2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_MUTEX(regulator_list_mutex
);
53 static LIST_HEAD(regulator_list
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static void _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
112 static const char *rdev_get_name(struct regulator_dev
*rdev
)
114 if (rdev
->constraints
&& rdev
->constraints
->name
)
115 return rdev
->constraints
->name
;
116 else if (rdev
->desc
->name
)
117 return rdev
->desc
->name
;
122 static bool have_full_constraints(void)
124 return has_full_constraints
|| of_have_populated_dt();
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 int current_uV
= _regulator_get_voltage(rdev
);
848 if (current_uV
< 0) {
849 rdev_err(rdev
, "failed to get the current voltage\n");
852 if (current_uV
< rdev
->constraints
->min_uV
||
853 current_uV
> rdev
->constraints
->max_uV
) {
854 ret
= _regulator_do_set_voltage(
855 rdev
, rdev
->constraints
->min_uV
,
856 rdev
->constraints
->max_uV
);
859 "failed to apply %duV constraint\n",
860 rdev
->constraints
->min_uV
);
866 /* constrain machine-level voltage specs to fit
867 * the actual range supported by this regulator.
869 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
870 int count
= rdev
->desc
->n_voltages
;
872 int min_uV
= INT_MAX
;
873 int max_uV
= INT_MIN
;
874 int cmin
= constraints
->min_uV
;
875 int cmax
= constraints
->max_uV
;
877 /* it's safe to autoconfigure fixed-voltage supplies
878 and the constraints are used by list_voltage. */
879 if (count
== 1 && !cmin
) {
882 constraints
->min_uV
= cmin
;
883 constraints
->max_uV
= cmax
;
886 /* voltage constraints are optional */
887 if ((cmin
== 0) && (cmax
== 0))
890 /* else require explicit machine-level constraints */
891 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
892 rdev_err(rdev
, "invalid voltage constraints\n");
896 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897 for (i
= 0; i
< count
; i
++) {
900 value
= ops
->list_voltage(rdev
, i
);
904 /* maybe adjust [min_uV..max_uV] */
905 if (value
>= cmin
&& value
< min_uV
)
907 if (value
<= cmax
&& value
> max_uV
)
911 /* final: [min_uV..max_uV] valid iff constraints valid */
912 if (max_uV
< min_uV
) {
914 "unsupportable voltage constraints %u-%uuV\n",
919 /* use regulator's subset of machine constraints */
920 if (constraints
->min_uV
< min_uV
) {
921 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
922 constraints
->min_uV
, min_uV
);
923 constraints
->min_uV
= min_uV
;
925 if (constraints
->max_uV
> max_uV
) {
926 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
927 constraints
->max_uV
, max_uV
);
928 constraints
->max_uV
= max_uV
;
935 static int machine_constraints_current(struct regulator_dev
*rdev
,
936 struct regulation_constraints
*constraints
)
938 struct regulator_ops
*ops
= rdev
->desc
->ops
;
941 if (!constraints
->min_uA
&& !constraints
->max_uA
)
944 if (constraints
->min_uA
> constraints
->max_uA
) {
945 rdev_err(rdev
, "Invalid current constraints\n");
949 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
950 rdev_warn(rdev
, "Operation of current configuration missing\n");
954 /* Set regulator current in constraints range */
955 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
956 constraints
->max_uA
);
958 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
965 static int _regulator_do_enable(struct regulator_dev
*rdev
);
968 * set_machine_constraints - sets regulator constraints
969 * @rdev: regulator source
970 * @constraints: constraints to apply
972 * Allows platform initialisation code to define and constrain
973 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
974 * Constraints *must* be set by platform code in order for some
975 * regulator operations to proceed i.e. set_voltage, set_current_limit,
978 static int set_machine_constraints(struct regulator_dev
*rdev
,
979 const struct regulation_constraints
*constraints
)
982 struct regulator_ops
*ops
= rdev
->desc
->ops
;
985 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
988 rdev
->constraints
= kzalloc(sizeof(*constraints
),
990 if (!rdev
->constraints
)
993 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
997 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1001 /* do we need to setup our suspend state */
1002 if (rdev
->constraints
->initial_state
) {
1003 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1005 rdev_err(rdev
, "failed to set suspend state\n");
1010 if (rdev
->constraints
->initial_mode
) {
1011 if (!ops
->set_mode
) {
1012 rdev_err(rdev
, "no set_mode operation\n");
1017 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1019 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1024 /* If the constraints say the regulator should be on at this point
1025 * and we have control then make sure it is enabled.
1027 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1028 ret
= _regulator_do_enable(rdev
);
1029 if (ret
< 0 && ret
!= -EINVAL
) {
1030 rdev_err(rdev
, "failed to enable\n");
1035 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1036 && ops
->set_ramp_delay
) {
1037 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1039 rdev_err(rdev
, "failed to set ramp_delay\n");
1044 print_constraints(rdev
);
1047 kfree(rdev
->constraints
);
1048 rdev
->constraints
= NULL
;
1053 * set_supply - set regulator supply regulator
1054 * @rdev: regulator name
1055 * @supply_rdev: supply regulator name
1057 * Called by platform initialisation code to set the supply regulator for this
1058 * regulator. This ensures that a regulators supply will also be enabled by the
1059 * core if it's child is enabled.
1061 static int set_supply(struct regulator_dev
*rdev
,
1062 struct regulator_dev
*supply_rdev
)
1066 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1068 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1069 if (rdev
->supply
== NULL
) {
1073 supply_rdev
->open_count
++;
1079 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080 * @rdev: regulator source
1081 * @consumer_dev_name: dev_name() string for device supply applies to
1082 * @supply: symbolic name for supply
1084 * Allows platform initialisation code to map physical regulator
1085 * sources to symbolic names for supplies for use by devices. Devices
1086 * should use these symbolic names to request regulators, avoiding the
1087 * need to provide board-specific regulator names as platform data.
1089 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1090 const char *consumer_dev_name
,
1093 struct regulator_map
*node
;
1099 if (consumer_dev_name
!= NULL
)
1104 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1105 if (node
->dev_name
&& consumer_dev_name
) {
1106 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1108 } else if (node
->dev_name
|| consumer_dev_name
) {
1112 if (strcmp(node
->supply
, supply
) != 0)
1115 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1117 dev_name(&node
->regulator
->dev
),
1118 node
->regulator
->desc
->name
,
1120 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1124 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1128 node
->regulator
= rdev
;
1129 node
->supply
= supply
;
1132 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1133 if (node
->dev_name
== NULL
) {
1139 list_add(&node
->list
, ®ulator_map_list
);
1143 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1145 struct regulator_map
*node
, *n
;
1147 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1148 if (rdev
== node
->regulator
) {
1149 list_del(&node
->list
);
1150 kfree(node
->dev_name
);
1156 #define REG_STR_SIZE 64
1158 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1160 const char *supply_name
)
1162 struct regulator
*regulator
;
1163 char buf
[REG_STR_SIZE
];
1166 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1167 if (regulator
== NULL
)
1170 mutex_lock(&rdev
->mutex
);
1171 regulator
->rdev
= rdev
;
1172 list_add(®ulator
->list
, &rdev
->consumer_list
);
1175 regulator
->dev
= dev
;
1177 /* Add a link to the device sysfs entry */
1178 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1179 dev
->kobj
.name
, supply_name
);
1180 if (size
>= REG_STR_SIZE
)
1183 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1184 if (regulator
->supply_name
== NULL
)
1187 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1190 rdev_warn(rdev
, "could not add device link %s err %d\n",
1191 dev
->kobj
.name
, err
);
1195 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1196 if (regulator
->supply_name
== NULL
)
1200 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1202 if (!regulator
->debugfs
) {
1203 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1205 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1206 ®ulator
->uA_load
);
1207 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1208 ®ulator
->min_uV
);
1209 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1210 ®ulator
->max_uV
);
1214 * Check now if the regulator is an always on regulator - if
1215 * it is then we don't need to do nearly so much work for
1216 * enable/disable calls.
1218 if (!_regulator_can_change_status(rdev
) &&
1219 _regulator_is_enabled(rdev
))
1220 regulator
->always_on
= true;
1222 mutex_unlock(&rdev
->mutex
);
1225 list_del(®ulator
->list
);
1227 mutex_unlock(&rdev
->mutex
);
1231 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1233 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1234 return rdev
->constraints
->enable_time
;
1235 if (!rdev
->desc
->ops
->enable_time
)
1236 return rdev
->desc
->enable_time
;
1237 return rdev
->desc
->ops
->enable_time(rdev
);
1240 static struct regulator_supply_alias
*regulator_find_supply_alias(
1241 struct device
*dev
, const char *supply
)
1243 struct regulator_supply_alias
*map
;
1245 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1246 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1252 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1254 struct regulator_supply_alias
*map
;
1256 map
= regulator_find_supply_alias(*dev
, *supply
);
1258 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1259 *supply
, map
->alias_supply
,
1260 dev_name(map
->alias_dev
));
1261 *dev
= map
->alias_dev
;
1262 *supply
= map
->alias_supply
;
1266 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1270 struct regulator_dev
*r
;
1271 struct device_node
*node
;
1272 struct regulator_map
*map
;
1273 const char *devname
= NULL
;
1275 regulator_supply_alias(&dev
, &supply
);
1277 /* first do a dt based lookup */
1278 if (dev
&& dev
->of_node
) {
1279 node
= of_get_regulator(dev
, supply
);
1281 list_for_each_entry(r
, ®ulator_list
, list
)
1282 if (r
->dev
.parent
&&
1283 node
== r
->dev
.of_node
)
1285 *ret
= -EPROBE_DEFER
;
1289 * If we couldn't even get the node then it's
1290 * not just that the device didn't register
1291 * yet, there's no node and we'll never
1298 /* if not found, try doing it non-dt way */
1300 devname
= dev_name(dev
);
1302 list_for_each_entry(r
, ®ulator_list
, list
)
1303 if (strcmp(rdev_get_name(r
), supply
) == 0)
1306 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1307 /* If the mapping has a device set up it must match */
1308 if (map
->dev_name
&&
1309 (!devname
|| strcmp(map
->dev_name
, devname
)))
1312 if (strcmp(map
->supply
, supply
) == 0)
1313 return map
->regulator
;
1320 /* Internal regulator request function */
1321 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1322 bool exclusive
, bool allow_dummy
)
1324 struct regulator_dev
*rdev
;
1325 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1326 const char *devname
= NULL
;
1330 pr_err("get() with no identifier\n");
1331 return ERR_PTR(-EINVAL
);
1335 devname
= dev_name(dev
);
1337 if (have_full_constraints())
1340 ret
= -EPROBE_DEFER
;
1342 mutex_lock(®ulator_list_mutex
);
1344 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1348 regulator
= ERR_PTR(ret
);
1351 * If we have return value from dev_lookup fail, we do not expect to
1352 * succeed, so, quit with appropriate error value
1354 if (ret
&& ret
!= -ENODEV
)
1358 devname
= "deviceless";
1361 * Assume that a regulator is physically present and enabled
1362 * even if it isn't hooked up and just provide a dummy.
1364 if (have_full_constraints() && allow_dummy
) {
1365 pr_warn("%s supply %s not found, using dummy regulator\n",
1368 rdev
= dummy_regulator_rdev
;
1370 /* Don't log an error when called from regulator_get_optional() */
1371 } else if (!have_full_constraints() || exclusive
) {
1372 dev_warn(dev
, "dummy supplies not allowed\n");
1375 mutex_unlock(®ulator_list_mutex
);
1379 if (rdev
->exclusive
) {
1380 regulator
= ERR_PTR(-EPERM
);
1384 if (exclusive
&& rdev
->open_count
) {
1385 regulator
= ERR_PTR(-EBUSY
);
1389 if (!try_module_get(rdev
->owner
))
1392 regulator
= create_regulator(rdev
, dev
, id
);
1393 if (regulator
== NULL
) {
1394 regulator
= ERR_PTR(-ENOMEM
);
1395 module_put(rdev
->owner
);
1401 rdev
->exclusive
= 1;
1403 ret
= _regulator_is_enabled(rdev
);
1405 rdev
->use_count
= 1;
1407 rdev
->use_count
= 0;
1411 mutex_unlock(®ulator_list_mutex
);
1417 * regulator_get - lookup and obtain a reference to a regulator.
1418 * @dev: device for regulator "consumer"
1419 * @id: Supply name or regulator ID.
1421 * Returns a struct regulator corresponding to the regulator producer,
1422 * or IS_ERR() condition containing errno.
1424 * Use of supply names configured via regulator_set_device_supply() is
1425 * strongly encouraged. It is recommended that the supply name used
1426 * should match the name used for the supply and/or the relevant
1427 * device pins in the datasheet.
1429 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1431 return _regulator_get(dev
, id
, false, true);
1433 EXPORT_SYMBOL_GPL(regulator_get
);
1436 * regulator_get_exclusive - obtain exclusive access to a regulator.
1437 * @dev: device for regulator "consumer"
1438 * @id: Supply name or regulator ID.
1440 * Returns a struct regulator corresponding to the regulator producer,
1441 * or IS_ERR() condition containing errno. Other consumers will be
1442 * unable to obtain this regulator while this reference is held and the
1443 * use count for the regulator will be initialised to reflect the current
1444 * state of the regulator.
1446 * This is intended for use by consumers which cannot tolerate shared
1447 * use of the regulator such as those which need to force the
1448 * regulator off for correct operation of the hardware they are
1451 * Use of supply names configured via regulator_set_device_supply() is
1452 * strongly encouraged. It is recommended that the supply name used
1453 * should match the name used for the supply and/or the relevant
1454 * device pins in the datasheet.
1456 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1458 return _regulator_get(dev
, id
, true, false);
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1463 * regulator_get_optional - obtain optional access to a regulator.
1464 * @dev: device for regulator "consumer"
1465 * @id: Supply name or regulator ID.
1467 * Returns a struct regulator corresponding to the regulator producer,
1468 * or IS_ERR() condition containing errno.
1470 * This is intended for use by consumers for devices which can have
1471 * some supplies unconnected in normal use, such as some MMC devices.
1472 * It can allow the regulator core to provide stub supplies for other
1473 * supplies requested using normal regulator_get() calls without
1474 * disrupting the operation of drivers that can handle absent
1477 * Use of supply names configured via regulator_set_device_supply() is
1478 * strongly encouraged. It is recommended that the supply name used
1479 * should match the name used for the supply and/or the relevant
1480 * device pins in the datasheet.
1482 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1484 return _regulator_get(dev
, id
, false, false);
1486 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1488 /* Locks held by regulator_put() */
1489 static void _regulator_put(struct regulator
*regulator
)
1491 struct regulator_dev
*rdev
;
1493 if (regulator
== NULL
|| IS_ERR(regulator
))
1496 rdev
= regulator
->rdev
;
1498 debugfs_remove_recursive(regulator
->debugfs
);
1500 /* remove any sysfs entries */
1502 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1503 kfree(regulator
->supply_name
);
1504 list_del(®ulator
->list
);
1508 rdev
->exclusive
= 0;
1510 module_put(rdev
->owner
);
1514 * regulator_put - "free" the regulator source
1515 * @regulator: regulator source
1517 * Note: drivers must ensure that all regulator_enable calls made on this
1518 * regulator source are balanced by regulator_disable calls prior to calling
1521 void regulator_put(struct regulator
*regulator
)
1523 mutex_lock(®ulator_list_mutex
);
1524 _regulator_put(regulator
);
1525 mutex_unlock(®ulator_list_mutex
);
1527 EXPORT_SYMBOL_GPL(regulator_put
);
1530 * regulator_register_supply_alias - Provide device alias for supply lookup
1532 * @dev: device that will be given as the regulator "consumer"
1533 * @id: Supply name or regulator ID
1534 * @alias_dev: device that should be used to lookup the supply
1535 * @alias_id: Supply name or regulator ID that should be used to lookup the
1538 * All lookups for id on dev will instead be conducted for alias_id on
1541 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1542 struct device
*alias_dev
,
1543 const char *alias_id
)
1545 struct regulator_supply_alias
*map
;
1547 map
= regulator_find_supply_alias(dev
, id
);
1551 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1556 map
->src_supply
= id
;
1557 map
->alias_dev
= alias_dev
;
1558 map
->alias_supply
= alias_id
;
1560 list_add(&map
->list
, ®ulator_supply_alias_list
);
1562 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1563 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1567 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1570 * regulator_unregister_supply_alias - Remove device alias
1572 * @dev: device that will be given as the regulator "consumer"
1573 * @id: Supply name or regulator ID
1575 * Remove a lookup alias if one exists for id on dev.
1577 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1579 struct regulator_supply_alias
*map
;
1581 map
= regulator_find_supply_alias(dev
, id
);
1583 list_del(&map
->list
);
1587 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1590 * regulator_bulk_register_supply_alias - register multiple aliases
1592 * @dev: device that will be given as the regulator "consumer"
1593 * @id: List of supply names or regulator IDs
1594 * @alias_dev: device that should be used to lookup the supply
1595 * @alias_id: List of supply names or regulator IDs that should be used to
1597 * @num_id: Number of aliases to register
1599 * @return 0 on success, an errno on failure.
1601 * This helper function allows drivers to register several supply
1602 * aliases in one operation. If any of the aliases cannot be
1603 * registered any aliases that were registered will be removed
1604 * before returning to the caller.
1606 int regulator_bulk_register_supply_alias(struct device
*dev
,
1607 const char *const *id
,
1608 struct device
*alias_dev
,
1609 const char *const *alias_id
,
1615 for (i
= 0; i
< num_id
; ++i
) {
1616 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1626 "Failed to create supply alias %s,%s -> %s,%s\n",
1627 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1630 regulator_unregister_supply_alias(dev
, id
[i
]);
1634 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1637 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1639 * @dev: device that will be given as the regulator "consumer"
1640 * @id: List of supply names or regulator IDs
1641 * @num_id: Number of aliases to unregister
1643 * This helper function allows drivers to unregister several supply
1644 * aliases in one operation.
1646 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1647 const char *const *id
,
1652 for (i
= 0; i
< num_id
; ++i
)
1653 regulator_unregister_supply_alias(dev
, id
[i
]);
1655 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1658 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1659 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1660 const struct regulator_config
*config
)
1662 struct regulator_enable_gpio
*pin
;
1665 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1666 if (pin
->gpio
== config
->ena_gpio
) {
1667 rdev_dbg(rdev
, "GPIO %d is already used\n",
1669 goto update_ena_gpio_to_rdev
;
1673 ret
= gpio_request_one(config
->ena_gpio
,
1674 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1675 rdev_get_name(rdev
));
1679 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1681 gpio_free(config
->ena_gpio
);
1685 pin
->gpio
= config
->ena_gpio
;
1686 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1687 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1689 update_ena_gpio_to_rdev
:
1690 pin
->request_count
++;
1691 rdev
->ena_pin
= pin
;
1695 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1697 struct regulator_enable_gpio
*pin
, *n
;
1702 /* Free the GPIO only in case of no use */
1703 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1704 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1705 if (pin
->request_count
<= 1) {
1706 pin
->request_count
= 0;
1707 gpio_free(pin
->gpio
);
1708 list_del(&pin
->list
);
1711 pin
->request_count
--;
1718 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1719 * @rdev: regulator_dev structure
1720 * @enable: enable GPIO at initial use?
1722 * GPIO is enabled in case of initial use. (enable_count is 0)
1723 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1725 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1727 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1733 /* Enable GPIO at initial use */
1734 if (pin
->enable_count
== 0)
1735 gpio_set_value_cansleep(pin
->gpio
,
1736 !pin
->ena_gpio_invert
);
1738 pin
->enable_count
++;
1740 if (pin
->enable_count
> 1) {
1741 pin
->enable_count
--;
1745 /* Disable GPIO if not used */
1746 if (pin
->enable_count
<= 1) {
1747 gpio_set_value_cansleep(pin
->gpio
,
1748 pin
->ena_gpio_invert
);
1749 pin
->enable_count
= 0;
1756 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1760 /* Query before enabling in case configuration dependent. */
1761 ret
= _regulator_get_enable_time(rdev
);
1765 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1769 trace_regulator_enable(rdev_get_name(rdev
));
1771 if (rdev
->ena_pin
) {
1772 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1775 rdev
->ena_gpio_state
= 1;
1776 } else if (rdev
->desc
->ops
->enable
) {
1777 ret
= rdev
->desc
->ops
->enable(rdev
);
1784 /* Allow the regulator to ramp; it would be useful to extend
1785 * this for bulk operations so that the regulators can ramp
1787 trace_regulator_enable_delay(rdev_get_name(rdev
));
1790 * Delay for the requested amount of time as per the guidelines in:
1792 * Documentation/timers/timers-howto.txt
1794 * The assumption here is that regulators will never be enabled in
1795 * atomic context and therefore sleeping functions can be used.
1798 unsigned int ms
= delay
/ 1000;
1799 unsigned int us
= delay
% 1000;
1803 * For small enough values, handle super-millisecond
1804 * delays in the usleep_range() call below.
1813 * Give the scheduler some room to coalesce with any other
1814 * wakeup sources. For delays shorter than 10 us, don't even
1815 * bother setting up high-resolution timers and just busy-
1819 usleep_range(us
, us
+ 100);
1824 trace_regulator_enable_complete(rdev_get_name(rdev
));
1829 /* locks held by regulator_enable() */
1830 static int _regulator_enable(struct regulator_dev
*rdev
)
1834 /* check voltage and requested load before enabling */
1835 if (rdev
->constraints
&&
1836 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1837 drms_uA_update(rdev
);
1839 if (rdev
->use_count
== 0) {
1840 /* The regulator may on if it's not switchable or left on */
1841 ret
= _regulator_is_enabled(rdev
);
1842 if (ret
== -EINVAL
|| ret
== 0) {
1843 if (!_regulator_can_change_status(rdev
))
1846 ret
= _regulator_do_enable(rdev
);
1850 } else if (ret
< 0) {
1851 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1854 /* Fallthrough on positive return values - already enabled */
1863 * regulator_enable - enable regulator output
1864 * @regulator: regulator source
1866 * Request that the regulator be enabled with the regulator output at
1867 * the predefined voltage or current value. Calls to regulator_enable()
1868 * must be balanced with calls to regulator_disable().
1870 * NOTE: the output value can be set by other drivers, boot loader or may be
1871 * hardwired in the regulator.
1873 int regulator_enable(struct regulator
*regulator
)
1875 struct regulator_dev
*rdev
= regulator
->rdev
;
1878 if (regulator
->always_on
)
1882 ret
= regulator_enable(rdev
->supply
);
1887 mutex_lock(&rdev
->mutex
);
1888 ret
= _regulator_enable(rdev
);
1889 mutex_unlock(&rdev
->mutex
);
1891 if (ret
!= 0 && rdev
->supply
)
1892 regulator_disable(rdev
->supply
);
1896 EXPORT_SYMBOL_GPL(regulator_enable
);
1898 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1902 trace_regulator_disable(rdev_get_name(rdev
));
1904 if (rdev
->ena_pin
) {
1905 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1908 rdev
->ena_gpio_state
= 0;
1910 } else if (rdev
->desc
->ops
->disable
) {
1911 ret
= rdev
->desc
->ops
->disable(rdev
);
1916 trace_regulator_disable_complete(rdev_get_name(rdev
));
1921 /* locks held by regulator_disable() */
1922 static int _regulator_disable(struct regulator_dev
*rdev
)
1926 if (WARN(rdev
->use_count
<= 0,
1927 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1930 /* are we the last user and permitted to disable ? */
1931 if (rdev
->use_count
== 1 &&
1932 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1934 /* we are last user */
1935 if (_regulator_can_change_status(rdev
)) {
1936 ret
= _regulator_do_disable(rdev
);
1938 rdev_err(rdev
, "failed to disable\n");
1941 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1945 rdev
->use_count
= 0;
1946 } else if (rdev
->use_count
> 1) {
1948 if (rdev
->constraints
&&
1949 (rdev
->constraints
->valid_ops_mask
&
1950 REGULATOR_CHANGE_DRMS
))
1951 drms_uA_update(rdev
);
1960 * regulator_disable - disable regulator output
1961 * @regulator: regulator source
1963 * Disable the regulator output voltage or current. Calls to
1964 * regulator_enable() must be balanced with calls to
1965 * regulator_disable().
1967 * NOTE: this will only disable the regulator output if no other consumer
1968 * devices have it enabled, the regulator device supports disabling and
1969 * machine constraints permit this operation.
1971 int regulator_disable(struct regulator
*regulator
)
1973 struct regulator_dev
*rdev
= regulator
->rdev
;
1976 if (regulator
->always_on
)
1979 mutex_lock(&rdev
->mutex
);
1980 ret
= _regulator_disable(rdev
);
1981 mutex_unlock(&rdev
->mutex
);
1983 if (ret
== 0 && rdev
->supply
)
1984 regulator_disable(rdev
->supply
);
1988 EXPORT_SYMBOL_GPL(regulator_disable
);
1990 /* locks held by regulator_force_disable() */
1991 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1995 ret
= _regulator_do_disable(rdev
);
1997 rdev_err(rdev
, "failed to force disable\n");
2001 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2002 REGULATOR_EVENT_DISABLE
, NULL
);
2008 * regulator_force_disable - force disable regulator output
2009 * @regulator: regulator source
2011 * Forcibly disable the regulator output voltage or current.
2012 * NOTE: this *will* disable the regulator output even if other consumer
2013 * devices have it enabled. This should be used for situations when device
2014 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2016 int regulator_force_disable(struct regulator
*regulator
)
2018 struct regulator_dev
*rdev
= regulator
->rdev
;
2021 mutex_lock(&rdev
->mutex
);
2022 regulator
->uA_load
= 0;
2023 ret
= _regulator_force_disable(regulator
->rdev
);
2024 mutex_unlock(&rdev
->mutex
);
2027 while (rdev
->open_count
--)
2028 regulator_disable(rdev
->supply
);
2032 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2034 static void regulator_disable_work(struct work_struct
*work
)
2036 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2040 mutex_lock(&rdev
->mutex
);
2042 BUG_ON(!rdev
->deferred_disables
);
2044 count
= rdev
->deferred_disables
;
2045 rdev
->deferred_disables
= 0;
2047 for (i
= 0; i
< count
; i
++) {
2048 ret
= _regulator_disable(rdev
);
2050 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2053 mutex_unlock(&rdev
->mutex
);
2056 for (i
= 0; i
< count
; i
++) {
2057 ret
= regulator_disable(rdev
->supply
);
2060 "Supply disable failed: %d\n", ret
);
2067 * regulator_disable_deferred - disable regulator output with delay
2068 * @regulator: regulator source
2069 * @ms: miliseconds until the regulator is disabled
2071 * Execute regulator_disable() on the regulator after a delay. This
2072 * is intended for use with devices that require some time to quiesce.
2074 * NOTE: this will only disable the regulator output if no other consumer
2075 * devices have it enabled, the regulator device supports disabling and
2076 * machine constraints permit this operation.
2078 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2080 struct regulator_dev
*rdev
= regulator
->rdev
;
2083 if (regulator
->always_on
)
2087 return regulator_disable(regulator
);
2089 mutex_lock(&rdev
->mutex
);
2090 rdev
->deferred_disables
++;
2091 mutex_unlock(&rdev
->mutex
);
2093 ret
= queue_delayed_work(system_power_efficient_wq
,
2094 &rdev
->disable_work
,
2095 msecs_to_jiffies(ms
));
2101 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2103 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2105 /* A GPIO control always takes precedence */
2107 return rdev
->ena_gpio_state
;
2109 /* If we don't know then assume that the regulator is always on */
2110 if (!rdev
->desc
->ops
->is_enabled
)
2113 return rdev
->desc
->ops
->is_enabled(rdev
);
2117 * regulator_is_enabled - is the regulator output enabled
2118 * @regulator: regulator source
2120 * Returns positive if the regulator driver backing the source/client
2121 * has requested that the device be enabled, zero if it hasn't, else a
2122 * negative errno code.
2124 * Note that the device backing this regulator handle can have multiple
2125 * users, so it might be enabled even if regulator_enable() was never
2126 * called for this particular source.
2128 int regulator_is_enabled(struct regulator
*regulator
)
2132 if (regulator
->always_on
)
2135 mutex_lock(®ulator
->rdev
->mutex
);
2136 ret
= _regulator_is_enabled(regulator
->rdev
);
2137 mutex_unlock(®ulator
->rdev
->mutex
);
2141 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2144 * regulator_can_change_voltage - check if regulator can change voltage
2145 * @regulator: regulator source
2147 * Returns positive if the regulator driver backing the source/client
2148 * can change its voltage, false otherwise. Useful for detecting fixed
2149 * or dummy regulators and disabling voltage change logic in the client
2152 int regulator_can_change_voltage(struct regulator
*regulator
)
2154 struct regulator_dev
*rdev
= regulator
->rdev
;
2156 if (rdev
->constraints
&&
2157 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2158 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2161 if (rdev
->desc
->continuous_voltage_range
&&
2162 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2163 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2169 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2172 * regulator_count_voltages - count regulator_list_voltage() selectors
2173 * @regulator: regulator source
2175 * Returns number of selectors, or negative errno. Selectors are
2176 * numbered starting at zero, and typically correspond to bitfields
2177 * in hardware registers.
2179 int regulator_count_voltages(struct regulator
*regulator
)
2181 struct regulator_dev
*rdev
= regulator
->rdev
;
2183 return rdev
->desc
->n_voltages
? : -EINVAL
;
2185 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2188 * regulator_list_voltage - enumerate supported voltages
2189 * @regulator: regulator source
2190 * @selector: identify voltage to list
2191 * Context: can sleep
2193 * Returns a voltage that can be passed to @regulator_set_voltage(),
2194 * zero if this selector code can't be used on this system, or a
2197 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2199 struct regulator_dev
*rdev
= regulator
->rdev
;
2200 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2203 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2204 return rdev
->desc
->fixed_uV
;
2206 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2209 mutex_lock(&rdev
->mutex
);
2210 ret
= ops
->list_voltage(rdev
, selector
);
2211 mutex_unlock(&rdev
->mutex
);
2214 if (ret
< rdev
->constraints
->min_uV
)
2216 else if (ret
> rdev
->constraints
->max_uV
)
2222 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2225 * regulator_get_linear_step - return the voltage step size between VSEL values
2226 * @regulator: regulator source
2228 * Returns the voltage step size between VSEL values for linear
2229 * regulators, or return 0 if the regulator isn't a linear regulator.
2231 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2233 struct regulator_dev
*rdev
= regulator
->rdev
;
2235 return rdev
->desc
->uV_step
;
2237 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2240 * regulator_is_supported_voltage - check if a voltage range can be supported
2242 * @regulator: Regulator to check.
2243 * @min_uV: Minimum required voltage in uV.
2244 * @max_uV: Maximum required voltage in uV.
2246 * Returns a boolean or a negative error code.
2248 int regulator_is_supported_voltage(struct regulator
*regulator
,
2249 int min_uV
, int max_uV
)
2251 struct regulator_dev
*rdev
= regulator
->rdev
;
2252 int i
, voltages
, ret
;
2254 /* If we can't change voltage check the current voltage */
2255 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2256 ret
= regulator_get_voltage(regulator
);
2258 return min_uV
<= ret
&& ret
<= max_uV
;
2263 /* Any voltage within constrains range is fine? */
2264 if (rdev
->desc
->continuous_voltage_range
)
2265 return min_uV
>= rdev
->constraints
->min_uV
&&
2266 max_uV
<= rdev
->constraints
->max_uV
;
2268 ret
= regulator_count_voltages(regulator
);
2273 for (i
= 0; i
< voltages
; i
++) {
2274 ret
= regulator_list_voltage(regulator
, i
);
2276 if (ret
>= min_uV
&& ret
<= max_uV
)
2282 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2284 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2285 int min_uV
, int max_uV
)
2290 unsigned int selector
;
2291 int old_selector
= -1;
2293 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2295 min_uV
+= rdev
->constraints
->uV_offset
;
2296 max_uV
+= rdev
->constraints
->uV_offset
;
2299 * If we can't obtain the old selector there is not enough
2300 * info to call set_voltage_time_sel().
2302 if (_regulator_is_enabled(rdev
) &&
2303 rdev
->desc
->ops
->set_voltage_time_sel
&&
2304 rdev
->desc
->ops
->get_voltage_sel
) {
2305 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2306 if (old_selector
< 0)
2307 return old_selector
;
2310 if (rdev
->desc
->ops
->set_voltage
) {
2311 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2315 if (rdev
->desc
->ops
->list_voltage
)
2316 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2319 best_val
= _regulator_get_voltage(rdev
);
2322 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2323 if (rdev
->desc
->ops
->map_voltage
) {
2324 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2327 if (rdev
->desc
->ops
->list_voltage
==
2328 regulator_list_voltage_linear
)
2329 ret
= regulator_map_voltage_linear(rdev
,
2331 else if (rdev
->desc
->ops
->list_voltage
==
2332 regulator_list_voltage_linear_range
)
2333 ret
= regulator_map_voltage_linear_range(rdev
,
2336 ret
= regulator_map_voltage_iterate(rdev
,
2341 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2342 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2344 if (old_selector
== selector
)
2347 ret
= rdev
->desc
->ops
->set_voltage_sel(
2357 /* Call set_voltage_time_sel if successfully obtained old_selector */
2358 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2359 && old_selector
!= selector
) {
2361 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2362 old_selector
, selector
);
2364 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2369 /* Insert any necessary delays */
2370 if (delay
>= 1000) {
2371 mdelay(delay
/ 1000);
2372 udelay(delay
% 1000);
2378 if (ret
== 0 && best_val
>= 0) {
2379 unsigned long data
= best_val
;
2381 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2385 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2391 * regulator_set_voltage - set regulator output voltage
2392 * @regulator: regulator source
2393 * @min_uV: Minimum required voltage in uV
2394 * @max_uV: Maximum acceptable voltage in uV
2396 * Sets a voltage regulator to the desired output voltage. This can be set
2397 * during any regulator state. IOW, regulator can be disabled or enabled.
2399 * If the regulator is enabled then the voltage will change to the new value
2400 * immediately otherwise if the regulator is disabled the regulator will
2401 * output at the new voltage when enabled.
2403 * NOTE: If the regulator is shared between several devices then the lowest
2404 * request voltage that meets the system constraints will be used.
2405 * Regulator system constraints must be set for this regulator before
2406 * calling this function otherwise this call will fail.
2408 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2410 struct regulator_dev
*rdev
= regulator
->rdev
;
2412 int old_min_uV
, old_max_uV
;
2415 mutex_lock(&rdev
->mutex
);
2417 /* If we're setting the same range as last time the change
2418 * should be a noop (some cpufreq implementations use the same
2419 * voltage for multiple frequencies, for example).
2421 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2424 /* If we're trying to set a range that overlaps the current voltage,
2425 * return succesfully even though the regulator does not support
2426 * changing the voltage.
2428 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2429 current_uV
= _regulator_get_voltage(rdev
);
2430 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2431 regulator
->min_uV
= min_uV
;
2432 regulator
->max_uV
= max_uV
;
2438 if (!rdev
->desc
->ops
->set_voltage
&&
2439 !rdev
->desc
->ops
->set_voltage_sel
) {
2444 /* constraints check */
2445 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2449 /* restore original values in case of error */
2450 old_min_uV
= regulator
->min_uV
;
2451 old_max_uV
= regulator
->max_uV
;
2452 regulator
->min_uV
= min_uV
;
2453 regulator
->max_uV
= max_uV
;
2455 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2459 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2464 mutex_unlock(&rdev
->mutex
);
2467 regulator
->min_uV
= old_min_uV
;
2468 regulator
->max_uV
= old_max_uV
;
2469 mutex_unlock(&rdev
->mutex
);
2472 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2475 * regulator_set_voltage_time - get raise/fall time
2476 * @regulator: regulator source
2477 * @old_uV: starting voltage in microvolts
2478 * @new_uV: target voltage in microvolts
2480 * Provided with the starting and ending voltage, this function attempts to
2481 * calculate the time in microseconds required to rise or fall to this new
2484 int regulator_set_voltage_time(struct regulator
*regulator
,
2485 int old_uV
, int new_uV
)
2487 struct regulator_dev
*rdev
= regulator
->rdev
;
2488 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2494 /* Currently requires operations to do this */
2495 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2496 || !rdev
->desc
->n_voltages
)
2499 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2500 /* We only look for exact voltage matches here */
2501 voltage
= regulator_list_voltage(regulator
, i
);
2506 if (voltage
== old_uV
)
2508 if (voltage
== new_uV
)
2512 if (old_sel
< 0 || new_sel
< 0)
2515 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2517 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2520 * regulator_set_voltage_time_sel - get raise/fall time
2521 * @rdev: regulator source device
2522 * @old_selector: selector for starting voltage
2523 * @new_selector: selector for target voltage
2525 * Provided with the starting and target voltage selectors, this function
2526 * returns time in microseconds required to rise or fall to this new voltage
2528 * Drivers providing ramp_delay in regulation_constraints can use this as their
2529 * set_voltage_time_sel() operation.
2531 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2532 unsigned int old_selector
,
2533 unsigned int new_selector
)
2535 unsigned int ramp_delay
= 0;
2536 int old_volt
, new_volt
;
2538 if (rdev
->constraints
->ramp_delay
)
2539 ramp_delay
= rdev
->constraints
->ramp_delay
;
2540 else if (rdev
->desc
->ramp_delay
)
2541 ramp_delay
= rdev
->desc
->ramp_delay
;
2543 if (ramp_delay
== 0) {
2544 rdev_warn(rdev
, "ramp_delay not set\n");
2549 if (!rdev
->desc
->ops
->list_voltage
)
2552 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2553 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2555 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2557 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2560 * regulator_sync_voltage - re-apply last regulator output voltage
2561 * @regulator: regulator source
2563 * Re-apply the last configured voltage. This is intended to be used
2564 * where some external control source the consumer is cooperating with
2565 * has caused the configured voltage to change.
2567 int regulator_sync_voltage(struct regulator
*regulator
)
2569 struct regulator_dev
*rdev
= regulator
->rdev
;
2570 int ret
, min_uV
, max_uV
;
2572 mutex_lock(&rdev
->mutex
);
2574 if (!rdev
->desc
->ops
->set_voltage
&&
2575 !rdev
->desc
->ops
->set_voltage_sel
) {
2580 /* This is only going to work if we've had a voltage configured. */
2581 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2586 min_uV
= regulator
->min_uV
;
2587 max_uV
= regulator
->max_uV
;
2589 /* This should be a paranoia check... */
2590 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2594 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2598 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2601 mutex_unlock(&rdev
->mutex
);
2604 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2606 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2610 if (rdev
->desc
->ops
->get_voltage_sel
) {
2611 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2614 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2615 } else if (rdev
->desc
->ops
->get_voltage
) {
2616 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2617 } else if (rdev
->desc
->ops
->list_voltage
) {
2618 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2619 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
2620 ret
= rdev
->desc
->fixed_uV
;
2627 return ret
- rdev
->constraints
->uV_offset
;
2631 * regulator_get_voltage - get regulator output voltage
2632 * @regulator: regulator source
2634 * This returns the current regulator voltage in uV.
2636 * NOTE: If the regulator is disabled it will return the voltage value. This
2637 * function should not be used to determine regulator state.
2639 int regulator_get_voltage(struct regulator
*regulator
)
2643 mutex_lock(®ulator
->rdev
->mutex
);
2645 ret
= _regulator_get_voltage(regulator
->rdev
);
2647 mutex_unlock(®ulator
->rdev
->mutex
);
2651 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2654 * regulator_set_current_limit - set regulator output current limit
2655 * @regulator: regulator source
2656 * @min_uA: Minimum supported current in uA
2657 * @max_uA: Maximum supported current in uA
2659 * Sets current sink to the desired output current. This can be set during
2660 * any regulator state. IOW, regulator can be disabled or enabled.
2662 * If the regulator is enabled then the current will change to the new value
2663 * immediately otherwise if the regulator is disabled the regulator will
2664 * output at the new current when enabled.
2666 * NOTE: Regulator system constraints must be set for this regulator before
2667 * calling this function otherwise this call will fail.
2669 int regulator_set_current_limit(struct regulator
*regulator
,
2670 int min_uA
, int max_uA
)
2672 struct regulator_dev
*rdev
= regulator
->rdev
;
2675 mutex_lock(&rdev
->mutex
);
2678 if (!rdev
->desc
->ops
->set_current_limit
) {
2683 /* constraints check */
2684 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2688 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2690 mutex_unlock(&rdev
->mutex
);
2693 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2695 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2699 mutex_lock(&rdev
->mutex
);
2702 if (!rdev
->desc
->ops
->get_current_limit
) {
2707 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2709 mutex_unlock(&rdev
->mutex
);
2714 * regulator_get_current_limit - get regulator output current
2715 * @regulator: regulator source
2717 * This returns the current supplied by the specified current sink in uA.
2719 * NOTE: If the regulator is disabled it will return the current value. This
2720 * function should not be used to determine regulator state.
2722 int regulator_get_current_limit(struct regulator
*regulator
)
2724 return _regulator_get_current_limit(regulator
->rdev
);
2726 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2729 * regulator_set_mode - set regulator operating mode
2730 * @regulator: regulator source
2731 * @mode: operating mode - one of the REGULATOR_MODE constants
2733 * Set regulator operating mode to increase regulator efficiency or improve
2734 * regulation performance.
2736 * NOTE: Regulator system constraints must be set for this regulator before
2737 * calling this function otherwise this call will fail.
2739 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2741 struct regulator_dev
*rdev
= regulator
->rdev
;
2743 int regulator_curr_mode
;
2745 mutex_lock(&rdev
->mutex
);
2748 if (!rdev
->desc
->ops
->set_mode
) {
2753 /* return if the same mode is requested */
2754 if (rdev
->desc
->ops
->get_mode
) {
2755 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2756 if (regulator_curr_mode
== mode
) {
2762 /* constraints check */
2763 ret
= regulator_mode_constrain(rdev
, &mode
);
2767 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2769 mutex_unlock(&rdev
->mutex
);
2772 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2774 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2778 mutex_lock(&rdev
->mutex
);
2781 if (!rdev
->desc
->ops
->get_mode
) {
2786 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2788 mutex_unlock(&rdev
->mutex
);
2793 * regulator_get_mode - get regulator operating mode
2794 * @regulator: regulator source
2796 * Get the current regulator operating mode.
2798 unsigned int regulator_get_mode(struct regulator
*regulator
)
2800 return _regulator_get_mode(regulator
->rdev
);
2802 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2805 * regulator_set_optimum_mode - set regulator optimum operating mode
2806 * @regulator: regulator source
2807 * @uA_load: load current
2809 * Notifies the regulator core of a new device load. This is then used by
2810 * DRMS (if enabled by constraints) to set the most efficient regulator
2811 * operating mode for the new regulator loading.
2813 * Consumer devices notify their supply regulator of the maximum power
2814 * they will require (can be taken from device datasheet in the power
2815 * consumption tables) when they change operational status and hence power
2816 * state. Examples of operational state changes that can affect power
2817 * consumption are :-
2819 * o Device is opened / closed.
2820 * o Device I/O is about to begin or has just finished.
2821 * o Device is idling in between work.
2823 * This information is also exported via sysfs to userspace.
2825 * DRMS will sum the total requested load on the regulator and change
2826 * to the most efficient operating mode if platform constraints allow.
2828 * Returns the new regulator mode or error.
2830 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2832 struct regulator_dev
*rdev
= regulator
->rdev
;
2833 struct regulator
*consumer
;
2834 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2838 input_uV
= regulator_get_voltage(rdev
->supply
);
2840 mutex_lock(&rdev
->mutex
);
2843 * first check to see if we can set modes at all, otherwise just
2844 * tell the consumer everything is OK.
2846 regulator
->uA_load
= uA_load
;
2847 ret
= regulator_check_drms(rdev
);
2853 if (!rdev
->desc
->ops
->get_optimum_mode
)
2857 * we can actually do this so any errors are indicators of
2858 * potential real failure.
2862 if (!rdev
->desc
->ops
->set_mode
)
2865 /* get output voltage */
2866 output_uV
= _regulator_get_voltage(rdev
);
2867 if (output_uV
<= 0) {
2868 rdev_err(rdev
, "invalid output voltage found\n");
2872 /* No supply? Use constraint voltage */
2874 input_uV
= rdev
->constraints
->input_uV
;
2875 if (input_uV
<= 0) {
2876 rdev_err(rdev
, "invalid input voltage found\n");
2880 /* calc total requested load for this regulator */
2881 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2882 total_uA_load
+= consumer
->uA_load
;
2884 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2885 input_uV
, output_uV
,
2887 ret
= regulator_mode_constrain(rdev
, &mode
);
2889 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2890 total_uA_load
, input_uV
, output_uV
);
2894 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2896 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2901 mutex_unlock(&rdev
->mutex
);
2904 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2907 * regulator_allow_bypass - allow the regulator to go into bypass mode
2909 * @regulator: Regulator to configure
2910 * @enable: enable or disable bypass mode
2912 * Allow the regulator to go into bypass mode if all other consumers
2913 * for the regulator also enable bypass mode and the machine
2914 * constraints allow this. Bypass mode means that the regulator is
2915 * simply passing the input directly to the output with no regulation.
2917 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2919 struct regulator_dev
*rdev
= regulator
->rdev
;
2922 if (!rdev
->desc
->ops
->set_bypass
)
2925 if (rdev
->constraints
&&
2926 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2929 mutex_lock(&rdev
->mutex
);
2931 if (enable
&& !regulator
->bypass
) {
2932 rdev
->bypass_count
++;
2934 if (rdev
->bypass_count
== rdev
->open_count
) {
2935 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2937 rdev
->bypass_count
--;
2940 } else if (!enable
&& regulator
->bypass
) {
2941 rdev
->bypass_count
--;
2943 if (rdev
->bypass_count
!= rdev
->open_count
) {
2944 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2946 rdev
->bypass_count
++;
2951 regulator
->bypass
= enable
;
2953 mutex_unlock(&rdev
->mutex
);
2957 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2960 * regulator_register_notifier - register regulator event notifier
2961 * @regulator: regulator source
2962 * @nb: notifier block
2964 * Register notifier block to receive regulator events.
2966 int regulator_register_notifier(struct regulator
*regulator
,
2967 struct notifier_block
*nb
)
2969 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2972 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2975 * regulator_unregister_notifier - unregister regulator event notifier
2976 * @regulator: regulator source
2977 * @nb: notifier block
2979 * Unregister regulator event notifier block.
2981 int regulator_unregister_notifier(struct regulator
*regulator
,
2982 struct notifier_block
*nb
)
2984 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2987 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2989 /* notify regulator consumers and downstream regulator consumers.
2990 * Note mutex must be held by caller.
2992 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2993 unsigned long event
, void *data
)
2995 /* call rdev chain first */
2996 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3000 * regulator_bulk_get - get multiple regulator consumers
3002 * @dev: Device to supply
3003 * @num_consumers: Number of consumers to register
3004 * @consumers: Configuration of consumers; clients are stored here.
3006 * @return 0 on success, an errno on failure.
3008 * This helper function allows drivers to get several regulator
3009 * consumers in one operation. If any of the regulators cannot be
3010 * acquired then any regulators that were allocated will be freed
3011 * before returning to the caller.
3013 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3014 struct regulator_bulk_data
*consumers
)
3019 for (i
= 0; i
< num_consumers
; i
++)
3020 consumers
[i
].consumer
= NULL
;
3022 for (i
= 0; i
< num_consumers
; i
++) {
3023 consumers
[i
].consumer
= regulator_get(dev
,
3024 consumers
[i
].supply
);
3025 if (IS_ERR(consumers
[i
].consumer
)) {
3026 ret
= PTR_ERR(consumers
[i
].consumer
);
3027 dev_err(dev
, "Failed to get supply '%s': %d\n",
3028 consumers
[i
].supply
, ret
);
3029 consumers
[i
].consumer
= NULL
;
3038 regulator_put(consumers
[i
].consumer
);
3042 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3044 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3046 struct regulator_bulk_data
*bulk
= data
;
3048 bulk
->ret
= regulator_enable(bulk
->consumer
);
3052 * regulator_bulk_enable - enable multiple regulator consumers
3054 * @num_consumers: Number of consumers
3055 * @consumers: Consumer data; clients are stored here.
3056 * @return 0 on success, an errno on failure
3058 * This convenience API allows consumers to enable multiple regulator
3059 * clients in a single API call. If any consumers cannot be enabled
3060 * then any others that were enabled will be disabled again prior to
3063 int regulator_bulk_enable(int num_consumers
,
3064 struct regulator_bulk_data
*consumers
)
3066 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3070 for (i
= 0; i
< num_consumers
; i
++) {
3071 if (consumers
[i
].consumer
->always_on
)
3072 consumers
[i
].ret
= 0;
3074 async_schedule_domain(regulator_bulk_enable_async
,
3075 &consumers
[i
], &async_domain
);
3078 async_synchronize_full_domain(&async_domain
);
3080 /* If any consumer failed we need to unwind any that succeeded */
3081 for (i
= 0; i
< num_consumers
; i
++) {
3082 if (consumers
[i
].ret
!= 0) {
3083 ret
= consumers
[i
].ret
;
3091 for (i
= 0; i
< num_consumers
; i
++) {
3092 if (consumers
[i
].ret
< 0)
3093 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3096 regulator_disable(consumers
[i
].consumer
);
3101 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3104 * regulator_bulk_disable - disable multiple regulator consumers
3106 * @num_consumers: Number of consumers
3107 * @consumers: Consumer data; clients are stored here.
3108 * @return 0 on success, an errno on failure
3110 * This convenience API allows consumers to disable multiple regulator
3111 * clients in a single API call. If any consumers cannot be disabled
3112 * then any others that were disabled will be enabled again prior to
3115 int regulator_bulk_disable(int num_consumers
,
3116 struct regulator_bulk_data
*consumers
)
3121 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3122 ret
= regulator_disable(consumers
[i
].consumer
);
3130 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3131 for (++i
; i
< num_consumers
; ++i
) {
3132 r
= regulator_enable(consumers
[i
].consumer
);
3134 pr_err("Failed to reename %s: %d\n",
3135 consumers
[i
].supply
, r
);
3140 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3143 * regulator_bulk_force_disable - force disable multiple regulator consumers
3145 * @num_consumers: Number of consumers
3146 * @consumers: Consumer data; clients are stored here.
3147 * @return 0 on success, an errno on failure
3149 * This convenience API allows consumers to forcibly disable multiple regulator
3150 * clients in a single API call.
3151 * NOTE: This should be used for situations when device damage will
3152 * likely occur if the regulators are not disabled (e.g. over temp).
3153 * Although regulator_force_disable function call for some consumers can
3154 * return error numbers, the function is called for all consumers.
3156 int regulator_bulk_force_disable(int num_consumers
,
3157 struct regulator_bulk_data
*consumers
)
3162 for (i
= 0; i
< num_consumers
; i
++)
3164 regulator_force_disable(consumers
[i
].consumer
);
3166 for (i
= 0; i
< num_consumers
; i
++) {
3167 if (consumers
[i
].ret
!= 0) {
3168 ret
= consumers
[i
].ret
;
3177 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3180 * regulator_bulk_free - free multiple regulator consumers
3182 * @num_consumers: Number of consumers
3183 * @consumers: Consumer data; clients are stored here.
3185 * This convenience API allows consumers to free multiple regulator
3186 * clients in a single API call.
3188 void regulator_bulk_free(int num_consumers
,
3189 struct regulator_bulk_data
*consumers
)
3193 for (i
= 0; i
< num_consumers
; i
++) {
3194 regulator_put(consumers
[i
].consumer
);
3195 consumers
[i
].consumer
= NULL
;
3198 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3201 * regulator_notifier_call_chain - call regulator event notifier
3202 * @rdev: regulator source
3203 * @event: notifier block
3204 * @data: callback-specific data.
3206 * Called by regulator drivers to notify clients a regulator event has
3207 * occurred. We also notify regulator clients downstream.
3208 * Note lock must be held by caller.
3210 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3211 unsigned long event
, void *data
)
3213 _notifier_call_chain(rdev
, event
, data
);
3217 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3220 * regulator_mode_to_status - convert a regulator mode into a status
3222 * @mode: Mode to convert
3224 * Convert a regulator mode into a status.
3226 int regulator_mode_to_status(unsigned int mode
)
3229 case REGULATOR_MODE_FAST
:
3230 return REGULATOR_STATUS_FAST
;
3231 case REGULATOR_MODE_NORMAL
:
3232 return REGULATOR_STATUS_NORMAL
;
3233 case REGULATOR_MODE_IDLE
:
3234 return REGULATOR_STATUS_IDLE
;
3235 case REGULATOR_MODE_STANDBY
:
3236 return REGULATOR_STATUS_STANDBY
;
3238 return REGULATOR_STATUS_UNDEFINED
;
3241 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3244 * To avoid cluttering sysfs (and memory) with useless state, only
3245 * create attributes that can be meaningfully displayed.
3247 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3249 struct device
*dev
= &rdev
->dev
;
3250 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3253 /* some attributes need specific methods to be displayed */
3254 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3255 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3256 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3257 (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1))) {
3258 status
= device_create_file(dev
, &dev_attr_microvolts
);
3262 if (ops
->get_current_limit
) {
3263 status
= device_create_file(dev
, &dev_attr_microamps
);
3267 if (ops
->get_mode
) {
3268 status
= device_create_file(dev
, &dev_attr_opmode
);
3272 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3273 status
= device_create_file(dev
, &dev_attr_state
);
3277 if (ops
->get_status
) {
3278 status
= device_create_file(dev
, &dev_attr_status
);
3282 if (ops
->get_bypass
) {
3283 status
= device_create_file(dev
, &dev_attr_bypass
);
3288 /* some attributes are type-specific */
3289 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3290 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3295 /* all the other attributes exist to support constraints;
3296 * don't show them if there are no constraints, or if the
3297 * relevant supporting methods are missing.
3299 if (!rdev
->constraints
)
3302 /* constraints need specific supporting methods */
3303 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3304 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3307 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3311 if (ops
->set_current_limit
) {
3312 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3315 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3320 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3323 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3326 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3330 if (ops
->set_suspend_voltage
) {
3331 status
= device_create_file(dev
,
3332 &dev_attr_suspend_standby_microvolts
);
3335 status
= device_create_file(dev
,
3336 &dev_attr_suspend_mem_microvolts
);
3339 status
= device_create_file(dev
,
3340 &dev_attr_suspend_disk_microvolts
);
3345 if (ops
->set_suspend_mode
) {
3346 status
= device_create_file(dev
,
3347 &dev_attr_suspend_standby_mode
);
3350 status
= device_create_file(dev
,
3351 &dev_attr_suspend_mem_mode
);
3354 status
= device_create_file(dev
,
3355 &dev_attr_suspend_disk_mode
);
3363 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3365 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3366 if (!rdev
->debugfs
) {
3367 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3371 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3373 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3375 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3376 &rdev
->bypass_count
);
3380 * regulator_register - register regulator
3381 * @regulator_desc: regulator to register
3382 * @config: runtime configuration for regulator
3384 * Called by regulator drivers to register a regulator.
3385 * Returns a valid pointer to struct regulator_dev on success
3386 * or an ERR_PTR() on error.
3388 struct regulator_dev
*
3389 regulator_register(const struct regulator_desc
*regulator_desc
,
3390 const struct regulator_config
*config
)
3392 const struct regulation_constraints
*constraints
= NULL
;
3393 const struct regulator_init_data
*init_data
;
3394 static atomic_t regulator_no
= ATOMIC_INIT(0);
3395 struct regulator_dev
*rdev
;
3398 const char *supply
= NULL
;
3400 if (regulator_desc
== NULL
|| config
== NULL
)
3401 return ERR_PTR(-EINVAL
);
3406 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3407 return ERR_PTR(-EINVAL
);
3409 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3410 regulator_desc
->type
!= REGULATOR_CURRENT
)
3411 return ERR_PTR(-EINVAL
);
3413 /* Only one of each should be implemented */
3414 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3415 regulator_desc
->ops
->get_voltage_sel
);
3416 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3417 regulator_desc
->ops
->set_voltage_sel
);
3419 /* If we're using selectors we must implement list_voltage. */
3420 if (regulator_desc
->ops
->get_voltage_sel
&&
3421 !regulator_desc
->ops
->list_voltage
) {
3422 return ERR_PTR(-EINVAL
);
3424 if (regulator_desc
->ops
->set_voltage_sel
&&
3425 !regulator_desc
->ops
->list_voltage
) {
3426 return ERR_PTR(-EINVAL
);
3429 init_data
= config
->init_data
;
3431 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3433 return ERR_PTR(-ENOMEM
);
3435 mutex_lock(®ulator_list_mutex
);
3437 mutex_init(&rdev
->mutex
);
3438 rdev
->reg_data
= config
->driver_data
;
3439 rdev
->owner
= regulator_desc
->owner
;
3440 rdev
->desc
= regulator_desc
;
3442 rdev
->regmap
= config
->regmap
;
3443 else if (dev_get_regmap(dev
, NULL
))
3444 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3445 else if (dev
->parent
)
3446 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3447 INIT_LIST_HEAD(&rdev
->consumer_list
);
3448 INIT_LIST_HEAD(&rdev
->list
);
3449 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3450 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3452 /* preform any regulator specific init */
3453 if (init_data
&& init_data
->regulator_init
) {
3454 ret
= init_data
->regulator_init(rdev
->reg_data
);
3459 /* register with sysfs */
3460 rdev
->dev
.class = ®ulator_class
;
3461 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3462 rdev
->dev
.parent
= dev
;
3463 dev_set_name(&rdev
->dev
, "regulator.%d",
3464 atomic_inc_return(®ulator_no
) - 1);
3465 ret
= device_register(&rdev
->dev
);
3467 put_device(&rdev
->dev
);
3471 dev_set_drvdata(&rdev
->dev
, rdev
);
3473 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3474 ret
= regulator_ena_gpio_request(rdev
, config
);
3476 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3477 config
->ena_gpio
, ret
);
3481 if (config
->ena_gpio_flags
& GPIOF_OUT_INIT_HIGH
)
3482 rdev
->ena_gpio_state
= 1;
3484 if (config
->ena_gpio_invert
)
3485 rdev
->ena_gpio_state
= !rdev
->ena_gpio_state
;
3488 /* set regulator constraints */
3490 constraints
= &init_data
->constraints
;
3492 ret
= set_machine_constraints(rdev
, constraints
);
3496 /* add attributes supported by this regulator */
3497 ret
= add_regulator_attributes(rdev
);
3501 if (init_data
&& init_data
->supply_regulator
)
3502 supply
= init_data
->supply_regulator
;
3503 else if (regulator_desc
->supply_name
)
3504 supply
= regulator_desc
->supply_name
;
3507 struct regulator_dev
*r
;
3509 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3511 if (ret
== -ENODEV
) {
3513 * No supply was specified for this regulator and
3514 * there will never be one.
3519 dev_err(dev
, "Failed to find supply %s\n", supply
);
3520 ret
= -EPROBE_DEFER
;
3524 ret
= set_supply(rdev
, r
);
3528 /* Enable supply if rail is enabled */
3529 if (_regulator_is_enabled(rdev
)) {
3530 ret
= regulator_enable(rdev
->supply
);
3537 /* add consumers devices */
3539 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3540 ret
= set_consumer_device_supply(rdev
,
3541 init_data
->consumer_supplies
[i
].dev_name
,
3542 init_data
->consumer_supplies
[i
].supply
);
3544 dev_err(dev
, "Failed to set supply %s\n",
3545 init_data
->consumer_supplies
[i
].supply
);
3546 goto unset_supplies
;
3551 list_add(&rdev
->list
, ®ulator_list
);
3553 rdev_init_debugfs(rdev
);
3555 mutex_unlock(®ulator_list_mutex
);
3559 unset_regulator_supplies(rdev
);
3563 _regulator_put(rdev
->supply
);
3564 regulator_ena_gpio_free(rdev
);
3565 kfree(rdev
->constraints
);
3567 device_unregister(&rdev
->dev
);
3568 /* device core frees rdev */
3569 rdev
= ERR_PTR(ret
);
3574 rdev
= ERR_PTR(ret
);
3577 EXPORT_SYMBOL_GPL(regulator_register
);
3580 * regulator_unregister - unregister regulator
3581 * @rdev: regulator to unregister
3583 * Called by regulator drivers to unregister a regulator.
3585 void regulator_unregister(struct regulator_dev
*rdev
)
3591 while (rdev
->use_count
--)
3592 regulator_disable(rdev
->supply
);
3593 regulator_put(rdev
->supply
);
3595 mutex_lock(®ulator_list_mutex
);
3596 debugfs_remove_recursive(rdev
->debugfs
);
3597 flush_work(&rdev
->disable_work
.work
);
3598 WARN_ON(rdev
->open_count
);
3599 unset_regulator_supplies(rdev
);
3600 list_del(&rdev
->list
);
3601 kfree(rdev
->constraints
);
3602 regulator_ena_gpio_free(rdev
);
3603 of_node_put(rdev
->dev
.of_node
);
3604 device_unregister(&rdev
->dev
);
3605 mutex_unlock(®ulator_list_mutex
);
3607 EXPORT_SYMBOL_GPL(regulator_unregister
);
3610 * regulator_suspend_prepare - prepare regulators for system wide suspend
3611 * @state: system suspend state
3613 * Configure each regulator with it's suspend operating parameters for state.
3614 * This will usually be called by machine suspend code prior to supending.
3616 int regulator_suspend_prepare(suspend_state_t state
)
3618 struct regulator_dev
*rdev
;
3621 /* ON is handled by regulator active state */
3622 if (state
== PM_SUSPEND_ON
)
3625 mutex_lock(®ulator_list_mutex
);
3626 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3628 mutex_lock(&rdev
->mutex
);
3629 ret
= suspend_prepare(rdev
, state
);
3630 mutex_unlock(&rdev
->mutex
);
3633 rdev_err(rdev
, "failed to prepare\n");
3638 mutex_unlock(®ulator_list_mutex
);
3641 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3644 * regulator_suspend_finish - resume regulators from system wide suspend
3646 * Turn on regulators that might be turned off by regulator_suspend_prepare
3647 * and that should be turned on according to the regulators properties.
3649 int regulator_suspend_finish(void)
3651 struct regulator_dev
*rdev
;
3654 mutex_lock(®ulator_list_mutex
);
3655 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3656 mutex_lock(&rdev
->mutex
);
3657 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3658 error
= _regulator_do_enable(rdev
);
3662 if (!have_full_constraints())
3664 if (!_regulator_is_enabled(rdev
))
3667 error
= _regulator_do_disable(rdev
);
3672 mutex_unlock(&rdev
->mutex
);
3674 mutex_unlock(®ulator_list_mutex
);
3677 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3680 * regulator_has_full_constraints - the system has fully specified constraints
3682 * Calling this function will cause the regulator API to disable all
3683 * regulators which have a zero use count and don't have an always_on
3684 * constraint in a late_initcall.
3686 * The intention is that this will become the default behaviour in a
3687 * future kernel release so users are encouraged to use this facility
3690 void regulator_has_full_constraints(void)
3692 has_full_constraints
= 1;
3694 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3697 * rdev_get_drvdata - get rdev regulator driver data
3700 * Get rdev regulator driver private data. This call can be used in the
3701 * regulator driver context.
3703 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3705 return rdev
->reg_data
;
3707 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3710 * regulator_get_drvdata - get regulator driver data
3711 * @regulator: regulator
3713 * Get regulator driver private data. This call can be used in the consumer
3714 * driver context when non API regulator specific functions need to be called.
3716 void *regulator_get_drvdata(struct regulator
*regulator
)
3718 return regulator
->rdev
->reg_data
;
3720 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3723 * regulator_set_drvdata - set regulator driver data
3724 * @regulator: regulator
3727 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3729 regulator
->rdev
->reg_data
= data
;
3731 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3734 * regulator_get_id - get regulator ID
3737 int rdev_get_id(struct regulator_dev
*rdev
)
3739 return rdev
->desc
->id
;
3741 EXPORT_SYMBOL_GPL(rdev_get_id
);
3743 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3747 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3749 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3751 return reg_init_data
->driver_data
;
3753 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3755 #ifdef CONFIG_DEBUG_FS
3756 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3757 size_t count
, loff_t
*ppos
)
3759 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3760 ssize_t len
, ret
= 0;
3761 struct regulator_map
*map
;
3766 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3767 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3769 rdev_get_name(map
->regulator
), map
->dev_name
,
3773 if (ret
> PAGE_SIZE
) {
3779 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3787 static const struct file_operations supply_map_fops
= {
3788 #ifdef CONFIG_DEBUG_FS
3789 .read
= supply_map_read_file
,
3790 .llseek
= default_llseek
,
3794 static int __init
regulator_init(void)
3798 ret
= class_register(®ulator_class
);
3800 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3802 pr_warn("regulator: Failed to create debugfs directory\n");
3804 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3807 regulator_dummy_init();
3812 /* init early to allow our consumers to complete system booting */
3813 core_initcall(regulator_init
);
3815 static int __init
regulator_init_complete(void)
3817 struct regulator_dev
*rdev
;
3818 struct regulator_ops
*ops
;
3819 struct regulation_constraints
*c
;
3823 * Since DT doesn't provide an idiomatic mechanism for
3824 * enabling full constraints and since it's much more natural
3825 * with DT to provide them just assume that a DT enabled
3826 * system has full constraints.
3828 if (of_have_populated_dt())
3829 has_full_constraints
= true;
3831 mutex_lock(®ulator_list_mutex
);
3833 /* If we have a full configuration then disable any regulators
3834 * we have permission to change the status for and which are
3835 * not in use or always_on. This is effectively the default
3836 * for DT and ACPI as they have full constraints.
3838 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3839 ops
= rdev
->desc
->ops
;
3840 c
= rdev
->constraints
;
3842 if (c
&& c
->always_on
)
3845 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
3848 mutex_lock(&rdev
->mutex
);
3850 if (rdev
->use_count
)
3853 /* If we can't read the status assume it's on. */
3854 if (ops
->is_enabled
)
3855 enabled
= ops
->is_enabled(rdev
);
3862 if (have_full_constraints()) {
3863 /* We log since this may kill the system if it
3865 rdev_info(rdev
, "disabling\n");
3866 ret
= _regulator_do_disable(rdev
);
3868 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3870 /* The intention is that in future we will
3871 * assume that full constraints are provided
3872 * so warn even if we aren't going to do
3875 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3879 mutex_unlock(&rdev
->mutex
);
3882 mutex_unlock(®ulator_list_mutex
);
3886 late_initcall_sync(regulator_init_complete
);