MAINTAINERS: Update megaraid maintainers list
[linux/fpc-iii.git] / net / mac80211 / rx.c
bloba47bbc973f2dbc629aa8ab6ed91c928784cd26c6
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
50 __le16 fc = hdr->frame_control;
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
63 return hdr->addr3;
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
89 return NULL;
93 * monitor mode reception
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
113 __pskb_pull(skb, rtap_vendor_space);
115 return skb;
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
124 hdr = (void *)(skb->data + rtap_vendor_space);
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
139 return false;
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
147 int len;
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
183 if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 len = ALIGN(len, 8);
185 len += 12;
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
196 /* vendor presence bitmap */
197 len += 4;
198 /* alignment for fixed 6-byte vendor data header */
199 len = ALIGN(len, 2);
200 /* vendor data header */
201 len += 6;
202 if (WARN_ON(rtap->align == 0))
203 rtap->align = 1;
204 len = ALIGN(len, rtap->align);
205 len += rtap->len + rtap->pad;
208 return len;
212 * ieee80211_add_rx_radiotap_header - add radiotap header
214 * add a radiotap header containing all the fields which the hardware provided.
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 struct sk_buff *skb,
219 struct ieee80211_rate *rate,
220 int rtap_len, bool has_fcs)
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 struct ieee80211_radiotap_header *rthdr;
224 unsigned char *pos;
225 __le32 *it_present;
226 u32 it_present_val;
227 u16 rx_flags = 0;
228 u16 channel_flags = 0;
229 int mpdulen, chain;
230 unsigned long chains = status->chains;
231 struct ieee80211_vendor_radiotap rtap = {};
233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 /* rtap.len and rtap.pad are undone immediately */
236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
239 mpdulen = skb->len;
240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 mpdulen += FCS_LEN;
243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 it_present = &rthdr->it_present;
247 /* radiotap header, set always present flags */
248 rthdr->it_len = cpu_to_le16(rtap_len);
249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
253 if (!status->chains)
254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 it_present_val |=
258 BIT(IEEE80211_RADIOTAP_EXT) |
259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 put_unaligned_le32(it_present_val, it_present);
261 it_present++;
262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 BIT(IEEE80211_RADIOTAP_EXT);
269 put_unaligned_le32(it_present_val, it_present);
270 it_present++;
271 it_present_val = rtap.present;
274 put_unaligned_le32(it_present_val, it_present);
276 pos = (void *)(it_present + 1);
278 /* the order of the following fields is important */
280 /* IEEE80211_RADIOTAP_TSFT */
281 if (ieee80211_have_rx_timestamp(status)) {
282 /* padding */
283 while ((pos - (u8 *)rthdr) & 7)
284 *pos++ = 0;
285 put_unaligned_le64(
286 ieee80211_calculate_rx_timestamp(local, status,
287 mpdulen, 0),
288 pos);
289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 pos += 8;
293 /* IEEE80211_RADIOTAP_FLAGS */
294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 *pos |= IEEE80211_RADIOTAP_F_FCS;
296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 if (status->flag & RX_FLAG_SHORTPRE)
299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 pos++;
302 /* IEEE80211_RADIOTAP_RATE */
303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
305 * Without rate information don't add it. If we have,
306 * MCS information is a separate field in radiotap,
307 * added below. The byte here is needed as padding
308 * for the channel though, so initialise it to 0.
310 *pos = 0;
311 } else {
312 int shift = 0;
313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 if (status->flag & RX_FLAG_10MHZ)
315 shift = 1;
316 else if (status->flag & RX_FLAG_5MHZ)
317 shift = 2;
318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
320 pos++;
322 /* IEEE80211_RADIOTAP_CHANNEL */
323 put_unaligned_le16(status->freq, pos);
324 pos += 2;
325 if (status->flag & RX_FLAG_10MHZ)
326 channel_flags |= IEEE80211_CHAN_HALF;
327 else if (status->flag & RX_FLAG_5MHZ)
328 channel_flags |= IEEE80211_CHAN_QUARTER;
330 if (status->band == NL80211_BAND_5GHZ)
331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 else if (rate)
337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 else
339 channel_flags |= IEEE80211_CHAN_2GHZ;
340 put_unaligned_le16(channel_flags, pos);
341 pos += 2;
343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 *pos = status->signal;
347 rthdr->it_present |=
348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 pos++;
352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
354 if (!status->chains) {
355 /* IEEE80211_RADIOTAP_ANTENNA */
356 *pos = status->antenna;
357 pos++;
360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
362 /* IEEE80211_RADIOTAP_RX_FLAGS */
363 /* ensure 2 byte alignment for the 2 byte field as required */
364 if ((pos - (u8 *)rthdr) & 1)
365 *pos++ = 0;
366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 put_unaligned_le16(rx_flags, pos);
369 pos += 2;
371 if (status->flag & RX_FLAG_HT) {
372 unsigned int stbc;
374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 *pos++ = local->hw.radiotap_mcs_details;
376 *pos = 0;
377 if (status->flag & RX_FLAG_SHORT_GI)
378 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 if (status->flag & RX_FLAG_40MHZ)
380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 if (status->flag & RX_FLAG_HT_GF)
382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 if (status->flag & RX_FLAG_LDPC)
384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 pos++;
388 *pos++ = status->rate_idx;
391 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 u16 flags = 0;
394 /* ensure 4 byte alignment */
395 while ((pos - (u8 *)rthdr) & 3)
396 pos++;
397 rthdr->it_present |=
398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 put_unaligned_le32(status->ampdu_reference, pos);
400 pos += 4;
401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 put_unaligned_le16(flags, pos);
410 pos += 2;
411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 *pos++ = status->ampdu_delimiter_crc;
413 else
414 *pos++ = 0;
415 *pos++ = 0;
418 if (status->flag & RX_FLAG_VHT) {
419 u16 known = local->hw.radiotap_vht_details;
421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 put_unaligned_le16(known, pos);
423 pos += 2;
424 /* flags */
425 if (status->flag & RX_FLAG_SHORT_GI)
426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 /* in VHT, STBC is binary */
428 if (status->flag & RX_FLAG_STBC_MASK)
429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 if (status->vht_flag & RX_VHT_FLAG_BF)
431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 pos++;
433 /* bandwidth */
434 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 *pos++ = 4;
436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 *pos++ = 11;
438 else if (status->flag & RX_FLAG_40MHZ)
439 *pos++ = 1;
440 else /* 20 MHz */
441 *pos++ = 0;
442 /* MCS/NSS */
443 *pos = (status->rate_idx << 4) | status->vht_nss;
444 pos += 4;
445 /* coding field */
446 if (status->flag & RX_FLAG_LDPC)
447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 pos++;
449 /* group ID */
450 pos++;
451 /* partial_aid */
452 pos += 2;
455 if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 u16 accuracy = 0;
457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
459 rthdr->it_present |=
460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
462 /* ensure 8 byte alignment */
463 while ((pos - (u8 *)rthdr) & 7)
464 pos++;
466 put_unaligned_le64(status->device_timestamp, pos);
467 pos += sizeof(u64);
469 if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 accuracy = local->hw.radiotap_timestamp.accuracy;
471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
473 put_unaligned_le16(accuracy, pos);
474 pos += sizeof(u16);
476 *pos++ = local->hw.radiotap_timestamp.units_pos;
477 *pos++ = flags;
480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 *pos++ = status->chain_signal[chain];
482 *pos++ = chain;
485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 /* ensure 2 byte alignment for the vendor field as required */
487 if ((pos - (u8 *)rthdr) & 1)
488 *pos++ = 0;
489 *pos++ = rtap.oui[0];
490 *pos++ = rtap.oui[1];
491 *pos++ = rtap.oui[2];
492 *pos++ = rtap.subns;
493 put_unaligned_le16(rtap.len, pos);
494 pos += 2;
495 /* align the actual payload as requested */
496 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 *pos++ = 0;
498 /* data (and possible padding) already follows */
503 * This function copies a received frame to all monitor interfaces and
504 * returns a cleaned-up SKB that no longer includes the FCS nor the
505 * radiotap header the driver might have added.
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 struct ieee80211_rate *rate)
511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 struct ieee80211_sub_if_data *sdata;
513 int rt_hdrlen, needed_headroom;
514 struct sk_buff *skb, *skb2;
515 struct net_device *prev_dev = NULL;
516 int present_fcs_len = 0;
517 unsigned int rtap_vendor_space = 0;
518 struct ieee80211_mgmt *mgmt;
519 struct ieee80211_sub_if_data *monitor_sdata =
520 rcu_dereference(local->monitor_sdata);
522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
529 * First, we may need to make a copy of the skb because
530 * (1) we need to modify it for radiotap (if not present), and
531 * (2) the other RX handlers will modify the skb we got.
533 * We don't need to, of course, if we aren't going to return
534 * the SKB because it has a bad FCS/PLCP checksum.
537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 present_fcs_len = FCS_LEN;
540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 dev_kfree_skb(origskb);
543 return NULL;
546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 if (should_drop_frame(origskb, present_fcs_len,
548 rtap_vendor_space)) {
549 dev_kfree_skb(origskb);
550 return NULL;
553 return remove_monitor_info(local, origskb, rtap_vendor_space);
556 /* room for the radiotap header based on driver features */
557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 needed_headroom = rt_hdrlen - rtap_vendor_space;
560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 /* only need to expand headroom if necessary */
562 skb = origskb;
563 origskb = NULL;
566 * This shouldn't trigger often because most devices have an
567 * RX header they pull before we get here, and that should
568 * be big enough for our radiotap information. We should
569 * probably export the length to drivers so that we can have
570 * them allocate enough headroom to start with.
572 if (skb_headroom(skb) < needed_headroom &&
573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 dev_kfree_skb(skb);
575 return NULL;
577 } else {
579 * Need to make a copy and possibly remove radiotap header
580 * and FCS from the original.
582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
584 origskb = remove_monitor_info(local, origskb,
585 rtap_vendor_space);
587 if (!skb)
588 return origskb;
591 /* prepend radiotap information */
592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
594 skb_reset_mac_header(skb);
595 skb->ip_summed = CHECKSUM_UNNECESSARY;
596 skb->pkt_type = PACKET_OTHERHOST;
597 skb->protocol = htons(ETH_P_802_2);
599 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 continue;
603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 continue;
606 if (!ieee80211_sdata_running(sdata))
607 continue;
609 if (prev_dev) {
610 skb2 = skb_clone(skb, GFP_ATOMIC);
611 if (skb2) {
612 skb2->dev = prev_dev;
613 netif_receive_skb(skb2);
617 prev_dev = sdata->dev;
618 ieee80211_rx_stats(sdata->dev, skb->len);
621 mgmt = (void *)skb->data;
622 if (monitor_sdata &&
623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 ieee80211_is_action(mgmt->frame_control) &&
625 mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
631 if (mu_skb) {
632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 ieee80211_queue_work(&local->hw, &monitor_sdata->work);
638 if (prev_dev) {
639 skb->dev = prev_dev;
640 netif_receive_skb(skb);
641 } else
642 dev_kfree_skb(skb);
644 return origskb;
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 int tid, seqno_idx, security_idx;
653 /* does the frame have a qos control field? */
654 if (ieee80211_is_data_qos(hdr->frame_control)) {
655 u8 *qc = ieee80211_get_qos_ctl(hdr);
656 /* frame has qos control */
657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 status->rx_flags |= IEEE80211_RX_AMSDU;
661 seqno_idx = tid;
662 security_idx = tid;
663 } else {
665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
667 * Sequence numbers for management frames, QoS data
668 * frames with a broadcast/multicast address in the
669 * Address 1 field, and all non-QoS data frames sent
670 * by QoS STAs are assigned using an additional single
671 * modulo-4096 counter, [...]
673 * We also use that counter for non-QoS STAs.
675 seqno_idx = IEEE80211_NUM_TIDS;
676 security_idx = 0;
677 if (ieee80211_is_mgmt(hdr->frame_control))
678 security_idx = IEEE80211_NUM_TIDS;
679 tid = 0;
682 rx->seqno_idx = seqno_idx;
683 rx->security_idx = security_idx;
684 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 * For now, set skb->priority to 0 for other cases. */
686 rx->skb->priority = (tid > 7) ? 0 : tid;
690 * DOC: Packet alignment
692 * Drivers always need to pass packets that are aligned to two-byte boundaries
693 * to the stack.
695 * Additionally, should, if possible, align the payload data in a way that
696 * guarantees that the contained IP header is aligned to a four-byte
697 * boundary. In the case of regular frames, this simply means aligning the
698 * payload to a four-byte boundary (because either the IP header is directly
699 * contained, or IV/RFC1042 headers that have a length divisible by four are
700 * in front of it). If the payload data is not properly aligned and the
701 * architecture doesn't support efficient unaligned operations, mac80211
702 * will align the data.
704 * With A-MSDU frames, however, the payload data address must yield two modulo
705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706 * push the IP header further back to a multiple of four again. Thankfully, the
707 * specs were sane enough this time around to require padding each A-MSDU
708 * subframe to a length that is a multiple of four.
710 * Padding like Atheros hardware adds which is between the 802.11 header and
711 * the payload is not supported, the driver is required to move the 802.11
712 * header to be directly in front of the payload in that case.
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
722 /* rx handlers */
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
728 if (is_multicast_ether_addr(hdr->addr1))
729 return 0;
731 return ieee80211_is_robust_mgmt_frame(skb);
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
739 if (!is_multicast_ether_addr(hdr->addr1))
740 return 0;
742 return ieee80211_is_robust_mgmt_frame(skb);
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 struct ieee80211_mmie *mmie;
751 struct ieee80211_mmie_16 *mmie16;
753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 return -1;
756 if (!ieee80211_is_robust_mgmt_frame(skb))
757 return -1; /* not a robust management frame */
759 mmie = (struct ieee80211_mmie *)
760 (skb->data + skb->len - sizeof(*mmie));
761 if (mmie->element_id == WLAN_EID_MMIE &&
762 mmie->length == sizeof(*mmie) - 2)
763 return le16_to_cpu(mmie->key_id);
765 mmie16 = (struct ieee80211_mmie_16 *)
766 (skb->data + skb->len - sizeof(*mmie16));
767 if (skb->len >= 24 + sizeof(*mmie16) &&
768 mmie16->element_id == WLAN_EID_MMIE &&
769 mmie16->length == sizeof(*mmie16) - 2)
770 return le16_to_cpu(mmie16->key_id);
772 return -1;
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 struct sk_buff *skb)
778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 __le16 fc;
780 int hdrlen;
781 u8 keyid;
783 fc = hdr->frame_control;
784 hdrlen = ieee80211_hdrlen(fc);
786 if (skb->len < hdrlen + cs->hdr_len)
787 return -EINVAL;
789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 keyid &= cs->key_idx_mask;
791 keyid >>= cs->key_idx_shift;
793 return keyid;
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 char *dev_addr = rx->sdata->vif.addr;
801 if (ieee80211_is_data(hdr->frame_control)) {
802 if (is_multicast_ether_addr(hdr->addr1)) {
803 if (ieee80211_has_tods(hdr->frame_control) ||
804 !ieee80211_has_fromds(hdr->frame_control))
805 return RX_DROP_MONITOR;
806 if (ether_addr_equal(hdr->addr3, dev_addr))
807 return RX_DROP_MONITOR;
808 } else {
809 if (!ieee80211_has_a4(hdr->frame_control))
810 return RX_DROP_MONITOR;
811 if (ether_addr_equal(hdr->addr4, dev_addr))
812 return RX_DROP_MONITOR;
816 /* If there is not an established peer link and this is not a peer link
817 * establisment frame, beacon or probe, drop the frame.
820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 struct ieee80211_mgmt *mgmt;
823 if (!ieee80211_is_mgmt(hdr->frame_control))
824 return RX_DROP_MONITOR;
826 if (ieee80211_is_action(hdr->frame_control)) {
827 u8 category;
829 /* make sure category field is present */
830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 return RX_DROP_MONITOR;
833 mgmt = (struct ieee80211_mgmt *)hdr;
834 category = mgmt->u.action.category;
835 if (category != WLAN_CATEGORY_MESH_ACTION &&
836 category != WLAN_CATEGORY_SELF_PROTECTED)
837 return RX_DROP_MONITOR;
838 return RX_CONTINUE;
841 if (ieee80211_is_probe_req(hdr->frame_control) ||
842 ieee80211_is_probe_resp(hdr->frame_control) ||
843 ieee80211_is_beacon(hdr->frame_control) ||
844 ieee80211_is_auth(hdr->frame_control))
845 return RX_CONTINUE;
847 return RX_DROP_MONITOR;
850 return RX_CONTINUE;
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 int index)
856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 struct sk_buff *tail = skb_peek_tail(frames);
858 struct ieee80211_rx_status *status;
860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 return true;
863 if (!tail)
864 return false;
866 status = IEEE80211_SKB_RXCB(tail);
867 if (status->flag & RX_FLAG_AMSDU_MORE)
868 return false;
870 return true;
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 struct tid_ampdu_rx *tid_agg_rx,
875 int index,
876 struct sk_buff_head *frames)
878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 struct sk_buff *skb;
880 struct ieee80211_rx_status *status;
882 lockdep_assert_held(&tid_agg_rx->reorder_lock);
884 if (skb_queue_empty(skb_list))
885 goto no_frame;
887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 __skb_queue_purge(skb_list);
889 goto no_frame;
892 /* release frames from the reorder ring buffer */
893 tid_agg_rx->stored_mpdu_num--;
894 while ((skb = __skb_dequeue(skb_list))) {
895 status = IEEE80211_SKB_RXCB(skb);
896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 __skb_queue_tail(frames, skb);
900 no_frame:
901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 struct tid_ampdu_rx *tid_agg_rx,
907 u16 head_seq_num,
908 struct sk_buff_head *frames)
910 int index;
912 lockdep_assert_held(&tid_agg_rx->reorder_lock);
914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 frames);
922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923 * the skb was added to the buffer longer than this time ago, the earlier
924 * frames that have not yet been received are assumed to be lost and the skb
925 * can be released for processing. This may also release other skb's from the
926 * reorder buffer if there are no additional gaps between the frames.
928 * Callers must hold tid_agg_rx->reorder_lock.
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 struct tid_ampdu_rx *tid_agg_rx,
934 struct sk_buff_head *frames)
936 int index, i, j;
938 lockdep_assert_held(&tid_agg_rx->reorder_lock);
940 /* release the buffer until next missing frame */
941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 tid_agg_rx->stored_mpdu_num) {
945 * No buffers ready to be released, but check whether any
946 * frames in the reorder buffer have timed out.
948 int skipped = 1;
949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 j = (j + 1) % tid_agg_rx->buf_size) {
951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 skipped++;
953 continue;
955 if (skipped &&
956 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 HT_RX_REORDER_BUF_TIMEOUT))
958 goto set_release_timer;
960 /* don't leave incomplete A-MSDUs around */
961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 i = (i + 1) % tid_agg_rx->buf_size)
963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
965 ht_dbg_ratelimited(sdata,
966 "release an RX reorder frame due to timeout on earlier frames\n");
967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 frames);
971 * Increment the head seq# also for the skipped slots.
973 tid_agg_rx->head_seq_num =
974 (tid_agg_rx->head_seq_num +
975 skipped) & IEEE80211_SN_MASK;
976 skipped = 0;
978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 frames);
981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
984 if (tid_agg_rx->stored_mpdu_num) {
985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
987 for (; j != (index - 1) % tid_agg_rx->buf_size;
988 j = (j + 1) % tid_agg_rx->buf_size) {
989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 break;
993 set_release_timer:
995 if (!tid_agg_rx->removed)
996 mod_timer(&tid_agg_rx->reorder_timer,
997 tid_agg_rx->reorder_time[j] + 1 +
998 HT_RX_REORDER_BUF_TIMEOUT);
999 } else {
1000 del_timer(&tid_agg_rx->reorder_timer);
1005 * As this function belongs to the RX path it must be under
1006 * rcu_read_lock protection. It returns false if the frame
1007 * can be processed immediately, true if it was consumed.
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 struct tid_ampdu_rx *tid_agg_rx,
1011 struct sk_buff *skb,
1012 struct sk_buff_head *frames)
1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 u16 head_seq_num, buf_size;
1019 int index;
1020 bool ret = true;
1022 spin_lock(&tid_agg_rx->reorder_lock);
1025 * Offloaded BA sessions have no known starting sequence number so pick
1026 * one from first Rxed frame for this tid after BA was started.
1028 if (unlikely(tid_agg_rx->auto_seq)) {
1029 tid_agg_rx->auto_seq = false;
1030 tid_agg_rx->ssn = mpdu_seq_num;
1031 tid_agg_rx->head_seq_num = mpdu_seq_num;
1034 buf_size = tid_agg_rx->buf_size;
1035 head_seq_num = tid_agg_rx->head_seq_num;
1037 /* frame with out of date sequence number */
1038 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1039 dev_kfree_skb(skb);
1040 goto out;
1044 * If frame the sequence number exceeds our buffering window
1045 * size release some previous frames to make room for this one.
1047 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1048 head_seq_num = ieee80211_sn_inc(
1049 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1050 /* release stored frames up to new head to stack */
1051 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1052 head_seq_num, frames);
1055 /* Now the new frame is always in the range of the reordering buffer */
1057 index = mpdu_seq_num % tid_agg_rx->buf_size;
1059 /* check if we already stored this frame */
1060 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1061 dev_kfree_skb(skb);
1062 goto out;
1066 * If the current MPDU is in the right order and nothing else
1067 * is stored we can process it directly, no need to buffer it.
1068 * If it is first but there's something stored, we may be able
1069 * to release frames after this one.
1071 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1072 tid_agg_rx->stored_mpdu_num == 0) {
1073 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1074 tid_agg_rx->head_seq_num =
1075 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1076 ret = false;
1077 goto out;
1080 /* put the frame in the reordering buffer */
1081 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1082 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1083 tid_agg_rx->reorder_time[index] = jiffies;
1084 tid_agg_rx->stored_mpdu_num++;
1085 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1088 out:
1089 spin_unlock(&tid_agg_rx->reorder_lock);
1090 return ret;
1094 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1095 * true if the MPDU was buffered, false if it should be processed.
1097 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1098 struct sk_buff_head *frames)
1100 struct sk_buff *skb = rx->skb;
1101 struct ieee80211_local *local = rx->local;
1102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1103 struct sta_info *sta = rx->sta;
1104 struct tid_ampdu_rx *tid_agg_rx;
1105 u16 sc;
1106 u8 tid, ack_policy;
1108 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1109 is_multicast_ether_addr(hdr->addr1))
1110 goto dont_reorder;
1113 * filter the QoS data rx stream according to
1114 * STA/TID and check if this STA/TID is on aggregation
1117 if (!sta)
1118 goto dont_reorder;
1120 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1121 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1122 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1124 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1125 if (!tid_agg_rx) {
1126 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1127 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1128 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1129 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1130 WLAN_BACK_RECIPIENT,
1131 WLAN_REASON_QSTA_REQUIRE_SETUP);
1132 goto dont_reorder;
1135 /* qos null data frames are excluded */
1136 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1137 goto dont_reorder;
1139 /* not part of a BA session */
1140 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1141 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1142 goto dont_reorder;
1144 /* new, potentially un-ordered, ampdu frame - process it */
1146 /* reset session timer */
1147 if (tid_agg_rx->timeout)
1148 tid_agg_rx->last_rx = jiffies;
1150 /* if this mpdu is fragmented - terminate rx aggregation session */
1151 sc = le16_to_cpu(hdr->seq_ctrl);
1152 if (sc & IEEE80211_SCTL_FRAG) {
1153 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1154 skb_queue_tail(&rx->sdata->skb_queue, skb);
1155 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1156 return;
1160 * No locking needed -- we will only ever process one
1161 * RX packet at a time, and thus own tid_agg_rx. All
1162 * other code manipulating it needs to (and does) make
1163 * sure that we cannot get to it any more before doing
1164 * anything with it.
1166 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1167 frames))
1168 return;
1170 dont_reorder:
1171 __skb_queue_tail(frames, skb);
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1177 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1178 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1180 if (status->flag & RX_FLAG_DUP_VALIDATED)
1181 return RX_CONTINUE;
1184 * Drop duplicate 802.11 retransmissions
1185 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1188 if (rx->skb->len < 24)
1189 return RX_CONTINUE;
1191 if (ieee80211_is_ctl(hdr->frame_control) ||
1192 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1193 is_multicast_ether_addr(hdr->addr1))
1194 return RX_CONTINUE;
1196 if (!rx->sta)
1197 return RX_CONTINUE;
1199 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1200 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1201 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1202 rx->sta->rx_stats.num_duplicates++;
1203 return RX_DROP_UNUSABLE;
1204 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1205 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1208 return RX_CONTINUE;
1211 static ieee80211_rx_result debug_noinline
1212 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1216 /* Drop disallowed frame classes based on STA auth/assoc state;
1217 * IEEE 802.11, Chap 5.5.
1219 * mac80211 filters only based on association state, i.e. it drops
1220 * Class 3 frames from not associated stations. hostapd sends
1221 * deauth/disassoc frames when needed. In addition, hostapd is
1222 * responsible for filtering on both auth and assoc states.
1225 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1226 return ieee80211_rx_mesh_check(rx);
1228 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1229 ieee80211_is_pspoll(hdr->frame_control)) &&
1230 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1231 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1232 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1233 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1235 * accept port control frames from the AP even when it's not
1236 * yet marked ASSOC to prevent a race where we don't set the
1237 * assoc bit quickly enough before it sends the first frame
1239 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1240 ieee80211_is_data_present(hdr->frame_control)) {
1241 unsigned int hdrlen;
1242 __be16 ethertype;
1244 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1246 if (rx->skb->len < hdrlen + 8)
1247 return RX_DROP_MONITOR;
1249 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1250 if (ethertype == rx->sdata->control_port_protocol)
1251 return RX_CONTINUE;
1254 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1255 cfg80211_rx_spurious_frame(rx->sdata->dev,
1256 hdr->addr2,
1257 GFP_ATOMIC))
1258 return RX_DROP_UNUSABLE;
1260 return RX_DROP_MONITOR;
1263 return RX_CONTINUE;
1267 static ieee80211_rx_result debug_noinline
1268 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1270 struct ieee80211_local *local;
1271 struct ieee80211_hdr *hdr;
1272 struct sk_buff *skb;
1274 local = rx->local;
1275 skb = rx->skb;
1276 hdr = (struct ieee80211_hdr *) skb->data;
1278 if (!local->pspolling)
1279 return RX_CONTINUE;
1281 if (!ieee80211_has_fromds(hdr->frame_control))
1282 /* this is not from AP */
1283 return RX_CONTINUE;
1285 if (!ieee80211_is_data(hdr->frame_control))
1286 return RX_CONTINUE;
1288 if (!ieee80211_has_moredata(hdr->frame_control)) {
1289 /* AP has no more frames buffered for us */
1290 local->pspolling = false;
1291 return RX_CONTINUE;
1294 /* more data bit is set, let's request a new frame from the AP */
1295 ieee80211_send_pspoll(local, rx->sdata);
1297 return RX_CONTINUE;
1300 static void sta_ps_start(struct sta_info *sta)
1302 struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 struct ieee80211_local *local = sdata->local;
1304 struct ps_data *ps;
1305 int tid;
1307 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1308 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1309 ps = &sdata->bss->ps;
1310 else
1311 return;
1313 atomic_inc(&ps->num_sta_ps);
1314 set_sta_flag(sta, WLAN_STA_PS_STA);
1315 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1316 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1317 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1318 sta->sta.addr, sta->sta.aid);
1320 ieee80211_clear_fast_xmit(sta);
1322 if (!sta->sta.txq[0])
1323 return;
1325 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1326 if (txq_has_queue(sta->sta.txq[tid]))
1327 set_bit(tid, &sta->txq_buffered_tids);
1328 else
1329 clear_bit(tid, &sta->txq_buffered_tids);
1333 static void sta_ps_end(struct sta_info *sta)
1335 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1336 sta->sta.addr, sta->sta.aid);
1338 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1340 * Clear the flag only if the other one is still set
1341 * so that the TX path won't start TX'ing new frames
1342 * directly ... In the case that the driver flag isn't
1343 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1345 clear_sta_flag(sta, WLAN_STA_PS_STA);
1346 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1347 sta->sta.addr, sta->sta.aid);
1348 return;
1351 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1352 clear_sta_flag(sta, WLAN_STA_PS_STA);
1353 ieee80211_sta_ps_deliver_wakeup(sta);
1356 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1358 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1359 bool in_ps;
1361 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1363 /* Don't let the same PS state be set twice */
1364 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1365 if ((start && in_ps) || (!start && !in_ps))
1366 return -EINVAL;
1368 if (start)
1369 sta_ps_start(sta);
1370 else
1371 sta_ps_end(sta);
1373 return 0;
1375 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1377 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1379 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1381 if (test_sta_flag(sta, WLAN_STA_SP))
1382 return;
1384 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1385 ieee80211_sta_ps_deliver_poll_response(sta);
1386 else
1387 set_sta_flag(sta, WLAN_STA_PSPOLL);
1389 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1391 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1393 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1394 u8 ac = ieee802_1d_to_ac[tid & 7];
1397 * If this AC is not trigger-enabled do nothing.
1399 * NB: This could/should check a separate bitmap of trigger-
1400 * enabled queues, but for now we only implement uAPSD w/o
1401 * TSPEC changes to the ACs, so they're always the same.
1403 if (!(sta->sta.uapsd_queues & BIT(ac)))
1404 return;
1406 /* if we are in a service period, do nothing */
1407 if (test_sta_flag(sta, WLAN_STA_SP))
1408 return;
1410 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1411 ieee80211_sta_ps_deliver_uapsd(sta);
1412 else
1413 set_sta_flag(sta, WLAN_STA_UAPSD);
1415 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1417 static ieee80211_rx_result debug_noinline
1418 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1420 struct ieee80211_sub_if_data *sdata = rx->sdata;
1421 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1424 if (!rx->sta)
1425 return RX_CONTINUE;
1427 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1428 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1429 return RX_CONTINUE;
1432 * The device handles station powersave, so don't do anything about
1433 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1434 * it to mac80211 since they're handled.)
1436 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1437 return RX_CONTINUE;
1440 * Don't do anything if the station isn't already asleep. In
1441 * the uAPSD case, the station will probably be marked asleep,
1442 * in the PS-Poll case the station must be confused ...
1444 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1445 return RX_CONTINUE;
1447 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1448 ieee80211_sta_pspoll(&rx->sta->sta);
1450 /* Free PS Poll skb here instead of returning RX_DROP that would
1451 * count as an dropped frame. */
1452 dev_kfree_skb(rx->skb);
1454 return RX_QUEUED;
1455 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1456 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1457 ieee80211_has_pm(hdr->frame_control) &&
1458 (ieee80211_is_data_qos(hdr->frame_control) ||
1459 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1460 u8 tid;
1462 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1464 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1467 return RX_CONTINUE;
1470 static ieee80211_rx_result debug_noinline
1471 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1473 struct sta_info *sta = rx->sta;
1474 struct sk_buff *skb = rx->skb;
1475 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1477 int i;
1479 if (!sta)
1480 return RX_CONTINUE;
1483 * Update last_rx only for IBSS packets which are for the current
1484 * BSSID and for station already AUTHORIZED to avoid keeping the
1485 * current IBSS network alive in cases where other STAs start
1486 * using different BSSID. This will also give the station another
1487 * chance to restart the authentication/authorization in case
1488 * something went wrong the first time.
1490 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1491 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1492 NL80211_IFTYPE_ADHOC);
1493 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1494 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1495 sta->rx_stats.last_rx = jiffies;
1496 if (ieee80211_is_data(hdr->frame_control) &&
1497 !is_multicast_ether_addr(hdr->addr1))
1498 sta->rx_stats.last_rate =
1499 sta_stats_encode_rate(status);
1501 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1502 sta->rx_stats.last_rx = jiffies;
1503 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1505 * Mesh beacons will update last_rx when if they are found to
1506 * match the current local configuration when processed.
1508 sta->rx_stats.last_rx = jiffies;
1509 if (ieee80211_is_data(hdr->frame_control))
1510 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1513 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1514 ieee80211_sta_rx_notify(rx->sdata, hdr);
1516 sta->rx_stats.fragments++;
1518 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1519 sta->rx_stats.bytes += rx->skb->len;
1520 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1522 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1523 sta->rx_stats.last_signal = status->signal;
1524 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1527 if (status->chains) {
1528 sta->rx_stats.chains = status->chains;
1529 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1530 int signal = status->chain_signal[i];
1532 if (!(status->chains & BIT(i)))
1533 continue;
1535 sta->rx_stats.chain_signal_last[i] = signal;
1536 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1537 -signal);
1542 * Change STA power saving mode only at the end of a frame
1543 * exchange sequence.
1545 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1546 !ieee80211_has_morefrags(hdr->frame_control) &&
1547 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1548 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1549 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1550 /* PM bit is only checked in frames where it isn't reserved,
1551 * in AP mode it's reserved in non-bufferable management frames
1552 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1554 (!ieee80211_is_mgmt(hdr->frame_control) ||
1555 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1556 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1557 if (!ieee80211_has_pm(hdr->frame_control))
1558 sta_ps_end(sta);
1559 } else {
1560 if (ieee80211_has_pm(hdr->frame_control))
1561 sta_ps_start(sta);
1565 /* mesh power save support */
1566 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1567 ieee80211_mps_rx_h_sta_process(sta, hdr);
1570 * Drop (qos-)data::nullfunc frames silently, since they
1571 * are used only to control station power saving mode.
1573 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1574 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1575 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1578 * If we receive a 4-addr nullfunc frame from a STA
1579 * that was not moved to a 4-addr STA vlan yet send
1580 * the event to userspace and for older hostapd drop
1581 * the frame to the monitor interface.
1583 if (ieee80211_has_a4(hdr->frame_control) &&
1584 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1585 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1586 !rx->sdata->u.vlan.sta))) {
1587 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1588 cfg80211_rx_unexpected_4addr_frame(
1589 rx->sdata->dev, sta->sta.addr,
1590 GFP_ATOMIC);
1591 return RX_DROP_MONITOR;
1594 * Update counter and free packet here to avoid
1595 * counting this as a dropped packed.
1597 sta->rx_stats.packets++;
1598 dev_kfree_skb(rx->skb);
1599 return RX_QUEUED;
1602 return RX_CONTINUE;
1603 } /* ieee80211_rx_h_sta_process */
1605 static ieee80211_rx_result debug_noinline
1606 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1608 struct sk_buff *skb = rx->skb;
1609 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1610 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1611 int keyidx;
1612 int hdrlen;
1613 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1614 struct ieee80211_key *sta_ptk = NULL;
1615 int mmie_keyidx = -1;
1616 __le16 fc;
1617 const struct ieee80211_cipher_scheme *cs = NULL;
1620 * Key selection 101
1622 * There are four types of keys:
1623 * - GTK (group keys)
1624 * - IGTK (group keys for management frames)
1625 * - PTK (pairwise keys)
1626 * - STK (station-to-station pairwise keys)
1628 * When selecting a key, we have to distinguish between multicast
1629 * (including broadcast) and unicast frames, the latter can only
1630 * use PTKs and STKs while the former always use GTKs and IGTKs.
1631 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1632 * unicast frames can also use key indices like GTKs. Hence, if we
1633 * don't have a PTK/STK we check the key index for a WEP key.
1635 * Note that in a regular BSS, multicast frames are sent by the
1636 * AP only, associated stations unicast the frame to the AP first
1637 * which then multicasts it on their behalf.
1639 * There is also a slight problem in IBSS mode: GTKs are negotiated
1640 * with each station, that is something we don't currently handle.
1641 * The spec seems to expect that one negotiates the same key with
1642 * every station but there's no such requirement; VLANs could be
1643 * possible.
1646 /* start without a key */
1647 rx->key = NULL;
1648 fc = hdr->frame_control;
1650 if (rx->sta) {
1651 int keyid = rx->sta->ptk_idx;
1653 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1654 cs = rx->sta->cipher_scheme;
1655 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1656 if (unlikely(keyid < 0))
1657 return RX_DROP_UNUSABLE;
1659 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1662 if (!ieee80211_has_protected(fc))
1663 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1665 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1666 rx->key = sta_ptk;
1667 if ((status->flag & RX_FLAG_DECRYPTED) &&
1668 (status->flag & RX_FLAG_IV_STRIPPED))
1669 return RX_CONTINUE;
1670 /* Skip decryption if the frame is not protected. */
1671 if (!ieee80211_has_protected(fc))
1672 return RX_CONTINUE;
1673 } else if (mmie_keyidx >= 0) {
1674 /* Broadcast/multicast robust management frame / BIP */
1675 if ((status->flag & RX_FLAG_DECRYPTED) &&
1676 (status->flag & RX_FLAG_IV_STRIPPED))
1677 return RX_CONTINUE;
1679 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1680 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1681 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1682 if (rx->sta) {
1683 if (ieee80211_is_group_privacy_action(skb) &&
1684 test_sta_flag(rx->sta, WLAN_STA_MFP))
1685 return RX_DROP_MONITOR;
1687 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1689 if (!rx->key)
1690 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1691 } else if (!ieee80211_has_protected(fc)) {
1693 * The frame was not protected, so skip decryption. However, we
1694 * need to set rx->key if there is a key that could have been
1695 * used so that the frame may be dropped if encryption would
1696 * have been expected.
1698 struct ieee80211_key *key = NULL;
1699 struct ieee80211_sub_if_data *sdata = rx->sdata;
1700 int i;
1702 if (ieee80211_is_mgmt(fc) &&
1703 is_multicast_ether_addr(hdr->addr1) &&
1704 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1705 rx->key = key;
1706 else {
1707 if (rx->sta) {
1708 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1709 key = rcu_dereference(rx->sta->gtk[i]);
1710 if (key)
1711 break;
1714 if (!key) {
1715 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1716 key = rcu_dereference(sdata->keys[i]);
1717 if (key)
1718 break;
1721 if (key)
1722 rx->key = key;
1724 return RX_CONTINUE;
1725 } else {
1726 u8 keyid;
1729 * The device doesn't give us the IV so we won't be
1730 * able to look up the key. That's ok though, we
1731 * don't need to decrypt the frame, we just won't
1732 * be able to keep statistics accurate.
1733 * Except for key threshold notifications, should
1734 * we somehow allow the driver to tell us which key
1735 * the hardware used if this flag is set?
1737 if ((status->flag & RX_FLAG_DECRYPTED) &&
1738 (status->flag & RX_FLAG_IV_STRIPPED))
1739 return RX_CONTINUE;
1741 hdrlen = ieee80211_hdrlen(fc);
1743 if (cs) {
1744 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1746 if (unlikely(keyidx < 0))
1747 return RX_DROP_UNUSABLE;
1748 } else {
1749 if (rx->skb->len < 8 + hdrlen)
1750 return RX_DROP_UNUSABLE; /* TODO: count this? */
1752 * no need to call ieee80211_wep_get_keyidx,
1753 * it verifies a bunch of things we've done already
1755 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1756 keyidx = keyid >> 6;
1759 /* check per-station GTK first, if multicast packet */
1760 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1761 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1763 /* if not found, try default key */
1764 if (!rx->key) {
1765 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1768 * RSNA-protected unicast frames should always be
1769 * sent with pairwise or station-to-station keys,
1770 * but for WEP we allow using a key index as well.
1772 if (rx->key &&
1773 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1774 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1775 !is_multicast_ether_addr(hdr->addr1))
1776 rx->key = NULL;
1780 if (rx->key) {
1781 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1782 return RX_DROP_MONITOR;
1784 /* TODO: add threshold stuff again */
1785 } else {
1786 return RX_DROP_MONITOR;
1789 switch (rx->key->conf.cipher) {
1790 case WLAN_CIPHER_SUITE_WEP40:
1791 case WLAN_CIPHER_SUITE_WEP104:
1792 result = ieee80211_crypto_wep_decrypt(rx);
1793 break;
1794 case WLAN_CIPHER_SUITE_TKIP:
1795 result = ieee80211_crypto_tkip_decrypt(rx);
1796 break;
1797 case WLAN_CIPHER_SUITE_CCMP:
1798 result = ieee80211_crypto_ccmp_decrypt(
1799 rx, IEEE80211_CCMP_MIC_LEN);
1800 break;
1801 case WLAN_CIPHER_SUITE_CCMP_256:
1802 result = ieee80211_crypto_ccmp_decrypt(
1803 rx, IEEE80211_CCMP_256_MIC_LEN);
1804 break;
1805 case WLAN_CIPHER_SUITE_AES_CMAC:
1806 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1807 break;
1808 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1809 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1810 break;
1811 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1812 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1813 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1814 break;
1815 case WLAN_CIPHER_SUITE_GCMP:
1816 case WLAN_CIPHER_SUITE_GCMP_256:
1817 result = ieee80211_crypto_gcmp_decrypt(rx);
1818 break;
1819 default:
1820 result = ieee80211_crypto_hw_decrypt(rx);
1823 /* the hdr variable is invalid after the decrypt handlers */
1825 /* either the frame has been decrypted or will be dropped */
1826 status->flag |= RX_FLAG_DECRYPTED;
1828 return result;
1831 static inline struct ieee80211_fragment_entry *
1832 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1833 unsigned int frag, unsigned int seq, int rx_queue,
1834 struct sk_buff **skb)
1836 struct ieee80211_fragment_entry *entry;
1838 entry = &sdata->fragments[sdata->fragment_next++];
1839 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1840 sdata->fragment_next = 0;
1842 if (!skb_queue_empty(&entry->skb_list))
1843 __skb_queue_purge(&entry->skb_list);
1845 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1846 *skb = NULL;
1847 entry->first_frag_time = jiffies;
1848 entry->seq = seq;
1849 entry->rx_queue = rx_queue;
1850 entry->last_frag = frag;
1851 entry->check_sequential_pn = false;
1852 entry->extra_len = 0;
1854 return entry;
1857 static inline struct ieee80211_fragment_entry *
1858 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1859 unsigned int frag, unsigned int seq,
1860 int rx_queue, struct ieee80211_hdr *hdr)
1862 struct ieee80211_fragment_entry *entry;
1863 int i, idx;
1865 idx = sdata->fragment_next;
1866 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1867 struct ieee80211_hdr *f_hdr;
1869 idx--;
1870 if (idx < 0)
1871 idx = IEEE80211_FRAGMENT_MAX - 1;
1873 entry = &sdata->fragments[idx];
1874 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1875 entry->rx_queue != rx_queue ||
1876 entry->last_frag + 1 != frag)
1877 continue;
1879 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1882 * Check ftype and addresses are equal, else check next fragment
1884 if (((hdr->frame_control ^ f_hdr->frame_control) &
1885 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1886 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1887 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1888 continue;
1890 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1891 __skb_queue_purge(&entry->skb_list);
1892 continue;
1894 return entry;
1897 return NULL;
1900 static ieee80211_rx_result debug_noinline
1901 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1903 struct ieee80211_hdr *hdr;
1904 u16 sc;
1905 __le16 fc;
1906 unsigned int frag, seq;
1907 struct ieee80211_fragment_entry *entry;
1908 struct sk_buff *skb;
1909 struct ieee80211_rx_status *status;
1911 hdr = (struct ieee80211_hdr *)rx->skb->data;
1912 fc = hdr->frame_control;
1914 if (ieee80211_is_ctl(fc))
1915 return RX_CONTINUE;
1917 sc = le16_to_cpu(hdr->seq_ctrl);
1918 frag = sc & IEEE80211_SCTL_FRAG;
1920 if (is_multicast_ether_addr(hdr->addr1)) {
1921 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1922 goto out_no_led;
1925 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1926 goto out;
1928 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1930 if (skb_linearize(rx->skb))
1931 return RX_DROP_UNUSABLE;
1934 * skb_linearize() might change the skb->data and
1935 * previously cached variables (in this case, hdr) need to
1936 * be refreshed with the new data.
1938 hdr = (struct ieee80211_hdr *)rx->skb->data;
1939 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1941 if (frag == 0) {
1942 /* This is the first fragment of a new frame. */
1943 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1944 rx->seqno_idx, &(rx->skb));
1945 if (rx->key &&
1946 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1947 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1948 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1949 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1950 ieee80211_has_protected(fc)) {
1951 int queue = rx->security_idx;
1953 /* Store CCMP/GCMP PN so that we can verify that the
1954 * next fragment has a sequential PN value.
1956 entry->check_sequential_pn = true;
1957 memcpy(entry->last_pn,
1958 rx->key->u.ccmp.rx_pn[queue],
1959 IEEE80211_CCMP_PN_LEN);
1960 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1961 u.ccmp.rx_pn) !=
1962 offsetof(struct ieee80211_key,
1963 u.gcmp.rx_pn));
1964 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1965 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1966 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1967 IEEE80211_GCMP_PN_LEN);
1969 return RX_QUEUED;
1972 /* This is a fragment for a frame that should already be pending in
1973 * fragment cache. Add this fragment to the end of the pending entry.
1975 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1976 rx->seqno_idx, hdr);
1977 if (!entry) {
1978 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1979 return RX_DROP_MONITOR;
1982 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1983 * MPDU PN values are not incrementing in steps of 1."
1984 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1985 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1987 if (entry->check_sequential_pn) {
1988 int i;
1989 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1990 int queue;
1992 if (!rx->key ||
1993 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1994 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1995 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1997 return RX_DROP_UNUSABLE;
1998 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1999 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2000 pn[i]++;
2001 if (pn[i])
2002 break;
2004 queue = rx->security_idx;
2005 rpn = rx->key->u.ccmp.rx_pn[queue];
2006 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2007 return RX_DROP_UNUSABLE;
2008 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2011 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2012 __skb_queue_tail(&entry->skb_list, rx->skb);
2013 entry->last_frag = frag;
2014 entry->extra_len += rx->skb->len;
2015 if (ieee80211_has_morefrags(fc)) {
2016 rx->skb = NULL;
2017 return RX_QUEUED;
2020 rx->skb = __skb_dequeue(&entry->skb_list);
2021 if (skb_tailroom(rx->skb) < entry->extra_len) {
2022 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2023 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2024 GFP_ATOMIC))) {
2025 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2026 __skb_queue_purge(&entry->skb_list);
2027 return RX_DROP_UNUSABLE;
2030 while ((skb = __skb_dequeue(&entry->skb_list))) {
2031 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2032 dev_kfree_skb(skb);
2035 /* Complete frame has been reassembled - process it now */
2036 status = IEEE80211_SKB_RXCB(rx->skb);
2038 out:
2039 ieee80211_led_rx(rx->local);
2040 out_no_led:
2041 if (rx->sta)
2042 rx->sta->rx_stats.packets++;
2043 return RX_CONTINUE;
2046 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2048 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2049 return -EACCES;
2051 return 0;
2054 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2056 struct sk_buff *skb = rx->skb;
2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2060 * Pass through unencrypted frames if the hardware has
2061 * decrypted them already.
2063 if (status->flag & RX_FLAG_DECRYPTED)
2064 return 0;
2066 /* Drop unencrypted frames if key is set. */
2067 if (unlikely(!ieee80211_has_protected(fc) &&
2068 !ieee80211_is_nullfunc(fc) &&
2069 ieee80211_is_data(fc) && rx->key))
2070 return -EACCES;
2072 return 0;
2075 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2077 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2078 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2079 __le16 fc = hdr->frame_control;
2082 * Pass through unencrypted frames if the hardware has
2083 * decrypted them already.
2085 if (status->flag & RX_FLAG_DECRYPTED)
2086 return 0;
2088 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2089 if (unlikely(!ieee80211_has_protected(fc) &&
2090 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2091 rx->key)) {
2092 if (ieee80211_is_deauth(fc) ||
2093 ieee80211_is_disassoc(fc))
2094 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2095 rx->skb->data,
2096 rx->skb->len);
2097 return -EACCES;
2099 /* BIP does not use Protected field, so need to check MMIE */
2100 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2101 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2102 if (ieee80211_is_deauth(fc) ||
2103 ieee80211_is_disassoc(fc))
2104 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2105 rx->skb->data,
2106 rx->skb->len);
2107 return -EACCES;
2110 * When using MFP, Action frames are not allowed prior to
2111 * having configured keys.
2113 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2114 ieee80211_is_robust_mgmt_frame(rx->skb)))
2115 return -EACCES;
2118 return 0;
2121 static int
2122 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2124 struct ieee80211_sub_if_data *sdata = rx->sdata;
2125 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2126 bool check_port_control = false;
2127 struct ethhdr *ehdr;
2128 int ret;
2130 *port_control = false;
2131 if (ieee80211_has_a4(hdr->frame_control) &&
2132 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2133 return -1;
2135 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2136 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2138 if (!sdata->u.mgd.use_4addr)
2139 return -1;
2140 else
2141 check_port_control = true;
2144 if (is_multicast_ether_addr(hdr->addr1) &&
2145 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2146 return -1;
2148 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2149 if (ret < 0)
2150 return ret;
2152 ehdr = (struct ethhdr *) rx->skb->data;
2153 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2154 *port_control = true;
2155 else if (check_port_control)
2156 return -1;
2158 return 0;
2162 * requires that rx->skb is a frame with ethernet header
2164 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2166 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2167 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2168 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2171 * Allow EAPOL frames to us/the PAE group address regardless
2172 * of whether the frame was encrypted or not.
2174 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2175 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2176 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2177 return true;
2179 if (ieee80211_802_1x_port_control(rx) ||
2180 ieee80211_drop_unencrypted(rx, fc))
2181 return false;
2183 return true;
2187 * requires that rx->skb is a frame with ethernet header
2189 static void
2190 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2192 struct ieee80211_sub_if_data *sdata = rx->sdata;
2193 struct net_device *dev = sdata->dev;
2194 struct sk_buff *skb, *xmit_skb;
2195 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2196 struct sta_info *dsta;
2198 skb = rx->skb;
2199 xmit_skb = NULL;
2201 ieee80211_rx_stats(dev, skb->len);
2203 if (rx->sta) {
2204 /* The seqno index has the same property as needed
2205 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2206 * for non-QoS-data frames. Here we know it's a data
2207 * frame, so count MSDUs.
2209 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2210 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2211 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2214 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2215 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2216 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2217 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2218 if (is_multicast_ether_addr(ehdr->h_dest)) {
2220 * send multicast frames both to higher layers in
2221 * local net stack and back to the wireless medium
2223 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2224 if (!xmit_skb)
2225 net_info_ratelimited("%s: failed to clone multicast frame\n",
2226 dev->name);
2227 } else {
2228 dsta = sta_info_get(sdata, skb->data);
2229 if (dsta) {
2231 * The destination station is associated to
2232 * this AP (in this VLAN), so send the frame
2233 * directly to it and do not pass it to local
2234 * net stack.
2236 xmit_skb = skb;
2237 skb = NULL;
2242 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2243 if (skb) {
2244 /* 'align' will only take the values 0 or 2 here since all
2245 * frames are required to be aligned to 2-byte boundaries
2246 * when being passed to mac80211; the code here works just
2247 * as well if that isn't true, but mac80211 assumes it can
2248 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2250 int align;
2252 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2253 if (align) {
2254 if (WARN_ON(skb_headroom(skb) < 3)) {
2255 dev_kfree_skb(skb);
2256 skb = NULL;
2257 } else {
2258 u8 *data = skb->data;
2259 size_t len = skb_headlen(skb);
2260 skb->data -= align;
2261 memmove(skb->data, data, len);
2262 skb_set_tail_pointer(skb, len);
2266 #endif
2268 if (skb) {
2269 /* deliver to local stack */
2270 skb->protocol = eth_type_trans(skb, dev);
2271 memset(skb->cb, 0, sizeof(skb->cb));
2272 if (rx->napi)
2273 napi_gro_receive(rx->napi, skb);
2274 else
2275 netif_receive_skb(skb);
2278 if (xmit_skb) {
2280 * Send to wireless media and increase priority by 256 to
2281 * keep the received priority instead of reclassifying
2282 * the frame (see cfg80211_classify8021d).
2284 xmit_skb->priority += 256;
2285 xmit_skb->protocol = htons(ETH_P_802_3);
2286 skb_reset_network_header(xmit_skb);
2287 skb_reset_mac_header(xmit_skb);
2288 dev_queue_xmit(xmit_skb);
2292 static ieee80211_rx_result debug_noinline
2293 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2295 struct net_device *dev = rx->sdata->dev;
2296 struct sk_buff *skb = rx->skb;
2297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2298 __le16 fc = hdr->frame_control;
2299 struct sk_buff_head frame_list;
2300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2301 struct ethhdr ethhdr;
2302 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2304 if (unlikely(!ieee80211_is_data(fc)))
2305 return RX_CONTINUE;
2307 if (unlikely(!ieee80211_is_data_present(fc)))
2308 return RX_DROP_MONITOR;
2310 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2311 return RX_CONTINUE;
2313 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2314 switch (rx->sdata->vif.type) {
2315 case NL80211_IFTYPE_AP_VLAN:
2316 if (!rx->sdata->u.vlan.sta)
2317 return RX_DROP_UNUSABLE;
2318 break;
2319 case NL80211_IFTYPE_STATION:
2320 if (!rx->sdata->u.mgd.use_4addr)
2321 return RX_DROP_UNUSABLE;
2322 break;
2323 default:
2324 return RX_DROP_UNUSABLE;
2326 check_da = NULL;
2327 check_sa = NULL;
2328 } else switch (rx->sdata->vif.type) {
2329 case NL80211_IFTYPE_AP:
2330 case NL80211_IFTYPE_AP_VLAN:
2331 check_da = NULL;
2332 break;
2333 case NL80211_IFTYPE_STATION:
2334 if (!rx->sta ||
2335 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2336 check_sa = NULL;
2337 break;
2338 case NL80211_IFTYPE_MESH_POINT:
2339 check_sa = NULL;
2340 break;
2341 default:
2342 break;
2345 if (is_multicast_ether_addr(hdr->addr1))
2346 return RX_DROP_UNUSABLE;
2348 skb->dev = dev;
2349 __skb_queue_head_init(&frame_list);
2351 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2352 rx->sdata->vif.addr,
2353 rx->sdata->vif.type))
2354 return RX_DROP_UNUSABLE;
2356 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2357 rx->sdata->vif.type,
2358 rx->local->hw.extra_tx_headroom,
2359 check_da, check_sa);
2361 while (!skb_queue_empty(&frame_list)) {
2362 rx->skb = __skb_dequeue(&frame_list);
2364 if (!ieee80211_frame_allowed(rx, fc)) {
2365 dev_kfree_skb(rx->skb);
2366 continue;
2369 ieee80211_deliver_skb(rx);
2372 return RX_QUEUED;
2375 #ifdef CONFIG_MAC80211_MESH
2376 static ieee80211_rx_result
2377 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2379 struct ieee80211_hdr *fwd_hdr, *hdr;
2380 struct ieee80211_tx_info *info;
2381 struct ieee80211s_hdr *mesh_hdr;
2382 struct sk_buff *skb = rx->skb, *fwd_skb;
2383 struct ieee80211_local *local = rx->local;
2384 struct ieee80211_sub_if_data *sdata = rx->sdata;
2385 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2386 u16 ac, q, hdrlen;
2388 hdr = (struct ieee80211_hdr *) skb->data;
2389 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2391 /* make sure fixed part of mesh header is there, also checks skb len */
2392 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2393 return RX_DROP_MONITOR;
2395 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2397 /* make sure full mesh header is there, also checks skb len */
2398 if (!pskb_may_pull(rx->skb,
2399 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2400 return RX_DROP_MONITOR;
2402 /* reload pointers */
2403 hdr = (struct ieee80211_hdr *) skb->data;
2404 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2406 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2407 return RX_DROP_MONITOR;
2409 /* frame is in RMC, don't forward */
2410 if (ieee80211_is_data(hdr->frame_control) &&
2411 is_multicast_ether_addr(hdr->addr1) &&
2412 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2413 return RX_DROP_MONITOR;
2415 if (!ieee80211_is_data(hdr->frame_control))
2416 return RX_CONTINUE;
2418 if (!mesh_hdr->ttl)
2419 return RX_DROP_MONITOR;
2421 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2422 struct mesh_path *mppath;
2423 char *proxied_addr;
2424 char *mpp_addr;
2426 if (is_multicast_ether_addr(hdr->addr1)) {
2427 mpp_addr = hdr->addr3;
2428 proxied_addr = mesh_hdr->eaddr1;
2429 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2430 /* has_a4 already checked in ieee80211_rx_mesh_check */
2431 mpp_addr = hdr->addr4;
2432 proxied_addr = mesh_hdr->eaddr2;
2433 } else {
2434 return RX_DROP_MONITOR;
2437 rcu_read_lock();
2438 mppath = mpp_path_lookup(sdata, proxied_addr);
2439 if (!mppath) {
2440 mpp_path_add(sdata, proxied_addr, mpp_addr);
2441 } else {
2442 spin_lock_bh(&mppath->state_lock);
2443 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2444 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2445 mppath->exp_time = jiffies;
2446 spin_unlock_bh(&mppath->state_lock);
2448 rcu_read_unlock();
2451 /* Frame has reached destination. Don't forward */
2452 if (!is_multicast_ether_addr(hdr->addr1) &&
2453 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2454 return RX_CONTINUE;
2456 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2457 q = sdata->vif.hw_queue[ac];
2458 if (ieee80211_queue_stopped(&local->hw, q)) {
2459 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2460 return RX_DROP_MONITOR;
2462 skb_set_queue_mapping(skb, q);
2464 if (!--mesh_hdr->ttl) {
2465 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2466 goto out;
2469 if (!ifmsh->mshcfg.dot11MeshForwarding)
2470 goto out;
2472 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2473 if (!fwd_skb) {
2474 net_info_ratelimited("%s: failed to clone mesh frame\n",
2475 sdata->name);
2476 goto out;
2479 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2480 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2481 info = IEEE80211_SKB_CB(fwd_skb);
2482 memset(info, 0, sizeof(*info));
2483 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2484 info->control.vif = &rx->sdata->vif;
2485 info->control.jiffies = jiffies;
2486 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2487 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2488 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2489 /* update power mode indication when forwarding */
2490 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2491 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2492 /* mesh power mode flags updated in mesh_nexthop_lookup */
2493 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2494 } else {
2495 /* unable to resolve next hop */
2496 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2497 fwd_hdr->addr3, 0,
2498 WLAN_REASON_MESH_PATH_NOFORWARD,
2499 fwd_hdr->addr2);
2500 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2501 kfree_skb(fwd_skb);
2502 return RX_DROP_MONITOR;
2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2506 ieee80211_add_pending_skb(local, fwd_skb);
2507 out:
2508 if (is_multicast_ether_addr(hdr->addr1))
2509 return RX_CONTINUE;
2510 return RX_DROP_MONITOR;
2512 #endif
2514 static ieee80211_rx_result debug_noinline
2515 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2517 struct ieee80211_sub_if_data *sdata = rx->sdata;
2518 struct ieee80211_local *local = rx->local;
2519 struct net_device *dev = sdata->dev;
2520 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2521 __le16 fc = hdr->frame_control;
2522 bool port_control;
2523 int err;
2525 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2526 return RX_CONTINUE;
2528 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2529 return RX_DROP_MONITOR;
2532 * Send unexpected-4addr-frame event to hostapd. For older versions,
2533 * also drop the frame to cooked monitor interfaces.
2535 if (ieee80211_has_a4(hdr->frame_control) &&
2536 sdata->vif.type == NL80211_IFTYPE_AP) {
2537 if (rx->sta &&
2538 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2539 cfg80211_rx_unexpected_4addr_frame(
2540 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2541 return RX_DROP_MONITOR;
2544 err = __ieee80211_data_to_8023(rx, &port_control);
2545 if (unlikely(err))
2546 return RX_DROP_UNUSABLE;
2548 if (!ieee80211_frame_allowed(rx, fc))
2549 return RX_DROP_MONITOR;
2551 /* directly handle TDLS channel switch requests/responses */
2552 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2553 cpu_to_be16(ETH_P_TDLS))) {
2554 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2556 if (pskb_may_pull(rx->skb,
2557 offsetof(struct ieee80211_tdls_data, u)) &&
2558 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2559 tf->category == WLAN_CATEGORY_TDLS &&
2560 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2561 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2562 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2563 schedule_work(&local->tdls_chsw_work);
2564 if (rx->sta)
2565 rx->sta->rx_stats.packets++;
2567 return RX_QUEUED;
2571 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2572 unlikely(port_control) && sdata->bss) {
2573 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2574 u.ap);
2575 dev = sdata->dev;
2576 rx->sdata = sdata;
2579 rx->skb->dev = dev;
2581 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2582 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2583 !is_multicast_ether_addr(
2584 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2585 (!local->scanning &&
2586 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2587 mod_timer(&local->dynamic_ps_timer, jiffies +
2588 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2590 ieee80211_deliver_skb(rx);
2592 return RX_QUEUED;
2595 static ieee80211_rx_result debug_noinline
2596 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2598 struct sk_buff *skb = rx->skb;
2599 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2600 struct tid_ampdu_rx *tid_agg_rx;
2601 u16 start_seq_num;
2602 u16 tid;
2604 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2605 return RX_CONTINUE;
2607 if (ieee80211_is_back_req(bar->frame_control)) {
2608 struct {
2609 __le16 control, start_seq_num;
2610 } __packed bar_data;
2611 struct ieee80211_event event = {
2612 .type = BAR_RX_EVENT,
2615 if (!rx->sta)
2616 return RX_DROP_MONITOR;
2618 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2619 &bar_data, sizeof(bar_data)))
2620 return RX_DROP_MONITOR;
2622 tid = le16_to_cpu(bar_data.control) >> 12;
2624 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2625 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2626 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2627 WLAN_BACK_RECIPIENT,
2628 WLAN_REASON_QSTA_REQUIRE_SETUP);
2630 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2631 if (!tid_agg_rx)
2632 return RX_DROP_MONITOR;
2634 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2635 event.u.ba.tid = tid;
2636 event.u.ba.ssn = start_seq_num;
2637 event.u.ba.sta = &rx->sta->sta;
2639 /* reset session timer */
2640 if (tid_agg_rx->timeout)
2641 mod_timer(&tid_agg_rx->session_timer,
2642 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2644 spin_lock(&tid_agg_rx->reorder_lock);
2645 /* release stored frames up to start of BAR */
2646 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2647 start_seq_num, frames);
2648 spin_unlock(&tid_agg_rx->reorder_lock);
2650 drv_event_callback(rx->local, rx->sdata, &event);
2652 kfree_skb(skb);
2653 return RX_QUEUED;
2657 * After this point, we only want management frames,
2658 * so we can drop all remaining control frames to
2659 * cooked monitor interfaces.
2661 return RX_DROP_MONITOR;
2664 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2665 struct ieee80211_mgmt *mgmt,
2666 size_t len)
2668 struct ieee80211_local *local = sdata->local;
2669 struct sk_buff *skb;
2670 struct ieee80211_mgmt *resp;
2672 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2673 /* Not to own unicast address */
2674 return;
2677 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2678 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2679 /* Not from the current AP or not associated yet. */
2680 return;
2683 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2684 /* Too short SA Query request frame */
2685 return;
2688 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2689 if (skb == NULL)
2690 return;
2692 skb_reserve(skb, local->hw.extra_tx_headroom);
2693 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2694 memset(resp, 0, 24);
2695 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2696 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2697 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2698 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2699 IEEE80211_STYPE_ACTION);
2700 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2701 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2702 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2703 memcpy(resp->u.action.u.sa_query.trans_id,
2704 mgmt->u.action.u.sa_query.trans_id,
2705 WLAN_SA_QUERY_TR_ID_LEN);
2707 ieee80211_tx_skb(sdata, skb);
2710 static ieee80211_rx_result debug_noinline
2711 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2713 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2717 * From here on, look only at management frames.
2718 * Data and control frames are already handled,
2719 * and unknown (reserved) frames are useless.
2721 if (rx->skb->len < 24)
2722 return RX_DROP_MONITOR;
2724 if (!ieee80211_is_mgmt(mgmt->frame_control))
2725 return RX_DROP_MONITOR;
2727 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2728 ieee80211_is_beacon(mgmt->frame_control) &&
2729 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2730 int sig = 0;
2732 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2733 sig = status->signal;
2735 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2736 rx->skb->data, rx->skb->len,
2737 status->freq, sig);
2738 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2741 if (ieee80211_drop_unencrypted_mgmt(rx))
2742 return RX_DROP_UNUSABLE;
2744 return RX_CONTINUE;
2747 static ieee80211_rx_result debug_noinline
2748 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2750 struct ieee80211_local *local = rx->local;
2751 struct ieee80211_sub_if_data *sdata = rx->sdata;
2752 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2753 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2754 int len = rx->skb->len;
2756 if (!ieee80211_is_action(mgmt->frame_control))
2757 return RX_CONTINUE;
2759 /* drop too small frames */
2760 if (len < IEEE80211_MIN_ACTION_SIZE)
2761 return RX_DROP_UNUSABLE;
2763 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2764 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2765 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2766 return RX_DROP_UNUSABLE;
2768 switch (mgmt->u.action.category) {
2769 case WLAN_CATEGORY_HT:
2770 /* reject HT action frames from stations not supporting HT */
2771 if (!rx->sta->sta.ht_cap.ht_supported)
2772 goto invalid;
2774 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2775 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2776 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2777 sdata->vif.type != NL80211_IFTYPE_AP &&
2778 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2779 break;
2781 /* verify action & smps_control/chanwidth are present */
2782 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2783 goto invalid;
2785 switch (mgmt->u.action.u.ht_smps.action) {
2786 case WLAN_HT_ACTION_SMPS: {
2787 struct ieee80211_supported_band *sband;
2788 enum ieee80211_smps_mode smps_mode;
2790 /* convert to HT capability */
2791 switch (mgmt->u.action.u.ht_smps.smps_control) {
2792 case WLAN_HT_SMPS_CONTROL_DISABLED:
2793 smps_mode = IEEE80211_SMPS_OFF;
2794 break;
2795 case WLAN_HT_SMPS_CONTROL_STATIC:
2796 smps_mode = IEEE80211_SMPS_STATIC;
2797 break;
2798 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2799 smps_mode = IEEE80211_SMPS_DYNAMIC;
2800 break;
2801 default:
2802 goto invalid;
2805 /* if no change do nothing */
2806 if (rx->sta->sta.smps_mode == smps_mode)
2807 goto handled;
2808 rx->sta->sta.smps_mode = smps_mode;
2810 sband = rx->local->hw.wiphy->bands[status->band];
2812 rate_control_rate_update(local, sband, rx->sta,
2813 IEEE80211_RC_SMPS_CHANGED);
2814 goto handled;
2816 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2817 struct ieee80211_supported_band *sband;
2818 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2819 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2821 /* If it doesn't support 40 MHz it can't change ... */
2822 if (!(rx->sta->sta.ht_cap.cap &
2823 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2824 goto handled;
2826 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2827 max_bw = IEEE80211_STA_RX_BW_20;
2828 else
2829 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2831 /* set cur_max_bandwidth and recalc sta bw */
2832 rx->sta->cur_max_bandwidth = max_bw;
2833 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2835 if (rx->sta->sta.bandwidth == new_bw)
2836 goto handled;
2838 rx->sta->sta.bandwidth = new_bw;
2839 sband = rx->local->hw.wiphy->bands[status->band];
2841 rate_control_rate_update(local, sband, rx->sta,
2842 IEEE80211_RC_BW_CHANGED);
2843 goto handled;
2845 default:
2846 goto invalid;
2849 break;
2850 case WLAN_CATEGORY_PUBLIC:
2851 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2852 goto invalid;
2853 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2854 break;
2855 if (!rx->sta)
2856 break;
2857 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2858 break;
2859 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2860 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2861 break;
2862 if (len < offsetof(struct ieee80211_mgmt,
2863 u.action.u.ext_chan_switch.variable))
2864 goto invalid;
2865 goto queue;
2866 case WLAN_CATEGORY_VHT:
2867 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2868 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2869 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2870 sdata->vif.type != NL80211_IFTYPE_AP &&
2871 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2872 break;
2874 /* verify action code is present */
2875 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2876 goto invalid;
2878 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2879 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2880 u8 opmode;
2882 /* verify opmode is present */
2883 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2884 goto invalid;
2886 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2888 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2889 opmode, status->band);
2890 goto handled;
2892 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2893 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2894 goto invalid;
2895 goto queue;
2897 default:
2898 break;
2900 break;
2901 case WLAN_CATEGORY_BACK:
2902 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2903 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2904 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2905 sdata->vif.type != NL80211_IFTYPE_AP &&
2906 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2907 break;
2909 /* verify action_code is present */
2910 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2911 break;
2913 switch (mgmt->u.action.u.addba_req.action_code) {
2914 case WLAN_ACTION_ADDBA_REQ:
2915 if (len < (IEEE80211_MIN_ACTION_SIZE +
2916 sizeof(mgmt->u.action.u.addba_req)))
2917 goto invalid;
2918 break;
2919 case WLAN_ACTION_ADDBA_RESP:
2920 if (len < (IEEE80211_MIN_ACTION_SIZE +
2921 sizeof(mgmt->u.action.u.addba_resp)))
2922 goto invalid;
2923 break;
2924 case WLAN_ACTION_DELBA:
2925 if (len < (IEEE80211_MIN_ACTION_SIZE +
2926 sizeof(mgmt->u.action.u.delba)))
2927 goto invalid;
2928 break;
2929 default:
2930 goto invalid;
2933 goto queue;
2934 case WLAN_CATEGORY_SPECTRUM_MGMT:
2935 /* verify action_code is present */
2936 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2937 break;
2939 switch (mgmt->u.action.u.measurement.action_code) {
2940 case WLAN_ACTION_SPCT_MSR_REQ:
2941 if (status->band != NL80211_BAND_5GHZ)
2942 break;
2944 if (len < (IEEE80211_MIN_ACTION_SIZE +
2945 sizeof(mgmt->u.action.u.measurement)))
2946 break;
2948 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2949 break;
2951 ieee80211_process_measurement_req(sdata, mgmt, len);
2952 goto handled;
2953 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2954 u8 *bssid;
2955 if (len < (IEEE80211_MIN_ACTION_SIZE +
2956 sizeof(mgmt->u.action.u.chan_switch)))
2957 break;
2959 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2960 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2961 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2962 break;
2964 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2965 bssid = sdata->u.mgd.bssid;
2966 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2967 bssid = sdata->u.ibss.bssid;
2968 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2969 bssid = mgmt->sa;
2970 else
2971 break;
2973 if (!ether_addr_equal(mgmt->bssid, bssid))
2974 break;
2976 goto queue;
2979 break;
2980 case WLAN_CATEGORY_SA_QUERY:
2981 if (len < (IEEE80211_MIN_ACTION_SIZE +
2982 sizeof(mgmt->u.action.u.sa_query)))
2983 break;
2985 switch (mgmt->u.action.u.sa_query.action) {
2986 case WLAN_ACTION_SA_QUERY_REQUEST:
2987 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2988 break;
2989 ieee80211_process_sa_query_req(sdata, mgmt, len);
2990 goto handled;
2992 break;
2993 case WLAN_CATEGORY_SELF_PROTECTED:
2994 if (len < (IEEE80211_MIN_ACTION_SIZE +
2995 sizeof(mgmt->u.action.u.self_prot.action_code)))
2996 break;
2998 switch (mgmt->u.action.u.self_prot.action_code) {
2999 case WLAN_SP_MESH_PEERING_OPEN:
3000 case WLAN_SP_MESH_PEERING_CLOSE:
3001 case WLAN_SP_MESH_PEERING_CONFIRM:
3002 if (!ieee80211_vif_is_mesh(&sdata->vif))
3003 goto invalid;
3004 if (sdata->u.mesh.user_mpm)
3005 /* userspace handles this frame */
3006 break;
3007 goto queue;
3008 case WLAN_SP_MGK_INFORM:
3009 case WLAN_SP_MGK_ACK:
3010 if (!ieee80211_vif_is_mesh(&sdata->vif))
3011 goto invalid;
3012 break;
3014 break;
3015 case WLAN_CATEGORY_MESH_ACTION:
3016 if (len < (IEEE80211_MIN_ACTION_SIZE +
3017 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3018 break;
3020 if (!ieee80211_vif_is_mesh(&sdata->vif))
3021 break;
3022 if (mesh_action_is_path_sel(mgmt) &&
3023 !mesh_path_sel_is_hwmp(sdata))
3024 break;
3025 goto queue;
3028 return RX_CONTINUE;
3030 invalid:
3031 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3032 /* will return in the next handlers */
3033 return RX_CONTINUE;
3035 handled:
3036 if (rx->sta)
3037 rx->sta->rx_stats.packets++;
3038 dev_kfree_skb(rx->skb);
3039 return RX_QUEUED;
3041 queue:
3042 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3043 skb_queue_tail(&sdata->skb_queue, rx->skb);
3044 ieee80211_queue_work(&local->hw, &sdata->work);
3045 if (rx->sta)
3046 rx->sta->rx_stats.packets++;
3047 return RX_QUEUED;
3050 static ieee80211_rx_result debug_noinline
3051 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3054 int sig = 0;
3056 /* skip known-bad action frames and return them in the next handler */
3057 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3058 return RX_CONTINUE;
3061 * Getting here means the kernel doesn't know how to handle
3062 * it, but maybe userspace does ... include returned frames
3063 * so userspace can register for those to know whether ones
3064 * it transmitted were processed or returned.
3067 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3068 sig = status->signal;
3070 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3071 rx->skb->data, rx->skb->len, 0)) {
3072 if (rx->sta)
3073 rx->sta->rx_stats.packets++;
3074 dev_kfree_skb(rx->skb);
3075 return RX_QUEUED;
3078 return RX_CONTINUE;
3081 static ieee80211_rx_result debug_noinline
3082 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3084 struct ieee80211_local *local = rx->local;
3085 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3086 struct sk_buff *nskb;
3087 struct ieee80211_sub_if_data *sdata = rx->sdata;
3088 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3090 if (!ieee80211_is_action(mgmt->frame_control))
3091 return RX_CONTINUE;
3094 * For AP mode, hostapd is responsible for handling any action
3095 * frames that we didn't handle, including returning unknown
3096 * ones. For all other modes we will return them to the sender,
3097 * setting the 0x80 bit in the action category, as required by
3098 * 802.11-2012 9.24.4.
3099 * Newer versions of hostapd shall also use the management frame
3100 * registration mechanisms, but older ones still use cooked
3101 * monitor interfaces so push all frames there.
3103 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3104 (sdata->vif.type == NL80211_IFTYPE_AP ||
3105 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3106 return RX_DROP_MONITOR;
3108 if (is_multicast_ether_addr(mgmt->da))
3109 return RX_DROP_MONITOR;
3111 /* do not return rejected action frames */
3112 if (mgmt->u.action.category & 0x80)
3113 return RX_DROP_UNUSABLE;
3115 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3116 GFP_ATOMIC);
3117 if (nskb) {
3118 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3120 nmgmt->u.action.category |= 0x80;
3121 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3122 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3124 memset(nskb->cb, 0, sizeof(nskb->cb));
3126 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3127 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3129 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3130 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3131 IEEE80211_TX_CTL_NO_CCK_RATE;
3132 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3133 info->hw_queue =
3134 local->hw.offchannel_tx_hw_queue;
3137 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3138 status->band);
3140 dev_kfree_skb(rx->skb);
3141 return RX_QUEUED;
3144 static ieee80211_rx_result debug_noinline
3145 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3147 struct ieee80211_sub_if_data *sdata = rx->sdata;
3148 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3149 __le16 stype;
3151 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3153 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3154 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3155 sdata->vif.type != NL80211_IFTYPE_OCB &&
3156 sdata->vif.type != NL80211_IFTYPE_STATION)
3157 return RX_DROP_MONITOR;
3159 switch (stype) {
3160 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3161 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3162 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3163 /* process for all: mesh, mlme, ibss */
3164 break;
3165 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3166 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3167 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3168 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3169 if (is_multicast_ether_addr(mgmt->da) &&
3170 !is_broadcast_ether_addr(mgmt->da))
3171 return RX_DROP_MONITOR;
3173 /* process only for station */
3174 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3175 return RX_DROP_MONITOR;
3176 break;
3177 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3178 /* process only for ibss and mesh */
3179 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3180 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3181 return RX_DROP_MONITOR;
3182 break;
3183 default:
3184 return RX_DROP_MONITOR;
3187 /* queue up frame and kick off work to process it */
3188 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3189 skb_queue_tail(&sdata->skb_queue, rx->skb);
3190 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3191 if (rx->sta)
3192 rx->sta->rx_stats.packets++;
3194 return RX_QUEUED;
3197 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3198 struct ieee80211_rate *rate)
3200 struct ieee80211_sub_if_data *sdata;
3201 struct ieee80211_local *local = rx->local;
3202 struct sk_buff *skb = rx->skb, *skb2;
3203 struct net_device *prev_dev = NULL;
3204 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3205 int needed_headroom;
3208 * If cooked monitor has been processed already, then
3209 * don't do it again. If not, set the flag.
3211 if (rx->flags & IEEE80211_RX_CMNTR)
3212 goto out_free_skb;
3213 rx->flags |= IEEE80211_RX_CMNTR;
3215 /* If there are no cooked monitor interfaces, just free the SKB */
3216 if (!local->cooked_mntrs)
3217 goto out_free_skb;
3219 /* vendor data is long removed here */
3220 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3221 /* room for the radiotap header based on driver features */
3222 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3224 if (skb_headroom(skb) < needed_headroom &&
3225 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3226 goto out_free_skb;
3228 /* prepend radiotap information */
3229 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3230 false);
3232 skb_reset_mac_header(skb);
3233 skb->ip_summed = CHECKSUM_UNNECESSARY;
3234 skb->pkt_type = PACKET_OTHERHOST;
3235 skb->protocol = htons(ETH_P_802_2);
3237 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3238 if (!ieee80211_sdata_running(sdata))
3239 continue;
3241 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3242 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3243 continue;
3245 if (prev_dev) {
3246 skb2 = skb_clone(skb, GFP_ATOMIC);
3247 if (skb2) {
3248 skb2->dev = prev_dev;
3249 netif_receive_skb(skb2);
3253 prev_dev = sdata->dev;
3254 ieee80211_rx_stats(sdata->dev, skb->len);
3257 if (prev_dev) {
3258 skb->dev = prev_dev;
3259 netif_receive_skb(skb);
3260 return;
3263 out_free_skb:
3264 dev_kfree_skb(skb);
3267 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3268 ieee80211_rx_result res)
3270 switch (res) {
3271 case RX_DROP_MONITOR:
3272 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3273 if (rx->sta)
3274 rx->sta->rx_stats.dropped++;
3275 /* fall through */
3276 case RX_CONTINUE: {
3277 struct ieee80211_rate *rate = NULL;
3278 struct ieee80211_supported_band *sband;
3279 struct ieee80211_rx_status *status;
3281 status = IEEE80211_SKB_RXCB((rx->skb));
3283 sband = rx->local->hw.wiphy->bands[status->band];
3284 if (!(status->flag & RX_FLAG_HT) &&
3285 !(status->flag & RX_FLAG_VHT))
3286 rate = &sband->bitrates[status->rate_idx];
3288 ieee80211_rx_cooked_monitor(rx, rate);
3289 break;
3291 case RX_DROP_UNUSABLE:
3292 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3293 if (rx->sta)
3294 rx->sta->rx_stats.dropped++;
3295 dev_kfree_skb(rx->skb);
3296 break;
3297 case RX_QUEUED:
3298 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3299 break;
3303 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3304 struct sk_buff_head *frames)
3306 ieee80211_rx_result res = RX_DROP_MONITOR;
3307 struct sk_buff *skb;
3309 #define CALL_RXH(rxh) \
3310 do { \
3311 res = rxh(rx); \
3312 if (res != RX_CONTINUE) \
3313 goto rxh_next; \
3314 } while (0)
3316 /* Lock here to avoid hitting all of the data used in the RX
3317 * path (e.g. key data, station data, ...) concurrently when
3318 * a frame is released from the reorder buffer due to timeout
3319 * from the timer, potentially concurrently with RX from the
3320 * driver.
3322 spin_lock_bh(&rx->local->rx_path_lock);
3324 while ((skb = __skb_dequeue(frames))) {
3326 * all the other fields are valid across frames
3327 * that belong to an aMPDU since they are on the
3328 * same TID from the same station
3330 rx->skb = skb;
3332 CALL_RXH(ieee80211_rx_h_check_more_data);
3333 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3334 CALL_RXH(ieee80211_rx_h_sta_process);
3335 CALL_RXH(ieee80211_rx_h_decrypt);
3336 CALL_RXH(ieee80211_rx_h_defragment);
3337 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3338 /* must be after MMIC verify so header is counted in MPDU mic */
3339 #ifdef CONFIG_MAC80211_MESH
3340 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3341 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3342 #endif
3343 CALL_RXH(ieee80211_rx_h_amsdu);
3344 CALL_RXH(ieee80211_rx_h_data);
3346 /* special treatment -- needs the queue */
3347 res = ieee80211_rx_h_ctrl(rx, frames);
3348 if (res != RX_CONTINUE)
3349 goto rxh_next;
3351 CALL_RXH(ieee80211_rx_h_mgmt_check);
3352 CALL_RXH(ieee80211_rx_h_action);
3353 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3354 CALL_RXH(ieee80211_rx_h_action_return);
3355 CALL_RXH(ieee80211_rx_h_mgmt);
3357 rxh_next:
3358 ieee80211_rx_handlers_result(rx, res);
3360 #undef CALL_RXH
3363 spin_unlock_bh(&rx->local->rx_path_lock);
3366 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3368 struct sk_buff_head reorder_release;
3369 ieee80211_rx_result res = RX_DROP_MONITOR;
3371 __skb_queue_head_init(&reorder_release);
3373 #define CALL_RXH(rxh) \
3374 do { \
3375 res = rxh(rx); \
3376 if (res != RX_CONTINUE) \
3377 goto rxh_next; \
3378 } while (0)
3380 CALL_RXH(ieee80211_rx_h_check_dup);
3381 CALL_RXH(ieee80211_rx_h_check);
3383 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3385 ieee80211_rx_handlers(rx, &reorder_release);
3386 return;
3388 rxh_next:
3389 ieee80211_rx_handlers_result(rx, res);
3391 #undef CALL_RXH
3395 * This function makes calls into the RX path, therefore
3396 * it has to be invoked under RCU read lock.
3398 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3400 struct sk_buff_head frames;
3401 struct ieee80211_rx_data rx = {
3402 .sta = sta,
3403 .sdata = sta->sdata,
3404 .local = sta->local,
3405 /* This is OK -- must be QoS data frame */
3406 .security_idx = tid,
3407 .seqno_idx = tid,
3408 .napi = NULL, /* must be NULL to not have races */
3410 struct tid_ampdu_rx *tid_agg_rx;
3412 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3413 if (!tid_agg_rx)
3414 return;
3416 __skb_queue_head_init(&frames);
3418 spin_lock(&tid_agg_rx->reorder_lock);
3419 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3420 spin_unlock(&tid_agg_rx->reorder_lock);
3422 if (!skb_queue_empty(&frames)) {
3423 struct ieee80211_event event = {
3424 .type = BA_FRAME_TIMEOUT,
3425 .u.ba.tid = tid,
3426 .u.ba.sta = &sta->sta,
3428 drv_event_callback(rx.local, rx.sdata, &event);
3431 ieee80211_rx_handlers(&rx, &frames);
3434 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3435 u16 ssn, u64 filtered,
3436 u16 received_mpdus)
3438 struct sta_info *sta;
3439 struct tid_ampdu_rx *tid_agg_rx;
3440 struct sk_buff_head frames;
3441 struct ieee80211_rx_data rx = {
3442 /* This is OK -- must be QoS data frame */
3443 .security_idx = tid,
3444 .seqno_idx = tid,
3446 int i, diff;
3448 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3449 return;
3451 __skb_queue_head_init(&frames);
3453 sta = container_of(pubsta, struct sta_info, sta);
3455 rx.sta = sta;
3456 rx.sdata = sta->sdata;
3457 rx.local = sta->local;
3459 rcu_read_lock();
3460 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3461 if (!tid_agg_rx)
3462 goto out;
3464 spin_lock_bh(&tid_agg_rx->reorder_lock);
3466 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3467 int release;
3469 /* release all frames in the reorder buffer */
3470 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3471 IEEE80211_SN_MODULO;
3472 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3473 release, &frames);
3474 /* update ssn to match received ssn */
3475 tid_agg_rx->head_seq_num = ssn;
3476 } else {
3477 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3478 &frames);
3481 /* handle the case that received ssn is behind the mac ssn.
3482 * it can be tid_agg_rx->buf_size behind and still be valid */
3483 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3484 if (diff >= tid_agg_rx->buf_size) {
3485 tid_agg_rx->reorder_buf_filtered = 0;
3486 goto release;
3488 filtered = filtered >> diff;
3489 ssn += diff;
3491 /* update bitmap */
3492 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3493 int index = (ssn + i) % tid_agg_rx->buf_size;
3495 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3496 if (filtered & BIT_ULL(i))
3497 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3500 /* now process also frames that the filter marking released */
3501 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3503 release:
3504 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3506 ieee80211_rx_handlers(&rx, &frames);
3508 out:
3509 rcu_read_unlock();
3511 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3513 /* main receive path */
3515 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3517 struct ieee80211_sub_if_data *sdata = rx->sdata;
3518 struct sk_buff *skb = rx->skb;
3519 struct ieee80211_hdr *hdr = (void *)skb->data;
3520 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3521 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3522 int multicast = is_multicast_ether_addr(hdr->addr1);
3524 switch (sdata->vif.type) {
3525 case NL80211_IFTYPE_STATION:
3526 if (!bssid && !sdata->u.mgd.use_4addr)
3527 return false;
3528 if (multicast)
3529 return true;
3530 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3531 case NL80211_IFTYPE_ADHOC:
3532 if (!bssid)
3533 return false;
3534 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3535 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3536 return false;
3537 if (ieee80211_is_beacon(hdr->frame_control))
3538 return true;
3539 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3540 return false;
3541 if (!multicast &&
3542 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3543 return false;
3544 if (!rx->sta) {
3545 int rate_idx;
3546 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3547 rate_idx = 0; /* TODO: HT/VHT rates */
3548 else
3549 rate_idx = status->rate_idx;
3550 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3551 BIT(rate_idx));
3553 return true;
3554 case NL80211_IFTYPE_OCB:
3555 if (!bssid)
3556 return false;
3557 if (!ieee80211_is_data_present(hdr->frame_control))
3558 return false;
3559 if (!is_broadcast_ether_addr(bssid))
3560 return false;
3561 if (!multicast &&
3562 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3563 return false;
3564 if (!rx->sta) {
3565 int rate_idx;
3566 if (status->flag & RX_FLAG_HT)
3567 rate_idx = 0; /* TODO: HT rates */
3568 else
3569 rate_idx = status->rate_idx;
3570 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3571 BIT(rate_idx));
3573 return true;
3574 case NL80211_IFTYPE_MESH_POINT:
3575 if (multicast)
3576 return true;
3577 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3578 case NL80211_IFTYPE_AP_VLAN:
3579 case NL80211_IFTYPE_AP:
3580 if (!bssid)
3581 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3583 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3585 * Accept public action frames even when the
3586 * BSSID doesn't match, this is used for P2P
3587 * and location updates. Note that mac80211
3588 * itself never looks at these frames.
3590 if (!multicast &&
3591 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3592 return false;
3593 if (ieee80211_is_public_action(hdr, skb->len))
3594 return true;
3595 return ieee80211_is_beacon(hdr->frame_control);
3598 if (!ieee80211_has_tods(hdr->frame_control)) {
3599 /* ignore data frames to TDLS-peers */
3600 if (ieee80211_is_data(hdr->frame_control))
3601 return false;
3602 /* ignore action frames to TDLS-peers */
3603 if (ieee80211_is_action(hdr->frame_control) &&
3604 !is_broadcast_ether_addr(bssid) &&
3605 !ether_addr_equal(bssid, hdr->addr1))
3606 return false;
3608 return true;
3609 case NL80211_IFTYPE_WDS:
3610 if (bssid || !ieee80211_is_data(hdr->frame_control))
3611 return false;
3612 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3613 case NL80211_IFTYPE_P2P_DEVICE:
3614 return ieee80211_is_public_action(hdr, skb->len) ||
3615 ieee80211_is_probe_req(hdr->frame_control) ||
3616 ieee80211_is_probe_resp(hdr->frame_control) ||
3617 ieee80211_is_beacon(hdr->frame_control);
3618 case NL80211_IFTYPE_NAN:
3619 /* Currently no frames on NAN interface are allowed */
3620 return false;
3621 default:
3622 break;
3625 WARN_ON_ONCE(1);
3626 return false;
3629 void ieee80211_check_fast_rx(struct sta_info *sta)
3631 struct ieee80211_sub_if_data *sdata = sta->sdata;
3632 struct ieee80211_local *local = sdata->local;
3633 struct ieee80211_key *key;
3634 struct ieee80211_fast_rx fastrx = {
3635 .dev = sdata->dev,
3636 .vif_type = sdata->vif.type,
3637 .control_port_protocol = sdata->control_port_protocol,
3638 }, *old, *new = NULL;
3639 bool assign = false;
3641 /* use sparse to check that we don't return without updating */
3642 __acquire(check_fast_rx);
3644 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3645 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3646 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3647 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3649 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3651 /* fast-rx doesn't do reordering */
3652 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3653 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3654 goto clear;
3656 switch (sdata->vif.type) {
3657 case NL80211_IFTYPE_STATION:
3658 /* 4-addr is harder to deal with, later maybe */
3659 if (sdata->u.mgd.use_4addr)
3660 goto clear;
3661 /* software powersave is a huge mess, avoid all of it */
3662 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3663 goto clear;
3664 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3665 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3666 goto clear;
3667 if (sta->sta.tdls) {
3668 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3669 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3670 fastrx.expected_ds_bits = 0;
3671 } else {
3672 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3673 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3674 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3675 fastrx.expected_ds_bits =
3676 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3678 break;
3679 case NL80211_IFTYPE_AP_VLAN:
3680 case NL80211_IFTYPE_AP:
3681 /* parallel-rx requires this, at least with calls to
3682 * ieee80211_sta_ps_transition()
3684 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3685 goto clear;
3686 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3687 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3688 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3690 fastrx.internal_forward =
3691 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3692 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3693 !sdata->u.vlan.sta);
3694 break;
3695 default:
3696 goto clear;
3699 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3700 goto clear;
3702 rcu_read_lock();
3703 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3704 if (key) {
3705 switch (key->conf.cipher) {
3706 case WLAN_CIPHER_SUITE_TKIP:
3707 /* we don't want to deal with MMIC in fast-rx */
3708 goto clear_rcu;
3709 case WLAN_CIPHER_SUITE_CCMP:
3710 case WLAN_CIPHER_SUITE_CCMP_256:
3711 case WLAN_CIPHER_SUITE_GCMP:
3712 case WLAN_CIPHER_SUITE_GCMP_256:
3713 break;
3714 default:
3715 /* we also don't want to deal with WEP or cipher scheme
3716 * since those require looking up the key idx in the
3717 * frame, rather than assuming the PTK is used
3718 * (we need to revisit this once we implement the real
3719 * PTK index, which is now valid in the spec, but we
3720 * haven't implemented that part yet)
3722 goto clear_rcu;
3725 fastrx.key = true;
3726 fastrx.icv_len = key->conf.icv_len;
3729 assign = true;
3730 clear_rcu:
3731 rcu_read_unlock();
3732 clear:
3733 __release(check_fast_rx);
3735 if (assign)
3736 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3738 spin_lock_bh(&sta->lock);
3739 old = rcu_dereference_protected(sta->fast_rx, true);
3740 rcu_assign_pointer(sta->fast_rx, new);
3741 spin_unlock_bh(&sta->lock);
3743 if (old)
3744 kfree_rcu(old, rcu_head);
3747 void ieee80211_clear_fast_rx(struct sta_info *sta)
3749 struct ieee80211_fast_rx *old;
3751 spin_lock_bh(&sta->lock);
3752 old = rcu_dereference_protected(sta->fast_rx, true);
3753 RCU_INIT_POINTER(sta->fast_rx, NULL);
3754 spin_unlock_bh(&sta->lock);
3756 if (old)
3757 kfree_rcu(old, rcu_head);
3760 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3762 struct ieee80211_local *local = sdata->local;
3763 struct sta_info *sta;
3765 lockdep_assert_held(&local->sta_mtx);
3767 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3768 if (sdata != sta->sdata &&
3769 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3770 continue;
3771 ieee80211_check_fast_rx(sta);
3775 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3777 struct ieee80211_local *local = sdata->local;
3779 mutex_lock(&local->sta_mtx);
3780 __ieee80211_check_fast_rx_iface(sdata);
3781 mutex_unlock(&local->sta_mtx);
3784 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3785 struct ieee80211_fast_rx *fast_rx)
3787 struct sk_buff *skb = rx->skb;
3788 struct ieee80211_hdr *hdr = (void *)skb->data;
3789 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3790 struct sta_info *sta = rx->sta;
3791 int orig_len = skb->len;
3792 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3793 struct {
3794 u8 snap[sizeof(rfc1042_header)];
3795 __be16 proto;
3796 } *payload __aligned(2);
3797 struct {
3798 u8 da[ETH_ALEN];
3799 u8 sa[ETH_ALEN];
3800 } addrs __aligned(2);
3801 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3803 if (fast_rx->uses_rss)
3804 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3806 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3807 * to a common data structure; drivers can implement that per queue
3808 * but we don't have that information in mac80211
3810 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3811 return false;
3813 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3815 /* If using encryption, we also need to have:
3816 * - PN_VALIDATED: similar, but the implementation is tricky
3817 * - DECRYPTED: necessary for PN_VALIDATED
3819 if (fast_rx->key &&
3820 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3821 return false;
3823 /* we don't deal with A-MSDU deaggregation here */
3824 if (status->rx_flags & IEEE80211_RX_AMSDU)
3825 return false;
3827 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3828 return false;
3830 if (unlikely(ieee80211_is_frag(hdr)))
3831 return false;
3833 /* Since our interface address cannot be multicast, this
3834 * implicitly also rejects multicast frames without the
3835 * explicit check.
3837 * We shouldn't get any *data* frames not addressed to us
3838 * (AP mode will accept multicast *management* frames), but
3839 * punting here will make it go through the full checks in
3840 * ieee80211_accept_frame().
3842 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3843 return false;
3845 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3846 IEEE80211_FCTL_TODS)) !=
3847 fast_rx->expected_ds_bits)
3848 goto drop;
3850 /* assign the key to drop unencrypted frames (later)
3851 * and strip the IV/MIC if necessary
3853 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3854 /* GCMP header length is the same */
3855 snap_offs += IEEE80211_CCMP_HDR_LEN;
3858 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3859 goto drop;
3860 payload = (void *)(skb->data + snap_offs);
3862 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3863 return false;
3865 /* Don't handle these here since they require special code.
3866 * Accept AARP and IPX even though they should come with a
3867 * bridge-tunnel header - but if we get them this way then
3868 * there's little point in discarding them.
3870 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3871 payload->proto == fast_rx->control_port_protocol))
3872 return false;
3874 /* after this point, don't punt to the slowpath! */
3876 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3877 pskb_trim(skb, skb->len - fast_rx->icv_len))
3878 goto drop;
3880 if (unlikely(fast_rx->sta_notify)) {
3881 ieee80211_sta_rx_notify(rx->sdata, hdr);
3882 fast_rx->sta_notify = false;
3885 /* statistics part of ieee80211_rx_h_sta_process() */
3886 stats->last_rx = jiffies;
3887 stats->last_rate = sta_stats_encode_rate(status);
3889 stats->fragments++;
3891 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3892 stats->last_signal = status->signal;
3893 if (!fast_rx->uses_rss)
3894 ewma_signal_add(&sta->rx_stats_avg.signal,
3895 -status->signal);
3898 if (status->chains) {
3899 int i;
3901 stats->chains = status->chains;
3902 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3903 int signal = status->chain_signal[i];
3905 if (!(status->chains & BIT(i)))
3906 continue;
3908 stats->chain_signal_last[i] = signal;
3909 if (!fast_rx->uses_rss)
3910 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3911 -signal);
3914 /* end of statistics */
3916 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3917 goto drop;
3919 /* do the header conversion - first grab the addresses */
3920 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3921 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3922 /* remove the SNAP but leave the ethertype */
3923 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3924 /* push the addresses in front */
3925 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3927 skb->dev = fast_rx->dev;
3929 ieee80211_rx_stats(fast_rx->dev, skb->len);
3931 /* The seqno index has the same property as needed
3932 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3933 * for non-QoS-data frames. Here we know it's a data
3934 * frame, so count MSDUs.
3936 u64_stats_update_begin(&stats->syncp);
3937 stats->msdu[rx->seqno_idx]++;
3938 stats->bytes += orig_len;
3939 u64_stats_update_end(&stats->syncp);
3941 if (fast_rx->internal_forward) {
3942 struct sta_info *dsta = sta_info_get(rx->sdata, skb->data);
3944 if (dsta) {
3946 * Send to wireless media and increase priority by 256
3947 * to keep the received priority instead of
3948 * reclassifying the frame (see cfg80211_classify8021d).
3950 skb->priority += 256;
3951 skb->protocol = htons(ETH_P_802_3);
3952 skb_reset_network_header(skb);
3953 skb_reset_mac_header(skb);
3954 dev_queue_xmit(skb);
3955 return true;
3959 /* deliver to local stack */
3960 skb->protocol = eth_type_trans(skb, fast_rx->dev);
3961 memset(skb->cb, 0, sizeof(skb->cb));
3962 if (rx->napi)
3963 napi_gro_receive(rx->napi, skb);
3964 else
3965 netif_receive_skb(skb);
3967 return true;
3968 drop:
3969 dev_kfree_skb(skb);
3970 stats->dropped++;
3971 return true;
3975 * This function returns whether or not the SKB
3976 * was destined for RX processing or not, which,
3977 * if consume is true, is equivalent to whether
3978 * or not the skb was consumed.
3980 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3981 struct sk_buff *skb, bool consume)
3983 struct ieee80211_local *local = rx->local;
3984 struct ieee80211_sub_if_data *sdata = rx->sdata;
3986 rx->skb = skb;
3988 /* See if we can do fast-rx; if we have to copy we already lost,
3989 * so punt in that case. We should never have to deliver a data
3990 * frame to multiple interfaces anyway.
3992 * We skip the ieee80211_accept_frame() call and do the necessary
3993 * checking inside ieee80211_invoke_fast_rx().
3995 if (consume && rx->sta) {
3996 struct ieee80211_fast_rx *fast_rx;
3998 fast_rx = rcu_dereference(rx->sta->fast_rx);
3999 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4000 return true;
4003 if (!ieee80211_accept_frame(rx))
4004 return false;
4006 if (!consume) {
4007 skb = skb_copy(skb, GFP_ATOMIC);
4008 if (!skb) {
4009 if (net_ratelimit())
4010 wiphy_debug(local->hw.wiphy,
4011 "failed to copy skb for %s\n",
4012 sdata->name);
4013 return true;
4016 rx->skb = skb;
4019 ieee80211_invoke_rx_handlers(rx);
4020 return true;
4024 * This is the actual Rx frames handler. as it belongs to Rx path it must
4025 * be called with rcu_read_lock protection.
4027 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4028 struct ieee80211_sta *pubsta,
4029 struct sk_buff *skb,
4030 struct napi_struct *napi)
4032 struct ieee80211_local *local = hw_to_local(hw);
4033 struct ieee80211_sub_if_data *sdata;
4034 struct ieee80211_hdr *hdr;
4035 __le16 fc;
4036 struct ieee80211_rx_data rx;
4037 struct ieee80211_sub_if_data *prev;
4038 struct rhlist_head *tmp;
4039 int err = 0;
4041 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4042 memset(&rx, 0, sizeof(rx));
4043 rx.skb = skb;
4044 rx.local = local;
4045 rx.napi = napi;
4047 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4048 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4050 if (ieee80211_is_mgmt(fc)) {
4051 /* drop frame if too short for header */
4052 if (skb->len < ieee80211_hdrlen(fc))
4053 err = -ENOBUFS;
4054 else
4055 err = skb_linearize(skb);
4056 } else {
4057 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4060 if (err) {
4061 dev_kfree_skb(skb);
4062 return;
4065 hdr = (struct ieee80211_hdr *)skb->data;
4066 ieee80211_parse_qos(&rx);
4067 ieee80211_verify_alignment(&rx);
4069 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4070 ieee80211_is_beacon(hdr->frame_control)))
4071 ieee80211_scan_rx(local, skb);
4073 if (pubsta) {
4074 rx.sta = container_of(pubsta, struct sta_info, sta);
4075 rx.sdata = rx.sta->sdata;
4076 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4077 return;
4078 goto out;
4079 } else if (ieee80211_is_data(fc)) {
4080 struct sta_info *sta, *prev_sta;
4082 prev_sta = NULL;
4084 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4085 if (!prev_sta) {
4086 prev_sta = sta;
4087 continue;
4090 rx.sta = prev_sta;
4091 rx.sdata = prev_sta->sdata;
4092 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4094 prev_sta = sta;
4097 if (prev_sta) {
4098 rx.sta = prev_sta;
4099 rx.sdata = prev_sta->sdata;
4101 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4102 return;
4103 goto out;
4107 prev = NULL;
4109 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4110 if (!ieee80211_sdata_running(sdata))
4111 continue;
4113 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4114 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4115 continue;
4118 * frame is destined for this interface, but if it's
4119 * not also for the previous one we handle that after
4120 * the loop to avoid copying the SKB once too much
4123 if (!prev) {
4124 prev = sdata;
4125 continue;
4128 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4129 rx.sdata = prev;
4130 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4132 prev = sdata;
4135 if (prev) {
4136 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4137 rx.sdata = prev;
4139 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4140 return;
4143 out:
4144 dev_kfree_skb(skb);
4148 * This is the receive path handler. It is called by a low level driver when an
4149 * 802.11 MPDU is received from the hardware.
4151 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4152 struct sk_buff *skb, struct napi_struct *napi)
4154 struct ieee80211_local *local = hw_to_local(hw);
4155 struct ieee80211_rate *rate = NULL;
4156 struct ieee80211_supported_band *sband;
4157 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4159 WARN_ON_ONCE(softirq_count() == 0);
4161 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4162 goto drop;
4164 sband = local->hw.wiphy->bands[status->band];
4165 if (WARN_ON(!sband))
4166 goto drop;
4169 * If we're suspending, it is possible although not too likely
4170 * that we'd be receiving frames after having already partially
4171 * quiesced the stack. We can't process such frames then since
4172 * that might, for example, cause stations to be added or other
4173 * driver callbacks be invoked.
4175 if (unlikely(local->quiescing || local->suspended))
4176 goto drop;
4178 /* We might be during a HW reconfig, prevent Rx for the same reason */
4179 if (unlikely(local->in_reconfig))
4180 goto drop;
4183 * The same happens when we're not even started,
4184 * but that's worth a warning.
4186 if (WARN_ON(!local->started))
4187 goto drop;
4189 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4191 * Validate the rate, unless a PLCP error means that
4192 * we probably can't have a valid rate here anyway.
4195 if (status->flag & RX_FLAG_HT) {
4197 * rate_idx is MCS index, which can be [0-76]
4198 * as documented on:
4200 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4202 * Anything else would be some sort of driver or
4203 * hardware error. The driver should catch hardware
4204 * errors.
4206 if (WARN(status->rate_idx > 76,
4207 "Rate marked as an HT rate but passed "
4208 "status->rate_idx is not "
4209 "an MCS index [0-76]: %d (0x%02x)\n",
4210 status->rate_idx,
4211 status->rate_idx))
4212 goto drop;
4213 } else if (status->flag & RX_FLAG_VHT) {
4214 if (WARN_ONCE(status->rate_idx > 9 ||
4215 !status->vht_nss ||
4216 status->vht_nss > 8,
4217 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4218 status->rate_idx, status->vht_nss))
4219 goto drop;
4220 } else {
4221 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4222 goto drop;
4223 rate = &sband->bitrates[status->rate_idx];
4227 status->rx_flags = 0;
4230 * key references and virtual interfaces are protected using RCU
4231 * and this requires that we are in a read-side RCU section during
4232 * receive processing
4234 rcu_read_lock();
4237 * Frames with failed FCS/PLCP checksum are not returned,
4238 * all other frames are returned without radiotap header
4239 * if it was previously present.
4240 * Also, frames with less than 16 bytes are dropped.
4242 skb = ieee80211_rx_monitor(local, skb, rate);
4243 if (!skb) {
4244 rcu_read_unlock();
4245 return;
4248 ieee80211_tpt_led_trig_rx(local,
4249 ((struct ieee80211_hdr *)skb->data)->frame_control,
4250 skb->len);
4252 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4254 rcu_read_unlock();
4256 return;
4257 drop:
4258 kfree_skb(skb);
4260 EXPORT_SYMBOL(ieee80211_rx_napi);
4262 /* This is a version of the rx handler that can be called from hard irq
4263 * context. Post the skb on the queue and schedule the tasklet */
4264 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4266 struct ieee80211_local *local = hw_to_local(hw);
4268 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4270 skb->pkt_type = IEEE80211_RX_MSG;
4271 skb_queue_tail(&local->skb_queue, skb);
4272 tasklet_schedule(&local->tasklet);
4274 EXPORT_SYMBOL(ieee80211_rx_irqsafe);