2 * v4l2-dv-timings - dv-timings helper functions
4 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
29 MODULE_AUTHOR("Hans Verkuil");
30 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
31 MODULE_LICENSE("GPL");
33 const struct v4l2_dv_timings v4l2_dv_timings_presets
[] = {
34 V4L2_DV_BT_CEA_640X480P59_94
,
35 V4L2_DV_BT_CEA_720X480I59_94
,
36 V4L2_DV_BT_CEA_720X480P59_94
,
37 V4L2_DV_BT_CEA_720X576I50
,
38 V4L2_DV_BT_CEA_720X576P50
,
39 V4L2_DV_BT_CEA_1280X720P24
,
40 V4L2_DV_BT_CEA_1280X720P25
,
41 V4L2_DV_BT_CEA_1280X720P30
,
42 V4L2_DV_BT_CEA_1280X720P50
,
43 V4L2_DV_BT_CEA_1280X720P60
,
44 V4L2_DV_BT_CEA_1920X1080P24
,
45 V4L2_DV_BT_CEA_1920X1080P25
,
46 V4L2_DV_BT_CEA_1920X1080P30
,
47 V4L2_DV_BT_CEA_1920X1080I50
,
48 V4L2_DV_BT_CEA_1920X1080P50
,
49 V4L2_DV_BT_CEA_1920X1080I60
,
50 V4L2_DV_BT_CEA_1920X1080P60
,
51 V4L2_DV_BT_DMT_640X350P85
,
52 V4L2_DV_BT_DMT_640X400P85
,
53 V4L2_DV_BT_DMT_720X400P85
,
54 V4L2_DV_BT_DMT_640X480P72
,
55 V4L2_DV_BT_DMT_640X480P75
,
56 V4L2_DV_BT_DMT_640X480P85
,
57 V4L2_DV_BT_DMT_800X600P56
,
58 V4L2_DV_BT_DMT_800X600P60
,
59 V4L2_DV_BT_DMT_800X600P72
,
60 V4L2_DV_BT_DMT_800X600P75
,
61 V4L2_DV_BT_DMT_800X600P85
,
62 V4L2_DV_BT_DMT_800X600P120_RB
,
63 V4L2_DV_BT_DMT_848X480P60
,
64 V4L2_DV_BT_DMT_1024X768I43
,
65 V4L2_DV_BT_DMT_1024X768P60
,
66 V4L2_DV_BT_DMT_1024X768P70
,
67 V4L2_DV_BT_DMT_1024X768P75
,
68 V4L2_DV_BT_DMT_1024X768P85
,
69 V4L2_DV_BT_DMT_1024X768P120_RB
,
70 V4L2_DV_BT_DMT_1152X864P75
,
71 V4L2_DV_BT_DMT_1280X768P60_RB
,
72 V4L2_DV_BT_DMT_1280X768P60
,
73 V4L2_DV_BT_DMT_1280X768P75
,
74 V4L2_DV_BT_DMT_1280X768P85
,
75 V4L2_DV_BT_DMT_1280X768P120_RB
,
76 V4L2_DV_BT_DMT_1280X800P60_RB
,
77 V4L2_DV_BT_DMT_1280X800P60
,
78 V4L2_DV_BT_DMT_1280X800P75
,
79 V4L2_DV_BT_DMT_1280X800P85
,
80 V4L2_DV_BT_DMT_1280X800P120_RB
,
81 V4L2_DV_BT_DMT_1280X960P60
,
82 V4L2_DV_BT_DMT_1280X960P85
,
83 V4L2_DV_BT_DMT_1280X960P120_RB
,
84 V4L2_DV_BT_DMT_1280X1024P60
,
85 V4L2_DV_BT_DMT_1280X1024P75
,
86 V4L2_DV_BT_DMT_1280X1024P85
,
87 V4L2_DV_BT_DMT_1280X1024P120_RB
,
88 V4L2_DV_BT_DMT_1360X768P60
,
89 V4L2_DV_BT_DMT_1360X768P120_RB
,
90 V4L2_DV_BT_DMT_1366X768P60
,
91 V4L2_DV_BT_DMT_1366X768P60_RB
,
92 V4L2_DV_BT_DMT_1400X1050P60_RB
,
93 V4L2_DV_BT_DMT_1400X1050P60
,
94 V4L2_DV_BT_DMT_1400X1050P75
,
95 V4L2_DV_BT_DMT_1400X1050P85
,
96 V4L2_DV_BT_DMT_1400X1050P120_RB
,
97 V4L2_DV_BT_DMT_1440X900P60_RB
,
98 V4L2_DV_BT_DMT_1440X900P60
,
99 V4L2_DV_BT_DMT_1440X900P75
,
100 V4L2_DV_BT_DMT_1440X900P85
,
101 V4L2_DV_BT_DMT_1440X900P120_RB
,
102 V4L2_DV_BT_DMT_1600X900P60_RB
,
103 V4L2_DV_BT_DMT_1600X1200P60
,
104 V4L2_DV_BT_DMT_1600X1200P65
,
105 V4L2_DV_BT_DMT_1600X1200P70
,
106 V4L2_DV_BT_DMT_1600X1200P75
,
107 V4L2_DV_BT_DMT_1600X1200P85
,
108 V4L2_DV_BT_DMT_1600X1200P120_RB
,
109 V4L2_DV_BT_DMT_1680X1050P60_RB
,
110 V4L2_DV_BT_DMT_1680X1050P60
,
111 V4L2_DV_BT_DMT_1680X1050P75
,
112 V4L2_DV_BT_DMT_1680X1050P85
,
113 V4L2_DV_BT_DMT_1680X1050P120_RB
,
114 V4L2_DV_BT_DMT_1792X1344P60
,
115 V4L2_DV_BT_DMT_1792X1344P75
,
116 V4L2_DV_BT_DMT_1792X1344P120_RB
,
117 V4L2_DV_BT_DMT_1856X1392P60
,
118 V4L2_DV_BT_DMT_1856X1392P75
,
119 V4L2_DV_BT_DMT_1856X1392P120_RB
,
120 V4L2_DV_BT_DMT_1920X1200P60_RB
,
121 V4L2_DV_BT_DMT_1920X1200P60
,
122 V4L2_DV_BT_DMT_1920X1200P75
,
123 V4L2_DV_BT_DMT_1920X1200P85
,
124 V4L2_DV_BT_DMT_1920X1200P120_RB
,
125 V4L2_DV_BT_DMT_1920X1440P60
,
126 V4L2_DV_BT_DMT_1920X1440P75
,
127 V4L2_DV_BT_DMT_1920X1440P120_RB
,
128 V4L2_DV_BT_DMT_2048X1152P60_RB
,
129 V4L2_DV_BT_DMT_2560X1600P60_RB
,
130 V4L2_DV_BT_DMT_2560X1600P60
,
131 V4L2_DV_BT_DMT_2560X1600P75
,
132 V4L2_DV_BT_DMT_2560X1600P85
,
133 V4L2_DV_BT_DMT_2560X1600P120_RB
,
134 V4L2_DV_BT_CEA_3840X2160P24
,
135 V4L2_DV_BT_CEA_3840X2160P25
,
136 V4L2_DV_BT_CEA_3840X2160P30
,
137 V4L2_DV_BT_CEA_3840X2160P50
,
138 V4L2_DV_BT_CEA_3840X2160P60
,
139 V4L2_DV_BT_CEA_4096X2160P24
,
140 V4L2_DV_BT_CEA_4096X2160P25
,
141 V4L2_DV_BT_CEA_4096X2160P30
,
142 V4L2_DV_BT_CEA_4096X2160P50
,
143 V4L2_DV_BT_DMT_4096X2160P59_94_RB
,
144 V4L2_DV_BT_CEA_4096X2160P60
,
147 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets
);
149 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings
*t
,
150 const struct v4l2_dv_timings_cap
*dvcap
,
151 v4l2_check_dv_timings_fnc fnc
,
154 const struct v4l2_bt_timings
*bt
= &t
->bt
;
155 const struct v4l2_bt_timings_cap
*cap
= &dvcap
->bt
;
156 u32 caps
= cap
->capabilities
;
158 if (t
->type
!= V4L2_DV_BT_656_1120
)
160 if (t
->type
!= dvcap
->type
||
161 bt
->height
< cap
->min_height
||
162 bt
->height
> cap
->max_height
||
163 bt
->width
< cap
->min_width
||
164 bt
->width
> cap
->max_width
||
165 bt
->pixelclock
< cap
->min_pixelclock
||
166 bt
->pixelclock
> cap
->max_pixelclock
||
167 (cap
->standards
&& !(bt
->standards
& cap
->standards
)) ||
168 (bt
->interlaced
&& !(caps
& V4L2_DV_BT_CAP_INTERLACED
)) ||
169 (!bt
->interlaced
&& !(caps
& V4L2_DV_BT_CAP_PROGRESSIVE
)))
171 return fnc
== NULL
|| fnc(t
, fnc_handle
);
173 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings
);
175 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings
*t
,
176 const struct v4l2_dv_timings_cap
*cap
,
177 v4l2_check_dv_timings_fnc fnc
,
182 memset(t
->reserved
, 0, sizeof(t
->reserved
));
183 for (i
= idx
= 0; v4l2_dv_timings_presets
[i
].bt
.width
; i
++) {
184 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets
+ i
, cap
,
187 t
->timings
= v4l2_dv_timings_presets
[i
];
193 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap
);
195 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings
*t
,
196 const struct v4l2_dv_timings_cap
*cap
,
197 unsigned pclock_delta
,
198 v4l2_check_dv_timings_fnc fnc
,
203 if (!v4l2_valid_dv_timings(t
, cap
, fnc
, fnc_handle
))
206 for (i
= 0; i
< v4l2_dv_timings_presets
[i
].bt
.width
; i
++) {
207 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets
+ i
, cap
,
209 v4l2_match_dv_timings(t
, v4l2_dv_timings_presets
+ i
,
211 *t
= v4l2_dv_timings_presets
[i
];
217 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap
);
220 * v4l2_match_dv_timings - check if two timings match
221 * @t1 - compare this v4l2_dv_timings struct...
222 * @t2 - with this struct.
223 * @pclock_delta - the allowed pixelclock deviation.
225 * Compare t1 with t2 with a given margin of error for the pixelclock.
227 bool v4l2_match_dv_timings(const struct v4l2_dv_timings
*t1
,
228 const struct v4l2_dv_timings
*t2
,
229 unsigned pclock_delta
)
231 if (t1
->type
!= t2
->type
|| t1
->type
!= V4L2_DV_BT_656_1120
)
233 if (t1
->bt
.width
== t2
->bt
.width
&&
234 t1
->bt
.height
== t2
->bt
.height
&&
235 t1
->bt
.interlaced
== t2
->bt
.interlaced
&&
236 t1
->bt
.polarities
== t2
->bt
.polarities
&&
237 t1
->bt
.pixelclock
>= t2
->bt
.pixelclock
- pclock_delta
&&
238 t1
->bt
.pixelclock
<= t2
->bt
.pixelclock
+ pclock_delta
&&
239 t1
->bt
.hfrontporch
== t2
->bt
.hfrontporch
&&
240 t1
->bt
.vfrontporch
== t2
->bt
.vfrontporch
&&
241 t1
->bt
.vsync
== t2
->bt
.vsync
&&
242 t1
->bt
.vbackporch
== t2
->bt
.vbackporch
&&
243 (!t1
->bt
.interlaced
||
244 (t1
->bt
.il_vfrontporch
== t2
->bt
.il_vfrontporch
&&
245 t1
->bt
.il_vsync
== t2
->bt
.il_vsync
&&
246 t1
->bt
.il_vbackporch
== t2
->bt
.il_vbackporch
)))
250 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings
);
252 void v4l2_print_dv_timings(const char *dev_prefix
, const char *prefix
,
253 const struct v4l2_dv_timings
*t
, bool detailed
)
255 const struct v4l2_bt_timings
*bt
= &t
->bt
;
258 if (t
->type
!= V4L2_DV_BT_656_1120
)
261 htot
= V4L2_DV_BT_FRAME_WIDTH(bt
);
262 vtot
= V4L2_DV_BT_FRAME_HEIGHT(bt
);
267 pr_info("%s: %s%ux%u%s%u (%ux%u)\n", dev_prefix
, prefix
,
268 bt
->width
, bt
->height
, bt
->interlaced
? "i" : "p",
269 (htot
* vtot
) > 0 ? ((u32
)bt
->pixelclock
/ (htot
* vtot
)) : 0,
275 pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
276 dev_prefix
, bt
->hfrontporch
,
277 (bt
->polarities
& V4L2_DV_HSYNC_POS_POL
) ? "+" : "-",
278 bt
->hsync
, bt
->hbackporch
);
279 pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
280 dev_prefix
, bt
->vfrontporch
,
281 (bt
->polarities
& V4L2_DV_VSYNC_POS_POL
) ? "+" : "-",
282 bt
->vsync
, bt
->vbackporch
);
283 pr_info("%s: pixelclock: %llu\n", dev_prefix
, bt
->pixelclock
);
284 pr_info("%s: flags (0x%x):%s%s%s%s\n", dev_prefix
, bt
->flags
,
285 (bt
->flags
& V4L2_DV_FL_REDUCED_BLANKING
) ?
286 " REDUCED_BLANKING" : "",
287 (bt
->flags
& V4L2_DV_FL_CAN_REDUCE_FPS
) ?
288 " CAN_REDUCE_FPS" : "",
289 (bt
->flags
& V4L2_DV_FL_REDUCED_FPS
) ?
291 (bt
->flags
& V4L2_DV_FL_HALF_LINE
) ?
293 pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix
, bt
->standards
,
294 (bt
->standards
& V4L2_DV_BT_STD_CEA861
) ? " CEA" : "",
295 (bt
->standards
& V4L2_DV_BT_STD_DMT
) ? " DMT" : "",
296 (bt
->standards
& V4L2_DV_BT_STD_CVT
) ? " CVT" : "",
297 (bt
->standards
& V4L2_DV_BT_STD_GTF
) ? " GTF" : "");
299 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings
);
303 * Based on Coordinated Video Timings Standard
304 * version 1.1 September 10, 2003
307 #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
309 /* Normal blanking */
310 #define CVT_MIN_V_BPORCH 7 /* lines */
311 #define CVT_MIN_V_PORCH_RND 3 /* lines */
312 #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
314 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
315 #define CVT_CELL_GRAN 8 /* character cell granularity */
316 #define CVT_M 600 /* blanking formula gradient */
317 #define CVT_C 40 /* blanking formula offset */
318 #define CVT_K 128 /* blanking formula scaling factor */
319 #define CVT_J 20 /* blanking formula scaling factor */
320 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
321 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
323 /* Reduced Blanking */
324 #define CVT_RB_MIN_V_BPORCH 7 /* lines */
325 #define CVT_RB_V_FPORCH 3 /* lines */
326 #define CVT_RB_MIN_V_BLANK 460 /* us */
327 #define CVT_RB_H_SYNC 32 /* pixels */
328 #define CVT_RB_H_BPORCH 80 /* pixels */
329 #define CVT_RB_H_BLANK 160 /* pixels */
331 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
332 * @frame_height - the total height of the frame (including blanking) in lines.
333 * @hfreq - the horizontal frequency in Hz.
334 * @vsync - the height of the vertical sync in lines.
335 * @polarities - the horizontal and vertical polarities (same as struct
336 * v4l2_bt_timings polarities).
337 * @fmt - the resulting timings.
339 * This function will attempt to detect if the given values correspond to a
340 * valid CVT format. If so, then it will return true, and fmt will be filled
341 * in with the found CVT timings.
343 * TODO: VESA defined a new version 2 of their reduced blanking
344 * formula. Support for that is currently missing in this CVT
345 * detection function.
347 bool v4l2_detect_cvt(unsigned frame_height
, unsigned hfreq
, unsigned vsync
,
348 u32 polarities
, struct v4l2_dv_timings
*fmt
)
350 int v_fp
, v_bp
, h_fp
, h_bp
, hsync
;
351 int frame_width
, image_height
, image_width
;
352 bool reduced_blanking
;
355 if (vsync
< 4 || vsync
> 7)
358 if (polarities
== V4L2_DV_VSYNC_POS_POL
)
359 reduced_blanking
= false;
360 else if (polarities
== V4L2_DV_HSYNC_POS_POL
)
361 reduced_blanking
= true;
366 if (reduced_blanking
) {
367 v_fp
= CVT_RB_V_FPORCH
;
368 v_bp
= (CVT_RB_MIN_V_BLANK
* hfreq
+ 1999999) / 1000000;
369 v_bp
-= vsync
+ v_fp
;
371 if (v_bp
< CVT_RB_MIN_V_BPORCH
)
372 v_bp
= CVT_RB_MIN_V_BPORCH
;
374 v_fp
= CVT_MIN_V_PORCH_RND
;
375 v_bp
= (CVT_MIN_VSYNC_BP
* hfreq
+ 1999999) / 1000000 - vsync
;
377 if (v_bp
< CVT_MIN_V_BPORCH
)
378 v_bp
= CVT_MIN_V_BPORCH
;
380 image_height
= (frame_height
- v_fp
- vsync
- v_bp
+ 1) & ~0x1;
382 /* Aspect ratio based on vsync */
385 image_width
= (image_height
* 4) / 3;
388 image_width
= (image_height
* 16) / 9;
391 image_width
= (image_height
* 16) / 10;
395 if (image_height
== 1024)
396 image_width
= (image_height
* 5) / 4;
397 else if (image_height
== 768)
398 image_width
= (image_height
* 15) / 9;
406 image_width
= image_width
& ~7;
409 if (reduced_blanking
) {
410 pix_clk
= (image_width
+ CVT_RB_H_BLANK
) * hfreq
;
411 pix_clk
= (pix_clk
/ CVT_PXL_CLK_GRAN
) * CVT_PXL_CLK_GRAN
;
413 h_bp
= CVT_RB_H_BPORCH
;
414 hsync
= CVT_RB_H_SYNC
;
415 h_fp
= CVT_RB_H_BLANK
- h_bp
- hsync
;
417 frame_width
= image_width
+ CVT_RB_H_BLANK
;
419 unsigned ideal_duty_cycle_per_myriad
=
420 100 * CVT_C_PRIME
- (CVT_M_PRIME
* 100000) / hfreq
;
423 if (ideal_duty_cycle_per_myriad
< 2000)
424 ideal_duty_cycle_per_myriad
= 2000;
426 h_blank
= image_width
* ideal_duty_cycle_per_myriad
/
427 (10000 - ideal_duty_cycle_per_myriad
);
428 h_blank
= (h_blank
/ (2 * CVT_CELL_GRAN
)) * 2 * CVT_CELL_GRAN
;
430 pix_clk
= (image_width
+ h_blank
) * hfreq
;
431 pix_clk
= (pix_clk
/ CVT_PXL_CLK_GRAN
) * CVT_PXL_CLK_GRAN
;
434 frame_width
= image_width
+ h_blank
;
436 hsync
= (frame_width
* 8 + 50) / 100;
437 hsync
= hsync
- hsync
% CVT_CELL_GRAN
;
438 h_fp
= h_blank
- hsync
- h_bp
;
441 fmt
->type
= V4L2_DV_BT_656_1120
;
442 fmt
->bt
.polarities
= polarities
;
443 fmt
->bt
.width
= image_width
;
444 fmt
->bt
.height
= image_height
;
445 fmt
->bt
.hfrontporch
= h_fp
;
446 fmt
->bt
.vfrontporch
= v_fp
;
447 fmt
->bt
.hsync
= hsync
;
448 fmt
->bt
.vsync
= vsync
;
449 fmt
->bt
.hbackporch
= frame_width
- image_width
- h_fp
- hsync
;
450 fmt
->bt
.vbackporch
= frame_height
- image_height
- v_fp
- vsync
;
451 fmt
->bt
.pixelclock
= pix_clk
;
452 fmt
->bt
.standards
= V4L2_DV_BT_STD_CVT
;
453 if (reduced_blanking
)
454 fmt
->bt
.flags
|= V4L2_DV_FL_REDUCED_BLANKING
;
457 EXPORT_SYMBOL_GPL(v4l2_detect_cvt
);
461 * Based on Generalized Timing Formula Standard
462 * Version 1.1 September 2, 1999
465 #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
467 #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
468 #define GTF_V_FP 1 /* vertical front porch (lines) */
469 #define GTF_CELL_GRAN 8 /* character cell granularity */
472 #define GTF_D_M 600 /* blanking formula gradient */
473 #define GTF_D_C 40 /* blanking formula offset */
474 #define GTF_D_K 128 /* blanking formula scaling factor */
475 #define GTF_D_J 20 /* blanking formula scaling factor */
476 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
477 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
480 #define GTF_S_M 3600 /* blanking formula gradient */
481 #define GTF_S_C 40 /* blanking formula offset */
482 #define GTF_S_K 128 /* blanking formula scaling factor */
483 #define GTF_S_J 35 /* blanking formula scaling factor */
484 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
485 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
487 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
488 * @frame_height - the total height of the frame (including blanking) in lines.
489 * @hfreq - the horizontal frequency in Hz.
490 * @vsync - the height of the vertical sync in lines.
491 * @polarities - the horizontal and vertical polarities (same as struct
492 * v4l2_bt_timings polarities).
493 * @aspect - preferred aspect ratio. GTF has no method of determining the
494 * aspect ratio in order to derive the image width from the
495 * image height, so it has to be passed explicitly. Usually
496 * the native screen aspect ratio is used for this. If it
497 * is not filled in correctly, then 16:9 will be assumed.
498 * @fmt - the resulting timings.
500 * This function will attempt to detect if the given values correspond to a
501 * valid GTF format. If so, then it will return true, and fmt will be filled
502 * in with the found GTF timings.
504 bool v4l2_detect_gtf(unsigned frame_height
,
508 struct v4l2_fract aspect
,
509 struct v4l2_dv_timings
*fmt
)
512 int v_fp
, v_bp
, h_fp
, hsync
;
513 int frame_width
, image_height
, image_width
;
520 if (polarities
== V4L2_DV_VSYNC_POS_POL
)
522 else if (polarities
== V4L2_DV_HSYNC_POS_POL
)
529 v_bp
= (GTF_MIN_VSYNC_BP
* hfreq
+ 999999) / 1000000 - vsync
;
530 image_height
= (frame_height
- v_fp
- vsync
- v_bp
+ 1) & ~0x1;
532 if (aspect
.numerator
== 0 || aspect
.denominator
== 0) {
533 aspect
.numerator
= 16;
534 aspect
.denominator
= 9;
536 image_width
= ((image_height
* aspect
.numerator
) / aspect
.denominator
);
537 image_width
= (image_width
+ GTF_CELL_GRAN
/2) & ~(GTF_CELL_GRAN
- 1);
541 h_blank
= ((image_width
* GTF_D_C_PRIME
* hfreq
) -
542 (image_width
* GTF_D_M_PRIME
* 1000) +
543 (hfreq
* (100 - GTF_D_C_PRIME
) + GTF_D_M_PRIME
* 1000) / 2) /
544 (hfreq
* (100 - GTF_D_C_PRIME
) + GTF_D_M_PRIME
* 1000);
546 h_blank
= ((image_width
* GTF_S_C_PRIME
* hfreq
) -
547 (image_width
* GTF_S_M_PRIME
* 1000) +
548 (hfreq
* (100 - GTF_S_C_PRIME
) + GTF_S_M_PRIME
* 1000) / 2) /
549 (hfreq
* (100 - GTF_S_C_PRIME
) + GTF_S_M_PRIME
* 1000);
551 h_blank
= h_blank
- h_blank
% (2 * GTF_CELL_GRAN
);
552 frame_width
= image_width
+ h_blank
;
554 pix_clk
= (image_width
+ h_blank
) * hfreq
;
555 pix_clk
= pix_clk
/ GTF_PXL_CLK_GRAN
* GTF_PXL_CLK_GRAN
;
557 hsync
= (frame_width
* 8 + 50) / 100;
558 hsync
= hsync
- hsync
% GTF_CELL_GRAN
;
560 h_fp
= h_blank
/ 2 - hsync
;
562 fmt
->type
= V4L2_DV_BT_656_1120
;
563 fmt
->bt
.polarities
= polarities
;
564 fmt
->bt
.width
= image_width
;
565 fmt
->bt
.height
= image_height
;
566 fmt
->bt
.hfrontporch
= h_fp
;
567 fmt
->bt
.vfrontporch
= v_fp
;
568 fmt
->bt
.hsync
= hsync
;
569 fmt
->bt
.vsync
= vsync
;
570 fmt
->bt
.hbackporch
= frame_width
- image_width
- h_fp
- hsync
;
571 fmt
->bt
.vbackporch
= frame_height
- image_height
- v_fp
- vsync
;
572 fmt
->bt
.pixelclock
= pix_clk
;
573 fmt
->bt
.standards
= V4L2_DV_BT_STD_GTF
;
575 fmt
->bt
.flags
|= V4L2_DV_FL_REDUCED_BLANKING
;
578 EXPORT_SYMBOL_GPL(v4l2_detect_gtf
);
580 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
581 * 0x15 and 0x16 from the EDID.
582 * @hor_landscape - byte 0x15 from the EDID.
583 * @vert_portrait - byte 0x16 from the EDID.
585 * Determines the aspect ratio from the EDID.
586 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
587 * "Horizontal and Vertical Screen Size or Aspect Ratio"
589 struct v4l2_fract
v4l2_calc_aspect_ratio(u8 hor_landscape
, u8 vert_portrait
)
591 struct v4l2_fract aspect
= { 16, 9 };
595 /* Nothing filled in, fallback to 16:9 */
596 if (!hor_landscape
&& !vert_portrait
)
598 /* Both filled in, so they are interpreted as the screen size in cm */
599 if (hor_landscape
&& vert_portrait
) {
600 aspect
.numerator
= hor_landscape
;
601 aspect
.denominator
= vert_portrait
;
604 /* Only one is filled in, so interpret them as a ratio:
606 ratio
= hor_landscape
| vert_portrait
;
607 /* Change some rounded values into the exact aspect ratio */
609 aspect
.numerator
= 16;
610 aspect
.denominator
= 9;
611 } else if (ratio
== 34) {
612 aspect
.numerator
= 4;
613 aspect
.numerator
= 3;
614 } else if (ratio
== 68) {
615 aspect
.numerator
= 15;
616 aspect
.numerator
= 9;
618 aspect
.numerator
= hor_landscape
+ 99;
619 aspect
.denominator
= 100;
623 /* The aspect ratio is for portrait, so swap numerator and denominator */
624 tmp
= aspect
.denominator
;
625 aspect
.denominator
= aspect
.numerator
;
626 aspect
.numerator
= tmp
;
629 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio
);