
3162 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
3163 /* process for all: mesh, mlme, ibss */
3165 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
3166 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
3167 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
3168 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
3169 if (is_multicast_ether_addr(mgmt
->da
) &&
3170 !is_broadcast_ether_addr(mgmt
->da
))
3171 return RX_DROP_MONITOR
;
3173 /* process only for station */
3174 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3175 return RX_DROP_MONITOR
;
3177 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
3178 /* process only for ibss and mesh */
3179 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3180 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3181 return RX_DROP_MONITOR
;
3184 return RX_DROP_MONITOR
;
3187 /* queue up frame and kick off work to process it */
3188 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
3189 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3190 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
3192 rx
->sta
->rx_stats
.packets
++;
3197 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
3198 struct ieee80211_rate
*rate
)
3200 struct ieee80211_sub_if_data
*sdata
;
3201 struct ieee80211_local
*local
= rx
->local
;
3202 struct sk_buff
*skb
= rx
->skb
, *skb2
;
3203 struct net_device
*prev_dev
= NULL
;
3204 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3205 int needed_headroom
;
3208 * If cooked monitor has been processed already, then
3209 * don't do it again. If not, set the flag.
3211 if (rx
->flags
& IEEE80211_RX_CMNTR
)
3213 rx
->flags
|= IEEE80211_RX_CMNTR
;
3215 /* If there are no cooked monitor interfaces, just free the SKB */
3216 if (!local
->cooked_mntrs
)
3219 /* vendor data is long removed here */
3220 status
->flag
&= ~RX_FLAG_RADIOTAP_VENDOR_DATA
;
3221 /* room for the radiotap header based on driver features */
3222 needed_headroom
= ieee80211_rx_radiotap_hdrlen(local
, status
, skb
);
3224 if (skb_headroom(skb
) < needed_headroom
&&
3225 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
))
3228 /* prepend radiotap information */
3229 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
,
3232 skb_reset_mac_header(skb
);
3233 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3234 skb
->pkt_type
= PACKET_OTHERHOST
;
3235 skb
->protocol
= htons(ETH_P_802_2
);
3237 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3238 if (!ieee80211_sdata_running(sdata
))
3241 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
3242 !(sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
))
3246 skb2
= skb_clone(skb
, GFP_ATOMIC
);
3248 skb2
->dev
= prev_dev
;
3249 netif_receive_skb(skb2
);
3253 prev_dev
= sdata
->dev
;
3254 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
3258 skb
->dev
= prev_dev
;
3259 netif_receive_skb(skb
);
3267 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
3268 ieee80211_rx_result res
)
3271 case RX_DROP_MONITOR
:
3272 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3274 rx
->sta
->rx_stats
.dropped
++;
3277 struct ieee80211_rate
*rate
= NULL
;
3278 struct ieee80211_supported_band
*sband
;
3279 struct ieee80211_rx_status
*status
;
3281 status
= IEEE80211_SKB_RXCB((rx
->skb
));
3283 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3284 if (!(status
->flag
& RX_FLAG_HT
) &&
3285 !(status
->flag
& RX_FLAG_VHT
))
3286 rate
= &sband
->bitrates
[status
->rate_idx
];
3288 ieee80211_rx_cooked_monitor(rx
, rate
);
3291 case RX_DROP_UNUSABLE
:
3292 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3294 rx
->sta
->rx_stats
.dropped
++;
3295 dev_kfree_skb(rx
->skb
);
3298 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
3303 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
3304 struct sk_buff_head
*frames
)
3306 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3307 struct sk_buff
*skb
;
3309 #define CALL_RXH(rxh) \
3312 if (res != RX_CONTINUE) \
3316 /* Lock here to avoid hitting all of the data used in the RX
3317 * path (e.g. key data, station data, ...) concurrently when
3318 * a frame is released from the reorder buffer due to timeout
3319 * from the timer, potentially concurrently with RX from the
3322 spin_lock_bh(&rx
->local
->rx_path_lock
);
3324 while ((skb
= __skb_dequeue(frames
))) {
3326 * all the other fields are valid across frames
3327 * that belong to an aMPDU since they are on the
3328 * same TID from the same station
3332 CALL_RXH(ieee80211_rx_h_check_more_data
);
3333 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
);
3334 CALL_RXH(ieee80211_rx_h_sta_process
);
3335 CALL_RXH(ieee80211_rx_h_decrypt
);
3336 CALL_RXH(ieee80211_rx_h_defragment
);
3337 CALL_RXH(ieee80211_rx_h_michael_mic_verify
);
3338 /* must be after MMIC verify so header is counted in MPDU mic */
3339 #ifdef CONFIG_MAC80211_MESH
3340 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
3341 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
3343 CALL_RXH(ieee80211_rx_h_amsdu
);
3344 CALL_RXH(ieee80211_rx_h_data
);
3346 /* special treatment -- needs the queue */
3347 res
= ieee80211_rx_h_ctrl(rx
, frames
);
3348 if (res
!= RX_CONTINUE
)
3351 CALL_RXH(ieee80211_rx_h_mgmt_check
);
3352 CALL_RXH(ieee80211_rx_h_action
);
3353 CALL_RXH(ieee80211_rx_h_userspace_mgmt
);
3354 CALL_RXH(ieee80211_rx_h_action_return
);
3355 CALL_RXH(ieee80211_rx_h_mgmt
);
3358 ieee80211_rx_handlers_result(rx
, res
);
3363 spin_unlock_bh(&rx
->local
->rx_path_lock
);
3366 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
3368 struct sk_buff_head reorder_release
;
3369 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3371 __skb_queue_head_init(&reorder_release
);
3373 #define CALL_RXH(rxh) \
3376 if (res != RX_CONTINUE) \
3380 CALL_RXH(ieee80211_rx_h_check_dup
);
3381 CALL_RXH(ieee80211_rx_h_check
);
3383 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
3385 ieee80211_rx_handlers(rx
, &reorder_release
);
3389 ieee80211_rx_handlers_result(rx
, res
);
3395 * This function makes calls into the RX path, therefore
3396 * it has to be invoked under RCU read lock.
3398 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
3400 struct sk_buff_head frames
;
3401 struct ieee80211_rx_data rx
= {
3403 .sdata
= sta
->sdata
,
3404 .local
= sta
->local
,
3405 /* This is OK -- must be QoS data frame */
3406 .security_idx
= tid
,
3408 .napi
= NULL
, /* must be NULL to not have races */
3410 struct tid_ampdu_rx
*tid_agg_rx
;
3412 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3416 __skb_queue_head_init(&frames
);
3418 spin_lock(&tid_agg_rx
->reorder_lock
);
3419 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3420 spin_unlock(&tid_agg_rx
->reorder_lock
);
3422 if (!skb_queue_empty(&frames
)) {
3423 struct ieee80211_event event
= {
3424 .type
= BA_FRAME_TIMEOUT
,
3426 .u
.ba
.sta
= &sta
->sta
,
3428 drv_event_callback(rx
.local
, rx
.sdata
, &event
);
3431 ieee80211_rx_handlers(&rx
, &frames
);
3434 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta
*pubsta
, u8 tid
,
3435 u16 ssn
, u64 filtered
,
3438 struct sta_info
*sta
;
3439 struct tid_ampdu_rx
*tid_agg_rx
;
3440 struct sk_buff_head frames
;
3441 struct ieee80211_rx_data rx
= {
3442 /* This is OK -- must be QoS data frame */
3443 .security_idx
= tid
,
3448 if (WARN_ON(!pubsta
|| tid
>= IEEE80211_NUM_TIDS
))
3451 __skb_queue_head_init(&frames
);
3453 sta
= container_of(pubsta
, struct sta_info
, sta
);
3456 rx
.sdata
= sta
->sdata
;
3457 rx
.local
= sta
->local
;
3460 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3464 spin_lock_bh(&tid_agg_rx
->reorder_lock
);
3466 if (received_mpdus
>= IEEE80211_SN_MODULO
>> 1) {
3469 /* release all frames in the reorder buffer */
3470 release
= (tid_agg_rx
->head_seq_num
+ tid_agg_rx
->buf_size
) %
3471 IEEE80211_SN_MODULO
;
3472 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
,
3474 /* update ssn to match received ssn */
3475 tid_agg_rx
->head_seq_num
= ssn
;
3477 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
, ssn
,
3481 /* handle the case that received ssn is behind the mac ssn.
3482 * it can be tid_agg_rx->buf_size behind and still be valid */
3483 diff
= (tid_agg_rx
->head_seq_num
- ssn
) & IEEE80211_SN_MASK
;
3484 if (diff
>= tid_agg_rx
->buf_size
) {
3485 tid_agg_rx
->reorder_buf_filtered
= 0;
3488 filtered
= filtered
>> diff
;
3492 for (i
= 0; i
< tid_agg_rx
->buf_size
; i
++) {
3493 int index
= (ssn
+ i
) % tid_agg_rx
->buf_size
;
3495 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
3496 if (filtered
& BIT_ULL(i
))
3497 tid_agg_rx
->reorder_buf_filtered
|= BIT_ULL(index
);
3500 /* now process also frames that the filter marking released */
3501 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3504 spin_unlock_bh(&tid_agg_rx
->reorder_lock
);
3506 ieee80211_rx_handlers(&rx
, &frames
);
3511 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames
);
3513 /* main receive path */
3515 static bool ieee80211_accept_frame(struct ieee80211_rx_data
*rx
)
3517 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3518 struct sk_buff
*skb
= rx
->skb
;
3519 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3520 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3521 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
3522 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
3524 switch (sdata
->vif
.type
) {
3525 case NL80211_IFTYPE_STATION
:
3526 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
3530 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3531 case NL80211_IFTYPE_ADHOC
:
3534 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
) ||
3535 ether_addr_equal(sdata
->u
.ibss
.bssid
, hdr
->addr2
))
3537 if (ieee80211_is_beacon(hdr
->frame_control
))
3539 if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
))
3542 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3546 if (status
->flag
& (RX_FLAG_HT
| RX_FLAG_VHT
))
3547 rate_idx
= 0; /* TODO: HT/VHT rates */
3549 rate_idx
= status
->rate_idx
;
3550 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3554 case NL80211_IFTYPE_OCB
:
3557 if (!ieee80211_is_data_present(hdr
->frame_control
))
3559 if (!is_broadcast_ether_addr(bssid
))
3562 !ether_addr_equal(sdata
->dev
->dev_addr
, hdr
->addr1
))
3566 if (status
->flag
& RX_FLAG_HT
)
3567 rate_idx
= 0; /* TODO: HT rates */
3569 rate_idx
= status
->rate_idx
;
3570 ieee80211_ocb_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3574 case NL80211_IFTYPE_MESH_POINT
:
3577 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3578 case NL80211_IFTYPE_AP_VLAN
:
3579 case NL80211_IFTYPE_AP
:
3581 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3583 if (!ieee80211_bssid_match(bssid
, sdata
->vif
.addr
)) {
3585 * Accept public action frames even when the
3586 * BSSID doesn't match, this is used for P2P
3587 * and location updates. Note that mac80211
3588 * itself never looks at these frames.
3591 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3593 if (ieee80211_is_public_action(hdr
, skb
->len
))
3595 return ieee80211_is_beacon(hdr
->frame_control
);
3598 if (!ieee80211_has_tods(hdr
->frame_control
)) {
3599 /* ignore data frames to TDLS-peers */
3600 if (ieee80211_is_data(hdr
->frame_control
))
3602 /* ignore action frames to TDLS-peers */
3603 if (ieee80211_is_action(hdr
->frame_control
) &&
3604 !is_broadcast_ether_addr(bssid
) &&
3605 !ether_addr_equal(bssid
, hdr
->addr1
))
3609 case NL80211_IFTYPE_WDS
:
3610 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
3612 return ether_addr_equal(sdata
->u
.wds
.remote_addr
, hdr
->addr2
);
3613 case NL80211_IFTYPE_P2P_DEVICE
:
3614 return ieee80211_is_public_action(hdr
, skb
->len
) ||
3615 ieee80211_is_probe_req(hdr
->frame_control
) ||
3616 ieee80211_is_probe_resp(hdr
->frame_control
) ||
3617 ieee80211_is_beacon(hdr
->frame_control
);
3618 case NL80211_IFTYPE_NAN
:
3619 /* Currently no frames on NAN interface are allowed */
3629 void ieee80211_check_fast_rx(struct sta_info
*sta
)
3631 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
3632 struct ieee80211_local
*local
= sdata
->local
;
3633 struct ieee80211_key
*key
;
3634 struct ieee80211_fast_rx fastrx
= {
3636 .vif_type
= sdata
->vif
.type
,
3637 .control_port_protocol
= sdata
->control_port_protocol
,
3638 }, *old
, *new = NULL
;
3639 bool assign
= false;
3641 /* use sparse to check that we don't return without updating */
3642 __acquire(check_fast_rx
);
3644 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != sizeof(rfc1042_header
));
3645 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != ETH_ALEN
);
3646 ether_addr_copy(fastrx
.rfc1042_hdr
, rfc1042_header
);
3647 ether_addr_copy(fastrx
.vif_addr
, sdata
->vif
.addr
);
3649 fastrx
.uses_rss
= ieee80211_hw_check(&local
->hw
, USES_RSS
);
3651 /* fast-rx doesn't do reordering */
3652 if (ieee80211_hw_check(&local
->hw
, AMPDU_AGGREGATION
) &&
3653 !ieee80211_hw_check(&local
->hw
, SUPPORTS_REORDERING_BUFFER
))
3656 switch (sdata
->vif
.type
) {
3657 case NL80211_IFTYPE_STATION
:
3658 /* 4-addr is harder to deal with, later maybe */
3659 if (sdata
->u
.mgd
.use_4addr
)
3661 /* software powersave is a huge mess, avoid all of it */
3662 if (ieee80211_hw_check(&local
->hw
, PS_NULLFUNC_STACK
))
3664 if (ieee80211_hw_check(&local
->hw
, SUPPORTS_PS
) &&
3665 !ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
))
3667 if (sta
->sta
.tdls
) {
3668 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3669 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3670 fastrx
.expected_ds_bits
= 0;
3672 fastrx
.sta_notify
= sdata
->u
.mgd
.probe_send_count
> 0;
3673 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3674 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3675 fastrx
.expected_ds_bits
=
3676 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
3679 case NL80211_IFTYPE_AP_VLAN
:
3680 case NL80211_IFTYPE_AP
:
3681 /* parallel-rx requires this, at least with calls to
3682 * ieee80211_sta_ps_transition()
3684 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
3686 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3687 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3688 fastrx
.expected_ds_bits
= cpu_to_le16(IEEE80211_FCTL_TODS
);
3690 fastrx
.internal_forward
=
3691 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
3692 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
||
3693 !sdata
->u
.vlan
.sta
);
3699 if (!test_sta_flag(sta
, WLAN_STA_AUTHORIZED
))
3703 key
= rcu_dereference(sta
->ptk
[sta
->ptk_idx
]);
3705 switch (key
->conf
.cipher
) {
3706 case WLAN_CIPHER_SUITE_TKIP
:
3707 /* we don't want to deal with MMIC in fast-rx */
3709 case WLAN_CIPHER_SUITE_CCMP
:
3710 case WLAN_CIPHER_SUITE_CCMP_256
:
3711 case WLAN_CIPHER_SUITE_GCMP
:
3712 case WLAN_CIPHER_SUITE_GCMP_256
:
3715 /* we also don't want to deal with WEP or cipher scheme
3716 * since those require looking up the key idx in the
3717 * frame, rather than assuming the PTK is used
3718 * (we need to revisit this once we implement the real
3719 * PTK index, which is now valid in the spec, but we
3720 * haven't implemented that part yet)
3726 fastrx
.icv_len
= key
->conf
.icv_len
;
3733 __release(check_fast_rx
);
3736 new = kmemdup(&fastrx
, sizeof(fastrx
), GFP_KERNEL
);
3738 spin_lock_bh(&sta
->lock
);
3739 old
= rcu_dereference_protected(sta
->fast_rx
, true);
3740 rcu_assign_pointer(sta
->fast_rx
, new);
3741 spin_unlock_bh(&sta
->lock
);
3744 kfree_rcu(old
, rcu_head
);
3747 void ieee80211_clear_fast_rx(struct sta_info
*sta
)
3749 struct ieee80211_fast_rx
*old
;
3751 spin_lock_bh(&sta
->lock
);
3752 old
= rcu_dereference_protected(sta
->fast_rx
, true);
3753 RCU_INIT_POINTER(sta
->fast_rx
, NULL
);
3754 spin_unlock_bh(&sta
->lock
);
3757 kfree_rcu(old
, rcu_head
);
3760 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
3762 struct ieee80211_local
*local
= sdata
->local
;
3763 struct sta_info
*sta
;
3765 lockdep_assert_held(&local
->sta_mtx
);
3767 list_for_each_entry_rcu(sta
, &local
->sta_list
, list
) {
3768 if (sdata
!= sta
->sdata
&&
3769 (!sta
->sdata
->bss
|| sta
->sdata
->bss
!= sdata
->bss
))
3771 ieee80211_check_fast_rx(sta
);
3775 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
3777 struct ieee80211_local
*local
= sdata
->local
;
3779 mutex_lock(&local
->sta_mtx
);
3780 __ieee80211_check_fast_rx_iface(sdata
);
3781 mutex_unlock(&local
->sta_mtx
);
3784 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data
*rx
,
3785 struct ieee80211_fast_rx
*fast_rx
)
3787 struct sk_buff
*skb
= rx
->skb
;
3788 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3789 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3790 struct sta_info
*sta
= rx
->sta
;
3791 int orig_len
= skb
->len
;
3792 int snap_offs
= ieee80211_hdrlen(hdr
->frame_control
);
3794 u8 snap
[sizeof(rfc1042_header
)];
3796 } *payload
__aligned(2);
3800 } addrs
__aligned(2);
3801 struct ieee80211_sta_rx_stats
*stats
= &sta
->rx_stats
;
3803 if (fast_rx
->uses_rss
)
3804 stats
= this_cpu_ptr(sta
->pcpu_rx_stats
);
3806 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3807 * to a common data structure; drivers can implement that per queue
3808 * but we don't have that information in mac80211
3810 if (!(status
->flag
& RX_FLAG_DUP_VALIDATED
))
3813 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3815 /* If using encryption, we also need to have:
3816 * - PN_VALIDATED: similar, but the implementation is tricky
3817 * - DECRYPTED: necessary for PN_VALIDATED
3820 (status
->flag
& FAST_RX_CRYPT_FLAGS
) != FAST_RX_CRYPT_FLAGS
)
3823 /* we don't deal with A-MSDU deaggregation here */
3824 if (status
->rx_flags
& IEEE80211_RX_AMSDU
)
3827 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
3830 if (unlikely(ieee80211_is_frag(hdr
)))
3833 /* Since our interface address cannot be multicast, this
3834 * implicitly also rejects multicast frames without the
3837 * We shouldn't get any *data* frames not addressed to us
3838 * (AP mode will accept multicast *management* frames), but
3839 * punting here will make it go through the full checks in
3840 * ieee80211_accept_frame().
3842 if (!ether_addr_equal(fast_rx
->vif_addr
, hdr
->addr1
))
3845 if ((hdr
->frame_control
& cpu_to_le16(IEEE80211_FCTL_FROMDS
|
3846 IEEE80211_FCTL_TODS
)) !=
3847 fast_rx
->expected_ds_bits
)
3850 /* assign the key to drop unencrypted frames (later)
3851 * and strip the IV/MIC if necessary
3853 if (fast_rx
->key
&& !(status
->flag
& RX_FLAG_IV_STRIPPED
)) {
3854 /* GCMP header length is the same */
3855 snap_offs
+= IEEE80211_CCMP_HDR_LEN
;
3858 if (!pskb_may_pull(skb
, snap_offs
+ sizeof(*payload
)))
3860 payload
= (void *)(skb
->data
+ snap_offs
);
3862 if (!ether_addr_equal(payload
->snap
, fast_rx
->rfc1042_hdr
))
3865 /* Don't handle these here since they require special code.
3866 * Accept AARP and IPX even though they should come with a
3867 * bridge-tunnel header - but if we get them this way then
3868 * there's little point in discarding them.
3870 if (unlikely(payload
->proto
== cpu_to_be16(ETH_P_TDLS
) ||
3871 payload
->proto
== fast_rx
->control_port_protocol
))
3874 /* after this point, don't punt to the slowpath! */
3876 if (rx
->key
&& !(status
->flag
& RX_FLAG_MIC_STRIPPED
) &&
3877 pskb_trim(skb
, skb
->len
- fast_rx
->icv_len
))
3880 if (unlikely(fast_rx
->sta_notify
)) {
3881 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
3882 fast_rx
->sta_notify
= false;
3885 /* statistics part of ieee80211_rx_h_sta_process() */
3886 stats
->last_rx
= jiffies
;
3887 stats
->last_rate
= sta_stats_encode_rate(status
);
3891 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
3892 stats
->last_signal
= status
->signal
;
3893 if (!fast_rx
->uses_rss
)
3894 ewma_signal_add(&sta
->rx_stats_avg
.signal
,
3898 if (status
->chains
) {
3901 stats
->chains
= status
->chains
;
3902 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
3903 int signal
= status
->chain_signal
[i
];
3905 if (!(status
->chains
& BIT(i
)))
3908 stats
->chain_signal_last
[i
] = signal
;
3909 if (!fast_rx
->uses_rss
)
3910 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
3914 /* end of statistics */
3916 if (rx
->key
&& !ieee80211_has_protected(hdr
->frame_control
))
3919 /* do the header conversion - first grab the addresses */
3920 ether_addr_copy(addrs
.da
, skb
->data
+ fast_rx
->da_offs
);
3921 ether_addr_copy(addrs
.sa
, skb
->data
+ fast_rx
->sa_offs
);
3922 /* remove the SNAP but leave the ethertype */
3923 skb_pull(skb
, snap_offs
+ sizeof(rfc1042_header
));
3924 /* push the addresses in front */
3925 memcpy(skb_push(skb
, sizeof(addrs
)), &addrs
, sizeof(addrs
));
3927 skb
->dev
= fast_rx
->dev
;
3929 ieee80211_rx_stats(fast_rx
->dev
, skb
->len
);
3931 /* The seqno index has the same property as needed
3932 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3933 * for non-QoS-data frames. Here we know it's a data
3934 * frame, so count MSDUs.
3936 u64_stats_update_begin(&stats
->syncp
);
3937 stats
->msdu
[rx
->seqno_idx
]++;
3938 stats
->bytes
+= orig_len
;
3939 u64_stats_update_end(&stats
->syncp
);
3941 if (fast_rx
->internal_forward
) {
3942 struct sta_info
*dsta
= sta_info_get(rx
->sdata
, skb
->data
);
3946 * Send to wireless media and increase priority by 256
3947 * to keep the received priority instead of
3948 * reclassifying the frame (see cfg80211_classify8021d).
3950 skb
->priority
+= 256;
3951 skb
->protocol
= htons(ETH_P_802_3
);
3952 skb_reset_network_header(skb
);
3953 skb_reset_mac_header(skb
);
3954 dev_queue_xmit(skb
);
3959 /* deliver to local stack */
3960 skb
->protocol
= eth_type_trans(skb
, fast_rx
->dev
);
3961 memset(skb
->cb
, 0, sizeof(skb
->cb
));
3963 napi_gro_receive(rx
->napi
, skb
);
3965 netif_receive_skb(skb
);
3975 * This function returns whether or not the SKB
3976 * was destined for RX processing or not, which,
3977 * if consume is true, is equivalent to whether
3978 * or not the skb was consumed.
3980 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
3981 struct sk_buff
*skb
, bool consume
)
3983 struct ieee80211_local
*local
= rx
->local
;
3984 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3988 /* See if we can do fast-rx; if we have to copy we already lost,
3989 * so punt in that case. We should never have to deliver a data
3990 * frame to multiple interfaces anyway.
3992 * We skip the ieee80211_accept_frame() call and do the necessary
3993 * checking inside ieee80211_invoke_fast_rx().
3995 if (consume
&& rx
->sta
) {
3996 struct ieee80211_fast_rx
*fast_rx
;
3998 fast_rx
= rcu_dereference(rx
->sta
->fast_rx
);
3999 if (fast_rx
&& ieee80211_invoke_fast_rx(rx
, fast_rx
))
4003 if (!ieee80211_accept_frame(rx
))
4007 skb
= skb_copy(skb
, GFP_ATOMIC
);
4009 if (net_ratelimit())
4010 wiphy_debug(local
->hw
.wiphy
,
4011 "failed to copy skb for %s\n",
4019 ieee80211_invoke_rx_handlers(rx
);
4024 * This is the actual Rx frames handler. as it belongs to Rx path it must
4025 * be called with rcu_read_lock protection.
4027 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
4028 struct ieee80211_sta
*pubsta
,
4029 struct sk_buff
*skb
,
4030 struct napi_struct
*napi
)
4032 struct ieee80211_local
*local
= hw_to_local(hw
);
4033 struct ieee80211_sub_if_data
*sdata
;
4034 struct ieee80211_hdr
*hdr
;
4036 struct ieee80211_rx_data rx
;
4037 struct ieee80211_sub_if_data
*prev
;
4038 struct rhlist_head
*tmp
;
4041 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
4042 memset(&rx
, 0, sizeof(rx
));
4047 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
4048 I802_DEBUG_INC(local
->dot11ReceivedFragmentCount
);
4050 if (ieee80211_is_mgmt(fc
)) {
4051 /* drop frame if too short for header */
4052 if (skb
->len
< ieee80211_hdrlen(fc
))
4055 err
= skb_linearize(skb
);
4057 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
4065 hdr
= (struct ieee80211_hdr
*)skb
->data
;
4066 ieee80211_parse_qos(&rx
);
4067 ieee80211_verify_alignment(&rx
);
4069 if (unlikely(ieee80211_is_probe_resp(hdr
->frame_control
) ||
4070 ieee80211_is_beacon(hdr
->frame_control
)))
4071 ieee80211_scan_rx(local
, skb
);
4074 rx
.sta
= container_of(pubsta
, struct sta_info
, sta
);
4075 rx
.sdata
= rx
.sta
->sdata
;
4076 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4079 } else if (ieee80211_is_data(fc
)) {
4080 struct sta_info
*sta
, *prev_sta
;
4084 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
4091 rx
.sdata
= prev_sta
->sdata
;
4092 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4099 rx
.sdata
= prev_sta
->sdata
;
4101 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4109 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
4110 if (!ieee80211_sdata_running(sdata
))
4113 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
4114 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
4118 * frame is destined for this interface, but if it's
4119 * not also for the previous one we handle that after
4120 * the loop to avoid copying the SKB once too much
4128 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4130 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4136 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4139 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4148 * This is the receive path handler. It is called by a low level driver when an
4149 * 802.11 MPDU is received from the hardware.
4151 void ieee80211_rx_napi(struct ieee80211_hw
*hw
, struct ieee80211_sta
*pubsta
,
4152 struct sk_buff
*skb
, struct napi_struct
*napi
)
4154 struct ieee80211_local
*local
= hw_to_local(hw
);
4155 struct ieee80211_rate
*rate
= NULL
;
4156 struct ieee80211_supported_band
*sband
;
4157 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4159 WARN_ON_ONCE(softirq_count() == 0);
4161 if (WARN_ON(status
->band
>= NUM_NL80211_BANDS
))
4164 sband
= local
->hw
.wiphy
->bands
[status
->band
];
4165 if (WARN_ON(!sband
))
4169 * If we're suspending, it is possible although not too likely
4170 * that we'd be receiving frames after having already partially
4171 * quiesced the stack. We can't process such frames then since
4172 * that might, for example, cause stations to be added or other
4173 * driver callbacks be invoked.
4175 if (unlikely(local
->quiescing
|| local
->suspended
))
4178 /* We might be during a HW reconfig, prevent Rx for the same reason */
4179 if (unlikely(local
->in_reconfig
))
4183 * The same happens when we're not even started,
4184 * but that's worth a warning.
4186 if (WARN_ON(!local
->started
))
4189 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
4191 * Validate the rate, unless a PLCP error means that
4192 * we probably can't have a valid rate here anyway.
4195 if (status
->flag
& RX_FLAG_HT
) {
4197 * rate_idx is MCS index, which can be [0-76]
4200 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4202 * Anything else would be some sort of driver or
4203 * hardware error. The driver should catch hardware
4206 if (WARN(status
->rate_idx
> 76,
4207 "Rate marked as an HT rate but passed "
4208 "status->rate_idx is not "
4209 "an MCS index [0-76]: %d (0x%02x)\n",
4213 } else if (status
->flag
& RX_FLAG_VHT
) {
4214 if (WARN_ONCE(status
->rate_idx
> 9 ||
4216 status
->vht_nss
> 8,
4217 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4218 status
->rate_idx
, status
->vht_nss
))
4221 if (WARN_ON(status
->rate_idx
>= sband
->n_bitrates
))
4223 rate
= &sband
->bitrates
[status
->rate_idx
];
4227 status
->rx_flags
= 0;
4230 * key references and virtual interfaces are protected using RCU
4231 * and this requires that we are in a read-side RCU section during
4232 * receive processing
4237 * Frames with failed FCS/PLCP checksum are not returned,
4238 * all other frames are returned without radiotap header
4239 * if it was previously present.
4240 * Also, frames with less than 16 bytes are dropped.
4242 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
4248 ieee80211_tpt_led_trig_rx(local
,
4249 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
4252 __ieee80211_rx_handle_packet(hw
, pubsta
, skb
, napi
);
4260 EXPORT_SYMBOL(ieee80211_rx_napi
);
4262 /* This is a version of the rx handler that can be called from hard irq
4263 * context. Post the skb on the queue and schedule the tasklet */
4264 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
4266 struct ieee80211_local
*local
= hw_to_local(hw
);
4268 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
4270 skb
->pkt_type
= IEEE80211_RX_MSG
;
4271 skb_queue_tail(&local
->skb_queue
, skb
);
4272 tasklet_schedule(&local
->tasklet
);
4274 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);