2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
45 #include "sym_nvram.h"
48 #define SYM_DEBUG_GENERIC_SUPPORT
52 * Needed function prototypes.
54 static void sym_int_ma (struct sym_hcb
*np
);
55 static void sym_int_sir(struct sym_hcb
*);
56 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
);
57 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
);
58 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
);
59 static void sym_complete_error (struct sym_hcb
*np
, struct sym_ccb
*cp
);
60 static void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
);
61 static int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
);
64 * Print a buffer in hexadecimal format with a ".\n" at end.
66 static void sym_printl_hex(u_char
*p
, int n
)
73 static void sym_print_msg(struct sym_ccb
*cp
, char *label
, u_char
*msg
)
75 sym_print_addr(cp
->cmd
, "%s: ", label
);
81 static void sym_print_nego_msg(struct sym_hcb
*np
, int target
, char *label
, u_char
*msg
)
83 struct sym_tcb
*tp
= &np
->target
[target
];
84 dev_info(&tp
->starget
->dev
, "%s: ", label
);
91 * Print something that tells about extended errors.
93 void sym_print_xerr(struct scsi_cmnd
*cmd
, int x_status
)
95 if (x_status
& XE_PARITY_ERR
) {
96 sym_print_addr(cmd
, "unrecovered SCSI parity error.\n");
98 if (x_status
& XE_EXTRA_DATA
) {
99 sym_print_addr(cmd
, "extraneous data discarded.\n");
101 if (x_status
& XE_BAD_PHASE
) {
102 sym_print_addr(cmd
, "illegal scsi phase (4/5).\n");
104 if (x_status
& XE_SODL_UNRUN
) {
105 sym_print_addr(cmd
, "ODD transfer in DATA OUT phase.\n");
107 if (x_status
& XE_SWIDE_OVRUN
) {
108 sym_print_addr(cmd
, "ODD transfer in DATA IN phase.\n");
113 * Return a string for SCSI BUS mode.
115 static char *sym_scsi_bus_mode(int mode
)
118 case SMODE_HVD
: return "HVD";
119 case SMODE_SE
: return "SE";
120 case SMODE_LVD
: return "LVD";
126 * Soft reset the chip.
128 * Raising SRST when the chip is running may cause
129 * problems on dual function chips (see below).
130 * On the other hand, LVD devices need some delay
131 * to settle and report actual BUS mode in STEST4.
133 static void sym_chip_reset (struct sym_hcb
*np
)
135 OUTB(np
, nc_istat
, SRST
);
138 OUTB(np
, nc_istat
, 0);
140 udelay(2000); /* For BUS MODE to settle */
144 * Really soft reset the chip.:)
146 * Some 896 and 876 chip revisions may hang-up if we set
147 * the SRST (soft reset) bit at the wrong time when SCRIPTS
149 * So, we need to abort the current operation prior to
150 * soft resetting the chip.
152 static void sym_soft_reset (struct sym_hcb
*np
)
157 if (!(np
->features
& FE_ISTAT1
) || !(INB(np
, nc_istat1
) & SCRUN
))
160 OUTB(np
, nc_istat
, CABRT
);
161 for (i
= 100000 ; i
; --i
) {
162 istat
= INB(np
, nc_istat
);
166 else if (istat
& DIP
) {
167 if (INB(np
, nc_dstat
) & ABRT
)
172 OUTB(np
, nc_istat
, 0);
174 printf("%s: unable to abort current chip operation, "
175 "ISTAT=0x%02x.\n", sym_name(np
), istat
);
181 * Start reset process.
183 * The interrupt handler will reinitialize the chip.
185 static void sym_start_reset(struct sym_hcb
*np
)
187 sym_reset_scsi_bus(np
, 1);
190 int sym_reset_scsi_bus(struct sym_hcb
*np
, int enab_int
)
195 sym_soft_reset(np
); /* Soft reset the chip */
197 OUTW(np
, nc_sien
, RST
);
199 * Enable Tolerant, reset IRQD if present and
200 * properly set IRQ mode, prior to resetting the bus.
202 OUTB(np
, nc_stest3
, TE
);
203 OUTB(np
, nc_dcntl
, (np
->rv_dcntl
& IRQM
));
204 OUTB(np
, nc_scntl1
, CRST
);
208 if (!SYM_SETUP_SCSI_BUS_CHECK
)
211 * Check for no terminators or SCSI bus shorts to ground.
212 * Read SCSI data bus, data parity bits and control signals.
213 * We are expecting RESET to be TRUE and other signals to be
216 term
= INB(np
, nc_sstat0
);
217 term
= ((term
& 2) << 7) + ((term
& 1) << 17); /* rst sdp0 */
218 term
|= ((INB(np
, nc_sstat2
) & 0x01) << 26) | /* sdp1 */
219 ((INW(np
, nc_sbdl
) & 0xff) << 9) | /* d7-0 */
220 ((INW(np
, nc_sbdl
) & 0xff00) << 10) | /* d15-8 */
221 INB(np
, nc_sbcl
); /* req ack bsy sel atn msg cd io */
226 if (term
!= (2<<7)) {
227 printf("%s: suspicious SCSI data while resetting the BUS.\n",
229 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
230 "0x%lx, expecting 0x%lx\n",
232 (np
->features
& FE_WIDE
) ? "dp1,d15-8," : "",
233 (u_long
)term
, (u_long
)(2<<7));
234 if (SYM_SETUP_SCSI_BUS_CHECK
== 1)
238 OUTB(np
, nc_scntl1
, 0);
243 * Select SCSI clock frequency
245 static void sym_selectclock(struct sym_hcb
*np
, u_char scntl3
)
248 * If multiplier not present or not selected, leave here.
250 if (np
->multiplier
<= 1) {
251 OUTB(np
, nc_scntl3
, scntl3
);
255 if (sym_verbose
>= 2)
256 printf ("%s: enabling clock multiplier\n", sym_name(np
));
258 OUTB(np
, nc_stest1
, DBLEN
); /* Enable clock multiplier */
260 * Wait for the LCKFRQ bit to be set if supported by the chip.
261 * Otherwise wait 50 micro-seconds (at least).
263 if (np
->features
& FE_LCKFRQ
) {
265 while (!(INB(np
, nc_stest4
) & LCKFRQ
) && --i
> 0)
268 printf("%s: the chip cannot lock the frequency\n",
274 OUTB(np
, nc_stest3
, HSC
); /* Halt the scsi clock */
275 OUTB(np
, nc_scntl3
, scntl3
);
276 OUTB(np
, nc_stest1
, (DBLEN
|DBLSEL
));/* Select clock multiplier */
277 OUTB(np
, nc_stest3
, 0x00); /* Restart scsi clock */
282 * Determine the chip's clock frequency.
284 * This is essential for the negotiation of the synchronous
287 * Note: we have to return the correct value.
288 * THERE IS NO SAFE DEFAULT VALUE.
290 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
291 * 53C860 and 53C875 rev. 1 support fast20 transfers but
292 * do not have a clock doubler and so are provided with a
293 * 80 MHz clock. All other fast20 boards incorporate a doubler
294 * and so should be delivered with a 40 MHz clock.
295 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
296 * clock and provide a clock quadrupler (160 Mhz).
300 * calculate SCSI clock frequency (in KHz)
302 static unsigned getfreq (struct sym_hcb
*np
, int gen
)
308 * Measure GEN timer delay in order
309 * to calculate SCSI clock frequency
311 * This code will never execute too
312 * many loop iterations (if DELAY is
313 * reasonably correct). It could get
314 * too low a delay (too high a freq.)
315 * if the CPU is slow executing the
316 * loop for some reason (an NMI, for
317 * example). For this reason we will
318 * if multiple measurements are to be
319 * performed trust the higher delay
320 * (lower frequency returned).
322 OUTW(np
, nc_sien
, 0); /* mask all scsi interrupts */
323 INW(np
, nc_sist
); /* clear pending scsi interrupt */
324 OUTB(np
, nc_dien
, 0); /* mask all dma interrupts */
325 INW(np
, nc_sist
); /* another one, just to be sure :) */
327 * The C1010-33 core does not report GEN in SIST,
328 * if this interrupt is masked in SIEN.
329 * I don't know yet if the C1010-66 behaves the same way.
331 if (np
->features
& FE_C10
) {
332 OUTW(np
, nc_sien
, GEN
);
333 OUTB(np
, nc_istat1
, SIRQD
);
335 OUTB(np
, nc_scntl3
, 4); /* set pre-scaler to divide by 3 */
336 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
337 OUTB(np
, nc_stime1
, gen
); /* set to nominal delay of 1<<gen * 125us */
338 while (!(INW(np
, nc_sist
) & GEN
) && ms
++ < 100000)
339 udelay(1000/4); /* count in 1/4 of ms */
340 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
342 * Undo C1010-33 specific settings.
344 if (np
->features
& FE_C10
) {
345 OUTW(np
, nc_sien
, 0);
346 OUTB(np
, nc_istat1
, 0);
349 * set prescaler to divide by whatever 0 means
350 * 0 ought to choose divide by 2, but appears
351 * to set divide by 3.5 mode in my 53c810 ...
353 OUTB(np
, nc_scntl3
, 0);
356 * adjust for prescaler, and convert into KHz
358 f
= ms
? ((1 << gen
) * (4340*4)) / ms
: 0;
361 * The C1010-33 result is biased by a factor
362 * of 2/3 compared to earlier chips.
364 if (np
->features
& FE_C10
)
367 if (sym_verbose
>= 2)
368 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
369 sym_name(np
), gen
, ms
/4, f
);
374 static unsigned sym_getfreq (struct sym_hcb
*np
)
379 getfreq (np
, gen
); /* throw away first result */
380 f1
= getfreq (np
, gen
);
381 f2
= getfreq (np
, gen
);
382 if (f1
> f2
) f1
= f2
; /* trust lower result */
387 * Get/probe chip SCSI clock frequency
389 static void sym_getclock (struct sym_hcb
*np
, int mult
)
391 unsigned char scntl3
= np
->sv_scntl3
;
392 unsigned char stest1
= np
->sv_stest1
;
398 * True with 875/895/896/895A with clock multiplier selected
400 if (mult
> 1 && (stest1
& (DBLEN
+DBLSEL
)) == DBLEN
+DBLSEL
) {
401 if (sym_verbose
>= 2)
402 printf ("%s: clock multiplier found\n", sym_name(np
));
403 np
->multiplier
= mult
;
407 * If multiplier not found or scntl3 not 7,5,3,
408 * reset chip and get frequency from general purpose timer.
409 * Otherwise trust scntl3 BIOS setting.
411 if (np
->multiplier
!= mult
|| (scntl3
& 7) < 3 || !(scntl3
& 1)) {
412 OUTB(np
, nc_stest1
, 0); /* make sure doubler is OFF */
413 f1
= sym_getfreq (np
);
416 printf ("%s: chip clock is %uKHz\n", sym_name(np
), f1
);
418 if (f1
< 45000) f1
= 40000;
419 else if (f1
< 55000) f1
= 50000;
422 if (f1
< 80000 && mult
> 1) {
423 if (sym_verbose
>= 2)
424 printf ("%s: clock multiplier assumed\n",
426 np
->multiplier
= mult
;
429 if ((scntl3
& 7) == 3) f1
= 40000;
430 else if ((scntl3
& 7) == 5) f1
= 80000;
433 f1
/= np
->multiplier
;
437 * Compute controller synchronous parameters.
439 f1
*= np
->multiplier
;
444 * Get/probe PCI clock frequency
446 static int sym_getpciclock (struct sym_hcb
*np
)
451 * For now, we only need to know about the actual
452 * PCI BUS clock frequency for C1010-66 chips.
455 if (np
->features
& FE_66MHZ
) {
459 OUTB(np
, nc_stest1
, SCLK
); /* Use the PCI clock as SCSI clock */
461 OUTB(np
, nc_stest1
, 0);
469 * SYMBIOS chip clock divisor table.
471 * Divisors are multiplied by 10,000,000 in order to make
472 * calculations more simple.
475 static const u32 div_10M
[] = {2*_5M
, 3*_5M
, 4*_5M
, 6*_5M
, 8*_5M
, 12*_5M
, 16*_5M
};
478 * Get clock factor and sync divisor for a given
479 * synchronous factor period.
482 sym_getsync(struct sym_hcb
*np
, u_char dt
, u_char sfac
, u_char
*divp
, u_char
*fakp
)
484 u32 clk
= np
->clock_khz
; /* SCSI clock frequency in kHz */
485 int div
= np
->clock_divn
; /* Number of divisors supported */
486 u32 fak
; /* Sync factor in sxfer */
487 u32 per
; /* Period in tenths of ns */
488 u32 kpc
; /* (per * clk) */
492 * Compute the synchronous period in tenths of nano-seconds
494 if (dt
&& sfac
<= 9) per
= 125;
495 else if (sfac
<= 10) per
= 250;
496 else if (sfac
== 11) per
= 303;
497 else if (sfac
== 12) per
= 500;
498 else per
= 40 * sfac
;
506 * For earliest C10 revision 0, we cannot use extra
507 * clocks for the setting of the SCSI clocking.
508 * Note that this limits the lowest sync data transfer
509 * to 5 Mega-transfers per second and may result in
510 * using higher clock divisors.
513 if ((np
->features
& (FE_C10
|FE_U3EN
)) == FE_C10
) {
515 * Look for the lowest clock divisor that allows an
516 * output speed not faster than the period.
520 if (kpc
> (div_10M
[div
] << 2)) {
525 fak
= 0; /* No extra clocks */
526 if (div
== np
->clock_divn
) { /* Are we too fast ? */
536 * Look for the greatest clock divisor that allows an
537 * input speed faster than the period.
540 if (kpc
>= (div_10M
[div
] << 2)) break;
543 * Calculate the lowest clock factor that allows an output
544 * speed not faster than the period, and the max output speed.
545 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
546 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
549 fak
= (kpc
- 1) / (div_10M
[div
] << 1) + 1 - 2;
550 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
552 fak
= (kpc
- 1) / div_10M
[div
] + 1 - 4;
553 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 * Check against our hardware limits, or bugs :).
565 * Compute and return sync parameters.
574 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
575 * 128 transfers. All chips support at least 16 transfers
576 * bursts. The 825A, 875 and 895 chips support bursts of up
577 * to 128 transfers and the 895A and 896 support bursts of up
578 * to 64 transfers. All other chips support up to 16
581 * For PCI 32 bit data transfers each transfer is a DWORD.
582 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
584 * We use log base 2 (burst length) as internal code, with
585 * value 0 meaning "burst disabled".
589 * Burst length from burst code.
591 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
594 * Burst code from io register bits.
596 #define burst_code(dmode, ctest4, ctest5) \
597 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
600 * Set initial io register bits from burst code.
602 static inline void sym_init_burst(struct sym_hcb
*np
, u_char bc
)
604 np
->rv_ctest4
&= ~0x80;
605 np
->rv_dmode
&= ~(0x3 << 6);
606 np
->rv_ctest5
&= ~0x4;
609 np
->rv_ctest4
|= 0x80;
613 np
->rv_dmode
|= ((bc
& 0x3) << 6);
614 np
->rv_ctest5
|= (bc
& 0x4);
619 * Save initial settings of some IO registers.
620 * Assumed to have been set by BIOS.
621 * We cannot reset the chip prior to reading the
622 * IO registers, since informations will be lost.
623 * Since the SCRIPTS processor may be running, this
624 * is not safe on paper, but it seems to work quite
627 static void sym_save_initial_setting (struct sym_hcb
*np
)
629 np
->sv_scntl0
= INB(np
, nc_scntl0
) & 0x0a;
630 np
->sv_scntl3
= INB(np
, nc_scntl3
) & 0x07;
631 np
->sv_dmode
= INB(np
, nc_dmode
) & 0xce;
632 np
->sv_dcntl
= INB(np
, nc_dcntl
) & 0xa8;
633 np
->sv_ctest3
= INB(np
, nc_ctest3
) & 0x01;
634 np
->sv_ctest4
= INB(np
, nc_ctest4
) & 0x80;
635 np
->sv_gpcntl
= INB(np
, nc_gpcntl
);
636 np
->sv_stest1
= INB(np
, nc_stest1
);
637 np
->sv_stest2
= INB(np
, nc_stest2
) & 0x20;
638 np
->sv_stest4
= INB(np
, nc_stest4
);
639 if (np
->features
& FE_C10
) { /* Always large DMA fifo + ultra3 */
640 np
->sv_scntl4
= INB(np
, nc_scntl4
);
641 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x04;
644 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x24;
649 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
650 * through the STEST4 IO register.
651 * - For previous generation chips (825/825A/875), the user has to tell us
652 * how to check against HVD, since a 100% safe algorithm is not possible.
654 static void sym_set_bus_mode(struct sym_hcb
*np
, struct sym_nvram
*nvram
)
659 np
->scsi_mode
= SMODE_SE
;
660 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
))
661 np
->scsi_mode
= (np
->sv_stest4
& SMODE
);
662 else if (np
->features
& FE_DIFF
) {
663 if (SYM_SETUP_SCSI_DIFF
== 1) {
665 if (np
->sv_stest2
& 0x20)
666 np
->scsi_mode
= SMODE_HVD
;
667 } else if (nvram
->type
== SYM_SYMBIOS_NVRAM
) {
668 if (!(INB(np
, nc_gpreg
) & 0x08))
669 np
->scsi_mode
= SMODE_HVD
;
671 } else if (SYM_SETUP_SCSI_DIFF
== 2)
672 np
->scsi_mode
= SMODE_HVD
;
674 if (np
->scsi_mode
== SMODE_HVD
)
675 np
->rv_stest2
|= 0x20;
679 * Prepare io register values used by sym_start_up()
680 * according to selected and supported features.
682 static int sym_prepare_setting(struct Scsi_Host
*shost
, struct sym_hcb
*np
, struct sym_nvram
*nvram
)
684 struct sym_data
*sym_data
= shost_priv(shost
);
685 struct pci_dev
*pdev
= sym_data
->pdev
;
690 np
->maxwide
= (np
->features
& FE_WIDE
) ? 1 : 0;
693 * Guess the frequency of the chip's clock.
695 if (np
->features
& (FE_ULTRA3
| FE_ULTRA2
))
696 np
->clock_khz
= 160000;
697 else if (np
->features
& FE_ULTRA
)
698 np
->clock_khz
= 80000;
700 np
->clock_khz
= 40000;
703 * Get the clock multiplier factor.
705 if (np
->features
& FE_QUAD
)
707 else if (np
->features
& FE_DBLR
)
713 * Measure SCSI clock frequency for chips
714 * it may vary from assumed one.
716 if (np
->features
& FE_VARCLK
)
717 sym_getclock(np
, np
->multiplier
);
720 * Divisor to be used for async (timer pre-scaler).
722 i
= np
->clock_divn
- 1;
724 if (10ul * SYM_CONF_MIN_ASYNC
* np
->clock_khz
> div_10M
[i
]) {
732 * The C1010 uses hardwired divisors for async.
733 * So, we just throw away, the async. divisor.:-)
735 if (np
->features
& FE_C10
)
739 * Minimum synchronous period factor supported by the chip.
740 * Btw, 'period' is in tenths of nanoseconds.
742 period
= (4 * div_10M
[0] + np
->clock_khz
- 1) / np
->clock_khz
;
744 if (period
<= 250) np
->minsync
= 10;
745 else if (period
<= 303) np
->minsync
= 11;
746 else if (period
<= 500) np
->minsync
= 12;
747 else np
->minsync
= (period
+ 40 - 1) / 40;
750 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
752 if (np
->minsync
< 25 &&
753 !(np
->features
& (FE_ULTRA
|FE_ULTRA2
|FE_ULTRA3
)))
755 else if (np
->minsync
< 12 &&
756 !(np
->features
& (FE_ULTRA2
|FE_ULTRA3
)))
760 * Maximum synchronous period factor supported by the chip.
762 period
= (11 * div_10M
[np
->clock_divn
- 1]) / (4 * np
->clock_khz
);
763 np
->maxsync
= period
> 2540 ? 254 : period
/ 10;
766 * If chip is a C1010, guess the sync limits in DT mode.
768 if ((np
->features
& (FE_C10
|FE_ULTRA3
)) == (FE_C10
|FE_ULTRA3
)) {
769 if (np
->clock_khz
== 160000) {
772 np
->maxoffs_dt
= nvram
->type
? 62 : 31;
777 * 64 bit addressing (895A/896/1010) ?
779 if (np
->features
& FE_DAC
) {
781 np
->rv_ccntl1
|= (DDAC
);
782 else if (SYM_CONF_DMA_ADDRESSING_MODE
== 1)
783 np
->rv_ccntl1
|= (XTIMOD
| EXTIBMV
);
784 else if (SYM_CONF_DMA_ADDRESSING_MODE
== 2)
785 np
->rv_ccntl1
|= (0 | EXTIBMV
);
789 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
791 if (np
->features
& FE_NOPM
)
792 np
->rv_ccntl0
|= (ENPMJ
);
795 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
796 * In dual channel mode, contention occurs if internal cycles
797 * are used. Disable internal cycles.
799 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_33
&&
800 pdev
->revision
< 0x1)
801 np
->rv_ccntl0
|= DILS
;
804 * Select burst length (dwords)
806 burst_max
= SYM_SETUP_BURST_ORDER
;
807 if (burst_max
== 255)
808 burst_max
= burst_code(np
->sv_dmode
, np
->sv_ctest4
,
812 if (burst_max
> np
->maxburst
)
813 burst_max
= np
->maxburst
;
816 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
817 * This chip and the 860 Rev 1 may wrongly use PCI cache line
818 * based transactions on LOAD/STORE instructions. So we have
819 * to prevent these chips from using such PCI transactions in
820 * this driver. The generic ncr driver that does not use
821 * LOAD/STORE instructions does not need this work-around.
823 if ((pdev
->device
== PCI_DEVICE_ID_NCR_53C810
&&
824 pdev
->revision
>= 0x10 && pdev
->revision
<= 0x11) ||
825 (pdev
->device
== PCI_DEVICE_ID_NCR_53C860
&&
826 pdev
->revision
<= 0x1))
827 np
->features
&= ~(FE_WRIE
|FE_ERL
|FE_ERMP
);
830 * Select all supported special features.
831 * If we are using on-board RAM for scripts, prefetch (PFEN)
832 * does not help, but burst op fetch (BOF) does.
833 * Disabling PFEN makes sure BOF will be used.
835 if (np
->features
& FE_ERL
)
836 np
->rv_dmode
|= ERL
; /* Enable Read Line */
837 if (np
->features
& FE_BOF
)
838 np
->rv_dmode
|= BOF
; /* Burst Opcode Fetch */
839 if (np
->features
& FE_ERMP
)
840 np
->rv_dmode
|= ERMP
; /* Enable Read Multiple */
842 if ((np
->features
& FE_PFEN
) && !np
->ram_ba
)
844 if (np
->features
& FE_PFEN
)
846 np
->rv_dcntl
|= PFEN
; /* Prefetch Enable */
847 if (np
->features
& FE_CLSE
)
848 np
->rv_dcntl
|= CLSE
; /* Cache Line Size Enable */
849 if (np
->features
& FE_WRIE
)
850 np
->rv_ctest3
|= WRIE
; /* Write and Invalidate */
851 if (np
->features
& FE_DFS
)
852 np
->rv_ctest5
|= DFS
; /* Dma Fifo Size */
857 np
->rv_ctest4
|= MPEE
; /* Master parity checking */
858 np
->rv_scntl0
|= 0x0a; /* full arb., ena parity, par->ATN */
861 * Get parity checking, host ID and verbose mode from NVRAM
865 sym_nvram_setup_host(shost
, np
, nvram
);
868 * Get SCSI addr of host adapter (set by bios?).
870 if (np
->myaddr
== 255) {
871 np
->myaddr
= INB(np
, nc_scid
) & 0x07;
873 np
->myaddr
= SYM_SETUP_HOST_ID
;
877 * Prepare initial io register bits for burst length
879 sym_init_burst(np
, burst_max
);
881 sym_set_bus_mode(np
, nvram
);
884 * Set LED support from SCRIPTS.
885 * Ignore this feature for boards known to use a
886 * specific GPIO wiring and for the 895A, 896
887 * and 1010 that drive the LED directly.
889 if ((SYM_SETUP_SCSI_LED
||
890 (nvram
->type
== SYM_SYMBIOS_NVRAM
||
891 (nvram
->type
== SYM_TEKRAM_NVRAM
&&
892 pdev
->device
== PCI_DEVICE_ID_NCR_53C895
))) &&
893 !(np
->features
& FE_LEDC
) && !(np
->sv_gpcntl
& 0x01))
894 np
->features
|= FE_LED0
;
899 switch(SYM_SETUP_IRQ_MODE
& 3) {
901 np
->rv_dcntl
|= IRQM
;
904 np
->rv_dcntl
|= (np
->sv_dcntl
& IRQM
);
911 * Configure targets according to driver setup.
912 * If NVRAM present get targets setup from NVRAM.
914 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
915 struct sym_tcb
*tp
= &np
->target
[i
];
917 tp
->usrflags
|= (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
918 tp
->usrtags
= SYM_SETUP_MAX_TAG
;
919 tp
->usr_width
= np
->maxwide
;
922 sym_nvram_setup_target(tp
, i
, nvram
);
925 tp
->usrflags
&= ~SYM_TAGS_ENABLED
;
929 * Let user know about the settings.
931 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np
),
932 sym_nvram_type(nvram
), np
->myaddr
,
933 (np
->features
& FE_ULTRA3
) ? 80 :
934 (np
->features
& FE_ULTRA2
) ? 40 :
935 (np
->features
& FE_ULTRA
) ? 20 : 10,
936 sym_scsi_bus_mode(np
->scsi_mode
),
937 (np
->rv_scntl0
& 0xa) ? "parity checking" : "NO parity");
939 * Tell him more on demand.
942 printf("%s: %s IRQ line driver%s\n",
944 np
->rv_dcntl
& IRQM
? "totem pole" : "open drain",
945 np
->ram_ba
? ", using on-chip SRAM" : "");
946 printf("%s: using %s firmware.\n", sym_name(np
), np
->fw_name
);
947 if (np
->features
& FE_NOPM
)
948 printf("%s: handling phase mismatch from SCRIPTS.\n",
954 if (sym_verbose
>= 2) {
955 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
956 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
957 sym_name(np
), np
->sv_scntl3
, np
->sv_dmode
, np
->sv_dcntl
,
958 np
->sv_ctest3
, np
->sv_ctest4
, np
->sv_ctest5
);
960 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
961 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
962 sym_name(np
), np
->rv_scntl3
, np
->rv_dmode
, np
->rv_dcntl
,
963 np
->rv_ctest3
, np
->rv_ctest4
, np
->rv_ctest5
);
970 * Test the pci bus snoop logic :-(
972 * Has to be called with interrupts disabled.
974 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
975 static int sym_regtest(struct sym_hcb
*np
)
977 register volatile u32 data
;
979 * chip registers may NOT be cached.
980 * write 0xffffffff to a read only register area,
981 * and try to read it back.
984 OUTL(np
, nc_dstat
, data
);
985 data
= INL(np
, nc_dstat
);
987 if (data
== 0xffffffff) {
989 if ((data
& 0xe2f0fffd) != 0x02000080) {
991 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
998 static inline int sym_regtest(struct sym_hcb
*np
)
1004 static int sym_snooptest(struct sym_hcb
*np
)
1006 u32 sym_rd
, sym_wr
, sym_bk
, host_rd
, host_wr
, pc
, dstat
;
1009 err
= sym_regtest(np
);
1014 * Enable Master Parity Checking as we intend
1015 * to enable it for normal operations.
1017 OUTB(np
, nc_ctest4
, (np
->rv_ctest4
& MPEE
));
1021 pc
= SCRIPTZ_BA(np
, snooptest
);
1025 * Set memory and register.
1027 np
->scratch
= cpu_to_scr(host_wr
);
1028 OUTL(np
, nc_temp
, sym_wr
);
1030 * Start script (exchange values)
1032 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1035 * Wait 'til done (with timeout)
1037 for (i
=0; i
<SYM_SNOOP_TIMEOUT
; i
++)
1038 if (INB(np
, nc_istat
) & (INTF
|SIP
|DIP
))
1040 if (i
>=SYM_SNOOP_TIMEOUT
) {
1041 printf ("CACHE TEST FAILED: timeout.\n");
1045 * Check for fatal DMA errors.
1047 dstat
= INB(np
, nc_dstat
);
1048 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1049 if ((dstat
& MDPE
) && (np
->rv_ctest4
& MPEE
)) {
1050 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1051 "DISABLING MASTER DATA PARITY CHECKING.\n",
1053 np
->rv_ctest4
&= ~MPEE
;
1057 if (dstat
& (MDPE
|BF
|IID
)) {
1058 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat
);
1062 * Save termination position.
1064 pc
= INL(np
, nc_dsp
);
1066 * Read memory and register.
1068 host_rd
= scr_to_cpu(np
->scratch
);
1069 sym_rd
= INL(np
, nc_scratcha
);
1070 sym_bk
= INL(np
, nc_temp
);
1072 * Check termination position.
1074 if (pc
!= SCRIPTZ_BA(np
, snoopend
)+8) {
1075 printf ("CACHE TEST FAILED: script execution failed.\n");
1076 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1077 (u_long
) SCRIPTZ_BA(np
, snooptest
), (u_long
) pc
,
1078 (u_long
) SCRIPTZ_BA(np
, snoopend
) +8);
1084 if (host_wr
!= sym_rd
) {
1085 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1086 (int) host_wr
, (int) sym_rd
);
1089 if (host_rd
!= sym_wr
) {
1090 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1091 (int) sym_wr
, (int) host_rd
);
1094 if (sym_bk
!= sym_wr
) {
1095 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1096 (int) sym_wr
, (int) sym_bk
);
1104 * log message for real hard errors
1106 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1107 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1109 * exception register:
1114 * so: control lines as driven by chip.
1115 * si: control lines as seen by chip.
1116 * sd: scsi data lines as seen by chip.
1119 * sx: sxfer (see the manual)
1120 * s3: scntl3 (see the manual)
1121 * s4: scntl4 (see the manual)
1123 * current script command:
1124 * dsp: script address (relative to start of script).
1125 * dbc: first word of script command.
1127 * First 24 register of the chip:
1130 static void sym_log_hard_error(struct Scsi_Host
*shost
, u_short sist
, u_char dstat
)
1132 struct sym_hcb
*np
= sym_get_hcb(shost
);
1137 u_char
*script_base
;
1140 dsp
= INL(np
, nc_dsp
);
1142 if (dsp
> np
->scripta_ba
&&
1143 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
1144 script_ofs
= dsp
- np
->scripta_ba
;
1145 script_size
= np
->scripta_sz
;
1146 script_base
= (u_char
*) np
->scripta0
;
1147 script_name
= "scripta";
1149 else if (np
->scriptb_ba
< dsp
&&
1150 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
1151 script_ofs
= dsp
- np
->scriptb_ba
;
1152 script_size
= np
->scriptb_sz
;
1153 script_base
= (u_char
*) np
->scriptb0
;
1154 script_name
= "scriptb";
1159 script_name
= "mem";
1162 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163 sym_name(np
), (unsigned)INB(np
, nc_sdid
)&0x0f, dstat
, sist
,
1164 (unsigned)INB(np
, nc_socl
), (unsigned)INB(np
, nc_sbcl
),
1165 (unsigned)INB(np
, nc_sbdl
), (unsigned)INB(np
, nc_sxfer
),
1166 (unsigned)INB(np
, nc_scntl3
),
1167 (np
->features
& FE_C10
) ? (unsigned)INB(np
, nc_scntl4
) : 0,
1168 script_name
, script_ofs
, (unsigned)INL(np
, nc_dbc
));
1170 if (((script_ofs
& 3) == 0) &&
1171 (unsigned)script_ofs
< script_size
) {
1172 printf ("%s: script cmd = %08x\n", sym_name(np
),
1173 scr_to_cpu((int) *(u32
*)(script_base
+ script_ofs
)));
1176 printf("%s: regdump:", sym_name(np
));
1177 for (i
= 0; i
< 24; i
++)
1178 printf(" %02x", (unsigned)INB_OFF(np
, i
));
1184 if (dstat
& (MDPE
|BF
))
1185 sym_log_bus_error(shost
);
1188 void sym_dump_registers(struct Scsi_Host
*shost
)
1190 struct sym_hcb
*np
= sym_get_hcb(shost
);
1194 sist
= INW(np
, nc_sist
);
1195 dstat
= INB(np
, nc_dstat
);
1196 sym_log_hard_error(shost
, sist
, dstat
);
1199 static struct sym_chip sym_dev_table
[] = {
1200 {PCI_DEVICE_ID_NCR_53C810
, 0x0f, "810", 4, 8, 4, 64,
1203 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1204 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1208 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1209 FE_CACHE_SET
|FE_LDSTR
|FE_PFEN
|FE_BOF
}
1212 {PCI_DEVICE_ID_NCR_53C815
, 0xff, "815", 4, 8, 4, 64,
1215 {PCI_DEVICE_ID_NCR_53C825
, 0x0f, "825", 6, 8, 4, 64,
1216 FE_WIDE
|FE_BOF
|FE_ERL
|FE_DIFF
}
1218 {PCI_DEVICE_ID_NCR_53C825
, 0xff, "825a", 6, 8, 4, 2,
1219 FE_WIDE
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|FE_RAM
|FE_DIFF
}
1221 {PCI_DEVICE_ID_NCR_53C860
, 0xff, "860", 4, 8, 5, 1,
1222 FE_ULTRA
|FE_CACHE_SET
|FE_BOF
|FE_LDSTR
|FE_PFEN
}
1224 {PCI_DEVICE_ID_NCR_53C875
, 0x01, "875", 6, 16, 5, 2,
1225 FE_WIDE
|FE_ULTRA
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1226 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1228 {PCI_DEVICE_ID_NCR_53C875
, 0xff, "875", 6, 16, 5, 2,
1229 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1230 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1232 {PCI_DEVICE_ID_NCR_53C875J
, 0xff, "875J", 6, 16, 5, 2,
1233 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1234 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1236 {PCI_DEVICE_ID_NCR_53C885
, 0xff, "885", 6, 16, 5, 2,
1237 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1238 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1240 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1241 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1242 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|
1246 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1247 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1251 {PCI_DEVICE_ID_NCR_53C896
, 0xff, "896", 6, 31, 7, 4,
1252 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1253 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1255 {PCI_DEVICE_ID_LSI_53C895A
, 0xff, "895a", 6, 31, 7, 4,
1256 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1257 FE_RAM
|FE_RAM8K
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1259 {PCI_DEVICE_ID_LSI_53C875A
, 0xff, "875a", 6, 31, 7, 4,
1260 FE_WIDE
|FE_ULTRA
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1261 FE_RAM
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1263 {PCI_DEVICE_ID_LSI_53C1010_33
, 0x00, "1010-33", 6, 31, 7, 8,
1264 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1265 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1268 {PCI_DEVICE_ID_LSI_53C1010_33
, 0xff, "1010-33", 6, 31, 7, 8,
1269 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1270 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1273 {PCI_DEVICE_ID_LSI_53C1010_66
, 0xff, "1010-66", 6, 31, 7, 8,
1274 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1275 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_66MHZ
|FE_CRC
|
1278 {PCI_DEVICE_ID_LSI_53C1510
, 0xff, "1510d", 6, 31, 7, 4,
1279 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1280 FE_RAM
|FE_IO256
|FE_LEDC
}
1283 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1286 * Look up the chip table.
1288 * Return a pointer to the chip entry if found,
1292 sym_lookup_chip_table (u_short device_id
, u_char revision
)
1294 struct sym_chip
*chip
;
1297 for (i
= 0; i
< sym_num_devs
; i
++) {
1298 chip
= &sym_dev_table
[i
];
1299 if (device_id
!= chip
->device_id
)
1301 if (revision
> chip
->revision_id
)
1309 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1311 * Lookup the 64 bit DMA segments map.
1312 * This is only used if the direct mapping
1313 * has been unsuccessful.
1315 int sym_lookup_dmap(struct sym_hcb
*np
, u32 h
, int s
)
1322 /* Look up existing mappings */
1323 for (i
= SYM_DMAP_SIZE
-1; i
> 0; i
--) {
1324 if (h
== np
->dmap_bah
[i
])
1327 /* If direct mapping is free, get it */
1328 if (!np
->dmap_bah
[s
])
1330 /* Collision -> lookup free mappings */
1331 for (s
= SYM_DMAP_SIZE
-1; s
> 0; s
--) {
1332 if (!np
->dmap_bah
[s
])
1336 panic("sym: ran out of 64 bit DMA segment registers");
1339 np
->dmap_bah
[s
] = h
;
1345 * Update IO registers scratch C..R so they will be
1346 * in sync. with queued CCB expectations.
1348 static void sym_update_dmap_regs(struct sym_hcb
*np
)
1352 if (!np
->dmap_dirty
)
1354 o
= offsetof(struct sym_reg
, nc_scrx
[0]);
1355 for (i
= 0; i
< SYM_DMAP_SIZE
; i
++) {
1356 OUTL_OFF(np
, o
, np
->dmap_bah
[i
]);
1363 /* Enforce all the fiddly SPI rules and the chip limitations */
1364 static void sym_check_goals(struct sym_hcb
*np
, struct scsi_target
*starget
,
1365 struct sym_trans
*goal
)
1367 if (!spi_support_wide(starget
))
1370 if (!spi_support_sync(starget
)) {
1378 if (spi_support_dt(starget
)) {
1379 if (spi_support_dt_only(starget
))
1382 if (goal
->offset
== 0)
1388 /* Some targets fail to properly negotiate DT in SE mode */
1389 if ((np
->scsi_mode
!= SMODE_LVD
) || !(np
->features
& FE_U3EN
))
1393 /* all DT transfers must be wide */
1395 if (goal
->offset
> np
->maxoffs_dt
)
1396 goal
->offset
= np
->maxoffs_dt
;
1397 if (goal
->period
< np
->minsync_dt
)
1398 goal
->period
= np
->minsync_dt
;
1399 if (goal
->period
> np
->maxsync_dt
)
1400 goal
->period
= np
->maxsync_dt
;
1402 goal
->iu
= goal
->qas
= 0;
1403 if (goal
->offset
> np
->maxoffs
)
1404 goal
->offset
= np
->maxoffs
;
1405 if (goal
->period
< np
->minsync
)
1406 goal
->period
= np
->minsync
;
1407 if (goal
->period
> np
->maxsync
)
1408 goal
->period
= np
->maxsync
;
1413 * Prepare the next negotiation message if needed.
1415 * Fill in the part of message buffer that contains the
1416 * negotiation and the nego_status field of the CCB.
1417 * Returns the size of the message in bytes.
1419 static int sym_prepare_nego(struct sym_hcb
*np
, struct sym_ccb
*cp
, u_char
*msgptr
)
1421 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1422 struct scsi_target
*starget
= tp
->starget
;
1423 struct sym_trans
*goal
= &tp
->tgoal
;
1427 sym_check_goals(np
, starget
, goal
);
1430 * Many devices implement PPR in a buggy way, so only use it if we
1433 if (goal
->renego
== NS_PPR
|| (goal
->offset
&&
1434 (goal
->iu
|| goal
->dt
|| goal
->qas
|| (goal
->period
< 0xa)))) {
1436 } else if (goal
->renego
== NS_WIDE
|| goal
->width
) {
1438 } else if (goal
->renego
== NS_SYNC
|| goal
->offset
) {
1441 goal
->check_nego
= 0;
1447 msglen
+= spi_populate_sync_msg(msgptr
+ msglen
, goal
->period
,
1451 msglen
+= spi_populate_width_msg(msgptr
+ msglen
, goal
->width
);
1454 msglen
+= spi_populate_ppr_msg(msgptr
+ msglen
, goal
->period
,
1455 goal
->offset
, goal
->width
,
1456 (goal
->iu
? PPR_OPT_IU
: 0) |
1457 (goal
->dt
? PPR_OPT_DT
: 0) |
1458 (goal
->qas
? PPR_OPT_QAS
: 0));
1462 cp
->nego_status
= nego
;
1465 tp
->nego_cp
= cp
; /* Keep track a nego will be performed */
1466 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
1467 sym_print_nego_msg(np
, cp
->target
,
1468 nego
== NS_SYNC
? "sync msgout" :
1469 nego
== NS_WIDE
? "wide msgout" :
1470 "ppr msgout", msgptr
);
1478 * Insert a job into the start queue.
1480 void sym_put_start_queue(struct sym_hcb
*np
, struct sym_ccb
*cp
)
1484 #ifdef SYM_CONF_IARB_SUPPORT
1486 * If the previously queued CCB is not yet done,
1487 * set the IARB hint. The SCRIPTS will go with IARB
1488 * for this job when starting the previous one.
1489 * We leave devices a chance to win arbitration by
1490 * not using more than 'iarb_max' consecutive
1491 * immediate arbitrations.
1493 if (np
->last_cp
&& np
->iarb_count
< np
->iarb_max
) {
1494 np
->last_cp
->host_flags
|= HF_HINT_IARB
;
1502 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1504 * Make SCRIPTS aware of the 64 bit DMA
1505 * segment registers not being up-to-date.
1508 cp
->host_xflags
|= HX_DMAP_DIRTY
;
1512 * Insert first the idle task and then our job.
1513 * The MBs should ensure proper ordering.
1515 qidx
= np
->squeueput
+ 2;
1516 if (qidx
>= MAX_QUEUE
*2) qidx
= 0;
1518 np
->squeue
[qidx
] = cpu_to_scr(np
->idletask_ba
);
1519 MEMORY_WRITE_BARRIER();
1520 np
->squeue
[np
->squeueput
] = cpu_to_scr(cp
->ccb_ba
);
1522 np
->squeueput
= qidx
;
1524 if (DEBUG_FLAGS
& DEBUG_QUEUE
)
1525 scmd_printk(KERN_DEBUG
, cp
->cmd
, "queuepos=%d\n",
1529 * Script processor may be waiting for reselect.
1532 MEMORY_WRITE_BARRIER();
1533 OUTB(np
, nc_istat
, SIGP
|np
->istat_sem
);
1536 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1538 * Start next ready-to-start CCBs.
1540 void sym_start_next_ccbs(struct sym_hcb
*np
, struct sym_lcb
*lp
, int maxn
)
1546 * Paranoia, as usual. :-)
1548 assert(!lp
->started_tags
|| !lp
->started_no_tag
);
1551 * Try to start as many commands as asked by caller.
1552 * Prevent from having both tagged and untagged
1553 * commands queued to the device at the same time.
1556 qp
= sym_remque_head(&lp
->waiting_ccbq
);
1559 cp
= sym_que_entry(qp
, struct sym_ccb
, link2_ccbq
);
1560 if (cp
->tag
!= NO_TAG
) {
1561 if (lp
->started_no_tag
||
1562 lp
->started_tags
>= lp
->started_max
) {
1563 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1566 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(cp
->ccb_ba
);
1568 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
1571 if (lp
->started_no_tag
|| lp
->started_tags
) {
1572 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1575 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
1577 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
1578 ++lp
->started_no_tag
;
1581 sym_insque_tail(qp
, &lp
->started_ccbq
);
1582 sym_put_start_queue(np
, cp
);
1585 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1588 * The chip may have completed jobs. Look at the DONE QUEUE.
1590 * On paper, memory read barriers may be needed here to
1591 * prevent out of order LOADs by the CPU from having
1592 * prefetched stale data prior to DMA having occurred.
1594 static int sym_wakeup_done (struct sym_hcb
*np
)
1603 /* MEMORY_READ_BARRIER(); */
1605 dsa
= scr_to_cpu(np
->dqueue
[i
]);
1609 if ((i
= i
+2) >= MAX_QUEUE
*2)
1612 cp
= sym_ccb_from_dsa(np
, dsa
);
1614 MEMORY_READ_BARRIER();
1615 sym_complete_ok (np
, cp
);
1619 printf ("%s: bad DSA (%x) in done queue.\n",
1620 sym_name(np
), (u_int
) dsa
);
1628 * Complete all CCBs queued to the COMP queue.
1630 * These CCBs are assumed:
1631 * - Not to be referenced either by devices or
1632 * SCRIPTS-related queues and datas.
1633 * - To have to be completed with an error condition
1636 * The device queue freeze count is incremented
1637 * for each CCB that does not prevent this.
1638 * This function is called when all CCBs involved
1639 * in error handling/recovery have been reaped.
1641 static void sym_flush_comp_queue(struct sym_hcb
*np
, int cam_status
)
1646 while ((qp
= sym_remque_head(&np
->comp_ccbq
)) != NULL
) {
1647 struct scsi_cmnd
*cmd
;
1648 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
1649 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
1650 /* Leave quiet CCBs waiting for resources */
1651 if (cp
->host_status
== HS_WAIT
)
1655 sym_set_cam_status(cmd
, cam_status
);
1656 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1657 if (sym_get_cam_status(cmd
) == DID_SOFT_ERROR
) {
1658 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1659 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
1661 sym_remque(&cp
->link2_ccbq
);
1662 sym_insque_tail(&cp
->link2_ccbq
,
1665 if (cp
->tag
!= NO_TAG
)
1668 --lp
->started_no_tag
;
1675 sym_free_ccb(np
, cp
);
1676 sym_xpt_done(np
, cmd
);
1681 * Complete all active CCBs with error.
1682 * Used on CHIP/SCSI RESET.
1684 static void sym_flush_busy_queue (struct sym_hcb
*np
, int cam_status
)
1687 * Move all active CCBs to the COMP queue
1688 * and flush this queue.
1690 sym_que_splice(&np
->busy_ccbq
, &np
->comp_ccbq
);
1691 sym_que_init(&np
->busy_ccbq
);
1692 sym_flush_comp_queue(np
, cam_status
);
1699 * 0: initialisation.
1700 * 1: SCSI BUS RESET delivered or received.
1701 * 2: SCSI BUS MODE changed.
1703 void sym_start_up(struct Scsi_Host
*shost
, int reason
)
1705 struct sym_data
*sym_data
= shost_priv(shost
);
1706 struct pci_dev
*pdev
= sym_data
->pdev
;
1707 struct sym_hcb
*np
= sym_data
->ncb
;
1712 * Reset chip if asked, otherwise just clear fifos.
1717 OUTB(np
, nc_stest3
, TE
|CSF
);
1718 OUTONB(np
, nc_ctest3
, CLF
);
1724 phys
= np
->squeue_ba
;
1725 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1726 np
->squeue
[i
] = cpu_to_scr(np
->idletask_ba
);
1727 np
->squeue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1729 np
->squeue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1732 * Start at first entry.
1739 phys
= np
->dqueue_ba
;
1740 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1742 np
->dqueue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1744 np
->dqueue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1747 * Start at first entry.
1752 * Install patches in scripts.
1753 * This also let point to first position the start
1754 * and done queue pointers used from SCRIPTS.
1756 np
->fw_patch(shost
);
1759 * Wakeup all pending jobs.
1761 sym_flush_busy_queue(np
, DID_RESET
);
1766 OUTB(np
, nc_istat
, 0x00); /* Remove Reset, abort */
1768 udelay(2000); /* The 895 needs time for the bus mode to settle */
1770 OUTB(np
, nc_scntl0
, np
->rv_scntl0
| 0xc0);
1771 /* full arb., ena parity, par->ATN */
1772 OUTB(np
, nc_scntl1
, 0x00); /* odd parity, and remove CRST!! */
1774 sym_selectclock(np
, np
->rv_scntl3
); /* Select SCSI clock */
1776 OUTB(np
, nc_scid
, RRE
|np
->myaddr
); /* Adapter SCSI address */
1777 OUTW(np
, nc_respid
, 1ul<<np
->myaddr
); /* Id to respond to */
1778 OUTB(np
, nc_istat
, SIGP
); /* Signal Process */
1779 OUTB(np
, nc_dmode
, np
->rv_dmode
); /* Burst length, dma mode */
1780 OUTB(np
, nc_ctest5
, np
->rv_ctest5
); /* Large fifo + large burst */
1782 OUTB(np
, nc_dcntl
, NOCOM
|np
->rv_dcntl
); /* Protect SFBR */
1783 OUTB(np
, nc_ctest3
, np
->rv_ctest3
); /* Write and invalidate */
1784 OUTB(np
, nc_ctest4
, np
->rv_ctest4
); /* Master parity checking */
1786 /* Extended Sreq/Sack filtering not supported on the C10 */
1787 if (np
->features
& FE_C10
)
1788 OUTB(np
, nc_stest2
, np
->rv_stest2
);
1790 OUTB(np
, nc_stest2
, EXT
|np
->rv_stest2
);
1792 OUTB(np
, nc_stest3
, TE
); /* TolerANT enable */
1793 OUTB(np
, nc_stime0
, 0x0c); /* HTH disabled STO 0.25 sec */
1796 * For now, disable AIP generation on C1010-66.
1798 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_66
)
1799 OUTB(np
, nc_aipcntl1
, DISAIP
);
1802 * C10101 rev. 0 errata.
1803 * Errant SGE's when in narrow. Write bits 4 & 5 of
1804 * STEST1 register to disable SGE. We probably should do
1805 * that from SCRIPTS for each selection/reselection, but
1806 * I just don't want. :)
1808 if (pdev
->device
== PCI_DEVICE_ID_LSI_53C1010_33
&&
1810 OUTB(np
, nc_stest1
, INB(np
, nc_stest1
) | 0x30);
1813 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1814 * Disable overlapped arbitration for some dual function devices,
1815 * regardless revision id (kind of post-chip-design feature. ;-))
1817 if (pdev
->device
== PCI_DEVICE_ID_NCR_53C875
)
1818 OUTB(np
, nc_ctest0
, (1<<5));
1819 else if (pdev
->device
== PCI_DEVICE_ID_NCR_53C896
)
1820 np
->rv_ccntl0
|= DPR
;
1823 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1824 * and/or hardware phase mismatch, since only such chips
1825 * seem to support those IO registers.
1827 if (np
->features
& (FE_DAC
|FE_NOPM
)) {
1828 OUTB(np
, nc_ccntl0
, np
->rv_ccntl0
);
1829 OUTB(np
, nc_ccntl1
, np
->rv_ccntl1
);
1832 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1834 * Set up scratch C and DRS IO registers to map the 32 bit
1835 * DMA address range our data structures are located in.
1838 np
->dmap_bah
[0] = 0; /* ??? */
1839 OUTL(np
, nc_scrx
[0], np
->dmap_bah
[0]);
1840 OUTL(np
, nc_drs
, np
->dmap_bah
[0]);
1845 * If phase mismatch handled by scripts (895A/896/1010),
1846 * set PM jump addresses.
1848 if (np
->features
& FE_NOPM
) {
1849 OUTL(np
, nc_pmjad1
, SCRIPTB_BA(np
, pm_handle
));
1850 OUTL(np
, nc_pmjad2
, SCRIPTB_BA(np
, pm_handle
));
1854 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1855 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1857 if (np
->features
& FE_LED0
)
1858 OUTB(np
, nc_gpcntl
, INB(np
, nc_gpcntl
) & ~0x01);
1859 else if (np
->features
& FE_LEDC
)
1860 OUTB(np
, nc_gpcntl
, (INB(np
, nc_gpcntl
) & ~0x41) | 0x20);
1865 OUTW(np
, nc_sien
, STO
|HTH
|MA
|SGE
|UDC
|RST
|PAR
);
1866 OUTB(np
, nc_dien
, MDPE
|BF
|SSI
|SIR
|IID
);
1869 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1870 * Try to eat the spurious SBMC interrupt that may occur when
1871 * we reset the chip but not the SCSI BUS (at initialization).
1873 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
)) {
1874 OUTONW(np
, nc_sien
, SBMC
);
1880 np
->scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
1884 * Fill in target structure.
1885 * Reinitialize usrsync.
1886 * Reinitialize usrwide.
1887 * Prepare sync negotiation according to actual SCSI bus mode.
1889 for (i
=0;i
<SYM_CONF_MAX_TARGET
;i
++) {
1890 struct sym_tcb
*tp
= &np
->target
[i
];
1894 tp
->head
.wval
= np
->rv_scntl3
;
1897 tp
->lun0p
->to_clear
= 0;
1901 for (ln
= 1; ln
< SYM_CONF_MAX_LUN
; ln
++)
1903 tp
->lunmp
[ln
]->to_clear
= 0;
1908 * Download SCSI SCRIPTS to on-chip RAM if present,
1909 * and start script processor.
1910 * We do the download preferently from the CPU.
1911 * For platforms that may not support PCI memory mapping,
1912 * we use simple SCRIPTS that performs MEMORY MOVEs.
1914 phys
= SCRIPTA_BA(np
, init
);
1916 if (sym_verbose
>= 2)
1917 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np
));
1918 memcpy_toio(np
->s
.ramaddr
, np
->scripta0
, np
->scripta_sz
);
1919 if (np
->features
& FE_RAM8K
) {
1920 memcpy_toio(np
->s
.ramaddr
+ 4096, np
->scriptb0
, np
->scriptb_sz
);
1921 phys
= scr_to_cpu(np
->scr_ram_seg
);
1922 OUTL(np
, nc_mmws
, phys
);
1923 OUTL(np
, nc_mmrs
, phys
);
1924 OUTL(np
, nc_sfs
, phys
);
1925 phys
= SCRIPTB_BA(np
, start64
);
1931 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1935 * Notify the XPT about the RESET condition.
1938 sym_xpt_async_bus_reset(np
);
1942 * Switch trans mode for current job and its target.
1944 static void sym_settrans(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
1945 u_char per
, u_char wide
, u_char div
, u_char fak
)
1948 u_char sval
, wval
, uval
;
1949 struct sym_tcb
*tp
= &np
->target
[target
];
1951 assert(target
== (INB(np
, nc_sdid
) & 0x0f));
1953 sval
= tp
->head
.sval
;
1954 wval
= tp
->head
.wval
;
1955 uval
= tp
->head
.uval
;
1958 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1959 sval
, wval
, uval
, np
->rv_scntl3
);
1964 if (!(np
->features
& FE_C10
))
1965 sval
= (sval
& ~0x1f) | ofs
;
1967 sval
= (sval
& ~0x3f) | ofs
;
1970 * Set the sync divisor and extra clock factor.
1973 wval
= (wval
& ~0x70) | ((div
+1) << 4);
1974 if (!(np
->features
& FE_C10
))
1975 sval
= (sval
& ~0xe0) | (fak
<< 5);
1977 uval
= uval
& ~(XCLKH_ST
|XCLKH_DT
|XCLKS_ST
|XCLKS_DT
);
1978 if (fak
>= 1) uval
|= (XCLKH_ST
|XCLKH_DT
);
1979 if (fak
>= 2) uval
|= (XCLKS_ST
|XCLKS_DT
);
1984 * Set the bus width.
1991 * Set misc. ultra enable bits.
1993 if (np
->features
& FE_C10
) {
1994 uval
= uval
& ~(U3EN
|AIPCKEN
);
1996 assert(np
->features
& FE_U3EN
);
2000 wval
= wval
& ~ULTRA
;
2001 if (per
<= 12) wval
|= ULTRA
;
2005 * Stop there if sync parameters are unchanged.
2007 if (tp
->head
.sval
== sval
&&
2008 tp
->head
.wval
== wval
&&
2009 tp
->head
.uval
== uval
)
2011 tp
->head
.sval
= sval
;
2012 tp
->head
.wval
= wval
;
2013 tp
->head
.uval
= uval
;
2016 * Disable extended Sreq/Sack filtering if per < 50.
2017 * Not supported on the C1010.
2019 if (per
< 50 && !(np
->features
& FE_C10
))
2020 OUTOFFB(np
, nc_stest2
, EXT
);
2023 * set actual value and sync_status
2025 OUTB(np
, nc_sxfer
, tp
->head
.sval
);
2026 OUTB(np
, nc_scntl3
, tp
->head
.wval
);
2028 if (np
->features
& FE_C10
) {
2029 OUTB(np
, nc_scntl4
, tp
->head
.uval
);
2033 * patch ALL busy ccbs of this target.
2035 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
2037 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
2038 if (cp
->target
!= target
)
2040 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
2041 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
2042 if (np
->features
& FE_C10
) {
2043 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
2048 static void sym_announce_transfer_rate(struct sym_tcb
*tp
)
2050 struct scsi_target
*starget
= tp
->starget
;
2052 if (tp
->tprint
.period
!= spi_period(starget
) ||
2053 tp
->tprint
.offset
!= spi_offset(starget
) ||
2054 tp
->tprint
.width
!= spi_width(starget
) ||
2055 tp
->tprint
.iu
!= spi_iu(starget
) ||
2056 tp
->tprint
.dt
!= spi_dt(starget
) ||
2057 tp
->tprint
.qas
!= spi_qas(starget
) ||
2058 !tp
->tprint
.check_nego
) {
2059 tp
->tprint
.period
= spi_period(starget
);
2060 tp
->tprint
.offset
= spi_offset(starget
);
2061 tp
->tprint
.width
= spi_width(starget
);
2062 tp
->tprint
.iu
= spi_iu(starget
);
2063 tp
->tprint
.dt
= spi_dt(starget
);
2064 tp
->tprint
.qas
= spi_qas(starget
);
2065 tp
->tprint
.check_nego
= 1;
2067 spi_display_xfer_agreement(starget
);
2072 * We received a WDTR.
2073 * Let everything be aware of the changes.
2075 static void sym_setwide(struct sym_hcb
*np
, int target
, u_char wide
)
2077 struct sym_tcb
*tp
= &np
->target
[target
];
2078 struct scsi_target
*starget
= tp
->starget
;
2080 sym_settrans(np
, target
, 0, 0, 0, wide
, 0, 0);
2083 tp
->tgoal
.renego
= NS_WIDE
;
2085 tp
->tgoal
.renego
= 0;
2086 tp
->tgoal
.check_nego
= 0;
2087 tp
->tgoal
.width
= wide
;
2088 spi_offset(starget
) = 0;
2089 spi_period(starget
) = 0;
2090 spi_width(starget
) = wide
;
2091 spi_iu(starget
) = 0;
2092 spi_dt(starget
) = 0;
2093 spi_qas(starget
) = 0;
2095 if (sym_verbose
>= 3)
2096 sym_announce_transfer_rate(tp
);
2100 * We received a SDTR.
2101 * Let everything be aware of the changes.
2104 sym_setsync(struct sym_hcb
*np
, int target
,
2105 u_char ofs
, u_char per
, u_char div
, u_char fak
)
2107 struct sym_tcb
*tp
= &np
->target
[target
];
2108 struct scsi_target
*starget
= tp
->starget
;
2109 u_char wide
= (tp
->head
.wval
& EWS
) ? BUS_16_BIT
: BUS_8_BIT
;
2111 sym_settrans(np
, target
, 0, ofs
, per
, wide
, div
, fak
);
2114 tp
->tgoal
.renego
= NS_WIDE
;
2116 tp
->tgoal
.renego
= NS_SYNC
;
2118 tp
->tgoal
.renego
= 0;
2119 spi_period(starget
) = per
;
2120 spi_offset(starget
) = ofs
;
2121 spi_iu(starget
) = spi_dt(starget
) = spi_qas(starget
) = 0;
2123 if (!tp
->tgoal
.dt
&& !tp
->tgoal
.iu
&& !tp
->tgoal
.qas
) {
2124 tp
->tgoal
.period
= per
;
2125 tp
->tgoal
.offset
= ofs
;
2126 tp
->tgoal
.check_nego
= 0;
2129 sym_announce_transfer_rate(tp
);
2133 * We received a PPR.
2134 * Let everything be aware of the changes.
2137 sym_setpprot(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
2138 u_char per
, u_char wide
, u_char div
, u_char fak
)
2140 struct sym_tcb
*tp
= &np
->target
[target
];
2141 struct scsi_target
*starget
= tp
->starget
;
2143 sym_settrans(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
2146 tp
->tgoal
.renego
= NS_PPR
;
2148 tp
->tgoal
.renego
= 0;
2149 spi_width(starget
) = tp
->tgoal
.width
= wide
;
2150 spi_period(starget
) = tp
->tgoal
.period
= per
;
2151 spi_offset(starget
) = tp
->tgoal
.offset
= ofs
;
2152 spi_iu(starget
) = tp
->tgoal
.iu
= !!(opts
& PPR_OPT_IU
);
2153 spi_dt(starget
) = tp
->tgoal
.dt
= !!(opts
& PPR_OPT_DT
);
2154 spi_qas(starget
) = tp
->tgoal
.qas
= !!(opts
& PPR_OPT_QAS
);
2155 tp
->tgoal
.check_nego
= 0;
2157 sym_announce_transfer_rate(tp
);
2161 * generic recovery from scsi interrupt
2163 * The doc says that when the chip gets an SCSI interrupt,
2164 * it tries to stop in an orderly fashion, by completing
2165 * an instruction fetch that had started or by flushing
2166 * the DMA fifo for a write to memory that was executing.
2167 * Such a fashion is not enough to know if the instruction
2168 * that was just before the current DSP value has been
2171 * There are some small SCRIPTS sections that deal with
2172 * the start queue and the done queue that may break any
2173 * assomption from the C code if we are interrupted
2174 * inside, so we reset if this happens. Btw, since these
2175 * SCRIPTS sections are executed while the SCRIPTS hasn't
2176 * started SCSI operations, it is very unlikely to happen.
2178 * All the driver data structures are supposed to be
2179 * allocated from the same 4 GB memory window, so there
2180 * is a 1 to 1 relationship between DSA and driver data
2181 * structures. Since we are careful :) to invalidate the
2182 * DSA when we complete a command or when the SCRIPTS
2183 * pushes a DSA into a queue, we can trust it when it
2186 static void sym_recover_scsi_int (struct sym_hcb
*np
, u_char hsts
)
2188 u32 dsp
= INL(np
, nc_dsp
);
2189 u32 dsa
= INL(np
, nc_dsa
);
2190 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2193 * If we haven't been interrupted inside the SCRIPTS
2194 * critical pathes, we can safely restart the SCRIPTS
2195 * and trust the DSA value if it matches a CCB.
2197 if ((!(dsp
> SCRIPTA_BA(np
, getjob_begin
) &&
2198 dsp
< SCRIPTA_BA(np
, getjob_end
) + 1)) &&
2199 (!(dsp
> SCRIPTA_BA(np
, ungetjob
) &&
2200 dsp
< SCRIPTA_BA(np
, reselect
) + 1)) &&
2201 (!(dsp
> SCRIPTB_BA(np
, sel_for_abort
) &&
2202 dsp
< SCRIPTB_BA(np
, sel_for_abort_1
) + 1)) &&
2203 (!(dsp
> SCRIPTA_BA(np
, done
) &&
2204 dsp
< SCRIPTA_BA(np
, done_end
) + 1))) {
2205 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2206 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2208 * If we have a CCB, let the SCRIPTS call us back for
2209 * the handling of the error with SCRATCHA filled with
2210 * STARTPOS. This way, we will be able to freeze the
2211 * device queue and requeue awaiting IOs.
2214 cp
->host_status
= hsts
;
2215 OUTL_DSP(np
, SCRIPTA_BA(np
, complete_error
));
2218 * Otherwise just restart the SCRIPTS.
2221 OUTL(np
, nc_dsa
, 0xffffff);
2222 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
2231 sym_start_reset(np
);
2235 * chip exception handler for selection timeout
2237 static void sym_int_sto (struct sym_hcb
*np
)
2239 u32 dsp
= INL(np
, nc_dsp
);
2241 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("T");
2243 if (dsp
== SCRIPTA_BA(np
, wf_sel_done
) + 8)
2244 sym_recover_scsi_int(np
, HS_SEL_TIMEOUT
);
2246 sym_start_reset(np
);
2250 * chip exception handler for unexpected disconnect
2252 static void sym_int_udc (struct sym_hcb
*np
)
2254 printf ("%s: unexpected disconnect\n", sym_name(np
));
2255 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2259 * chip exception handler for SCSI bus mode change
2261 * spi2-r12 11.2.3 says a transceiver mode change must
2262 * generate a reset event and a device that detects a reset
2263 * event shall initiate a hard reset. It says also that a
2264 * device that detects a mode change shall set data transfer
2265 * mode to eight bit asynchronous, etc...
2266 * So, just reinitializing all except chip should be enough.
2268 static void sym_int_sbmc(struct Scsi_Host
*shost
)
2270 struct sym_hcb
*np
= sym_get_hcb(shost
);
2271 u_char scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
2276 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np
),
2277 sym_scsi_bus_mode(np
->scsi_mode
), sym_scsi_bus_mode(scsi_mode
));
2280 * Should suspend command processing for a few seconds and
2281 * reinitialize all except the chip.
2283 sym_start_up(shost
, 2);
2287 * chip exception handler for SCSI parity error.
2289 * When the chip detects a SCSI parity error and is
2290 * currently executing a (CH)MOV instruction, it does
2291 * not interrupt immediately, but tries to finish the
2292 * transfer of the current scatter entry before
2293 * interrupting. The following situations may occur:
2295 * - The complete scatter entry has been transferred
2296 * without the device having changed phase.
2297 * The chip will then interrupt with the DSP pointing
2298 * to the instruction that follows the MOV.
2300 * - A phase mismatch occurs before the MOV finished
2301 * and phase errors are to be handled by the C code.
2302 * The chip will then interrupt with both PAR and MA
2305 * - A phase mismatch occurs before the MOV finished and
2306 * phase errors are to be handled by SCRIPTS.
2307 * The chip will load the DSP with the phase mismatch
2308 * JUMP address and interrupt the host processor.
2310 static void sym_int_par (struct sym_hcb
*np
, u_short sist
)
2312 u_char hsts
= INB(np
, HS_PRT
);
2313 u32 dsp
= INL(np
, nc_dsp
);
2314 u32 dbc
= INL(np
, nc_dbc
);
2315 u32 dsa
= INL(np
, nc_dsa
);
2316 u_char sbcl
= INB(np
, nc_sbcl
);
2317 u_char cmd
= dbc
>> 24;
2318 int phase
= cmd
& 7;
2319 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2321 if (printk_ratelimit())
2322 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2323 sym_name(np
), hsts
, dbc
, sbcl
);
2326 * Check that the chip is connected to the SCSI BUS.
2328 if (!(INB(np
, nc_scntl1
) & ISCON
)) {
2329 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2334 * If the nexus is not clearly identified, reset the bus.
2335 * We will try to do better later.
2341 * Check instruction was a MOV, direction was INPUT and
2344 if ((cmd
& 0xc0) || !(phase
& 1) || !(sbcl
& 0x8))
2348 * Keep track of the parity error.
2350 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
2351 cp
->xerr_status
|= XE_PARITY_ERR
;
2354 * Prepare the message to send to the device.
2356 np
->msgout
[0] = (phase
== 7) ? M_PARITY
: M_ID_ERROR
;
2359 * If the old phase was DATA IN phase, we have to deal with
2360 * the 3 situations described above.
2361 * For other input phases (MSG IN and STATUS), the device
2362 * must resend the whole thing that failed parity checking
2363 * or signal error. So, jumping to dispatcher should be OK.
2365 if (phase
== 1 || phase
== 5) {
2366 /* Phase mismatch handled by SCRIPTS */
2367 if (dsp
== SCRIPTB_BA(np
, pm_handle
))
2369 /* Phase mismatch handled by the C code */
2372 /* No phase mismatch occurred */
2374 sym_set_script_dp (np
, cp
, dsp
);
2375 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2378 else if (phase
== 7) /* We definitely cannot handle parity errors */
2379 #if 1 /* in message-in phase due to the relection */
2380 goto reset_all
; /* path and various message anticipations. */
2382 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
2385 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2389 sym_start_reset(np
);
2394 * chip exception handler for phase errors.
2396 * We have to construct a new transfer descriptor,
2397 * to transfer the rest of the current block.
2399 static void sym_int_ma (struct sym_hcb
*np
)
2412 u_char hflags
, hflags0
;
2416 dsp
= INL(np
, nc_dsp
);
2417 dbc
= INL(np
, nc_dbc
);
2418 dsa
= INL(np
, nc_dsa
);
2421 rest
= dbc
& 0xffffff;
2425 * locate matching cp if any.
2427 cp
= sym_ccb_from_dsa(np
, dsa
);
2430 * Donnot take into account dma fifo and various buffers in
2431 * INPUT phase since the chip flushes everything before
2432 * raising the MA interrupt for interrupted INPUT phases.
2433 * For DATA IN phase, we will check for the SWIDE later.
2435 if ((cmd
& 7) != 1 && (cmd
& 7) != 5) {
2438 if (np
->features
& FE_DFBC
)
2439 delta
= INW(np
, nc_dfbc
);
2444 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2446 dfifo
= INL(np
, nc_dfifo
);
2449 * Calculate remaining bytes in DMA fifo.
2450 * (CTEST5 = dfifo >> 16)
2452 if (dfifo
& (DFS
<< 16))
2453 delta
= ((((dfifo
>> 8) & 0x300) |
2454 (dfifo
& 0xff)) - rest
) & 0x3ff;
2456 delta
= ((dfifo
& 0xff) - rest
) & 0x7f;
2460 * The data in the dma fifo has not been transferred to
2461 * the target -> add the amount to the rest
2462 * and clear the data.
2463 * Check the sstat2 register in case of wide transfer.
2466 ss0
= INB(np
, nc_sstat0
);
2467 if (ss0
& OLF
) rest
++;
2468 if (!(np
->features
& FE_C10
))
2469 if (ss0
& ORF
) rest
++;
2470 if (cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
)) {
2471 ss2
= INB(np
, nc_sstat2
);
2472 if (ss2
& OLF1
) rest
++;
2473 if (!(np
->features
& FE_C10
))
2474 if (ss2
& ORF1
) rest
++;
2480 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* dma fifo */
2481 OUTB(np
, nc_stest3
, TE
|CSF
); /* scsi fifo */
2485 * log the information
2487 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_PHASE
))
2488 printf ("P%x%x RL=%d D=%d ", cmd
&7, INB(np
, nc_sbcl
)&7,
2489 (unsigned) rest
, (unsigned) delta
);
2492 * try to find the interrupted script command,
2493 * and the address at which to continue.
2497 if (dsp
> np
->scripta_ba
&&
2498 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
2499 vdsp
= (u32
*)((char*)np
->scripta0
+ (dsp
-np
->scripta_ba
-8));
2502 else if (dsp
> np
->scriptb_ba
&&
2503 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
2504 vdsp
= (u32
*)((char*)np
->scriptb0
+ (dsp
-np
->scriptb_ba
-8));
2509 * log the information
2511 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2512 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2513 cp
, (unsigned)dsp
, (unsigned)nxtdsp
, vdsp
, cmd
);
2517 printf ("%s: interrupted SCRIPT address not found.\n",
2523 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2529 * get old startaddress and old length.
2531 oadr
= scr_to_cpu(vdsp
[1]);
2533 if (cmd
& 0x10) { /* Table indirect */
2534 tblp
= (u32
*) ((char*) &cp
->phys
+ oadr
);
2535 olen
= scr_to_cpu(tblp
[0]);
2536 oadr
= scr_to_cpu(tblp
[1]);
2539 olen
= scr_to_cpu(vdsp
[0]) & 0xffffff;
2542 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2543 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2544 (unsigned) (scr_to_cpu(vdsp
[0]) >> 24),
2551 * check cmd against assumed interrupted script command.
2552 * If dt data phase, the MOVE instruction hasn't bit 4 of
2555 if (((cmd
& 2) ? cmd
: (cmd
& ~4)) != (scr_to_cpu(vdsp
[0]) >> 24)) {
2556 sym_print_addr(cp
->cmd
,
2557 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2558 cmd
, scr_to_cpu(vdsp
[0]) >> 24);
2564 * if old phase not dataphase, leave here.
2567 sym_print_addr(cp
->cmd
,
2568 "phase change %x-%x %d@%08x resid=%d.\n",
2569 cmd
&7, INB(np
, nc_sbcl
)&7, (unsigned)olen
,
2570 (unsigned)oadr
, (unsigned)rest
);
2571 goto unexpected_phase
;
2575 * Choose the correct PM save area.
2577 * Look at the PM_SAVE SCRIPT if you want to understand
2578 * this stuff. The equivalent code is implemented in
2579 * SCRIPTS for the 895A, 896 and 1010 that are able to
2580 * handle PM from the SCRIPTS processor.
2582 hflags0
= INB(np
, HF_PRT
);
2585 if (hflags
& (HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
)) {
2586 if (hflags
& HF_IN_PM0
)
2587 nxtdsp
= scr_to_cpu(cp
->phys
.pm0
.ret
);
2588 else if (hflags
& HF_IN_PM1
)
2589 nxtdsp
= scr_to_cpu(cp
->phys
.pm1
.ret
);
2591 if (hflags
& HF_DP_SAVED
)
2592 hflags
^= HF_ACT_PM
;
2595 if (!(hflags
& HF_ACT_PM
)) {
2597 newcmd
= SCRIPTA_BA(np
, pm0_data
);
2601 newcmd
= SCRIPTA_BA(np
, pm1_data
);
2604 hflags
&= ~(HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
);
2605 if (hflags
!= hflags0
)
2606 OUTB(np
, HF_PRT
, hflags
);
2609 * fillin the phase mismatch context
2611 pm
->sg
.addr
= cpu_to_scr(oadr
+ olen
- rest
);
2612 pm
->sg
.size
= cpu_to_scr(rest
);
2613 pm
->ret
= cpu_to_scr(nxtdsp
);
2616 * If we have a SWIDE,
2617 * - prepare the address to write the SWIDE from SCRIPTS,
2618 * - compute the SCRIPTS address to restart from,
2619 * - move current data pointer context by one byte.
2621 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2622 if ((cmd
& 7) == 1 && cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
) &&
2623 (INB(np
, nc_scntl2
) & WSR
)) {
2627 * Set up the table indirect for the MOVE
2628 * of the residual byte and adjust the data
2631 tmp
= scr_to_cpu(pm
->sg
.addr
);
2632 cp
->phys
.wresid
.addr
= cpu_to_scr(tmp
);
2633 pm
->sg
.addr
= cpu_to_scr(tmp
+ 1);
2634 tmp
= scr_to_cpu(pm
->sg
.size
);
2635 cp
->phys
.wresid
.size
= cpu_to_scr((tmp
&0xff000000) | 1);
2636 pm
->sg
.size
= cpu_to_scr(tmp
- 1);
2639 * If only the residual byte is to be moved,
2640 * no PM context is needed.
2642 if ((tmp
&0xffffff) == 1)
2646 * Prepare the address of SCRIPTS that will
2647 * move the residual byte to memory.
2649 nxtdsp
= SCRIPTB_BA(np
, wsr_ma_helper
);
2652 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2653 sym_print_addr(cp
->cmd
, "PM %x %x %x / %x %x %x.\n",
2654 hflags0
, hflags
, newcmd
,
2655 (unsigned)scr_to_cpu(pm
->sg
.addr
),
2656 (unsigned)scr_to_cpu(pm
->sg
.size
),
2657 (unsigned)scr_to_cpu(pm
->ret
));
2661 * Restart the SCRIPTS processor.
2663 sym_set_script_dp (np
, cp
, newcmd
);
2664 OUTL_DSP(np
, nxtdsp
);
2668 * Unexpected phase changes that occurs when the current phase
2669 * is not a DATA IN or DATA OUT phase are due to error conditions.
2670 * Such event may only happen when the SCRIPTS is using a
2671 * multibyte SCSI MOVE.
2673 * Phase change Some possible cause
2675 * COMMAND --> MSG IN SCSI parity error detected by target.
2676 * COMMAND --> STATUS Bad command or refused by target.
2677 * MSG OUT --> MSG IN Message rejected by target.
2678 * MSG OUT --> COMMAND Bogus target that discards extended
2679 * negotiation messages.
2681 * The code below does not care of the new phase and so
2682 * trusts the target. Why to annoy it ?
2683 * If the interrupted phase is COMMAND phase, we restart at
2685 * If a target does not get all the messages after selection,
2686 * the code assumes blindly that the target discards extended
2687 * messages and clears the negotiation status.
2688 * If the target does not want all our response to negotiation,
2689 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2690 * bloat for such a should_not_happen situation).
2691 * In all other situation, we reset the BUS.
2692 * Are these assumptions reasonable ? (Wait and see ...)
2699 case 2: /* COMMAND phase */
2700 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2703 case 3: /* STATUS phase */
2704 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2707 case 6: /* MSG OUT phase */
2709 * If the device may want to use untagged when we want
2710 * tagged, we prepare an IDENTIFY without disc. granted,
2711 * since we will not be able to handle reselect.
2712 * Otherwise, we just don't care.
2714 if (dsp
== SCRIPTA_BA(np
, send_ident
)) {
2715 if (cp
->tag
!= NO_TAG
&& olen
- rest
<= 3) {
2716 cp
->host_status
= HS_BUSY
;
2717 np
->msgout
[0] = IDENTIFY(0, cp
->lun
);
2718 nxtdsp
= SCRIPTB_BA(np
, ident_break_atn
);
2721 nxtdsp
= SCRIPTB_BA(np
, ident_break
);
2723 else if (dsp
== SCRIPTB_BA(np
, send_wdtr
) ||
2724 dsp
== SCRIPTB_BA(np
, send_sdtr
) ||
2725 dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2726 nxtdsp
= SCRIPTB_BA(np
, nego_bad_phase
);
2727 if (dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2728 struct scsi_device
*dev
= cp
->cmd
->device
;
2734 case 7: /* MSG IN phase */
2735 nxtdsp
= SCRIPTA_BA(np
, clrack
);
2741 OUTL_DSP(np
, nxtdsp
);
2746 sym_start_reset(np
);
2750 * chip interrupt handler
2752 * In normal situations, interrupt conditions occur one at
2753 * a time. But when something bad happens on the SCSI BUS,
2754 * the chip may raise several interrupt flags before
2755 * stopping and interrupting the CPU. The additionnal
2756 * interrupt flags are stacked in some extra registers
2757 * after the SIP and/or DIP flag has been raised in the
2758 * ISTAT. After the CPU has read the interrupt condition
2759 * flag from SIST or DSTAT, the chip unstacks the other
2760 * interrupt flags and sets the corresponding bits in
2761 * SIST or DSTAT. Since the chip starts stacking once the
2762 * SIP or DIP flag is set, there is a small window of time
2763 * where the stacking does not occur.
2765 * Typically, multiple interrupt conditions may happen in
2766 * the following situations:
2768 * - SCSI parity error + Phase mismatch (PAR|MA)
2769 * When an parity error is detected in input phase
2770 * and the device switches to msg-in phase inside a
2772 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2773 * When a stupid device does not want to handle the
2774 * recovery of an SCSI parity error.
2775 * - Some combinations of STO, PAR, UDC, ...
2776 * When using non compliant SCSI stuff, when user is
2777 * doing non compliant hot tampering on the BUS, when
2778 * something really bad happens to a device, etc ...
2780 * The heuristic suggested by SYMBIOS to handle
2781 * multiple interrupts is to try unstacking all
2782 * interrupts conditions and to handle them on some
2783 * priority based on error severity.
2784 * This will work when the unstacking has been
2785 * successful, but we cannot be 100 % sure of that,
2786 * since the CPU may have been faster to unstack than
2787 * the chip is able to stack. Hmmm ... But it seems that
2788 * such a situation is very unlikely to happen.
2790 * If this happen, for example STO caught by the CPU
2791 * then UDC happenning before the CPU have restarted
2792 * the SCRIPTS, the driver may wrongly complete the
2793 * same command on UDC, since the SCRIPTS didn't restart
2794 * and the DSA still points to the same command.
2795 * We avoid this situation by setting the DSA to an
2796 * invalid value when the CCB is completed and before
2797 * restarting the SCRIPTS.
2799 * Another issue is that we need some section of our
2800 * recovery procedures to be somehow uninterruptible but
2801 * the SCRIPTS processor does not provides such a
2802 * feature. For this reason, we handle recovery preferently
2803 * from the C code and check against some SCRIPTS critical
2804 * sections from the C code.
2806 * Hopefully, the interrupt handling of the driver is now
2807 * able to resist to weird BUS error conditions, but donnot
2808 * ask me for any guarantee that it will never fail. :-)
2809 * Use at your own decision and risk.
2812 irqreturn_t
sym_interrupt(struct Scsi_Host
*shost
)
2814 struct sym_data
*sym_data
= shost_priv(shost
);
2815 struct sym_hcb
*np
= sym_data
->ncb
;
2816 struct pci_dev
*pdev
= sym_data
->pdev
;
2817 u_char istat
, istatc
;
2822 * interrupt on the fly ?
2823 * (SCRIPTS may still be running)
2825 * A `dummy read' is needed to ensure that the
2826 * clear of the INTF flag reaches the device
2827 * and that posted writes are flushed to memory
2828 * before the scanning of the DONE queue.
2829 * Note that SCRIPTS also (dummy) read to memory
2830 * prior to deliver the INTF interrupt condition.
2832 istat
= INB(np
, nc_istat
);
2834 OUTB(np
, nc_istat
, (istat
& SIGP
) | INTF
| np
->istat_sem
);
2835 istat
|= INB(np
, nc_istat
); /* DUMMY READ */
2836 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("F ");
2837 sym_wakeup_done(np
);
2840 if (!(istat
& (SIP
|DIP
)))
2841 return (istat
& INTF
) ? IRQ_HANDLED
: IRQ_NONE
;
2843 #if 0 /* We should never get this one */
2845 OUTB(np
, nc_istat
, CABRT
);
2849 * PAR and MA interrupts may occur at the same time,
2850 * and we need to know of both in order to handle
2851 * this situation properly. We try to unstack SCSI
2852 * interrupts for that reason. BTW, I dislike a LOT
2853 * such a loop inside the interrupt routine.
2854 * Even if DMA interrupt stacking is very unlikely to
2855 * happen, we also try unstacking these ones, since
2856 * this has no performance impact.
2863 sist
|= INW(np
, nc_sist
);
2865 dstat
|= INB(np
, nc_dstat
);
2866 istatc
= INB(np
, nc_istat
);
2869 /* Prevent deadlock waiting on a condition that may
2871 if (unlikely(sist
== 0xffff && dstat
== 0xff)) {
2872 if (pci_channel_offline(pdev
))
2875 } while (istatc
& (SIP
|DIP
));
2877 if (DEBUG_FLAGS
& DEBUG_TINY
)
2878 printf ("<%d|%x:%x|%x:%x>",
2879 (int)INB(np
, nc_scr0
),
2881 (unsigned)INL(np
, nc_dsp
),
2882 (unsigned)INL(np
, nc_dbc
));
2884 * On paper, a memory read barrier may be needed here to
2885 * prevent out of order LOADs by the CPU from having
2886 * prefetched stale data prior to DMA having occurred.
2887 * And since we are paranoid ... :)
2889 MEMORY_READ_BARRIER();
2892 * First, interrupts we want to service cleanly.
2894 * Phase mismatch (MA) is the most frequent interrupt
2895 * for chip earlier than the 896 and so we have to service
2896 * it as quickly as possible.
2897 * A SCSI parity error (PAR) may be combined with a phase
2898 * mismatch condition (MA).
2899 * Programmed interrupts (SIR) are used to call the C code
2901 * The single step interrupt (SSI) is not used in this
2904 if (!(sist
& (STO
|GEN
|HTH
|SGE
|UDC
|SBMC
|RST
)) &&
2905 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2906 if (sist
& PAR
) sym_int_par (np
, sist
);
2907 else if (sist
& MA
) sym_int_ma (np
);
2908 else if (dstat
& SIR
) sym_int_sir(np
);
2909 else if (dstat
& SSI
) OUTONB_STD();
2910 else goto unknown_int
;
2915 * Now, interrupts that donnot happen in normal
2916 * situations and that we may need to recover from.
2918 * On SCSI RESET (RST), we reset everything.
2919 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2920 * active CCBs with RESET status, prepare all devices
2921 * for negotiating again and restart the SCRIPTS.
2922 * On STO and UDC, we complete the CCB with the corres-
2923 * ponding status and restart the SCRIPTS.
2926 printf("%s: SCSI BUS reset detected.\n", sym_name(np
));
2927 sym_start_up(shost
, 1);
2931 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2932 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2934 if (!(sist
& (GEN
|HTH
|SGE
)) &&
2935 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2936 if (sist
& SBMC
) sym_int_sbmc(shost
);
2937 else if (sist
& STO
) sym_int_sto (np
);
2938 else if (sist
& UDC
) sym_int_udc (np
);
2939 else goto unknown_int
;
2944 * Now, interrupts we are not able to recover cleanly.
2946 * Log message for hard errors.
2950 sym_log_hard_error(shost
, sist
, dstat
);
2952 if ((sist
& (GEN
|HTH
|SGE
)) ||
2953 (dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2954 sym_start_reset(np
);
2960 * We just miss the cause of the interrupt. :(
2961 * Print a message. The timeout will do the real work.
2963 printf( "%s: unknown interrupt(s) ignored, "
2964 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2965 sym_name(np
), istat
, dstat
, sist
);
2970 * Dequeue from the START queue all CCBs that match
2971 * a given target/lun/task condition (-1 means all),
2972 * and move them from the BUSY queue to the COMP queue
2973 * with DID_SOFT_ERROR status condition.
2974 * This function is used during error handling/recovery.
2975 * It is called with SCRIPTS not running.
2978 sym_dequeue_from_squeue(struct sym_hcb
*np
, int i
, int target
, int lun
, int task
)
2984 * Make sure the starting index is within range.
2986 assert((i
>= 0) && (i
< 2*MAX_QUEUE
));
2989 * Walk until end of START queue and dequeue every job
2990 * that matches the target/lun/task condition.
2993 while (i
!= np
->squeueput
) {
2994 cp
= sym_ccb_from_dsa(np
, scr_to_cpu(np
->squeue
[i
]));
2996 #ifdef SYM_CONF_IARB_SUPPORT
2997 /* Forget hints for IARB, they may be no longer relevant */
2998 cp
->host_flags
&= ~HF_HINT_IARB
;
3000 if ((target
== -1 || cp
->target
== target
) &&
3001 (lun
== -1 || cp
->lun
== lun
) &&
3002 (task
== -1 || cp
->tag
== task
)) {
3003 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
3004 sym_set_cam_status(cp
->cmd
, DID_SOFT_ERROR
);
3006 sym_set_cam_status(cp
->cmd
, DID_REQUEUE
);
3008 sym_remque(&cp
->link_ccbq
);
3009 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3013 np
->squeue
[j
] = np
->squeue
[i
];
3014 if ((j
+= 2) >= MAX_QUEUE
*2) j
= 0;
3016 if ((i
+= 2) >= MAX_QUEUE
*2) i
= 0;
3018 if (i
!= j
) /* Copy back the idle task if needed */
3019 np
->squeue
[j
] = np
->squeue
[i
];
3020 np
->squeueput
= j
; /* Update our current start queue pointer */
3026 * chip handler for bad SCSI status condition
3028 * In case of bad SCSI status, we unqueue all the tasks
3029 * currently queued to the controller but not yet started
3030 * and then restart the SCRIPTS processor immediately.
3032 * QUEUE FULL and BUSY conditions are handled the same way.
3033 * Basically all the not yet started tasks are requeued in
3034 * device queue and the queue is frozen until a completion.
3036 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3037 * the CCB of the failed command to prepare a REQUEST SENSE
3038 * SCSI command and queue it to the controller queue.
3040 * SCRATCHA is assumed to have been loaded with STARTPOS
3041 * before the SCRIPTS called the C code.
3043 static void sym_sir_bad_scsi_status(struct sym_hcb
*np
, int num
, struct sym_ccb
*cp
)
3046 u_char s_status
= cp
->ssss_status
;
3047 u_char h_flags
= cp
->host_flags
;
3052 * Compute the index of the next job to start from SCRIPTS.
3054 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3057 * The last CCB queued used for IARB hint may be
3058 * no longer relevant. Forget it.
3060 #ifdef SYM_CONF_IARB_SUPPORT
3066 * Now deal with the SCSI status.
3071 if (sym_verbose
>= 2) {
3072 sym_print_addr(cp
->cmd
, "%s\n",
3073 s_status
== S_BUSY
? "BUSY" : "QUEUE FULL\n");
3075 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3076 sym_complete_error (np
, cp
);
3081 * If we get an SCSI error when requesting sense, give up.
3083 if (h_flags
& HF_SENSE
) {
3084 sym_complete_error (np
, cp
);
3089 * Dequeue all queued CCBs for that device not yet started,
3090 * and restart the SCRIPTS processor immediately.
3092 sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3093 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
3096 * Save some info of the actual IO.
3097 * Compute the data residual.
3099 cp
->sv_scsi_status
= cp
->ssss_status
;
3100 cp
->sv_xerr_status
= cp
->xerr_status
;
3101 cp
->sv_resid
= sym_compute_residual(np
, cp
);
3104 * Prepare all needed data structures for
3105 * requesting sense data.
3108 cp
->scsi_smsg2
[0] = IDENTIFY(0, cp
->lun
);
3112 * If we are currently using anything different from
3113 * async. 8 bit data transfers with that target,
3114 * start a negotiation, since the device may want
3115 * to report us a UNIT ATTENTION condition due to
3116 * a cause we currently ignore, and we donnot want
3117 * to be stuck with WIDE and/or SYNC data transfer.
3119 * cp->nego_status is filled by sym_prepare_nego().
3121 cp
->nego_status
= 0;
3122 msglen
+= sym_prepare_nego(np
, cp
, &cp
->scsi_smsg2
[msglen
]);
3124 * Message table indirect structure.
3126 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg2
);
3127 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
3132 cp
->phys
.cmd
.addr
= CCB_BA(cp
, sensecmd
);
3133 cp
->phys
.cmd
.size
= cpu_to_scr(6);
3136 * patch requested size into sense command
3138 cp
->sensecmd
[0] = REQUEST_SENSE
;
3139 cp
->sensecmd
[1] = 0;
3140 if (cp
->cmd
->device
->scsi_level
<= SCSI_2
&& cp
->lun
<= 7)
3141 cp
->sensecmd
[1] = cp
->lun
<< 5;
3142 cp
->sensecmd
[4] = SYM_SNS_BBUF_LEN
;
3143 cp
->data_len
= SYM_SNS_BBUF_LEN
;
3148 memset(cp
->sns_bbuf
, 0, SYM_SNS_BBUF_LEN
);
3149 cp
->phys
.sense
.addr
= CCB_BA(cp
, sns_bbuf
);
3150 cp
->phys
.sense
.size
= cpu_to_scr(SYM_SNS_BBUF_LEN
);
3153 * requeue the command.
3155 startp
= SCRIPTB_BA(np
, sdata_in
);
3157 cp
->phys
.head
.savep
= cpu_to_scr(startp
);
3158 cp
->phys
.head
.lastp
= cpu_to_scr(startp
);
3159 cp
->startp
= cpu_to_scr(startp
);
3160 cp
->goalp
= cpu_to_scr(startp
+ 16);
3162 cp
->host_xflags
= 0;
3163 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
3164 cp
->ssss_status
= S_ILLEGAL
;
3165 cp
->host_flags
= (HF_SENSE
|HF_DATA_IN
);
3166 cp
->xerr_status
= 0;
3167 cp
->extra_bytes
= 0;
3169 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
3172 * Requeue the command.
3174 sym_put_start_queue(np
, cp
);
3177 * Give back to upper layer everything we have dequeued.
3179 sym_flush_comp_queue(np
, 0);
3185 * After a device has accepted some management message
3186 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3187 * a device signals a UNIT ATTENTION condition, some
3188 * tasks are thrown away by the device. We are required
3189 * to reflect that on our tasks list since the device
3190 * will never complete these tasks.
3192 * This function move from the BUSY queue to the COMP
3193 * queue all disconnected CCBs for a given target that
3194 * match the following criteria:
3195 * - lun=-1 means any logical UNIT otherwise a given one.
3196 * - task=-1 means any task, otherwise a given one.
3198 int sym_clear_tasks(struct sym_hcb
*np
, int cam_status
, int target
, int lun
, int task
)
3200 SYM_QUEHEAD qtmp
, *qp
;
3205 * Move the entire BUSY queue to our temporary queue.
3207 sym_que_init(&qtmp
);
3208 sym_que_splice(&np
->busy_ccbq
, &qtmp
);
3209 sym_que_init(&np
->busy_ccbq
);
3212 * Put all CCBs that matches our criteria into
3213 * the COMP queue and put back other ones into
3216 while ((qp
= sym_remque_head(&qtmp
)) != NULL
) {
3217 struct scsi_cmnd
*cmd
;
3218 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3220 if (cp
->host_status
!= HS_DISCONNECT
||
3221 cp
->target
!= target
||
3222 (lun
!= -1 && cp
->lun
!= lun
) ||
3224 (cp
->tag
!= NO_TAG
&& cp
->scsi_smsg
[2] != task
))) {
3225 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3228 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3230 /* Preserve the software timeout condition */
3231 if (sym_get_cam_status(cmd
) != DID_TIME_OUT
)
3232 sym_set_cam_status(cmd
, cam_status
);
3235 printf("XXXX TASK @%p CLEARED\n", cp
);
3242 * chip handler for TASKS recovery
3244 * We cannot safely abort a command, while the SCRIPTS
3245 * processor is running, since we just would be in race
3248 * As long as we have tasks to abort, we keep the SEM
3249 * bit set in the ISTAT. When this bit is set, the
3250 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3251 * each time it enters the scheduler.
3253 * If we have to reset a target, clear tasks of a unit,
3254 * or to perform the abort of a disconnected job, we
3255 * restart the SCRIPTS for selecting the target. Once
3256 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3257 * If it loses arbitration, the SCRIPTS will interrupt again
3258 * the next time it will enter its scheduler, and so on ...
3260 * On SIR_TARGET_SELECTED, we scan for the more
3261 * appropriate thing to do:
3263 * - If nothing, we just sent a M_ABORT message to the
3264 * target to get rid of the useless SCSI bus ownership.
3265 * According to the specs, no tasks shall be affected.
3266 * - If the target is to be reset, we send it a M_RESET
3268 * - If a logical UNIT is to be cleared , we send the
3269 * IDENTIFY(lun) + M_ABORT.
3270 * - If an untagged task is to be aborted, we send the
3271 * IDENTIFY(lun) + M_ABORT.
3272 * - If a tagged task is to be aborted, we send the
3273 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3275 * Once our 'kiss of death' :) message has been accepted
3276 * by the target, the SCRIPTS interrupts again
3277 * (SIR_ABORT_SENT). On this interrupt, we complete
3278 * all the CCBs that should have been aborted by the
3279 * target according to our message.
3281 static void sym_sir_task_recovery(struct sym_hcb
*np
, int num
)
3285 struct sym_tcb
*tp
= NULL
; /* gcc isn't quite smart enough yet */
3286 struct scsi_target
*starget
;
3287 int target
=-1, lun
=-1, task
;
3292 * The SCRIPTS processor stopped before starting
3293 * the next command in order to allow us to perform
3294 * some task recovery.
3296 case SIR_SCRIPT_STOPPED
:
3298 * Do we have any target to reset or unit to clear ?
3300 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
3301 tp
= &np
->target
[i
];
3303 (tp
->lun0p
&& tp
->lun0p
->to_clear
)) {
3309 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3310 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3320 * If not, walk the busy queue for any
3321 * disconnected CCB to be aborted.
3324 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3325 cp
= sym_que_entry(qp
,struct sym_ccb
,link_ccbq
);
3326 if (cp
->host_status
!= HS_DISCONNECT
)
3329 target
= cp
->target
;
3336 * If some target is to be selected,
3337 * prepare and start the selection.
3340 tp
= &np
->target
[target
];
3341 np
->abrt_sel
.sel_id
= target
;
3342 np
->abrt_sel
.sel_scntl3
= tp
->head
.wval
;
3343 np
->abrt_sel
.sel_sxfer
= tp
->head
.sval
;
3344 OUTL(np
, nc_dsa
, np
->hcb_ba
);
3345 OUTL_DSP(np
, SCRIPTB_BA(np
, sel_for_abort
));
3350 * Now look for a CCB to abort that haven't started yet.
3351 * Btw, the SCRIPTS processor is still stopped, so
3352 * we are not in race.
3356 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3357 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3358 if (cp
->host_status
!= HS_BUSY
&&
3359 cp
->host_status
!= HS_NEGOTIATE
)
3363 #ifdef SYM_CONF_IARB_SUPPORT
3365 * If we are using IMMEDIATE ARBITRATION, we donnot
3366 * want to cancel the last queued CCB, since the
3367 * SCRIPTS may have anticipated the selection.
3369 if (cp
== np
->last_cp
) {
3374 i
= 1; /* Means we have found some */
3379 * We are done, so we donnot need
3380 * to synchronize with the SCRIPTS anylonger.
3381 * Remove the SEM flag from the ISTAT.
3384 OUTB(np
, nc_istat
, SIGP
);
3388 * Compute index of next position in the start
3389 * queue the SCRIPTS intends to start and dequeue
3390 * all CCBs for that device that haven't been started.
3392 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3393 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3396 * Make sure at least our IO to abort has been dequeued.
3398 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3399 assert(i
&& sym_get_cam_status(cp
->cmd
) == DID_SOFT_ERROR
);
3401 sym_remque(&cp
->link_ccbq
);
3402 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3405 * Keep track in cam status of the reason of the abort.
3407 if (cp
->to_abort
== 2)
3408 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3410 sym_set_cam_status(cp
->cmd
, DID_ABORT
);
3413 * Complete with error everything that we have dequeued.
3415 sym_flush_comp_queue(np
, 0);
3418 * The SCRIPTS processor has selected a target
3419 * we may have some manual recovery to perform for.
3421 case SIR_TARGET_SELECTED
:
3422 target
= INB(np
, nc_sdid
) & 0xf;
3423 tp
= &np
->target
[target
];
3425 np
->abrt_tbl
.addr
= cpu_to_scr(vtobus(np
->abrt_msg
));
3428 * If the target is to be reset, prepare a
3429 * M_RESET message and clear the to_reset flag
3430 * since we donnot expect this operation to fail.
3433 np
->abrt_msg
[0] = M_RESET
;
3434 np
->abrt_tbl
.size
= 1;
3440 * Otherwise, look for some logical unit to be cleared.
3442 if (tp
->lun0p
&& tp
->lun0p
->to_clear
)
3444 else if (tp
->lunmp
) {
3445 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3446 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3454 * If a logical unit is to be cleared, prepare
3455 * an IDENTIFY(lun) + ABORT MESSAGE.
3458 struct sym_lcb
*lp
= sym_lp(tp
, lun
);
3459 lp
->to_clear
= 0; /* We don't expect to fail here */
3460 np
->abrt_msg
[0] = IDENTIFY(0, lun
);
3461 np
->abrt_msg
[1] = M_ABORT
;
3462 np
->abrt_tbl
.size
= 2;
3467 * Otherwise, look for some disconnected job to
3468 * abort for this target.
3472 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3473 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3474 if (cp
->host_status
!= HS_DISCONNECT
)
3476 if (cp
->target
!= target
)
3480 i
= 1; /* Means we have some */
3485 * If we have none, probably since the device has
3486 * completed the command before we won abitration,
3487 * send a M_ABORT message without IDENTIFY.
3488 * According to the specs, the device must just
3489 * disconnect the BUS and not abort any task.
3492 np
->abrt_msg
[0] = M_ABORT
;
3493 np
->abrt_tbl
.size
= 1;
3498 * We have some task to abort.
3499 * Set the IDENTIFY(lun)
3501 np
->abrt_msg
[0] = IDENTIFY(0, cp
->lun
);
3504 * If we want to abort an untagged command, we
3505 * will send a IDENTIFY + M_ABORT.
3506 * Otherwise (tagged command), we will send
3507 * a IDENTITFY + task attributes + ABORT TAG.
3509 if (cp
->tag
== NO_TAG
) {
3510 np
->abrt_msg
[1] = M_ABORT
;
3511 np
->abrt_tbl
.size
= 2;
3513 np
->abrt_msg
[1] = cp
->scsi_smsg
[1];
3514 np
->abrt_msg
[2] = cp
->scsi_smsg
[2];
3515 np
->abrt_msg
[3] = M_ABORT_TAG
;
3516 np
->abrt_tbl
.size
= 4;
3519 * Keep track of software timeout condition, since the
3520 * peripheral driver may not count retries on abort
3521 * conditions not due to timeout.
3523 if (cp
->to_abort
== 2)
3524 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3525 cp
->to_abort
= 0; /* We donnot expect to fail here */
3529 * The target has accepted our message and switched
3530 * to BUS FREE phase as we expected.
3532 case SIR_ABORT_SENT
:
3533 target
= INB(np
, nc_sdid
) & 0xf;
3534 tp
= &np
->target
[target
];
3535 starget
= tp
->starget
;
3538 ** If we didn't abort anything, leave here.
3540 if (np
->abrt_msg
[0] == M_ABORT
)
3544 * If we sent a M_RESET, then a hardware reset has
3545 * been performed by the target.
3546 * - Reset everything to async 8 bit
3547 * - Tell ourself to negotiate next time :-)
3548 * - Prepare to clear all disconnected CCBs for
3549 * this target from our task list (lun=task=-1)
3553 if (np
->abrt_msg
[0] == M_RESET
) {
3555 tp
->head
.wval
= np
->rv_scntl3
;
3557 spi_period(starget
) = 0;
3558 spi_offset(starget
) = 0;
3559 spi_width(starget
) = 0;
3560 spi_iu(starget
) = 0;
3561 spi_dt(starget
) = 0;
3562 spi_qas(starget
) = 0;
3563 tp
->tgoal
.check_nego
= 1;
3564 tp
->tgoal
.renego
= 0;
3568 * Otherwise, check for the LUN and TASK(s)
3569 * concerned by the cancelation.
3570 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3571 * or an ABORT message :-)
3574 lun
= np
->abrt_msg
[0] & 0x3f;
3575 if (np
->abrt_msg
[1] == M_ABORT_TAG
)
3576 task
= np
->abrt_msg
[2];
3580 * Complete all the CCBs the device should have
3581 * aborted due to our 'kiss of death' message.
3583 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3584 sym_dequeue_from_squeue(np
, i
, target
, lun
, -1);
3585 sym_clear_tasks(np
, DID_ABORT
, target
, lun
, task
);
3586 sym_flush_comp_queue(np
, 0);
3589 * If we sent a BDR, make upper layer aware of that.
3591 if (np
->abrt_msg
[0] == M_RESET
)
3592 starget_printk(KERN_NOTICE
, starget
,
3593 "has been reset\n");
3598 * Print to the log the message we intend to send.
3600 if (num
== SIR_TARGET_SELECTED
) {
3601 dev_info(&tp
->starget
->dev
, "control msgout:");
3602 sym_printl_hex(np
->abrt_msg
, np
->abrt_tbl
.size
);
3603 np
->abrt_tbl
.size
= cpu_to_scr(np
->abrt_tbl
.size
);
3607 * Let the SCRIPTS processor continue.
3613 * Gerard's alchemy:) that deals with with the data
3614 * pointer for both MDP and the residual calculation.
3616 * I didn't want to bloat the code by more than 200
3617 * lines for the handling of both MDP and the residual.
3618 * This has been achieved by using a data pointer
3619 * representation consisting in an index in the data
3620 * array (dp_sg) and a negative offset (dp_ofs) that
3621 * have the following meaning:
3623 * - dp_sg = SYM_CONF_MAX_SG
3624 * we are at the end of the data script.
3625 * - dp_sg < SYM_CONF_MAX_SG
3626 * dp_sg points to the next entry of the scatter array
3627 * we want to transfer.
3629 * dp_ofs represents the residual of bytes of the
3630 * previous entry scatter entry we will send first.
3632 * no residual to send first.
3634 * The function sym_evaluate_dp() accepts an arbitray
3635 * offset (basically from the MDP message) and returns
3636 * the corresponding values of dp_sg and dp_ofs.
3639 static int sym_evaluate_dp(struct sym_hcb
*np
, struct sym_ccb
*cp
, u32 scr
, int *ofs
)
3642 int dp_ofs
, dp_sg
, dp_sgmin
;
3647 * Compute the resulted data pointer in term of a script
3648 * address within some DATA script and a signed byte offset.
3652 if (dp_scr
== SCRIPTA_BA(np
, pm0_data
))
3654 else if (dp_scr
== SCRIPTA_BA(np
, pm1_data
))
3660 dp_scr
= scr_to_cpu(pm
->ret
);
3661 dp_ofs
-= scr_to_cpu(pm
->sg
.size
) & 0x00ffffff;
3665 * If we are auto-sensing, then we are done.
3667 if (cp
->host_flags
& HF_SENSE
) {
3673 * Deduce the index of the sg entry.
3674 * Keep track of the index of the first valid entry.
3675 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3678 tmp
= scr_to_cpu(cp
->goalp
);
3679 dp_sg
= SYM_CONF_MAX_SG
;
3681 dp_sg
-= (tmp
- 8 - (int)dp_scr
) / (2*4);
3682 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3685 * Move to the sg entry the data pointer belongs to.
3687 * If we are inside the data area, we expect result to be:
3690 * dp_ofs = 0 and dp_sg is the index of the sg entry
3691 * the data pointer belongs to (or the end of the data)
3693 * dp_ofs < 0 and dp_sg is the index of the sg entry
3694 * the data pointer belongs to + 1.
3698 while (dp_sg
> dp_sgmin
) {
3700 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3701 n
= dp_ofs
+ (tmp
& 0xffffff);
3709 else if (dp_ofs
> 0) {
3710 while (dp_sg
< SYM_CONF_MAX_SG
) {
3711 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3712 dp_ofs
-= (tmp
& 0xffffff);
3720 * Make sure the data pointer is inside the data area.
3721 * If not, return some error.
3723 if (dp_sg
< dp_sgmin
|| (dp_sg
== dp_sgmin
&& dp_ofs
< 0))
3725 else if (dp_sg
> SYM_CONF_MAX_SG
||
3726 (dp_sg
== SYM_CONF_MAX_SG
&& dp_ofs
> 0))
3730 * Save the extreme pointer if needed.
3732 if (dp_sg
> cp
->ext_sg
||
3733 (dp_sg
== cp
->ext_sg
&& dp_ofs
> cp
->ext_ofs
)) {
3735 cp
->ext_ofs
= dp_ofs
;
3749 * chip handler for MODIFY DATA POINTER MESSAGE
3751 * We also call this function on IGNORE WIDE RESIDUE
3752 * messages that do not match a SWIDE full condition.
3753 * Btw, we assume in that situation that such a message
3754 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3757 static void sym_modify_dp(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
, int ofs
)
3760 u32 dp_scr
= sym_get_script_dp (np
, cp
);
3768 * Not supported for auto-sense.
3770 if (cp
->host_flags
& HF_SENSE
)
3774 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3775 * to the resulted data pointer.
3777 dp_sg
= sym_evaluate_dp(np
, cp
, dp_scr
, &dp_ofs
);
3782 * And our alchemy:) allows to easily calculate the data
3783 * script address we want to return for the next data phase.
3785 dp_ret
= cpu_to_scr(cp
->goalp
);
3786 dp_ret
= dp_ret
- 8 - (SYM_CONF_MAX_SG
- dp_sg
) * (2*4);
3789 * If offset / scatter entry is zero we donnot need
3790 * a context for the new current data pointer.
3798 * Get a context for the new current data pointer.
3800 hflags
= INB(np
, HF_PRT
);
3802 if (hflags
& HF_DP_SAVED
)
3803 hflags
^= HF_ACT_PM
;
3805 if (!(hflags
& HF_ACT_PM
)) {
3807 dp_scr
= SCRIPTA_BA(np
, pm0_data
);
3811 dp_scr
= SCRIPTA_BA(np
, pm1_data
);
3814 hflags
&= ~(HF_DP_SAVED
);
3816 OUTB(np
, HF_PRT
, hflags
);
3819 * Set up the new current data pointer.
3820 * ofs < 0 there, and for the next data phase, we
3821 * want to transfer part of the data of the sg entry
3822 * corresponding to index dp_sg-1 prior to returning
3823 * to the main data script.
3825 pm
->ret
= cpu_to_scr(dp_ret
);
3826 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].addr
);
3827 tmp
+= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].size
) + dp_ofs
;
3828 pm
->sg
.addr
= cpu_to_scr(tmp
);
3829 pm
->sg
.size
= cpu_to_scr(-dp_ofs
);
3832 sym_set_script_dp (np
, cp
, dp_scr
);
3833 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
3837 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
3842 * chip calculation of the data residual.
3844 * As I used to say, the requirement of data residual
3845 * in SCSI is broken, useless and cannot be achieved
3846 * without huge complexity.
3847 * But most OSes and even the official CAM require it.
3848 * When stupidity happens to be so widely spread inside
3849 * a community, it gets hard to convince.
3851 * Anyway, I don't care, since I am not going to use
3852 * any software that considers this data residual as
3853 * a relevant information. :)
3856 int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
)
3858 int dp_sg
, dp_sgmin
, resid
= 0;
3862 * Check for some data lost or just thrown away.
3863 * We are not required to be quite accurate in this
3864 * situation. Btw, if we are odd for output and the
3865 * device claims some more data, it may well happen
3866 * than our residual be zero. :-)
3868 if (cp
->xerr_status
& (XE_EXTRA_DATA
|XE_SODL_UNRUN
|XE_SWIDE_OVRUN
)) {
3869 if (cp
->xerr_status
& XE_EXTRA_DATA
)
3870 resid
-= cp
->extra_bytes
;
3871 if (cp
->xerr_status
& XE_SODL_UNRUN
)
3873 if (cp
->xerr_status
& XE_SWIDE_OVRUN
)
3878 * If all data has been transferred,
3879 * there is no residual.
3881 if (cp
->phys
.head
.lastp
== cp
->goalp
)
3885 * If no data transfer occurs, or if the data
3886 * pointer is weird, return full residual.
3888 if (cp
->startp
== cp
->phys
.head
.lastp
||
3889 sym_evaluate_dp(np
, cp
, scr_to_cpu(cp
->phys
.head
.lastp
),
3891 return cp
->data_len
- cp
->odd_byte_adjustment
;
3895 * If we were auto-sensing, then we are done.
3897 if (cp
->host_flags
& HF_SENSE
) {
3902 * We are now full comfortable in the computation
3903 * of the data residual (2's complement).
3905 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3906 resid
= -cp
->ext_ofs
;
3907 for (dp_sg
= cp
->ext_sg
; dp_sg
< SYM_CONF_MAX_SG
; ++dp_sg
) {
3908 u_int tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3909 resid
+= (tmp
& 0xffffff);
3912 resid
-= cp
->odd_byte_adjustment
;
3915 * Hopefully, the result is not too wrong.
3921 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3923 * When we try to negotiate, we append the negotiation message
3924 * to the identify and (maybe) simple tag message.
3925 * The host status field is set to HS_NEGOTIATE to mark this
3928 * If the target doesn't answer this message immediately
3929 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3930 * will be raised eventually.
3931 * The handler removes the HS_NEGOTIATE status, and sets the
3932 * negotiated value to the default (async / nowide).
3934 * If we receive a matching answer immediately, we check it
3935 * for validity, and set the values.
3937 * If we receive a Reject message immediately, we assume the
3938 * negotiation has failed, and fall back to standard values.
3940 * If we receive a negotiation message while not in HS_NEGOTIATE
3941 * state, it's a target initiated negotiation. We prepare a
3942 * (hopefully) valid answer, set our parameters, and send back
3943 * this answer to the target.
3945 * If the target doesn't fetch the answer (no message out phase),
3946 * we assume the negotiation has failed, and fall back to default
3947 * settings (SIR_NEGO_PROTO interrupt).
3949 * When we set the values, we adjust them in all ccbs belonging
3950 * to this target, in the controller's register, and in the "phys"
3951 * field of the controller's struct sym_hcb.
3955 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3958 sym_sync_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
3960 int target
= cp
->target
;
3961 u_char chg
, ofs
, per
, fak
, div
;
3963 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3964 sym_print_nego_msg(np
, target
, "sync msgin", np
->msgin
);
3968 * Get requested values.
3975 * Check values against our limits.
3978 if (ofs
> np
->maxoffs
)
3979 {chg
= 1; ofs
= np
->maxoffs
;}
3983 if (per
< np
->minsync
)
3984 {chg
= 1; per
= np
->minsync
;}
3988 * Get new chip synchronous parameters value.
3991 if (ofs
&& sym_getsync(np
, 0, per
, &div
, &fak
) < 0)
3994 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3995 sym_print_addr(cp
->cmd
,
3996 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3997 ofs
, per
, div
, fak
, chg
);
4001 * If it was an answer we want to change,
4002 * then it isn't acceptable. Reject it.
4010 sym_setsync (np
, target
, ofs
, per
, div
, fak
);
4013 * It was an answer. We are done.
4019 * It was a request. Prepare an answer message.
4021 spi_populate_sync_msg(np
->msgout
, per
, ofs
);
4023 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4024 sym_print_nego_msg(np
, target
, "sync msgout", np
->msgout
);
4027 np
->msgin
[0] = M_NOOP
;
4032 sym_setsync (np
, target
, 0, 0, 0, 0);
4036 static void sym_sync_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4042 * Request or answer ?
4044 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4045 OUTB(np
, HS_PRT
, HS_BUSY
);
4046 if (cp
->nego_status
&& cp
->nego_status
!= NS_SYNC
)
4052 * Check and apply new values.
4054 result
= sym_sync_nego_check(np
, req
, cp
);
4055 if (result
) /* Not acceptable, reject it */
4057 if (req
) { /* Was a request, send response. */
4058 cp
->nego_status
= NS_SYNC
;
4059 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4061 else /* Was a response, we are done. */
4062 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4066 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4070 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4073 sym_ppr_nego_check(struct sym_hcb
*np
, int req
, int target
)
4075 struct sym_tcb
*tp
= &np
->target
[target
];
4076 unsigned char fak
, div
;
4079 unsigned char per
= np
->msgin
[3];
4080 unsigned char ofs
= np
->msgin
[5];
4081 unsigned char wide
= np
->msgin
[6];
4082 unsigned char opts
= np
->msgin
[7] & PPR_OPT_MASK
;
4084 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4085 sym_print_nego_msg(np
, target
, "ppr msgin", np
->msgin
);
4089 * Check values against our limits.
4091 if (wide
> np
->maxwide
) {
4095 if (!wide
|| !(np
->features
& FE_U3EN
))
4098 if (opts
!= (np
->msgin
[7] & PPR_OPT_MASK
))
4101 dt
= opts
& PPR_OPT_DT
;
4104 unsigned char maxoffs
= dt
? np
->maxoffs_dt
: np
->maxoffs
;
4105 if (ofs
> maxoffs
) {
4112 unsigned char minsync
= dt
? np
->minsync_dt
: np
->minsync
;
4113 if (per
< minsync
) {
4120 * Get new chip synchronous parameters value.
4123 if (ofs
&& sym_getsync(np
, dt
, per
, &div
, &fak
) < 0)
4127 * If it was an answer we want to change,
4128 * then it isn't acceptable. Reject it.
4136 sym_setpprot(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
4139 * It was an answer. We are done.
4145 * It was a request. Prepare an answer message.
4147 spi_populate_ppr_msg(np
->msgout
, per
, ofs
, wide
, opts
);
4149 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4150 sym_print_nego_msg(np
, target
, "ppr msgout", np
->msgout
);
4153 np
->msgin
[0] = M_NOOP
;
4158 sym_setpprot (np
, target
, 0, 0, 0, 0, 0, 0);
4160 * If it is a device response that should result in
4161 * ST, we may want to try a legacy negotiation later.
4163 if (!req
&& !opts
) {
4164 tp
->tgoal
.period
= per
;
4165 tp
->tgoal
.offset
= ofs
;
4166 tp
->tgoal
.width
= wide
;
4167 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4168 tp
->tgoal
.check_nego
= 1;
4173 static void sym_ppr_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4179 * Request or answer ?
4181 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4182 OUTB(np
, HS_PRT
, HS_BUSY
);
4183 if (cp
->nego_status
&& cp
->nego_status
!= NS_PPR
)
4189 * Check and apply new values.
4191 result
= sym_ppr_nego_check(np
, req
, cp
->target
);
4192 if (result
) /* Not acceptable, reject it */
4194 if (req
) { /* Was a request, send response. */
4195 cp
->nego_status
= NS_PPR
;
4196 OUTL_DSP(np
, SCRIPTB_BA(np
, ppr_resp
));
4198 else /* Was a response, we are done. */
4199 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4203 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4207 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4210 sym_wide_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
4212 int target
= cp
->target
;
4215 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4216 sym_print_nego_msg(np
, target
, "wide msgin", np
->msgin
);
4220 * Get requested values.
4223 wide
= np
->msgin
[3];
4226 * Check values against our limits.
4228 if (wide
> np
->maxwide
) {
4233 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4234 sym_print_addr(cp
->cmd
, "wdtr: wide=%d chg=%d.\n",
4239 * If it was an answer we want to change,
4240 * then it isn't acceptable. Reject it.
4248 sym_setwide (np
, target
, wide
);
4251 * It was an answer. We are done.
4257 * It was a request. Prepare an answer message.
4259 spi_populate_width_msg(np
->msgout
, wide
);
4261 np
->msgin
[0] = M_NOOP
;
4263 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4264 sym_print_nego_msg(np
, target
, "wide msgout", np
->msgout
);
4273 static void sym_wide_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4279 * Request or answer ?
4281 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4282 OUTB(np
, HS_PRT
, HS_BUSY
);
4283 if (cp
->nego_status
&& cp
->nego_status
!= NS_WIDE
)
4289 * Check and apply new values.
4291 result
= sym_wide_nego_check(np
, req
, cp
);
4292 if (result
) /* Not acceptable, reject it */
4294 if (req
) { /* Was a request, send response. */
4295 cp
->nego_status
= NS_WIDE
;
4296 OUTL_DSP(np
, SCRIPTB_BA(np
, wdtr_resp
));
4297 } else { /* Was a response. */
4299 * Negotiate for SYNC immediately after WIDE response.
4300 * This allows to negotiate for both WIDE and SYNC on
4301 * a single SCSI command (Suggested by Justin Gibbs).
4303 if (tp
->tgoal
.offset
) {
4304 spi_populate_sync_msg(np
->msgout
, tp
->tgoal
.period
,
4307 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4308 sym_print_nego_msg(np
, cp
->target
,
4309 "sync msgout", np
->msgout
);
4312 cp
->nego_status
= NS_SYNC
;
4313 OUTB(np
, HS_PRT
, HS_NEGOTIATE
);
4314 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4317 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4323 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4327 * Reset DT, SYNC or WIDE to default settings.
4329 * Called when a negotiation does not succeed either
4330 * on rejection or on protocol error.
4332 * A target that understands a PPR message should never
4333 * reject it, and messing with it is very unlikely.
4334 * So, if a PPR makes problems, we may just want to
4335 * try a legacy negotiation later.
4337 static void sym_nego_default(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4339 switch (cp
->nego_status
) {
4342 sym_setpprot (np
, cp
->target
, 0, 0, 0, 0, 0, 0);
4344 if (tp
->tgoal
.period
< np
->minsync
)
4345 tp
->tgoal
.period
= np
->minsync
;
4346 if (tp
->tgoal
.offset
> np
->maxoffs
)
4347 tp
->tgoal
.offset
= np
->maxoffs
;
4348 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4349 tp
->tgoal
.check_nego
= 1;
4353 sym_setsync (np
, cp
->target
, 0, 0, 0, 0);
4356 sym_setwide (np
, cp
->target
, 0);
4359 np
->msgin
[0] = M_NOOP
;
4360 np
->msgout
[0] = M_NOOP
;
4361 cp
->nego_status
= 0;
4365 * chip handler for MESSAGE REJECT received in response to
4366 * PPR, WIDE or SYNCHRONOUS negotiation.
4368 static void sym_nego_rejected(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4370 sym_nego_default(np
, tp
, cp
);
4371 OUTB(np
, HS_PRT
, HS_BUSY
);
4375 * chip exception handler for programmed interrupts.
4377 static void sym_int_sir(struct sym_hcb
*np
)
4379 u_char num
= INB(np
, nc_dsps
);
4380 u32 dsa
= INL(np
, nc_dsa
);
4381 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
4382 u_char target
= INB(np
, nc_sdid
) & 0x0f;
4383 struct sym_tcb
*tp
= &np
->target
[target
];
4386 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("I#%d", num
);
4389 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4391 * SCRIPTS tell us that we may have to update
4392 * 64 bit DMA segment registers.
4394 case SIR_DMAP_DIRTY
:
4395 sym_update_dmap_regs(np
);
4399 * Command has been completed with error condition
4400 * or has been auto-sensed.
4402 case SIR_COMPLETE_ERROR
:
4403 sym_complete_error(np
, cp
);
4406 * The C code is currently trying to recover from something.
4407 * Typically, user want to abort some command.
4409 case SIR_SCRIPT_STOPPED
:
4410 case SIR_TARGET_SELECTED
:
4411 case SIR_ABORT_SENT
:
4412 sym_sir_task_recovery(np
, num
);
4415 * The device didn't go to MSG OUT phase after having
4416 * been selected with ATN. We do not want to handle that.
4418 case SIR_SEL_ATN_NO_MSG_OUT
:
4419 scmd_printk(KERN_WARNING
, cp
->cmd
,
4420 "No MSG OUT phase after selection with ATN\n");
4423 * The device didn't switch to MSG IN phase after
4424 * having reselected the initiator.
4426 case SIR_RESEL_NO_MSG_IN
:
4427 scmd_printk(KERN_WARNING
, cp
->cmd
,
4428 "No MSG IN phase after reselection\n");
4431 * After reselection, the device sent a message that wasn't
4434 case SIR_RESEL_NO_IDENTIFY
:
4435 scmd_printk(KERN_WARNING
, cp
->cmd
,
4436 "No IDENTIFY after reselection\n");
4439 * The device reselected a LUN we do not know about.
4441 case SIR_RESEL_BAD_LUN
:
4442 np
->msgout
[0] = M_RESET
;
4445 * The device reselected for an untagged nexus and we
4448 case SIR_RESEL_BAD_I_T_L
:
4449 np
->msgout
[0] = M_ABORT
;
4452 * The device reselected for a tagged nexus that we do not have.
4454 case SIR_RESEL_BAD_I_T_L_Q
:
4455 np
->msgout
[0] = M_ABORT_TAG
;
4458 * The SCRIPTS let us know that the device has grabbed
4459 * our message and will abort the job.
4461 case SIR_RESEL_ABORTED
:
4462 np
->lastmsg
= np
->msgout
[0];
4463 np
->msgout
[0] = M_NOOP
;
4464 scmd_printk(KERN_WARNING
, cp
->cmd
,
4465 "message %x sent on bad reselection\n", np
->lastmsg
);
4468 * The SCRIPTS let us know that a message has been
4469 * successfully sent to the device.
4471 case SIR_MSG_OUT_DONE
:
4472 np
->lastmsg
= np
->msgout
[0];
4473 np
->msgout
[0] = M_NOOP
;
4474 /* Should we really care of that */
4475 if (np
->lastmsg
== M_PARITY
|| np
->lastmsg
== M_ID_ERROR
) {
4477 cp
->xerr_status
&= ~XE_PARITY_ERR
;
4478 if (!cp
->xerr_status
)
4479 OUTOFFB(np
, HF_PRT
, HF_EXT_ERR
);
4484 * The device didn't send a GOOD SCSI status.
4485 * We may have some work to do prior to allow
4486 * the SCRIPTS processor to continue.
4488 case SIR_BAD_SCSI_STATUS
:
4491 sym_sir_bad_scsi_status(np
, num
, cp
);
4494 * We are asked by the SCRIPTS to prepare a
4497 case SIR_REJECT_TO_SEND
:
4498 sym_print_msg(cp
, "M_REJECT to send for ", np
->msgin
);
4499 np
->msgout
[0] = M_REJECT
;
4502 * We have been ODD at the end of a DATA IN
4503 * transfer and the device didn't send a
4504 * IGNORE WIDE RESIDUE message.
4505 * It is a data overrun condition.
4507 case SIR_SWIDE_OVERRUN
:
4509 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4510 cp
->xerr_status
|= XE_SWIDE_OVRUN
;
4514 * We have been ODD at the end of a DATA OUT
4516 * It is a data underrun condition.
4518 case SIR_SODL_UNDERRUN
:
4520 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4521 cp
->xerr_status
|= XE_SODL_UNRUN
;
4525 * The device wants us to tranfer more data than
4526 * expected or in the wrong direction.
4527 * The number of extra bytes is in scratcha.
4528 * It is a data overrun condition.
4530 case SIR_DATA_OVERRUN
:
4532 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4533 cp
->xerr_status
|= XE_EXTRA_DATA
;
4534 cp
->extra_bytes
+= INL(np
, nc_scratcha
);
4538 * The device switched to an illegal phase (4/5).
4542 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4543 cp
->xerr_status
|= XE_BAD_PHASE
;
4547 * We received a message.
4549 case SIR_MSG_RECEIVED
:
4552 switch (np
->msgin
[0]) {
4554 * We received an extended message.
4555 * We handle MODIFY DATA POINTER, SDTR, WDTR
4556 * and reject all other extended messages.
4559 switch (np
->msgin
[2]) {
4561 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4562 sym_print_msg(cp
, "extended msg ",
4564 tmp
= (np
->msgin
[3]<<24) + (np
->msgin
[4]<<16) +
4565 (np
->msgin
[5]<<8) + (np
->msgin
[6]);
4566 sym_modify_dp(np
, tp
, cp
, tmp
);
4569 sym_sync_nego(np
, tp
, cp
);
4572 sym_ppr_nego(np
, tp
, cp
);
4575 sym_wide_nego(np
, tp
, cp
);
4582 * We received a 1/2 byte message not handled from SCRIPTS.
4583 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4584 * RESIDUE messages that haven't been anticipated by
4585 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4586 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4589 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4590 sym_print_msg(cp
, "1 or 2 byte ", np
->msgin
);
4591 if (cp
->host_flags
& HF_SENSE
)
4592 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4594 sym_modify_dp(np
, tp
, cp
, -1);
4597 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
)
4598 sym_nego_rejected(np
, tp
, cp
);
4600 sym_print_addr(cp
->cmd
,
4601 "M_REJECT received (%x:%x).\n",
4602 scr_to_cpu(np
->lastmsg
), np
->msgout
[0]);
4611 * We received an unknown message.
4612 * Ignore all MSG IN phases and reject it.
4615 sym_print_msg(cp
, "WEIRD message received", np
->msgin
);
4616 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_weird
));
4619 * Negotiation failed.
4620 * Target does not send us the reply.
4621 * Remove the HS_NEGOTIATE status.
4623 case SIR_NEGO_FAILED
:
4624 OUTB(np
, HS_PRT
, HS_BUSY
);
4626 * Negotiation failed.
4627 * Target does not want answer message.
4629 case SIR_NEGO_PROTO
:
4630 sym_nego_default(np
, tp
, cp
);
4638 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4641 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4648 * Acquire a control block
4650 struct sym_ccb
*sym_get_ccb (struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, u_char tag_order
)
4652 u_char tn
= cmd
->device
->id
;
4653 u_char ln
= cmd
->device
->lun
;
4654 struct sym_tcb
*tp
= &np
->target
[tn
];
4655 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4656 u_short tag
= NO_TAG
;
4658 struct sym_ccb
*cp
= NULL
;
4661 * Look for a free CCB
4663 if (sym_que_empty(&np
->free_ccbq
))
4665 qp
= sym_remque_head(&np
->free_ccbq
);
4668 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
4672 * If we have been asked for a tagged command.
4676 * Debugging purpose.
4678 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4679 if (lp
->busy_itl
!= 0)
4683 * Allocate resources for tags if not yet.
4686 sym_alloc_lcb_tags(np
, tn
, ln
);
4691 * Get a tag for this SCSI IO and set up
4692 * the CCB bus address for reselection,
4693 * and count it for this LUN.
4694 * Toggle reselect path to tagged.
4696 if (lp
->busy_itlq
< SYM_CONF_MAX_TASK
) {
4697 tag
= lp
->cb_tags
[lp
->ia_tag
];
4698 if (++lp
->ia_tag
== SYM_CONF_MAX_TASK
)
4701 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4702 lp
->itlq_tbl
[tag
] = cpu_to_scr(cp
->ccb_ba
);
4704 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
4706 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4707 cp
->tags_si
= lp
->tags_si
;
4708 ++lp
->tags_sum
[cp
->tags_si
];
4716 * This command will not be tagged.
4717 * If we already have either a tagged or untagged
4718 * one, refuse to overlap this untagged one.
4722 * Debugging purpose.
4724 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4725 if (lp
->busy_itl
!= 0 || lp
->busy_itlq
!= 0)
4729 * Count this nexus for this LUN.
4730 * Set up the CCB bus address for reselection.
4731 * Toggle reselect path to untagged.
4734 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4735 if (lp
->busy_itl
== 1) {
4736 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
4738 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
4746 * Put the CCB into the busy queue.
4748 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
4749 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4751 sym_remque(&cp
->link2_ccbq
);
4752 sym_insque_tail(&cp
->link2_ccbq
, &lp
->waiting_ccbq
);
4757 cp
->odd_byte_adjustment
= 0;
4759 cp
->order
= tag_order
;
4763 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4764 sym_print_addr(cmd
, "ccb @%p using tag %d.\n", cp
, tag
);
4770 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4775 * Release one control block
4777 void sym_free_ccb (struct sym_hcb
*np
, struct sym_ccb
*cp
)
4779 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
4780 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
4782 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4783 sym_print_addr(cp
->cmd
, "ccb @%p freeing tag %d.\n",
4792 * If tagged, release the tag, set the relect path
4794 if (cp
->tag
!= NO_TAG
) {
4795 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4796 --lp
->tags_sum
[cp
->tags_si
];
4799 * Free the tag value.
4801 lp
->cb_tags
[lp
->if_tag
] = cp
->tag
;
4802 if (++lp
->if_tag
== SYM_CONF_MAX_TASK
)
4805 * Make the reselect path invalid,
4806 * and uncount this CCB.
4808 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(np
->bad_itlq_ba
);
4810 } else { /* Untagged */
4812 * Make the reselect path invalid,
4813 * and uncount this CCB.
4815 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4819 * If no JOB active, make the LUN reselect path invalid.
4821 if (lp
->busy_itlq
== 0 && lp
->busy_itl
== 0)
4823 cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
4827 * We donnot queue more than 1 ccb per target
4828 * with negotiation at any time. If this ccb was
4829 * used for negotiation, clear this info in the tcb.
4831 if (cp
== tp
->nego_cp
)
4834 #ifdef SYM_CONF_IARB_SUPPORT
4836 * If we just complete the last queued CCB,
4837 * clear this info that is no longer relevant.
4839 if (cp
== np
->last_cp
)
4844 * Make this CCB available.
4847 cp
->host_status
= HS_IDLE
;
4848 sym_remque(&cp
->link_ccbq
);
4849 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4851 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4853 sym_remque(&cp
->link2_ccbq
);
4854 sym_insque_tail(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4856 if (cp
->tag
!= NO_TAG
)
4859 --lp
->started_no_tag
;
4867 * Allocate a CCB from memory and initialize its fixed part.
4869 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
)
4871 struct sym_ccb
*cp
= NULL
;
4875 * Prevent from allocating more CCBs than we can
4876 * queue to the controller.
4878 if (np
->actccbs
>= SYM_CONF_MAX_START
)
4882 * Allocate memory for this CCB.
4884 cp
= sym_calloc_dma(sizeof(struct sym_ccb
), "CCB");
4894 * Compute the bus address of this ccb.
4896 cp
->ccb_ba
= vtobus(cp
);
4899 * Insert this ccb into the hashed list.
4901 hcode
= CCB_HASH_CODE(cp
->ccb_ba
);
4902 cp
->link_ccbh
= np
->ccbh
[hcode
];
4903 np
->ccbh
[hcode
] = cp
;
4906 * Initialyze the start and restart actions.
4908 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
4909 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
4912 * Initilialyze some other fields.
4914 cp
->phys
.smsg_ext
.addr
= cpu_to_scr(HCB_BA(np
, msgin
[2]));
4917 * Chain into free ccb queue.
4919 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4922 * Chain into optionnal lists.
4924 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4925 sym_insque_head(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4930 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
4935 * Look up a CCB from a DSA value.
4937 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
)
4942 hcode
= CCB_HASH_CODE(dsa
);
4943 cp
= np
->ccbh
[hcode
];
4945 if (cp
->ccb_ba
== dsa
)
4954 * Target control block initialisation.
4955 * Nothing important to do at the moment.
4957 static void sym_init_tcb (struct sym_hcb
*np
, u_char tn
)
4959 #if 0 /* Hmmm... this checking looks paranoid. */
4961 * Check some alignments required by the chip.
4963 assert (((offsetof(struct sym_reg
, nc_sxfer
) ^
4964 offsetof(struct sym_tcb
, head
.sval
)) &3) == 0);
4965 assert (((offsetof(struct sym_reg
, nc_scntl3
) ^
4966 offsetof(struct sym_tcb
, head
.wval
)) &3) == 0);
4971 * Lun control block allocation and initialization.
4973 struct sym_lcb
*sym_alloc_lcb (struct sym_hcb
*np
, u_char tn
, u_char ln
)
4975 struct sym_tcb
*tp
= &np
->target
[tn
];
4976 struct sym_lcb
*lp
= NULL
;
4979 * Initialize the target control block if not yet.
4981 sym_init_tcb (np
, tn
);
4984 * Allocate the LCB bus address array.
4985 * Compute the bus address of this table.
4987 if (ln
&& !tp
->luntbl
) {
4990 tp
->luntbl
= sym_calloc_dma(256, "LUNTBL");
4993 for (i
= 0 ; i
< 64 ; i
++)
4994 tp
->luntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
4995 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(tp
->luntbl
));
4999 * Allocate the table of pointers for LUN(s) > 0, if needed.
5001 if (ln
&& !tp
->lunmp
) {
5002 tp
->lunmp
= kcalloc(SYM_CONF_MAX_LUN
, sizeof(struct sym_lcb
*),
5010 * Make it available to the chip.
5012 lp
= sym_calloc_dma(sizeof(struct sym_lcb
), "LCB");
5017 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(lp
));
5021 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(lp
));
5026 * Let the itl task point to error handling.
5028 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
5031 * Set the reselect pattern to our default. :)
5033 lp
->head
.resel_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5036 * Set user capabilities.
5038 lp
->user_flags
= tp
->usrflags
& (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
5040 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5042 * Initialize device queueing.
5044 sym_que_init(&lp
->waiting_ccbq
);
5045 sym_que_init(&lp
->started_ccbq
);
5046 lp
->started_max
= SYM_CONF_MAX_TASK
;
5047 lp
->started_limit
= SYM_CONF_MAX_TASK
;
5055 * Allocate LCB resources for tagged command queuing.
5057 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
)
5059 struct sym_tcb
*tp
= &np
->target
[tn
];
5060 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
5064 * Allocate the task table and and the tag allocation
5065 * circular buffer. We want both or none.
5067 lp
->itlq_tbl
= sym_calloc_dma(SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5070 lp
->cb_tags
= kcalloc(SYM_CONF_MAX_TASK
, 1, GFP_ATOMIC
);
5072 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5073 lp
->itlq_tbl
= NULL
;
5078 * Initialize the task table with invalid entries.
5080 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5081 lp
->itlq_tbl
[i
] = cpu_to_scr(np
->notask_ba
);
5084 * Fill up the tag buffer with tag numbers.
5086 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5090 * Make the task table available to SCRIPTS,
5091 * And accept tagged commands now.
5093 lp
->head
.itlq_tbl_sa
= cpu_to_scr(vtobus(lp
->itlq_tbl
));
5101 * Lun control block deallocation. Returns the number of valid remaining LCBs
5104 int sym_free_lcb(struct sym_hcb
*np
, u_char tn
, u_char ln
)
5106 struct sym_tcb
*tp
= &np
->target
[tn
];
5107 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
5114 sym_mfree_dma(tp
->luntbl
, 256, "LUNTBL");
5117 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(np
->badluntbl
));
5119 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5120 tp
->lunmp
[ln
] = NULL
;
5124 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(&np
->badlun_sa
));
5128 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5132 sym_mfree_dma(lp
, sizeof(*lp
), "LCB");
5138 * Queue a SCSI IO to the controller.
5140 int sym_queue_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, struct sym_ccb
*cp
)
5142 struct scsi_device
*sdev
= cmd
->device
;
5150 * Keep track of the IO in our CCB.
5155 * Retrieve the target descriptor.
5157 tp
= &np
->target
[cp
->target
];
5160 * Retrieve the lun descriptor.
5162 lp
= sym_lp(tp
, sdev
->lun
);
5164 can_disconnect
= (cp
->tag
!= NO_TAG
) ||
5165 (lp
&& (lp
->curr_flags
& SYM_DISC_ENABLED
));
5167 msgptr
= cp
->scsi_smsg
;
5169 msgptr
[msglen
++] = IDENTIFY(can_disconnect
, sdev
->lun
);
5172 * Build the tag message if present.
5174 if (cp
->tag
!= NO_TAG
) {
5175 u_char order
= cp
->order
;
5183 order
= M_SIMPLE_TAG
;
5185 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5187 * Avoid too much reordering of SCSI commands.
5188 * The algorithm tries to prevent completion of any
5189 * tagged command from being delayed against more
5190 * than 3 times the max number of queued commands.
5192 if (lp
&& lp
->tags_since
> 3*SYM_CONF_MAX_TAG
) {
5193 lp
->tags_si
= !(lp
->tags_si
);
5194 if (lp
->tags_sum
[lp
->tags_si
]) {
5195 order
= M_ORDERED_TAG
;
5196 if ((DEBUG_FLAGS
& DEBUG_TAGS
)||sym_verbose
>1) {
5198 "ordered tag forced.\n");
5204 msgptr
[msglen
++] = order
;
5207 * For less than 128 tags, actual tags are numbered
5208 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5209 * with devices that have problems with #TAG 0 or too
5210 * great #TAG numbers. For more tags (up to 256),
5211 * we use directly our tag number.
5213 #if SYM_CONF_MAX_TASK > (512/4)
5214 msgptr
[msglen
++] = cp
->tag
;
5216 msgptr
[msglen
++] = (cp
->tag
<< 1) + 1;
5221 * Build a negotiation message if needed.
5222 * (nego_status is filled by sym_prepare_nego())
5224 * Always negotiate on INQUIRY and REQUEST SENSE.
5227 cp
->nego_status
= 0;
5228 if ((tp
->tgoal
.check_nego
||
5229 cmd
->cmnd
[0] == INQUIRY
|| cmd
->cmnd
[0] == REQUEST_SENSE
) &&
5230 !tp
->nego_cp
&& lp
) {
5231 msglen
+= sym_prepare_nego(np
, cp
, msgptr
+ msglen
);
5237 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
5238 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTA_BA(np
, resel_dsa
));
5243 cp
->phys
.select
.sel_id
= cp
->target
;
5244 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
5245 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
5246 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
5251 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg
);
5252 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
5257 cp
->host_xflags
= 0;
5258 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
5259 cp
->ssss_status
= S_ILLEGAL
;
5260 cp
->xerr_status
= 0;
5262 cp
->extra_bytes
= 0;
5265 * extreme data pointer.
5266 * shall be positive, so -1 is lower than lowest.:)
5272 * Build the CDB and DATA descriptor block
5275 return sym_setup_data_and_start(np
, cmd
, cp
);
5279 * Reset a SCSI target (all LUNs of this target).
5281 int sym_reset_scsi_target(struct sym_hcb
*np
, int target
)
5285 if (target
== np
->myaddr
|| (u_int
)target
>= SYM_CONF_MAX_TARGET
)
5288 tp
= &np
->target
[target
];
5291 np
->istat_sem
= SEM
;
5292 OUTB(np
, nc_istat
, SIGP
|SEM
);
5300 static int sym_abort_ccb(struct sym_hcb
*np
, struct sym_ccb
*cp
, int timed_out
)
5303 * Check that the IO is active.
5305 if (!cp
|| !cp
->host_status
|| cp
->host_status
== HS_WAIT
)
5309 * If a previous abort didn't succeed in time,
5310 * perform a BUS reset.
5313 sym_reset_scsi_bus(np
, 1);
5318 * Mark the CCB for abort and allow time for.
5320 cp
->to_abort
= timed_out
? 2 : 1;
5323 * Tell the SCRIPTS processor to stop and synchronize with us.
5325 np
->istat_sem
= SEM
;
5326 OUTB(np
, nc_istat
, SIGP
|SEM
);
5330 int sym_abort_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, int timed_out
)
5336 * Look up our CCB control block.
5339 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
5340 struct sym_ccb
*cp2
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5341 if (cp2
->cmd
== cmd
) {
5347 return sym_abort_ccb(np
, cp
, timed_out
);
5351 * Complete execution of a SCSI command with extended
5352 * error, SCSI status error, or having been auto-sensed.
5354 * The SCRIPTS processor is not running there, so we
5355 * can safely access IO registers and remove JOBs from
5357 * SCRATCHA is assumed to have been loaded with STARTPOS
5358 * before the SCRIPTS called the C code.
5360 void sym_complete_error(struct sym_hcb
*np
, struct sym_ccb
*cp
)
5362 struct scsi_device
*sdev
;
5363 struct scsi_cmnd
*cmd
;
5370 * Paranoid check. :)
5372 if (!cp
|| !cp
->cmd
)
5377 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_RESULT
)) {
5378 dev_info(&sdev
->sdev_gendev
, "CCB=%p STAT=%x/%x/%x\n", cp
,
5379 cp
->host_status
, cp
->ssss_status
, cp
->host_flags
);
5383 * Get target and lun pointers.
5385 tp
= &np
->target
[cp
->target
];
5386 lp
= sym_lp(tp
, sdev
->lun
);
5389 * Check for extended errors.
5391 if (cp
->xerr_status
) {
5393 sym_print_xerr(cmd
, cp
->xerr_status
);
5394 if (cp
->host_status
== HS_COMPLETE
)
5395 cp
->host_status
= HS_COMP_ERR
;
5399 * Calculate the residual.
5401 resid
= sym_compute_residual(np
, cp
);
5403 if (!SYM_SETUP_RESIDUAL_SUPPORT
) {/* If user does not want residuals */
5404 resid
= 0; /* throw them away. :) */
5409 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5413 * Dequeue all queued CCBs for that device
5414 * not yet started by SCRIPTS.
5416 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
5417 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, sdev
->lun
, -1);
5420 * Restart the SCRIPTS processor.
5422 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
5424 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5425 if (cp
->host_status
== HS_COMPLETE
&&
5426 cp
->ssss_status
== S_QUEUE_FULL
) {
5427 if (!lp
|| lp
->started_tags
- i
< 2)
5430 * Decrease queue depth as needed.
5432 lp
->started_max
= lp
->started_tags
- i
- 1;
5435 if (sym_verbose
>= 2) {
5436 sym_print_addr(cmd
, " queue depth is now %d\n",
5443 cp
->host_status
= HS_BUSY
;
5444 cp
->ssss_status
= S_ILLEGAL
;
5447 * Let's requeue it to device.
5449 sym_set_cam_status(cmd
, DID_SOFT_ERROR
);
5455 * Build result in CAM ccb.
5457 sym_set_cam_result_error(np
, cp
, resid
);
5459 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5463 * Add this one to the COMP queue.
5465 sym_remque(&cp
->link_ccbq
);
5466 sym_insque_head(&cp
->link_ccbq
, &np
->comp_ccbq
);
5469 * Complete all those commands with either error
5470 * or requeue condition.
5472 sym_flush_comp_queue(np
, 0);
5474 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5476 * Donnot start more than 1 command after an error.
5478 sym_start_next_ccbs(np
, lp
, 1);
5483 * Complete execution of a successful SCSI command.
5485 * Only successful commands go to the DONE queue,
5486 * since we need to have the SCRIPTS processor
5487 * stopped on any error condition.
5488 * The SCRIPTS processor is running while we are
5489 * completing successful commands.
5491 void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
)
5495 struct scsi_cmnd
*cmd
;
5499 * Paranoid check. :)
5501 if (!cp
|| !cp
->cmd
)
5503 assert (cp
->host_status
== HS_COMPLETE
);
5511 * Get target and lun pointers.
5513 tp
= &np
->target
[cp
->target
];
5514 lp
= sym_lp(tp
, cp
->lun
);
5517 * If all data have been transferred, given than no
5518 * extended error did occur, there is no residual.
5521 if (cp
->phys
.head
.lastp
!= cp
->goalp
)
5522 resid
= sym_compute_residual(np
, cp
);
5525 * Wrong transfer residuals may be worse than just always
5526 * returning zero. User can disable this feature in
5527 * sym53c8xx.h. Residual support is enabled by default.
5529 if (!SYM_SETUP_RESIDUAL_SUPPORT
)
5533 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5537 * Build result in CAM ccb.
5539 sym_set_cam_result_ok(cp
, cmd
, resid
);
5541 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5543 * If max number of started ccbs had been reduced,
5544 * increase it if 200 good status received.
5546 if (lp
&& lp
->started_max
< lp
->started_limit
) {
5548 if (lp
->num_sgood
>= 200) {
5551 if (sym_verbose
>= 2) {
5552 sym_print_addr(cmd
, " queue depth is now %d\n",
5562 sym_free_ccb (np
, cp
);
5564 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5566 * Requeue a couple of awaiting scsi commands.
5568 if (!sym_que_empty(&lp
->waiting_ccbq
))
5569 sym_start_next_ccbs(np
, lp
, 2);
5572 * Complete the command.
5574 sym_xpt_done(np
, cmd
);
5578 * Soft-attach the controller.
5580 int sym_hcb_attach(struct Scsi_Host
*shost
, struct sym_fw
*fw
, struct sym_nvram
*nvram
)
5582 struct sym_hcb
*np
= sym_get_hcb(shost
);
5586 * Get some info about the firmware.
5588 np
->scripta_sz
= fw
->a_size
;
5589 np
->scriptb_sz
= fw
->b_size
;
5590 np
->scriptz_sz
= fw
->z_size
;
5591 np
->fw_setup
= fw
->setup
;
5592 np
->fw_patch
= fw
->patch
;
5593 np
->fw_name
= fw
->name
;
5596 * Save setting of some IO registers, so we will
5597 * be able to probe specific implementations.
5599 sym_save_initial_setting (np
);
5602 * Reset the chip now, since it has been reported
5603 * that SCSI clock calibration may not work properly
5604 * if the chip is currently active.
5609 * Prepare controller and devices settings, according
5610 * to chip features, user set-up and driver set-up.
5612 sym_prepare_setting(shost
, np
, nvram
);
5615 * Check the PCI clock frequency.
5616 * Must be performed after prepare_setting since it destroys
5617 * STEST1 that is used to probe for the clock doubler.
5619 i
= sym_getpciclock(np
);
5620 if (i
> 37000 && !(np
->features
& FE_66MHZ
))
5621 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5625 * Allocate the start queue.
5627 np
->squeue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"SQUEUE");
5630 np
->squeue_ba
= vtobus(np
->squeue
);
5633 * Allocate the done queue.
5635 np
->dqueue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"DQUEUE");
5638 np
->dqueue_ba
= vtobus(np
->dqueue
);
5641 * Allocate the target bus address array.
5643 np
->targtbl
= sym_calloc_dma(256, "TARGTBL");
5646 np
->targtbl_ba
= vtobus(np
->targtbl
);
5649 * Allocate SCRIPTS areas.
5651 np
->scripta0
= sym_calloc_dma(np
->scripta_sz
, "SCRIPTA0");
5652 np
->scriptb0
= sym_calloc_dma(np
->scriptb_sz
, "SCRIPTB0");
5653 np
->scriptz0
= sym_calloc_dma(np
->scriptz_sz
, "SCRIPTZ0");
5654 if (!np
->scripta0
|| !np
->scriptb0
|| !np
->scriptz0
)
5658 * Allocate the array of lists of CCBs hashed by DSA.
5660 np
->ccbh
= kcalloc(CCB_HASH_SIZE
, sizeof(struct sym_ccb
**), GFP_KERNEL
);
5665 * Initialyze the CCB free and busy queues.
5667 sym_que_init(&np
->free_ccbq
);
5668 sym_que_init(&np
->busy_ccbq
);
5669 sym_que_init(&np
->comp_ccbq
);
5672 * Initialization for optional handling
5673 * of device queueing.
5675 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5676 sym_que_init(&np
->dummy_ccbq
);
5679 * Allocate some CCB. We need at least ONE.
5681 if (!sym_alloc_ccb(np
))
5685 * Calculate BUS addresses where we are going
5686 * to load the SCRIPTS.
5688 np
->scripta_ba
= vtobus(np
->scripta0
);
5689 np
->scriptb_ba
= vtobus(np
->scriptb0
);
5690 np
->scriptz_ba
= vtobus(np
->scriptz0
);
5693 np
->scripta_ba
= np
->ram_ba
;
5694 if (np
->features
& FE_RAM8K
) {
5695 np
->scriptb_ba
= np
->scripta_ba
+ 4096;
5696 #if 0 /* May get useful for 64 BIT PCI addressing */
5697 np
->scr_ram_seg
= cpu_to_scr(np
->scripta_ba
>> 32);
5703 * Copy scripts to controller instance.
5705 memcpy(np
->scripta0
, fw
->a_base
, np
->scripta_sz
);
5706 memcpy(np
->scriptb0
, fw
->b_base
, np
->scriptb_sz
);
5707 memcpy(np
->scriptz0
, fw
->z_base
, np
->scriptz_sz
);
5710 * Setup variable parts in scripts and compute
5711 * scripts bus addresses used from the C code.
5713 np
->fw_setup(np
, fw
);
5716 * Bind SCRIPTS with physical addresses usable by the
5717 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5719 sym_fw_bind_script(np
, (u32
*) np
->scripta0
, np
->scripta_sz
);
5720 sym_fw_bind_script(np
, (u32
*) np
->scriptb0
, np
->scriptb_sz
);
5721 sym_fw_bind_script(np
, (u32
*) np
->scriptz0
, np
->scriptz_sz
);
5723 #ifdef SYM_CONF_IARB_SUPPORT
5725 * If user wants IARB to be set when we win arbitration
5726 * and have other jobs, compute the max number of consecutive
5727 * settings of IARB hints before we leave devices a chance to
5728 * arbitrate for reselection.
5730 #ifdef SYM_SETUP_IARB_MAX
5731 np
->iarb_max
= SYM_SETUP_IARB_MAX
;
5738 * Prepare the idle and invalid task actions.
5740 np
->idletask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5741 np
->idletask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5742 np
->idletask_ba
= vtobus(&np
->idletask
);
5744 np
->notask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5745 np
->notask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5746 np
->notask_ba
= vtobus(&np
->notask
);
5748 np
->bad_itl
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5749 np
->bad_itl
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5750 np
->bad_itl_ba
= vtobus(&np
->bad_itl
);
5752 np
->bad_itlq
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5753 np
->bad_itlq
.restart
= cpu_to_scr(SCRIPTB_BA(np
,bad_i_t_l_q
));
5754 np
->bad_itlq_ba
= vtobus(&np
->bad_itlq
);
5757 * Allocate and prepare the lun JUMP table that is used
5758 * for a target prior the probing of devices (bad lun table).
5759 * A private table will be allocated for the target on the
5760 * first INQUIRY response received.
5762 np
->badluntbl
= sym_calloc_dma(256, "BADLUNTBL");
5766 np
->badlun_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5767 for (i
= 0 ; i
< 64 ; i
++) /* 64 luns/target, no less */
5768 np
->badluntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5771 * Prepare the bus address array that contains the bus
5772 * address of each target control block.
5773 * For now, assume all logical units are wrong. :)
5775 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
5776 np
->targtbl
[i
] = cpu_to_scr(vtobus(&np
->target
[i
]));
5777 np
->target
[i
].head
.luntbl_sa
=
5778 cpu_to_scr(vtobus(np
->badluntbl
));
5779 np
->target
[i
].head
.lun0_sa
=
5780 cpu_to_scr(vtobus(&np
->badlun_sa
));
5784 * Now check the cache handling of the pci chipset.
5786 if (sym_snooptest (np
)) {
5787 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np
));
5792 * Sigh! we are done.
5801 * Free everything that has been allocated for this device.
5803 void sym_hcb_free(struct sym_hcb
*np
)
5811 sym_mfree_dma(np
->scriptz0
, np
->scriptz_sz
, "SCRIPTZ0");
5813 sym_mfree_dma(np
->scriptb0
, np
->scriptb_sz
, "SCRIPTB0");
5815 sym_mfree_dma(np
->scripta0
, np
->scripta_sz
, "SCRIPTA0");
5817 sym_mfree_dma(np
->squeue
, sizeof(u32
)*(MAX_QUEUE
*2), "SQUEUE");
5819 sym_mfree_dma(np
->dqueue
, sizeof(u32
)*(MAX_QUEUE
*2), "DQUEUE");
5822 while ((qp
= sym_remque_head(&np
->free_ccbq
)) != NULL
) {
5823 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5824 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
5830 sym_mfree_dma(np
->badluntbl
, 256,"BADLUNTBL");
5832 for (target
= 0; target
< SYM_CONF_MAX_TARGET
; target
++) {
5833 tp
= &np
->target
[target
];
5835 sym_mfree_dma(tp
->luntbl
, 256, "LUNTBL");
5836 #if SYM_CONF_MAX_LUN > 1
5841 sym_mfree_dma(np
->targtbl
, 256, "TARGTBL");