6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
48 #include <asm/mmu_context.h>
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
60 static void unmap_region(struct mm_struct
*mm
,
61 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
62 unsigned long start
, unsigned long end
);
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
79 pgprot_t protection_map
[16] = {
80 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
81 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
84 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
86 return __pgprot(pgprot_val(protection_map
[vm_flags
&
87 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
90 EXPORT_SYMBOL(vm_get_page_prot
);
92 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
94 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct
*vma
)
100 unsigned long vm_flags
= vma
->vm_flags
;
102 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
103 if (vma_wants_writenotify(vma
)) {
104 vm_flags
&= ~VM_SHARED
;
105 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
111 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly
;
114 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
118 * Make sure vm_committed_as in one cacheline and not cacheline shared with
119 * other variables. It can be updated by several CPUs frequently.
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
124 * The global memory commitment made in the system can be a metric
125 * that can be used to drive ballooning decisions when Linux is hosted
126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127 * balancing memory across competing virtual machines that are hosted.
128 * Several metrics drive this policy engine including the guest reported
131 unsigned long vm_memory_committed(void)
133 return percpu_counter_read_positive(&vm_committed_as
);
135 EXPORT_SYMBOL_GPL(vm_memory_committed
);
138 * Check that a process has enough memory to allocate a new virtual
139 * mapping. 0 means there is enough memory for the allocation to
140 * succeed and -ENOMEM implies there is not.
142 * We currently support three overcommit policies, which are set via the
143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146 * Additional code 2002 Jul 20 by Robert Love.
148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150 * Note this is a helper function intended to be used by LSMs which
151 * wish to use this logic.
153 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
155 long free
, allowed
, reserve
;
157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
158 -(s64
)vm_committed_as_batch
* num_online_cpus(),
159 "memory commitment underflow");
161 vm_acct_memory(pages
);
164 * Sometimes we want to use more memory than we have
166 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
169 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
170 free
= global_page_state(NR_FREE_PAGES
);
171 free
+= global_page_state(NR_FILE_PAGES
);
174 * shmem pages shouldn't be counted as free in this
175 * case, they can't be purged, only swapped out, and
176 * that won't affect the overall amount of available
177 * memory in the system.
179 free
-= global_page_state(NR_SHMEM
);
181 free
+= get_nr_swap_pages();
184 * Any slabs which are created with the
185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 * which are reclaimable, under pressure. The dentry
187 * cache and most inode caches should fall into this
189 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
192 * Leave reserved pages. The pages are not for anonymous pages.
194 if (free
<= totalreserve_pages
)
197 free
-= totalreserve_pages
;
200 * Reserve some for root
203 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
211 allowed
= vm_commit_limit();
213 * Reserve some for root
216 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
219 * Don't let a single process grow so big a user can't recover
222 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
223 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
226 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
229 vm_unacct_memory(pages
);
235 * Requires inode->i_mapping->i_mmap_rwsem
237 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
238 struct file
*file
, struct address_space
*mapping
)
240 if (vma
->vm_flags
& VM_DENYWRITE
)
241 atomic_inc(&file_inode(file
)->i_writecount
);
242 if (vma
->vm_flags
& VM_SHARED
)
243 mapping_unmap_writable(mapping
);
245 flush_dcache_mmap_lock(mapping
);
246 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
247 flush_dcache_mmap_unlock(mapping
);
251 * Unlink a file-based vm structure from its interval tree, to hide
252 * vma from rmap and vmtruncate before freeing its page tables.
254 void unlink_file_vma(struct vm_area_struct
*vma
)
256 struct file
*file
= vma
->vm_file
;
259 struct address_space
*mapping
= file
->f_mapping
;
260 i_mmap_lock_write(mapping
);
261 __remove_shared_vm_struct(vma
, file
, mapping
);
262 i_mmap_unlock_write(mapping
);
267 * Close a vm structure and free it, returning the next.
269 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
271 struct vm_area_struct
*next
= vma
->vm_next
;
274 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
275 vma
->vm_ops
->close(vma
);
278 mpol_put(vma_policy(vma
));
279 kmem_cache_free(vm_area_cachep
, vma
);
283 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
285 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
287 unsigned long retval
;
288 unsigned long newbrk
, oldbrk
;
289 struct mm_struct
*mm
= current
->mm
;
290 unsigned long min_brk
;
293 down_write(&mm
->mmap_sem
);
295 #ifdef CONFIG_COMPAT_BRK
297 * CONFIG_COMPAT_BRK can still be overridden by setting
298 * randomize_va_space to 2, which will still cause mm->start_brk
299 * to be arbitrarily shifted
301 if (current
->brk_randomized
)
302 min_brk
= mm
->start_brk
;
304 min_brk
= mm
->end_data
;
306 min_brk
= mm
->start_brk
;
312 * Check against rlimit here. If this check is done later after the test
313 * of oldbrk with newbrk then it can escape the test and let the data
314 * segment grow beyond its set limit the in case where the limit is
315 * not page aligned -Ram Gupta
317 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
318 mm
->end_data
, mm
->start_data
))
321 newbrk
= PAGE_ALIGN(brk
);
322 oldbrk
= PAGE_ALIGN(mm
->brk
);
323 if (oldbrk
== newbrk
)
326 /* Always allow shrinking brk. */
327 if (brk
<= mm
->brk
) {
328 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
333 /* Check against existing mmap mappings. */
334 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
337 /* Ok, looks good - let it rip. */
338 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
343 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
344 up_write(&mm
->mmap_sem
);
346 mm_populate(oldbrk
, newbrk
- oldbrk
);
351 up_write(&mm
->mmap_sem
);
355 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
357 unsigned long max
, subtree_gap
;
360 max
-= vma
->vm_prev
->vm_end
;
361 if (vma
->vm_rb
.rb_left
) {
362 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
363 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
364 if (subtree_gap
> max
)
367 if (vma
->vm_rb
.rb_right
) {
368 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
369 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
370 if (subtree_gap
> max
)
376 #ifdef CONFIG_DEBUG_VM_RB
377 static int browse_rb(struct rb_root
*root
)
379 int i
= 0, j
, bug
= 0;
380 struct rb_node
*nd
, *pn
= NULL
;
381 unsigned long prev
= 0, pend
= 0;
383 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
384 struct vm_area_struct
*vma
;
385 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
386 if (vma
->vm_start
< prev
) {
387 pr_emerg("vm_start %lx < prev %lx\n",
388 vma
->vm_start
, prev
);
391 if (vma
->vm_start
< pend
) {
392 pr_emerg("vm_start %lx < pend %lx\n",
393 vma
->vm_start
, pend
);
396 if (vma
->vm_start
> vma
->vm_end
) {
397 pr_emerg("vm_start %lx > vm_end %lx\n",
398 vma
->vm_start
, vma
->vm_end
);
401 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
402 pr_emerg("free gap %lx, correct %lx\n",
404 vma_compute_subtree_gap(vma
));
409 prev
= vma
->vm_start
;
413 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
416 pr_emerg("backwards %d, forwards %d\n", j
, i
);
422 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
426 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
427 struct vm_area_struct
*vma
;
428 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
429 VM_BUG_ON_VMA(vma
!= ignore
&&
430 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
435 static void validate_mm(struct mm_struct
*mm
)
439 unsigned long highest_address
= 0;
440 struct vm_area_struct
*vma
= mm
->mmap
;
443 struct anon_vma_chain
*avc
;
445 vma_lock_anon_vma(vma
);
446 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
447 anon_vma_interval_tree_verify(avc
);
448 vma_unlock_anon_vma(vma
);
449 highest_address
= vma
->vm_end
;
453 if (i
!= mm
->map_count
) {
454 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
457 if (highest_address
!= mm
->highest_vm_end
) {
458 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
459 mm
->highest_vm_end
, highest_address
);
462 i
= browse_rb(&mm
->mm_rb
);
463 if (i
!= mm
->map_count
) {
465 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
468 VM_BUG_ON_MM(bug
, mm
);
471 #define validate_mm_rb(root, ignore) do { } while (0)
472 #define validate_mm(mm) do { } while (0)
475 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
476 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
479 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
480 * vma->vm_prev->vm_end values changed, without modifying the vma's position
483 static void vma_gap_update(struct vm_area_struct
*vma
)
486 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
487 * function that does exacltly what we want.
489 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
492 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
493 struct rb_root
*root
)
495 /* All rb_subtree_gap values must be consistent prior to insertion */
496 validate_mm_rb(root
, NULL
);
498 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
501 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
504 * All rb_subtree_gap values must be consistent prior to erase,
505 * with the possible exception of the vma being erased.
507 validate_mm_rb(root
, vma
);
510 * Note rb_erase_augmented is a fairly large inline function,
511 * so make sure we instantiate it only once with our desired
512 * augmented rbtree callbacks.
514 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
518 * vma has some anon_vma assigned, and is already inserted on that
519 * anon_vma's interval trees.
521 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
522 * vma must be removed from the anon_vma's interval trees using
523 * anon_vma_interval_tree_pre_update_vma().
525 * After the update, the vma will be reinserted using
526 * anon_vma_interval_tree_post_update_vma().
528 * The entire update must be protected by exclusive mmap_sem and by
529 * the root anon_vma's mutex.
532 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
534 struct anon_vma_chain
*avc
;
536 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
537 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
541 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
543 struct anon_vma_chain
*avc
;
545 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
546 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
549 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
550 unsigned long end
, struct vm_area_struct
**pprev
,
551 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
553 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
555 __rb_link
= &mm
->mm_rb
.rb_node
;
556 rb_prev
= __rb_parent
= NULL
;
559 struct vm_area_struct
*vma_tmp
;
561 __rb_parent
= *__rb_link
;
562 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
564 if (vma_tmp
->vm_end
> addr
) {
565 /* Fail if an existing vma overlaps the area */
566 if (vma_tmp
->vm_start
< end
)
568 __rb_link
= &__rb_parent
->rb_left
;
570 rb_prev
= __rb_parent
;
571 __rb_link
= &__rb_parent
->rb_right
;
577 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
578 *rb_link
= __rb_link
;
579 *rb_parent
= __rb_parent
;
583 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
584 unsigned long addr
, unsigned long end
)
586 unsigned long nr_pages
= 0;
587 struct vm_area_struct
*vma
;
589 /* Find first overlaping mapping */
590 vma
= find_vma_intersection(mm
, addr
, end
);
594 nr_pages
= (min(end
, vma
->vm_end
) -
595 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
597 /* Iterate over the rest of the overlaps */
598 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
599 unsigned long overlap_len
;
601 if (vma
->vm_start
> end
)
604 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
605 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
611 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
612 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
614 /* Update tracking information for the gap following the new vma. */
616 vma_gap_update(vma
->vm_next
);
618 mm
->highest_vm_end
= vma
->vm_end
;
621 * vma->vm_prev wasn't known when we followed the rbtree to find the
622 * correct insertion point for that vma. As a result, we could not
623 * update the vma vm_rb parents rb_subtree_gap values on the way down.
624 * So, we first insert the vma with a zero rb_subtree_gap value
625 * (to be consistent with what we did on the way down), and then
626 * immediately update the gap to the correct value. Finally we
627 * rebalance the rbtree after all augmented values have been set.
629 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
630 vma
->rb_subtree_gap
= 0;
632 vma_rb_insert(vma
, &mm
->mm_rb
);
635 static void __vma_link_file(struct vm_area_struct
*vma
)
641 struct address_space
*mapping
= file
->f_mapping
;
643 if (vma
->vm_flags
& VM_DENYWRITE
)
644 atomic_dec(&file_inode(file
)->i_writecount
);
645 if (vma
->vm_flags
& VM_SHARED
)
646 atomic_inc(&mapping
->i_mmap_writable
);
648 flush_dcache_mmap_lock(mapping
);
649 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
650 flush_dcache_mmap_unlock(mapping
);
655 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
656 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
657 struct rb_node
*rb_parent
)
659 __vma_link_list(mm
, vma
, prev
, rb_parent
);
660 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
663 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
664 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
665 struct rb_node
*rb_parent
)
667 struct address_space
*mapping
= NULL
;
670 mapping
= vma
->vm_file
->f_mapping
;
671 i_mmap_lock_write(mapping
);
674 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
675 __vma_link_file(vma
);
678 i_mmap_unlock_write(mapping
);
685 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
686 * mm's list and rbtree. It has already been inserted into the interval tree.
688 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
690 struct vm_area_struct
*prev
;
691 struct rb_node
**rb_link
, *rb_parent
;
693 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
694 &prev
, &rb_link
, &rb_parent
))
696 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
701 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
702 struct vm_area_struct
*prev
)
704 struct vm_area_struct
*next
;
706 vma_rb_erase(vma
, &mm
->mm_rb
);
707 prev
->vm_next
= next
= vma
->vm_next
;
709 next
->vm_prev
= prev
;
712 vmacache_invalidate(mm
);
716 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
717 * is already present in an i_mmap tree without adjusting the tree.
718 * The following helper function should be used when such adjustments
719 * are necessary. The "insert" vma (if any) is to be inserted
720 * before we drop the necessary locks.
722 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
723 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
725 struct mm_struct
*mm
= vma
->vm_mm
;
726 struct vm_area_struct
*next
= vma
->vm_next
;
727 struct vm_area_struct
*importer
= NULL
;
728 struct address_space
*mapping
= NULL
;
729 struct rb_root
*root
= NULL
;
730 struct anon_vma
*anon_vma
= NULL
;
731 struct file
*file
= vma
->vm_file
;
732 bool start_changed
= false, end_changed
= false;
733 long adjust_next
= 0;
736 if (next
&& !insert
) {
737 struct vm_area_struct
*exporter
= NULL
;
739 if (end
>= next
->vm_end
) {
741 * vma expands, overlapping all the next, and
742 * perhaps the one after too (mprotect case 6).
744 again
: remove_next
= 1 + (end
> next
->vm_end
);
748 } else if (end
> next
->vm_start
) {
750 * vma expands, overlapping part of the next:
751 * mprotect case 5 shifting the boundary up.
753 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
756 } else if (end
< vma
->vm_end
) {
758 * vma shrinks, and !insert tells it's not
759 * split_vma inserting another: so it must be
760 * mprotect case 4 shifting the boundary down.
762 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
768 * Easily overlooked: when mprotect shifts the boundary,
769 * make sure the expanding vma has anon_vma set if the
770 * shrinking vma had, to cover any anon pages imported.
772 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
775 importer
->anon_vma
= exporter
->anon_vma
;
776 error
= anon_vma_clone(importer
, exporter
);
778 importer
->anon_vma
= NULL
;
785 mapping
= file
->f_mapping
;
786 root
= &mapping
->i_mmap
;
787 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
790 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
792 i_mmap_lock_write(mapping
);
795 * Put into interval tree now, so instantiated pages
796 * are visible to arm/parisc __flush_dcache_page
797 * throughout; but we cannot insert into address
798 * space until vma start or end is updated.
800 __vma_link_file(insert
);
804 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
806 anon_vma
= vma
->anon_vma
;
807 if (!anon_vma
&& adjust_next
)
808 anon_vma
= next
->anon_vma
;
810 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
811 anon_vma
!= next
->anon_vma
, next
);
812 anon_vma_lock_write(anon_vma
);
813 anon_vma_interval_tree_pre_update_vma(vma
);
815 anon_vma_interval_tree_pre_update_vma(next
);
819 flush_dcache_mmap_lock(mapping
);
820 vma_interval_tree_remove(vma
, root
);
822 vma_interval_tree_remove(next
, root
);
825 if (start
!= vma
->vm_start
) {
826 vma
->vm_start
= start
;
827 start_changed
= true;
829 if (end
!= vma
->vm_end
) {
833 vma
->vm_pgoff
= pgoff
;
835 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
836 next
->vm_pgoff
+= adjust_next
;
841 vma_interval_tree_insert(next
, root
);
842 vma_interval_tree_insert(vma
, root
);
843 flush_dcache_mmap_unlock(mapping
);
848 * vma_merge has merged next into vma, and needs
849 * us to remove next before dropping the locks.
851 __vma_unlink(mm
, next
, vma
);
853 __remove_shared_vm_struct(next
, file
, mapping
);
856 * split_vma has split insert from vma, and needs
857 * us to insert it before dropping the locks
858 * (it may either follow vma or precede it).
860 __insert_vm_struct(mm
, insert
);
866 mm
->highest_vm_end
= end
;
867 else if (!adjust_next
)
868 vma_gap_update(next
);
873 anon_vma_interval_tree_post_update_vma(vma
);
875 anon_vma_interval_tree_post_update_vma(next
);
876 anon_vma_unlock_write(anon_vma
);
879 i_mmap_unlock_write(mapping
);
890 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
894 anon_vma_merge(vma
, next
);
896 mpol_put(vma_policy(next
));
897 kmem_cache_free(vm_area_cachep
, next
);
899 * In mprotect's case 6 (see comments on vma_merge),
900 * we must remove another next too. It would clutter
901 * up the code too much to do both in one go.
904 if (remove_next
== 2)
907 vma_gap_update(next
);
909 mm
->highest_vm_end
= end
;
920 * If the vma has a ->close operation then the driver probably needs to release
921 * per-vma resources, so we don't attempt to merge those.
923 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
924 struct file
*file
, unsigned long vm_flags
)
927 * VM_SOFTDIRTY should not prevent from VMA merging, if we
928 * match the flags but dirty bit -- the caller should mark
929 * merged VMA as dirty. If dirty bit won't be excluded from
930 * comparison, we increase pressue on the memory system forcing
931 * the kernel to generate new VMAs when old one could be
934 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
936 if (vma
->vm_file
!= file
)
938 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
943 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
944 struct anon_vma
*anon_vma2
,
945 struct vm_area_struct
*vma
)
948 * The list_is_singular() test is to avoid merging VMA cloned from
949 * parents. This can improve scalability caused by anon_vma lock.
951 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
952 list_is_singular(&vma
->anon_vma_chain
)))
954 return anon_vma1
== anon_vma2
;
958 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
959 * in front of (at a lower virtual address and file offset than) the vma.
961 * We cannot merge two vmas if they have differently assigned (non-NULL)
962 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
964 * We don't check here for the merged mmap wrapping around the end of pagecache
965 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
966 * wrap, nor mmaps which cover the final page at index -1UL.
969 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
970 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
972 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
973 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
974 if (vma
->vm_pgoff
== vm_pgoff
)
981 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
982 * beyond (at a higher virtual address and file offset than) the vma.
984 * We cannot merge two vmas if they have differently assigned (non-NULL)
985 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
988 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
989 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
991 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
992 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
994 vm_pglen
= vma_pages(vma
);
995 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1002 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1003 * whether that can be merged with its predecessor or its successor.
1004 * Or both (it neatly fills a hole).
1006 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1007 * certain not to be mapped by the time vma_merge is called; but when
1008 * called for mprotect, it is certain to be already mapped (either at
1009 * an offset within prev, or at the start of next), and the flags of
1010 * this area are about to be changed to vm_flags - and the no-change
1011 * case has already been eliminated.
1013 * The following mprotect cases have to be considered, where AAAA is
1014 * the area passed down from mprotect_fixup, never extending beyond one
1015 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1017 * AAAA AAAA AAAA AAAA
1018 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1019 * cannot merge might become might become might become
1020 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1021 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1022 * mremap move: PPPPNNNNNNNN 8
1024 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1025 * might become case 1 below case 2 below case 3 below
1027 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1028 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1030 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1031 struct vm_area_struct
*prev
, unsigned long addr
,
1032 unsigned long end
, unsigned long vm_flags
,
1033 struct anon_vma
*anon_vma
, struct file
*file
,
1034 pgoff_t pgoff
, struct mempolicy
*policy
)
1036 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1037 struct vm_area_struct
*area
, *next
;
1041 * We later require that vma->vm_flags == vm_flags,
1042 * so this tests vma->vm_flags & VM_SPECIAL, too.
1044 if (vm_flags
& VM_SPECIAL
)
1048 next
= prev
->vm_next
;
1052 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1053 next
= next
->vm_next
;
1056 * Can it merge with the predecessor?
1058 if (prev
&& prev
->vm_end
== addr
&&
1059 mpol_equal(vma_policy(prev
), policy
) &&
1060 can_vma_merge_after(prev
, vm_flags
,
1061 anon_vma
, file
, pgoff
)) {
1063 * OK, it can. Can we now merge in the successor as well?
1065 if (next
&& end
== next
->vm_start
&&
1066 mpol_equal(policy
, vma_policy(next
)) &&
1067 can_vma_merge_before(next
, vm_flags
,
1068 anon_vma
, file
, pgoff
+pglen
) &&
1069 is_mergeable_anon_vma(prev
->anon_vma
,
1070 next
->anon_vma
, NULL
)) {
1072 err
= vma_adjust(prev
, prev
->vm_start
,
1073 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1074 } else /* cases 2, 5, 7 */
1075 err
= vma_adjust(prev
, prev
->vm_start
,
1076 end
, prev
->vm_pgoff
, NULL
);
1079 khugepaged_enter_vma_merge(prev
, vm_flags
);
1084 * Can this new request be merged in front of next?
1086 if (next
&& end
== next
->vm_start
&&
1087 mpol_equal(policy
, vma_policy(next
)) &&
1088 can_vma_merge_before(next
, vm_flags
,
1089 anon_vma
, file
, pgoff
+pglen
)) {
1090 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1091 err
= vma_adjust(prev
, prev
->vm_start
,
1092 addr
, prev
->vm_pgoff
, NULL
);
1093 else /* cases 3, 8 */
1094 err
= vma_adjust(area
, addr
, next
->vm_end
,
1095 next
->vm_pgoff
- pglen
, NULL
);
1098 khugepaged_enter_vma_merge(area
, vm_flags
);
1106 * Rough compatbility check to quickly see if it's even worth looking
1107 * at sharing an anon_vma.
1109 * They need to have the same vm_file, and the flags can only differ
1110 * in things that mprotect may change.
1112 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1113 * we can merge the two vma's. For example, we refuse to merge a vma if
1114 * there is a vm_ops->close() function, because that indicates that the
1115 * driver is doing some kind of reference counting. But that doesn't
1116 * really matter for the anon_vma sharing case.
1118 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1120 return a
->vm_end
== b
->vm_start
&&
1121 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1122 a
->vm_file
== b
->vm_file
&&
1123 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1124 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1128 * Do some basic sanity checking to see if we can re-use the anon_vma
1129 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1130 * the same as 'old', the other will be the new one that is trying
1131 * to share the anon_vma.
1133 * NOTE! This runs with mm_sem held for reading, so it is possible that
1134 * the anon_vma of 'old' is concurrently in the process of being set up
1135 * by another page fault trying to merge _that_. But that's ok: if it
1136 * is being set up, that automatically means that it will be a singleton
1137 * acceptable for merging, so we can do all of this optimistically. But
1138 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1140 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1141 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1142 * is to return an anon_vma that is "complex" due to having gone through
1145 * We also make sure that the two vma's are compatible (adjacent,
1146 * and with the same memory policies). That's all stable, even with just
1147 * a read lock on the mm_sem.
1149 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1151 if (anon_vma_compatible(a
, b
)) {
1152 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
1154 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1161 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1162 * neighbouring vmas for a suitable anon_vma, before it goes off
1163 * to allocate a new anon_vma. It checks because a repetitive
1164 * sequence of mprotects and faults may otherwise lead to distinct
1165 * anon_vmas being allocated, preventing vma merge in subsequent
1168 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1170 struct anon_vma
*anon_vma
;
1171 struct vm_area_struct
*near
;
1173 near
= vma
->vm_next
;
1177 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1181 near
= vma
->vm_prev
;
1185 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1190 * There's no absolute need to look only at touching neighbours:
1191 * we could search further afield for "compatible" anon_vmas.
1192 * But it would probably just be a waste of time searching,
1193 * or lead to too many vmas hanging off the same anon_vma.
1194 * We're trying to allow mprotect remerging later on,
1195 * not trying to minimize memory used for anon_vmas.
1200 #ifdef CONFIG_PROC_FS
1201 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1202 struct file
*file
, long pages
)
1204 const unsigned long stack_flags
1205 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1207 mm
->total_vm
+= pages
;
1210 mm
->shared_vm
+= pages
;
1211 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1212 mm
->exec_vm
+= pages
;
1213 } else if (flags
& stack_flags
)
1214 mm
->stack_vm
+= pages
;
1216 #endif /* CONFIG_PROC_FS */
1219 * If a hint addr is less than mmap_min_addr change hint to be as
1220 * low as possible but still greater than mmap_min_addr
1222 static inline unsigned long round_hint_to_min(unsigned long hint
)
1225 if (((void *)hint
!= NULL
) &&
1226 (hint
< mmap_min_addr
))
1227 return PAGE_ALIGN(mmap_min_addr
);
1231 static inline int mlock_future_check(struct mm_struct
*mm
,
1232 unsigned long flags
,
1235 unsigned long locked
, lock_limit
;
1237 /* mlock MCL_FUTURE? */
1238 if (flags
& VM_LOCKED
) {
1239 locked
= len
>> PAGE_SHIFT
;
1240 locked
+= mm
->locked_vm
;
1241 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1242 lock_limit
>>= PAGE_SHIFT
;
1243 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1250 * The caller must hold down_write(¤t->mm->mmap_sem).
1253 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1254 unsigned long len
, unsigned long prot
,
1255 unsigned long flags
, unsigned long pgoff
,
1256 unsigned long *populate
)
1258 struct mm_struct
*mm
= current
->mm
;
1259 vm_flags_t vm_flags
;
1264 * Does the application expect PROT_READ to imply PROT_EXEC?
1266 * (the exception is when the underlying filesystem is noexec
1267 * mounted, in which case we dont add PROT_EXEC.)
1269 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1270 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
1276 if (!(flags
& MAP_FIXED
))
1277 addr
= round_hint_to_min(addr
);
1279 /* Careful about overflows.. */
1280 len
= PAGE_ALIGN(len
);
1284 /* offset overflow? */
1285 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1288 /* Too many mappings? */
1289 if (mm
->map_count
> sysctl_max_map_count
)
1292 /* Obtain the address to map to. we verify (or select) it and ensure
1293 * that it represents a valid section of the address space.
1295 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1296 if (addr
& ~PAGE_MASK
)
1299 /* Do simple checking here so the lower-level routines won't have
1300 * to. we assume access permissions have been handled by the open
1301 * of the memory object, so we don't do any here.
1303 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1304 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1306 if (flags
& MAP_LOCKED
)
1307 if (!can_do_mlock())
1310 if (mlock_future_check(mm
, vm_flags
, len
))
1314 struct inode
*inode
= file_inode(file
);
1316 switch (flags
& MAP_TYPE
) {
1318 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1322 * Make sure we don't allow writing to an append-only
1325 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1329 * Make sure there are no mandatory locks on the file.
1331 if (locks_verify_locked(file
))
1334 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1335 if (!(file
->f_mode
& FMODE_WRITE
))
1336 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1340 if (!(file
->f_mode
& FMODE_READ
))
1342 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1343 if (vm_flags
& VM_EXEC
)
1345 vm_flags
&= ~VM_MAYEXEC
;
1348 if (!file
->f_op
->mmap
)
1350 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1358 switch (flags
& MAP_TYPE
) {
1360 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1366 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1370 * Set pgoff according to addr for anon_vma.
1372 pgoff
= addr
>> PAGE_SHIFT
;
1380 * Set 'VM_NORESERVE' if we should not account for the
1381 * memory use of this mapping.
1383 if (flags
& MAP_NORESERVE
) {
1384 /* We honor MAP_NORESERVE if allowed to overcommit */
1385 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1386 vm_flags
|= VM_NORESERVE
;
1388 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1389 if (file
&& is_file_hugepages(file
))
1390 vm_flags
|= VM_NORESERVE
;
1393 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1394 if (!IS_ERR_VALUE(addr
) &&
1395 ((vm_flags
& VM_LOCKED
) ||
1396 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1401 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1402 unsigned long, prot
, unsigned long, flags
,
1403 unsigned long, fd
, unsigned long, pgoff
)
1405 struct file
*file
= NULL
;
1406 unsigned long retval
= -EBADF
;
1408 if (!(flags
& MAP_ANONYMOUS
)) {
1409 audit_mmap_fd(fd
, flags
);
1413 if (is_file_hugepages(file
))
1414 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1416 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1418 } else if (flags
& MAP_HUGETLB
) {
1419 struct user_struct
*user
= NULL
;
1422 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1426 len
= ALIGN(len
, huge_page_size(hs
));
1428 * VM_NORESERVE is used because the reservations will be
1429 * taken when vm_ops->mmap() is called
1430 * A dummy user value is used because we are not locking
1431 * memory so no accounting is necessary
1433 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1435 &user
, HUGETLB_ANONHUGE_INODE
,
1436 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1438 return PTR_ERR(file
);
1441 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1443 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct
{
1456 unsigned long flags
;
1458 unsigned long offset
;
1461 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1463 struct mmap_arg_struct a
;
1465 if (copy_from_user(&a
, arg
, sizeof(a
)))
1467 if (a
.offset
& ~PAGE_MASK
)
1470 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1471 a
.offset
>> PAGE_SHIFT
);
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1476 * Some shared mappigns will want the pages marked read-only
1477 * to track write events. If so, we'll downgrade vm_page_prot
1478 * to the private version (using protection_map[] without the
1481 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1483 vm_flags_t vm_flags
= vma
->vm_flags
;
1485 /* If it was private or non-writable, the write bit is already clear */
1486 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1489 /* The backer wishes to know when pages are first written to? */
1490 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1493 /* The open routine did something to the protections that pgprot_modify
1494 * won't preserve? */
1495 if (pgprot_val(vma
->vm_page_prot
) !=
1496 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1499 /* Do we need to track softdirty? */
1500 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1503 /* Specialty mapping? */
1504 if (vm_flags
& VM_PFNMAP
)
1507 /* Can the mapping track the dirty pages? */
1508 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1509 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1513 * We account for memory if it's a private writeable mapping,
1514 * not hugepages and VM_NORESERVE wasn't set.
1516 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1519 * hugetlb has its own accounting separate from the core VM
1520 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1522 if (file
&& is_file_hugepages(file
))
1525 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1528 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1529 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1531 struct mm_struct
*mm
= current
->mm
;
1532 struct vm_area_struct
*vma
, *prev
;
1534 struct rb_node
**rb_link
, *rb_parent
;
1535 unsigned long charged
= 0;
1537 /* Check against address space limit. */
1538 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
)) {
1539 unsigned long nr_pages
;
1542 * MAP_FIXED may remove pages of mappings that intersects with
1543 * requested mapping. Account for the pages it would unmap.
1545 if (!(vm_flags
& MAP_FIXED
))
1548 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1550 if (!may_expand_vm(mm
, (len
>> PAGE_SHIFT
) - nr_pages
))
1554 /* Clear old maps */
1557 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
1558 if (do_munmap(mm
, addr
, len
))
1564 * Private writable mapping: check memory availability
1566 if (accountable_mapping(file
, vm_flags
)) {
1567 charged
= len
>> PAGE_SHIFT
;
1568 if (security_vm_enough_memory_mm(mm
, charged
))
1570 vm_flags
|= VM_ACCOUNT
;
1574 * Can we just expand an old mapping?
1576 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1581 * Determine the object being mapped and call the appropriate
1582 * specific mapper. the address has already been validated, but
1583 * not unmapped, but the maps are removed from the list.
1585 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1592 vma
->vm_start
= addr
;
1593 vma
->vm_end
= addr
+ len
;
1594 vma
->vm_flags
= vm_flags
;
1595 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1596 vma
->vm_pgoff
= pgoff
;
1597 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1600 if (vm_flags
& VM_DENYWRITE
) {
1601 error
= deny_write_access(file
);
1605 if (vm_flags
& VM_SHARED
) {
1606 error
= mapping_map_writable(file
->f_mapping
);
1608 goto allow_write_and_free_vma
;
1611 /* ->mmap() can change vma->vm_file, but must guarantee that
1612 * vma_link() below can deny write-access if VM_DENYWRITE is set
1613 * and map writably if VM_SHARED is set. This usually means the
1614 * new file must not have been exposed to user-space, yet.
1616 vma
->vm_file
= get_file(file
);
1617 error
= file
->f_op
->mmap(file
, vma
);
1619 goto unmap_and_free_vma
;
1621 /* Can addr have changed??
1623 * Answer: Yes, several device drivers can do it in their
1624 * f_op->mmap method. -DaveM
1625 * Bug: If addr is changed, prev, rb_link, rb_parent should
1626 * be updated for vma_link()
1628 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1630 addr
= vma
->vm_start
;
1631 vm_flags
= vma
->vm_flags
;
1632 } else if (vm_flags
& VM_SHARED
) {
1633 error
= shmem_zero_setup(vma
);
1638 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1639 /* Once vma denies write, undo our temporary denial count */
1641 if (vm_flags
& VM_SHARED
)
1642 mapping_unmap_writable(file
->f_mapping
);
1643 if (vm_flags
& VM_DENYWRITE
)
1644 allow_write_access(file
);
1646 file
= vma
->vm_file
;
1648 perf_event_mmap(vma
);
1650 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1651 if (vm_flags
& VM_LOCKED
) {
1652 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1653 vma
== get_gate_vma(current
->mm
)))
1654 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1656 vma
->vm_flags
&= ~VM_LOCKED
;
1663 * New (or expanded) vma always get soft dirty status.
1664 * Otherwise user-space soft-dirty page tracker won't
1665 * be able to distinguish situation when vma area unmapped,
1666 * then new mapped in-place (which must be aimed as
1667 * a completely new data area).
1669 vma
->vm_flags
|= VM_SOFTDIRTY
;
1671 vma_set_page_prot(vma
);
1676 vma
->vm_file
= NULL
;
1679 /* Undo any partial mapping done by a device driver. */
1680 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1682 if (vm_flags
& VM_SHARED
)
1683 mapping_unmap_writable(file
->f_mapping
);
1684 allow_write_and_free_vma
:
1685 if (vm_flags
& VM_DENYWRITE
)
1686 allow_write_access(file
);
1688 kmem_cache_free(vm_area_cachep
, vma
);
1691 vm_unacct_memory(charged
);
1695 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1698 * We implement the search by looking for an rbtree node that
1699 * immediately follows a suitable gap. That is,
1700 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701 * - gap_end = vma->vm_start >= info->low_limit + length;
1702 * - gap_end - gap_start >= length
1705 struct mm_struct
*mm
= current
->mm
;
1706 struct vm_area_struct
*vma
;
1707 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1709 /* Adjust search length to account for worst case alignment overhead */
1710 length
= info
->length
+ info
->align_mask
;
1711 if (length
< info
->length
)
1714 /* Adjust search limits by the desired length */
1715 if (info
->high_limit
< length
)
1717 high_limit
= info
->high_limit
- length
;
1719 if (info
->low_limit
> high_limit
)
1721 low_limit
= info
->low_limit
+ length
;
1723 /* Check if rbtree root looks promising */
1724 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1726 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1727 if (vma
->rb_subtree_gap
< length
)
1731 /* Visit left subtree if it looks promising */
1732 gap_end
= vma
->vm_start
;
1733 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1734 struct vm_area_struct
*left
=
1735 rb_entry(vma
->vm_rb
.rb_left
,
1736 struct vm_area_struct
, vm_rb
);
1737 if (left
->rb_subtree_gap
>= length
) {
1743 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1745 /* Check if current node has a suitable gap */
1746 if (gap_start
> high_limit
)
1748 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1751 /* Visit right subtree if it looks promising */
1752 if (vma
->vm_rb
.rb_right
) {
1753 struct vm_area_struct
*right
=
1754 rb_entry(vma
->vm_rb
.rb_right
,
1755 struct vm_area_struct
, vm_rb
);
1756 if (right
->rb_subtree_gap
>= length
) {
1762 /* Go back up the rbtree to find next candidate node */
1764 struct rb_node
*prev
= &vma
->vm_rb
;
1765 if (!rb_parent(prev
))
1767 vma
= rb_entry(rb_parent(prev
),
1768 struct vm_area_struct
, vm_rb
);
1769 if (prev
== vma
->vm_rb
.rb_left
) {
1770 gap_start
= vma
->vm_prev
->vm_end
;
1771 gap_end
= vma
->vm_start
;
1778 /* Check highest gap, which does not precede any rbtree node */
1779 gap_start
= mm
->highest_vm_end
;
1780 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1781 if (gap_start
> high_limit
)
1785 /* We found a suitable gap. Clip it with the original low_limit. */
1786 if (gap_start
< info
->low_limit
)
1787 gap_start
= info
->low_limit
;
1789 /* Adjust gap address to the desired alignment */
1790 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1792 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1793 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1799 struct mm_struct
*mm
= current
->mm
;
1800 struct vm_area_struct
*vma
;
1801 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1803 /* Adjust search length to account for worst case alignment overhead */
1804 length
= info
->length
+ info
->align_mask
;
1805 if (length
< info
->length
)
1809 * Adjust search limits by the desired length.
1810 * See implementation comment at top of unmapped_area().
1812 gap_end
= info
->high_limit
;
1813 if (gap_end
< length
)
1815 high_limit
= gap_end
- length
;
1817 if (info
->low_limit
> high_limit
)
1819 low_limit
= info
->low_limit
+ length
;
1821 /* Check highest gap, which does not precede any rbtree node */
1822 gap_start
= mm
->highest_vm_end
;
1823 if (gap_start
<= high_limit
)
1826 /* Check if rbtree root looks promising */
1827 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1829 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1830 if (vma
->rb_subtree_gap
< length
)
1834 /* Visit right subtree if it looks promising */
1835 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1836 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1837 struct vm_area_struct
*right
=
1838 rb_entry(vma
->vm_rb
.rb_right
,
1839 struct vm_area_struct
, vm_rb
);
1840 if (right
->rb_subtree_gap
>= length
) {
1847 /* Check if current node has a suitable gap */
1848 gap_end
= vma
->vm_start
;
1849 if (gap_end
< low_limit
)
1851 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1854 /* Visit left subtree if it looks promising */
1855 if (vma
->vm_rb
.rb_left
) {
1856 struct vm_area_struct
*left
=
1857 rb_entry(vma
->vm_rb
.rb_left
,
1858 struct vm_area_struct
, vm_rb
);
1859 if (left
->rb_subtree_gap
>= length
) {
1865 /* Go back up the rbtree to find next candidate node */
1867 struct rb_node
*prev
= &vma
->vm_rb
;
1868 if (!rb_parent(prev
))
1870 vma
= rb_entry(rb_parent(prev
),
1871 struct vm_area_struct
, vm_rb
);
1872 if (prev
== vma
->vm_rb
.rb_right
) {
1873 gap_start
= vma
->vm_prev
?
1874 vma
->vm_prev
->vm_end
: 0;
1881 /* We found a suitable gap. Clip it with the original high_limit. */
1882 if (gap_end
> info
->high_limit
)
1883 gap_end
= info
->high_limit
;
1886 /* Compute highest gap address at the desired alignment */
1887 gap_end
-= info
->length
;
1888 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1890 VM_BUG_ON(gap_end
< info
->low_limit
);
1891 VM_BUG_ON(gap_end
< gap_start
);
1895 /* Get an address range which is currently unmapped.
1896 * For shmat() with addr=0.
1898 * Ugly calling convention alert:
1899 * Return value with the low bits set means error value,
1901 * if (ret & ~PAGE_MASK)
1904 * This function "knows" that -ENOMEM has the bits set.
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1908 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1909 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1911 struct mm_struct
*mm
= current
->mm
;
1912 struct vm_area_struct
*vma
;
1913 struct vm_unmapped_area_info info
;
1915 if (len
> TASK_SIZE
- mmap_min_addr
)
1918 if (flags
& MAP_FIXED
)
1922 addr
= PAGE_ALIGN(addr
);
1923 vma
= find_vma(mm
, addr
);
1924 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1925 (!vma
|| addr
+ len
<= vma
->vm_start
))
1931 info
.low_limit
= mm
->mmap_base
;
1932 info
.high_limit
= TASK_SIZE
;
1933 info
.align_mask
= 0;
1934 return vm_unmapped_area(&info
);
1939 * This mmap-allocator allocates new areas top-down from below the
1940 * stack's low limit (the base):
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1944 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1945 const unsigned long len
, const unsigned long pgoff
,
1946 const unsigned long flags
)
1948 struct vm_area_struct
*vma
;
1949 struct mm_struct
*mm
= current
->mm
;
1950 unsigned long addr
= addr0
;
1951 struct vm_unmapped_area_info info
;
1953 /* requested length too big for entire address space */
1954 if (len
> TASK_SIZE
- mmap_min_addr
)
1957 if (flags
& MAP_FIXED
)
1960 /* requesting a specific address */
1962 addr
= PAGE_ALIGN(addr
);
1963 vma
= find_vma(mm
, addr
);
1964 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1965 (!vma
|| addr
+ len
<= vma
->vm_start
))
1969 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1971 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1972 info
.high_limit
= mm
->mmap_base
;
1973 info
.align_mask
= 0;
1974 addr
= vm_unmapped_area(&info
);
1977 * A failed mmap() very likely causes application failure,
1978 * so fall back to the bottom-up function here. This scenario
1979 * can happen with large stack limits and large mmap()
1982 if (addr
& ~PAGE_MASK
) {
1983 VM_BUG_ON(addr
!= -ENOMEM
);
1985 info
.low_limit
= TASK_UNMAPPED_BASE
;
1986 info
.high_limit
= TASK_SIZE
;
1987 addr
= vm_unmapped_area(&info
);
1995 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1996 unsigned long pgoff
, unsigned long flags
)
1998 unsigned long (*get_area
)(struct file
*, unsigned long,
1999 unsigned long, unsigned long, unsigned long);
2001 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2005 /* Careful about overflows.. */
2006 if (len
> TASK_SIZE
)
2009 get_area
= current
->mm
->get_unmapped_area
;
2010 if (file
&& file
->f_op
->get_unmapped_area
)
2011 get_area
= file
->f_op
->get_unmapped_area
;
2012 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2013 if (IS_ERR_VALUE(addr
))
2016 if (addr
> TASK_SIZE
- len
)
2018 if (addr
& ~PAGE_MASK
)
2021 addr
= arch_rebalance_pgtables(addr
, len
);
2022 error
= security_mmap_addr(addr
);
2023 return error
? error
: addr
;
2026 EXPORT_SYMBOL(get_unmapped_area
);
2028 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2029 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2031 struct rb_node
*rb_node
;
2032 struct vm_area_struct
*vma
;
2034 /* Check the cache first. */
2035 vma
= vmacache_find(mm
, addr
);
2039 rb_node
= mm
->mm_rb
.rb_node
;
2043 struct vm_area_struct
*tmp
;
2045 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2047 if (tmp
->vm_end
> addr
) {
2049 if (tmp
->vm_start
<= addr
)
2051 rb_node
= rb_node
->rb_left
;
2053 rb_node
= rb_node
->rb_right
;
2057 vmacache_update(addr
, vma
);
2061 EXPORT_SYMBOL(find_vma
);
2064 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2066 struct vm_area_struct
*
2067 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2068 struct vm_area_struct
**pprev
)
2070 struct vm_area_struct
*vma
;
2072 vma
= find_vma(mm
, addr
);
2074 *pprev
= vma
->vm_prev
;
2076 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2079 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2080 rb_node
= rb_node
->rb_right
;
2087 * Verify that the stack growth is acceptable and
2088 * update accounting. This is shared with both the
2089 * grow-up and grow-down cases.
2091 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2093 struct mm_struct
*mm
= vma
->vm_mm
;
2094 struct rlimit
*rlim
= current
->signal
->rlim
;
2095 unsigned long new_start
, actual_size
;
2097 /* address space limit tests */
2098 if (!may_expand_vm(mm
, grow
))
2101 /* Stack limit test */
2103 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2104 actual_size
-= PAGE_SIZE
;
2105 if (actual_size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2108 /* mlock limit tests */
2109 if (vma
->vm_flags
& VM_LOCKED
) {
2110 unsigned long locked
;
2111 unsigned long limit
;
2112 locked
= mm
->locked_vm
+ grow
;
2113 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2114 limit
>>= PAGE_SHIFT
;
2115 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2119 /* Check to ensure the stack will not grow into a hugetlb-only region */
2120 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2122 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2126 * Overcommit.. This must be the final test, as it will
2127 * update security statistics.
2129 if (security_vm_enough_memory_mm(mm
, grow
))
2132 /* Ok, everything looks good - let it rip */
2133 if (vma
->vm_flags
& VM_LOCKED
)
2134 mm
->locked_vm
+= grow
;
2135 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
2139 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2141 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2142 * vma is the last one with address > vma->vm_end. Have to extend vma.
2144 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2148 if (!(vma
->vm_flags
& VM_GROWSUP
))
2152 * We must make sure the anon_vma is allocated
2153 * so that the anon_vma locking is not a noop.
2155 if (unlikely(anon_vma_prepare(vma
)))
2157 vma_lock_anon_vma(vma
);
2160 * vma->vm_start/vm_end cannot change under us because the caller
2161 * is required to hold the mmap_sem in read mode. We need the
2162 * anon_vma lock to serialize against concurrent expand_stacks.
2163 * Also guard against wrapping around to address 0.
2165 if (address
< PAGE_ALIGN(address
+4))
2166 address
= PAGE_ALIGN(address
+4);
2168 vma_unlock_anon_vma(vma
);
2173 /* Somebody else might have raced and expanded it already */
2174 if (address
> vma
->vm_end
) {
2175 unsigned long size
, grow
;
2177 size
= address
- vma
->vm_start
;
2178 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2181 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2182 error
= acct_stack_growth(vma
, size
, grow
);
2185 * vma_gap_update() doesn't support concurrent
2186 * updates, but we only hold a shared mmap_sem
2187 * lock here, so we need to protect against
2188 * concurrent vma expansions.
2189 * vma_lock_anon_vma() doesn't help here, as
2190 * we don't guarantee that all growable vmas
2191 * in a mm share the same root anon vma.
2192 * So, we reuse mm->page_table_lock to guard
2193 * against concurrent vma expansions.
2195 spin_lock(&vma
->vm_mm
->page_table_lock
);
2196 anon_vma_interval_tree_pre_update_vma(vma
);
2197 vma
->vm_end
= address
;
2198 anon_vma_interval_tree_post_update_vma(vma
);
2200 vma_gap_update(vma
->vm_next
);
2202 vma
->vm_mm
->highest_vm_end
= address
;
2203 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2205 perf_event_mmap(vma
);
2209 vma_unlock_anon_vma(vma
);
2210 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2211 validate_mm(vma
->vm_mm
);
2214 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2217 * vma is the first one with address < vma->vm_start. Have to extend vma.
2219 int expand_downwards(struct vm_area_struct
*vma
,
2220 unsigned long address
)
2225 * We must make sure the anon_vma is allocated
2226 * so that the anon_vma locking is not a noop.
2228 if (unlikely(anon_vma_prepare(vma
)))
2231 address
&= PAGE_MASK
;
2232 error
= security_mmap_addr(address
);
2236 vma_lock_anon_vma(vma
);
2239 * vma->vm_start/vm_end cannot change under us because the caller
2240 * is required to hold the mmap_sem in read mode. We need the
2241 * anon_vma lock to serialize against concurrent expand_stacks.
2244 /* Somebody else might have raced and expanded it already */
2245 if (address
< vma
->vm_start
) {
2246 unsigned long size
, grow
;
2248 size
= vma
->vm_end
- address
;
2249 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2252 if (grow
<= vma
->vm_pgoff
) {
2253 error
= acct_stack_growth(vma
, size
, grow
);
2256 * vma_gap_update() doesn't support concurrent
2257 * updates, but we only hold a shared mmap_sem
2258 * lock here, so we need to protect against
2259 * concurrent vma expansions.
2260 * vma_lock_anon_vma() doesn't help here, as
2261 * we don't guarantee that all growable vmas
2262 * in a mm share the same root anon vma.
2263 * So, we reuse mm->page_table_lock to guard
2264 * against concurrent vma expansions.
2266 spin_lock(&vma
->vm_mm
->page_table_lock
);
2267 anon_vma_interval_tree_pre_update_vma(vma
);
2268 vma
->vm_start
= address
;
2269 vma
->vm_pgoff
-= grow
;
2270 anon_vma_interval_tree_post_update_vma(vma
);
2271 vma_gap_update(vma
);
2272 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2274 perf_event_mmap(vma
);
2278 vma_unlock_anon_vma(vma
);
2279 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2280 validate_mm(vma
->vm_mm
);
2285 * Note how expand_stack() refuses to expand the stack all the way to
2286 * abut the next virtual mapping, *unless* that mapping itself is also
2287 * a stack mapping. We want to leave room for a guard page, after all
2288 * (the guard page itself is not added here, that is done by the
2289 * actual page faulting logic)
2291 * This matches the behavior of the guard page logic (see mm/memory.c:
2292 * check_stack_guard_page()), which only allows the guard page to be
2293 * removed under these circumstances.
2295 #ifdef CONFIG_STACK_GROWSUP
2296 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2298 struct vm_area_struct
*next
;
2300 address
&= PAGE_MASK
;
2301 next
= vma
->vm_next
;
2302 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2303 if (!(next
->vm_flags
& VM_GROWSUP
))
2306 return expand_upwards(vma
, address
);
2309 struct vm_area_struct
*
2310 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2312 struct vm_area_struct
*vma
, *prev
;
2315 vma
= find_vma_prev(mm
, addr
, &prev
);
2316 if (vma
&& (vma
->vm_start
<= addr
))
2318 if (!prev
|| expand_stack(prev
, addr
))
2320 if (prev
->vm_flags
& VM_LOCKED
)
2321 __mlock_vma_pages_range(prev
, addr
, prev
->vm_end
, NULL
);
2325 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2327 struct vm_area_struct
*prev
;
2329 address
&= PAGE_MASK
;
2330 prev
= vma
->vm_prev
;
2331 if (prev
&& prev
->vm_end
== address
) {
2332 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2335 return expand_downwards(vma
, address
);
2338 struct vm_area_struct
*
2339 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2341 struct vm_area_struct
*vma
;
2342 unsigned long start
;
2345 vma
= find_vma(mm
, addr
);
2348 if (vma
->vm_start
<= addr
)
2350 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2352 start
= vma
->vm_start
;
2353 if (expand_stack(vma
, addr
))
2355 if (vma
->vm_flags
& VM_LOCKED
)
2356 __mlock_vma_pages_range(vma
, addr
, start
, NULL
);
2361 EXPORT_SYMBOL_GPL(find_extend_vma
);
2364 * Ok - we have the memory areas we should free on the vma list,
2365 * so release them, and do the vma updates.
2367 * Called with the mm semaphore held.
2369 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2371 unsigned long nr_accounted
= 0;
2373 /* Update high watermark before we lower total_vm */
2374 update_hiwater_vm(mm
);
2376 long nrpages
= vma_pages(vma
);
2378 if (vma
->vm_flags
& VM_ACCOUNT
)
2379 nr_accounted
+= nrpages
;
2380 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2381 vma
= remove_vma(vma
);
2383 vm_unacct_memory(nr_accounted
);
2388 * Get rid of page table information in the indicated region.
2390 * Called with the mm semaphore held.
2392 static void unmap_region(struct mm_struct
*mm
,
2393 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2394 unsigned long start
, unsigned long end
)
2396 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2397 struct mmu_gather tlb
;
2400 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2401 update_hiwater_rss(mm
);
2402 unmap_vmas(&tlb
, vma
, start
, end
);
2403 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2404 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2405 tlb_finish_mmu(&tlb
, start
, end
);
2409 * Create a list of vma's touched by the unmap, removing them from the mm's
2410 * vma list as we go..
2413 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2414 struct vm_area_struct
*prev
, unsigned long end
)
2416 struct vm_area_struct
**insertion_point
;
2417 struct vm_area_struct
*tail_vma
= NULL
;
2419 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2420 vma
->vm_prev
= NULL
;
2422 vma_rb_erase(vma
, &mm
->mm_rb
);
2426 } while (vma
&& vma
->vm_start
< end
);
2427 *insertion_point
= vma
;
2429 vma
->vm_prev
= prev
;
2430 vma_gap_update(vma
);
2432 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2433 tail_vma
->vm_next
= NULL
;
2435 /* Kill the cache */
2436 vmacache_invalidate(mm
);
2440 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2441 * munmap path where it doesn't make sense to fail.
2443 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2444 unsigned long addr
, int new_below
)
2446 struct vm_area_struct
*new;
2449 if (is_vm_hugetlb_page(vma
) && (addr
&
2450 ~(huge_page_mask(hstate_vma(vma
)))))
2453 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2457 /* most fields are the same, copy all, and then fixup */
2460 INIT_LIST_HEAD(&new->anon_vma_chain
);
2465 new->vm_start
= addr
;
2466 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2469 err
= vma_dup_policy(vma
, new);
2473 err
= anon_vma_clone(new, vma
);
2478 get_file(new->vm_file
);
2480 if (new->vm_ops
&& new->vm_ops
->open
)
2481 new->vm_ops
->open(new);
2484 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2485 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2487 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2493 /* Clean everything up if vma_adjust failed. */
2494 if (new->vm_ops
&& new->vm_ops
->close
)
2495 new->vm_ops
->close(new);
2498 unlink_anon_vmas(new);
2500 mpol_put(vma_policy(new));
2502 kmem_cache_free(vm_area_cachep
, new);
2508 * Split a vma into two pieces at address 'addr', a new vma is allocated
2509 * either for the first part or the tail.
2511 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2512 unsigned long addr
, int new_below
)
2514 if (mm
->map_count
>= sysctl_max_map_count
)
2517 return __split_vma(mm
, vma
, addr
, new_below
);
2520 /* Munmap is split into 2 main parts -- this part which finds
2521 * what needs doing, and the areas themselves, which do the
2522 * work. This now handles partial unmappings.
2523 * Jeremy Fitzhardinge <jeremy@goop.org>
2525 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2528 struct vm_area_struct
*vma
, *prev
, *last
;
2530 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2533 len
= PAGE_ALIGN(len
);
2537 /* Find the first overlapping VMA */
2538 vma
= find_vma(mm
, start
);
2541 prev
= vma
->vm_prev
;
2542 /* we have start < vma->vm_end */
2544 /* if it doesn't overlap, we have nothing.. */
2546 if (vma
->vm_start
>= end
)
2550 * If we need to split any vma, do it now to save pain later.
2552 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2553 * unmapped vm_area_struct will remain in use: so lower split_vma
2554 * places tmp vma above, and higher split_vma places tmp vma below.
2556 if (start
> vma
->vm_start
) {
2560 * Make sure that map_count on return from munmap() will
2561 * not exceed its limit; but let map_count go just above
2562 * its limit temporarily, to help free resources as expected.
2564 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2567 error
= __split_vma(mm
, vma
, start
, 0);
2573 /* Does it split the last one? */
2574 last
= find_vma(mm
, end
);
2575 if (last
&& end
> last
->vm_start
) {
2576 int error
= __split_vma(mm
, last
, end
, 1);
2580 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2583 * unlock any mlock()ed ranges before detaching vmas
2585 if (mm
->locked_vm
) {
2586 struct vm_area_struct
*tmp
= vma
;
2587 while (tmp
&& tmp
->vm_start
< end
) {
2588 if (tmp
->vm_flags
& VM_LOCKED
) {
2589 mm
->locked_vm
-= vma_pages(tmp
);
2590 munlock_vma_pages_all(tmp
);
2597 * Remove the vma's, and unmap the actual pages
2599 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2600 unmap_region(mm
, vma
, prev
, start
, end
);
2602 arch_unmap(mm
, vma
, start
, end
);
2604 /* Fix up all other VM information */
2605 remove_vma_list(mm
, vma
);
2610 int vm_munmap(unsigned long start
, size_t len
)
2613 struct mm_struct
*mm
= current
->mm
;
2615 down_write(&mm
->mmap_sem
);
2616 ret
= do_munmap(mm
, start
, len
);
2617 up_write(&mm
->mmap_sem
);
2620 EXPORT_SYMBOL(vm_munmap
);
2622 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2624 profile_munmap(addr
);
2625 return vm_munmap(addr
, len
);
2630 * Emulation of deprecated remap_file_pages() syscall.
2632 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2633 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2636 struct mm_struct
*mm
= current
->mm
;
2637 struct vm_area_struct
*vma
;
2638 unsigned long populate
= 0;
2639 unsigned long ret
= -EINVAL
;
2642 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2643 "See Documentation/vm/remap_file_pages.txt.\n",
2644 current
->comm
, current
->pid
);
2648 start
= start
& PAGE_MASK
;
2649 size
= size
& PAGE_MASK
;
2651 if (start
+ size
<= start
)
2654 /* Does pgoff wrap? */
2655 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2658 down_write(&mm
->mmap_sem
);
2659 vma
= find_vma(mm
, start
);
2661 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2664 if (start
< vma
->vm_start
|| start
+ size
> vma
->vm_end
)
2667 if (pgoff
== linear_page_index(vma
, start
)) {
2672 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2673 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2674 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2676 flags
&= MAP_NONBLOCK
;
2677 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2678 if (vma
->vm_flags
& VM_LOCKED
) {
2679 flags
|= MAP_LOCKED
;
2680 /* drop PG_Mlocked flag for over-mapped range */
2681 munlock_vma_pages_range(vma
, start
, start
+ size
);
2684 file
= get_file(vma
->vm_file
);
2685 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2686 prot
, flags
, pgoff
, &populate
);
2689 up_write(&mm
->mmap_sem
);
2691 mm_populate(ret
, populate
);
2692 if (!IS_ERR_VALUE(ret
))
2697 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2699 #ifdef CONFIG_DEBUG_VM
2700 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2702 up_read(&mm
->mmap_sem
);
2708 * this is really a simplified "do_mmap". it only handles
2709 * anonymous maps. eventually we may be able to do some
2710 * brk-specific accounting here.
2712 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2714 struct mm_struct
*mm
= current
->mm
;
2715 struct vm_area_struct
*vma
, *prev
;
2716 unsigned long flags
;
2717 struct rb_node
**rb_link
, *rb_parent
;
2718 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2721 len
= PAGE_ALIGN(len
);
2725 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2727 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2728 if (error
& ~PAGE_MASK
)
2731 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2736 * mm->mmap_sem is required to protect against another thread
2737 * changing the mappings in case we sleep.
2739 verify_mm_writelocked(mm
);
2742 * Clear old maps. this also does some error checking for us
2745 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
2746 if (do_munmap(mm
, addr
, len
))
2751 /* Check against address space limits *after* clearing old maps... */
2752 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2755 if (mm
->map_count
> sysctl_max_map_count
)
2758 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2761 /* Can we just expand an old private anonymous mapping? */
2762 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2763 NULL
, NULL
, pgoff
, NULL
);
2768 * create a vma struct for an anonymous mapping
2770 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2772 vm_unacct_memory(len
>> PAGE_SHIFT
);
2776 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2778 vma
->vm_start
= addr
;
2779 vma
->vm_end
= addr
+ len
;
2780 vma
->vm_pgoff
= pgoff
;
2781 vma
->vm_flags
= flags
;
2782 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2783 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2785 perf_event_mmap(vma
);
2786 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2787 if (flags
& VM_LOCKED
)
2788 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2789 vma
->vm_flags
|= VM_SOFTDIRTY
;
2793 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2795 struct mm_struct
*mm
= current
->mm
;
2799 down_write(&mm
->mmap_sem
);
2800 ret
= do_brk(addr
, len
);
2801 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2802 up_write(&mm
->mmap_sem
);
2804 mm_populate(addr
, len
);
2807 EXPORT_SYMBOL(vm_brk
);
2809 /* Release all mmaps. */
2810 void exit_mmap(struct mm_struct
*mm
)
2812 struct mmu_gather tlb
;
2813 struct vm_area_struct
*vma
;
2814 unsigned long nr_accounted
= 0;
2816 /* mm's last user has gone, and its about to be pulled down */
2817 mmu_notifier_release(mm
);
2819 if (mm
->locked_vm
) {
2822 if (vma
->vm_flags
& VM_LOCKED
)
2823 munlock_vma_pages_all(vma
);
2831 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2836 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2837 /* update_hiwater_rss(mm) here? but nobody should be looking */
2838 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2839 unmap_vmas(&tlb
, vma
, 0, -1);
2841 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2842 tlb_finish_mmu(&tlb
, 0, -1);
2845 * Walk the list again, actually closing and freeing it,
2846 * with preemption enabled, without holding any MM locks.
2849 if (vma
->vm_flags
& VM_ACCOUNT
)
2850 nr_accounted
+= vma_pages(vma
);
2851 vma
= remove_vma(vma
);
2853 vm_unacct_memory(nr_accounted
);
2856 /* Insert vm structure into process list sorted by address
2857 * and into the inode's i_mmap tree. If vm_file is non-NULL
2858 * then i_mmap_rwsem is taken here.
2860 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2862 struct vm_area_struct
*prev
;
2863 struct rb_node
**rb_link
, *rb_parent
;
2866 * The vm_pgoff of a purely anonymous vma should be irrelevant
2867 * until its first write fault, when page's anon_vma and index
2868 * are set. But now set the vm_pgoff it will almost certainly
2869 * end up with (unless mremap moves it elsewhere before that
2870 * first wfault), so /proc/pid/maps tells a consistent story.
2872 * By setting it to reflect the virtual start address of the
2873 * vma, merges and splits can happen in a seamless way, just
2874 * using the existing file pgoff checks and manipulations.
2875 * Similarly in do_mmap_pgoff and in do_brk.
2877 if (!vma
->vm_file
) {
2878 BUG_ON(vma
->anon_vma
);
2879 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2881 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2882 &prev
, &rb_link
, &rb_parent
))
2884 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2885 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2888 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2893 * Copy the vma structure to a new location in the same mm,
2894 * prior to moving page table entries, to effect an mremap move.
2896 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2897 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2898 bool *need_rmap_locks
)
2900 struct vm_area_struct
*vma
= *vmap
;
2901 unsigned long vma_start
= vma
->vm_start
;
2902 struct mm_struct
*mm
= vma
->vm_mm
;
2903 struct vm_area_struct
*new_vma
, *prev
;
2904 struct rb_node
**rb_link
, *rb_parent
;
2905 bool faulted_in_anon_vma
= true;
2908 * If anonymous vma has not yet been faulted, update new pgoff
2909 * to match new location, to increase its chance of merging.
2911 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2912 pgoff
= addr
>> PAGE_SHIFT
;
2913 faulted_in_anon_vma
= false;
2916 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2917 return NULL
; /* should never get here */
2918 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2919 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2922 * Source vma may have been merged into new_vma
2924 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2925 vma_start
< new_vma
->vm_end
)) {
2927 * The only way we can get a vma_merge with
2928 * self during an mremap is if the vma hasn't
2929 * been faulted in yet and we were allowed to
2930 * reset the dst vma->vm_pgoff to the
2931 * destination address of the mremap to allow
2932 * the merge to happen. mremap must change the
2933 * vm_pgoff linearity between src and dst vmas
2934 * (in turn preventing a vma_merge) to be
2935 * safe. It is only safe to keep the vm_pgoff
2936 * linear if there are no pages mapped yet.
2938 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2939 *vmap
= vma
= new_vma
;
2941 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2943 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2946 new_vma
->vm_start
= addr
;
2947 new_vma
->vm_end
= addr
+ len
;
2948 new_vma
->vm_pgoff
= pgoff
;
2949 if (vma_dup_policy(vma
, new_vma
))
2951 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2952 if (anon_vma_clone(new_vma
, vma
))
2953 goto out_free_mempol
;
2954 if (new_vma
->vm_file
)
2955 get_file(new_vma
->vm_file
);
2956 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2957 new_vma
->vm_ops
->open(new_vma
);
2958 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2959 *need_rmap_locks
= false;
2965 mpol_put(vma_policy(new_vma
));
2967 kmem_cache_free(vm_area_cachep
, new_vma
);
2972 * Return true if the calling process may expand its vm space by the passed
2975 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2977 unsigned long cur
= mm
->total_vm
; /* pages */
2980 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2982 if (cur
+ npages
> lim
)
2987 static int special_mapping_fault(struct vm_area_struct
*vma
,
2988 struct vm_fault
*vmf
);
2991 * Having a close hook prevents vma merging regardless of flags.
2993 static void special_mapping_close(struct vm_area_struct
*vma
)
2997 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2999 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3002 static const struct vm_operations_struct special_mapping_vmops
= {
3003 .close
= special_mapping_close
,
3004 .fault
= special_mapping_fault
,
3005 .name
= special_mapping_name
,
3008 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3009 .close
= special_mapping_close
,
3010 .fault
= special_mapping_fault
,
3013 static int special_mapping_fault(struct vm_area_struct
*vma
,
3014 struct vm_fault
*vmf
)
3017 struct page
**pages
;
3020 * special mappings have no vm_file, and in that case, the mm
3021 * uses vm_pgoff internally. So we have to subtract it from here.
3022 * We are allowed to do this because we are the mm; do not copy
3023 * this code into drivers!
3025 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
3027 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
3028 pages
= vma
->vm_private_data
;
3030 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
3033 for (; pgoff
&& *pages
; ++pages
)
3037 struct page
*page
= *pages
;
3043 return VM_FAULT_SIGBUS
;
3046 static struct vm_area_struct
*__install_special_mapping(
3047 struct mm_struct
*mm
,
3048 unsigned long addr
, unsigned long len
,
3049 unsigned long vm_flags
, const struct vm_operations_struct
*ops
,
3053 struct vm_area_struct
*vma
;
3055 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3056 if (unlikely(vma
== NULL
))
3057 return ERR_PTR(-ENOMEM
);
3059 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3061 vma
->vm_start
= addr
;
3062 vma
->vm_end
= addr
+ len
;
3064 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3065 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3068 vma
->vm_private_data
= priv
;
3070 ret
= insert_vm_struct(mm
, vma
);
3074 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3076 perf_event_mmap(vma
);
3081 kmem_cache_free(vm_area_cachep
, vma
);
3082 return ERR_PTR(ret
);
3086 * Called with mm->mmap_sem held for writing.
3087 * Insert a new vma covering the given region, with the given flags.
3088 * Its pages are supplied by the given array of struct page *.
3089 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3090 * The region past the last page supplied will always produce SIGBUS.
3091 * The array pointer and the pages it points to are assumed to stay alive
3092 * for as long as this mapping might exist.
3094 struct vm_area_struct
*_install_special_mapping(
3095 struct mm_struct
*mm
,
3096 unsigned long addr
, unsigned long len
,
3097 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3099 return __install_special_mapping(mm
, addr
, len
, vm_flags
,
3100 &special_mapping_vmops
, (void *)spec
);
3103 int install_special_mapping(struct mm_struct
*mm
,
3104 unsigned long addr
, unsigned long len
,
3105 unsigned long vm_flags
, struct page
**pages
)
3107 struct vm_area_struct
*vma
= __install_special_mapping(
3108 mm
, addr
, len
, vm_flags
, &legacy_special_mapping_vmops
,
3111 return PTR_ERR_OR_ZERO(vma
);
3114 static DEFINE_MUTEX(mm_all_locks_mutex
);
3116 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3118 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3120 * The LSB of head.next can't change from under us
3121 * because we hold the mm_all_locks_mutex.
3123 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3125 * We can safely modify head.next after taking the
3126 * anon_vma->root->rwsem. If some other vma in this mm shares
3127 * the same anon_vma we won't take it again.
3129 * No need of atomic instructions here, head.next
3130 * can't change from under us thanks to the
3131 * anon_vma->root->rwsem.
3133 if (__test_and_set_bit(0, (unsigned long *)
3134 &anon_vma
->root
->rb_root
.rb_node
))
3139 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3141 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3143 * AS_MM_ALL_LOCKS can't change from under us because
3144 * we hold the mm_all_locks_mutex.
3146 * Operations on ->flags have to be atomic because
3147 * even if AS_MM_ALL_LOCKS is stable thanks to the
3148 * mm_all_locks_mutex, there may be other cpus
3149 * changing other bitflags in parallel to us.
3151 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3153 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3158 * This operation locks against the VM for all pte/vma/mm related
3159 * operations that could ever happen on a certain mm. This includes
3160 * vmtruncate, try_to_unmap, and all page faults.
3162 * The caller must take the mmap_sem in write mode before calling
3163 * mm_take_all_locks(). The caller isn't allowed to release the
3164 * mmap_sem until mm_drop_all_locks() returns.
3166 * mmap_sem in write mode is required in order to block all operations
3167 * that could modify pagetables and free pages without need of
3168 * altering the vma layout. It's also needed in write mode to avoid new
3169 * anon_vmas to be associated with existing vmas.
3171 * A single task can't take more than one mm_take_all_locks() in a row
3172 * or it would deadlock.
3174 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3175 * mapping->flags avoid to take the same lock twice, if more than one
3176 * vma in this mm is backed by the same anon_vma or address_space.
3178 * We can take all the locks in random order because the VM code
3179 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3180 * takes more than one of them in a row. Secondly we're protected
3181 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3183 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3184 * that may have to take thousand of locks.
3186 * mm_take_all_locks() can fail if it's interrupted by signals.
3188 int mm_take_all_locks(struct mm_struct
*mm
)
3190 struct vm_area_struct
*vma
;
3191 struct anon_vma_chain
*avc
;
3193 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3195 mutex_lock(&mm_all_locks_mutex
);
3197 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3198 if (signal_pending(current
))
3200 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3201 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3204 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3205 if (signal_pending(current
))
3208 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3209 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3215 mm_drop_all_locks(mm
);
3219 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3221 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3223 * The LSB of head.next can't change to 0 from under
3224 * us because we hold the mm_all_locks_mutex.
3226 * We must however clear the bitflag before unlocking
3227 * the vma so the users using the anon_vma->rb_root will
3228 * never see our bitflag.
3230 * No need of atomic instructions here, head.next
3231 * can't change from under us until we release the
3232 * anon_vma->root->rwsem.
3234 if (!__test_and_clear_bit(0, (unsigned long *)
3235 &anon_vma
->root
->rb_root
.rb_node
))
3237 anon_vma_unlock_write(anon_vma
);
3241 static void vm_unlock_mapping(struct address_space
*mapping
)
3243 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3245 * AS_MM_ALL_LOCKS can't change to 0 from under us
3246 * because we hold the mm_all_locks_mutex.
3248 i_mmap_unlock_write(mapping
);
3249 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3256 * The mmap_sem cannot be released by the caller until
3257 * mm_drop_all_locks() returns.
3259 void mm_drop_all_locks(struct mm_struct
*mm
)
3261 struct vm_area_struct
*vma
;
3262 struct anon_vma_chain
*avc
;
3264 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3265 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3267 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3269 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3270 vm_unlock_anon_vma(avc
->anon_vma
);
3271 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3272 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3275 mutex_unlock(&mm_all_locks_mutex
);
3279 * initialise the VMA slab
3281 void __init
mmap_init(void)
3285 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3290 * Initialise sysctl_user_reserve_kbytes.
3292 * This is intended to prevent a user from starting a single memory hogging
3293 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3296 * The default value is min(3% of free memory, 128MB)
3297 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3299 static int init_user_reserve(void)
3301 unsigned long free_kbytes
;
3303 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3305 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3308 subsys_initcall(init_user_reserve
);
3311 * Initialise sysctl_admin_reserve_kbytes.
3313 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3314 * to log in and kill a memory hogging process.
3316 * Systems with more than 256MB will reserve 8MB, enough to recover
3317 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3318 * only reserve 3% of free pages by default.
3320 static int init_admin_reserve(void)
3322 unsigned long free_kbytes
;
3324 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3326 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3329 subsys_initcall(init_admin_reserve
);
3332 * Reinititalise user and admin reserves if memory is added or removed.
3334 * The default user reserve max is 128MB, and the default max for the
3335 * admin reserve is 8MB. These are usually, but not always, enough to
3336 * enable recovery from a memory hogging process using login/sshd, a shell,
3337 * and tools like top. It may make sense to increase or even disable the
3338 * reserve depending on the existence of swap or variations in the recovery
3339 * tools. So, the admin may have changed them.
3341 * If memory is added and the reserves have been eliminated or increased above
3342 * the default max, then we'll trust the admin.
3344 * If memory is removed and there isn't enough free memory, then we
3345 * need to reset the reserves.
3347 * Otherwise keep the reserve set by the admin.
3349 static int reserve_mem_notifier(struct notifier_block
*nb
,
3350 unsigned long action
, void *data
)
3352 unsigned long tmp
, free_kbytes
;
3356 /* Default max is 128MB. Leave alone if modified by operator. */
3357 tmp
= sysctl_user_reserve_kbytes
;
3358 if (0 < tmp
&& tmp
< (1UL << 17))
3359 init_user_reserve();
3361 /* Default max is 8MB. Leave alone if modified by operator. */
3362 tmp
= sysctl_admin_reserve_kbytes
;
3363 if (0 < tmp
&& tmp
< (1UL << 13))
3364 init_admin_reserve();
3368 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3370 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3371 init_user_reserve();
3372 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3373 sysctl_user_reserve_kbytes
);
3376 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3377 init_admin_reserve();
3378 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3379 sysctl_admin_reserve_kbytes
);
3388 static struct notifier_block reserve_mem_nb
= {
3389 .notifier_call
= reserve_mem_notifier
,
3392 static int __meminit
init_reserve_notifier(void)
3394 if (register_hotmemory_notifier(&reserve_mem_nb
))
3395 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3399 subsys_initcall(init_reserve_notifier
);