PM / Domains: Try power off masters in error path of __pm_genpd_poweron()
[linux/fpc-iii.git] / drivers / dma / mmp_pdma.c
blob462a0229a743099253ee06a479ff41b2a855e5e9
1 /*
2 * Copyright 2012 Marvell International Ltd.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
26 #include "dmaengine.h"
28 #define DCSR 0x0000
29 #define DALGN 0x00a0
30 #define DINT 0x00f0
31 #define DDADR 0x0200
32 #define DSADR(n) (0x0204 + ((n) << 4))
33 #define DTADR(n) (0x0208 + ((n) << 4))
34 #define DCMD 0x020c
36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */
37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */
40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */
41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */
42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */
43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */
45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */
48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */
50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */
51 #define DCSR_EORINTR BIT(9) /* The end of Receive */
53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */
55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */
57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */
58 #define DDADR_STOP BIT(0) /* Stop (read / write) */
60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */
63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */
64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */
66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */
67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */
68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */
69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */
70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
75 #define PDMA_ALIGNMENT 3
76 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH
78 struct mmp_pdma_desc_hw {
79 u32 ddadr; /* Points to the next descriptor + flags */
80 u32 dsadr; /* DSADR value for the current transfer */
81 u32 dtadr; /* DTADR value for the current transfer */
82 u32 dcmd; /* DCMD value for the current transfer */
83 } __aligned(32);
85 struct mmp_pdma_desc_sw {
86 struct mmp_pdma_desc_hw desc;
87 struct list_head node;
88 struct list_head tx_list;
89 struct dma_async_tx_descriptor async_tx;
92 struct mmp_pdma_phy;
94 struct mmp_pdma_chan {
95 struct device *dev;
96 struct dma_chan chan;
97 struct dma_async_tx_descriptor desc;
98 struct mmp_pdma_phy *phy;
99 enum dma_transfer_direction dir;
101 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel
102 * is in cyclic mode */
104 /* channel's basic info */
105 struct tasklet_struct tasklet;
106 u32 dcmd;
107 u32 drcmr;
108 u32 dev_addr;
110 /* list for desc */
111 spinlock_t desc_lock; /* Descriptor list lock */
112 struct list_head chain_pending; /* Link descriptors queue for pending */
113 struct list_head chain_running; /* Link descriptors queue for running */
114 bool idle; /* channel statue machine */
115 bool byte_align;
117 struct dma_pool *desc_pool; /* Descriptors pool */
120 struct mmp_pdma_phy {
121 int idx;
122 void __iomem *base;
123 struct mmp_pdma_chan *vchan;
126 struct mmp_pdma_device {
127 int dma_channels;
128 void __iomem *base;
129 struct device *dev;
130 struct dma_device device;
131 struct mmp_pdma_phy *phy;
132 spinlock_t phy_lock; /* protect alloc/free phy channels */
135 #define tx_to_mmp_pdma_desc(tx) \
136 container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh) \
138 container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan) \
140 container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev) \
142 container_of(dmadev, struct mmp_pdma_device, device)
144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
146 u32 reg = (phy->idx << 4) + DDADR;
148 writel(addr, phy->base + reg);
151 static void enable_chan(struct mmp_pdma_phy *phy)
153 u32 reg, dalgn;
155 if (!phy->vchan)
156 return;
158 reg = DRCMR(phy->vchan->drcmr);
159 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
161 dalgn = readl(phy->base + DALGN);
162 if (phy->vchan->byte_align)
163 dalgn |= 1 << phy->idx;
164 else
165 dalgn &= ~(1 << phy->idx);
166 writel(dalgn, phy->base + DALGN);
168 reg = (phy->idx << 2) + DCSR;
169 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
172 static void disable_chan(struct mmp_pdma_phy *phy)
174 u32 reg;
176 if (!phy)
177 return;
179 reg = (phy->idx << 2) + DCSR;
180 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
183 static int clear_chan_irq(struct mmp_pdma_phy *phy)
185 u32 dcsr;
186 u32 dint = readl(phy->base + DINT);
187 u32 reg = (phy->idx << 2) + DCSR;
189 if (!(dint & BIT(phy->idx)))
190 return -EAGAIN;
192 /* clear irq */
193 dcsr = readl(phy->base + reg);
194 writel(dcsr, phy->base + reg);
195 if ((dcsr & DCSR_BUSERR) && (phy->vchan))
196 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
198 return 0;
201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
203 struct mmp_pdma_phy *phy = dev_id;
205 if (clear_chan_irq(phy) != 0)
206 return IRQ_NONE;
208 tasklet_schedule(&phy->vchan->tasklet);
209 return IRQ_HANDLED;
212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
214 struct mmp_pdma_device *pdev = dev_id;
215 struct mmp_pdma_phy *phy;
216 u32 dint = readl(pdev->base + DINT);
217 int i, ret;
218 int irq_num = 0;
220 while (dint) {
221 i = __ffs(dint);
222 /* only handle interrupts belonging to pdma driver*/
223 if (i >= pdev->dma_channels)
224 break;
225 dint &= (dint - 1);
226 phy = &pdev->phy[i];
227 ret = mmp_pdma_chan_handler(irq, phy);
228 if (ret == IRQ_HANDLED)
229 irq_num++;
232 if (irq_num)
233 return IRQ_HANDLED;
235 return IRQ_NONE;
238 /* lookup free phy channel as descending priority */
239 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
241 int prio, i;
242 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
243 struct mmp_pdma_phy *phy, *found = NULL;
244 unsigned long flags;
247 * dma channel priorities
248 * ch 0 - 3, 16 - 19 <--> (0)
249 * ch 4 - 7, 20 - 23 <--> (1)
250 * ch 8 - 11, 24 - 27 <--> (2)
251 * ch 12 - 15, 28 - 31 <--> (3)
254 spin_lock_irqsave(&pdev->phy_lock, flags);
255 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
256 for (i = 0; i < pdev->dma_channels; i++) {
257 if (prio != (i & 0xf) >> 2)
258 continue;
259 phy = &pdev->phy[i];
260 if (!phy->vchan) {
261 phy->vchan = pchan;
262 found = phy;
263 goto out_unlock;
268 out_unlock:
269 spin_unlock_irqrestore(&pdev->phy_lock, flags);
270 return found;
273 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
275 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
276 unsigned long flags;
277 u32 reg;
279 if (!pchan->phy)
280 return;
282 /* clear the channel mapping in DRCMR */
283 reg = DRCMR(pchan->drcmr);
284 writel(0, pchan->phy->base + reg);
286 spin_lock_irqsave(&pdev->phy_lock, flags);
287 pchan->phy->vchan = NULL;
288 pchan->phy = NULL;
289 spin_unlock_irqrestore(&pdev->phy_lock, flags);
293 * start_pending_queue - transfer any pending transactions
294 * pending list ==> running list
296 static void start_pending_queue(struct mmp_pdma_chan *chan)
298 struct mmp_pdma_desc_sw *desc;
300 /* still in running, irq will start the pending list */
301 if (!chan->idle) {
302 dev_dbg(chan->dev, "DMA controller still busy\n");
303 return;
306 if (list_empty(&chan->chain_pending)) {
307 /* chance to re-fetch phy channel with higher prio */
308 mmp_pdma_free_phy(chan);
309 dev_dbg(chan->dev, "no pending list\n");
310 return;
313 if (!chan->phy) {
314 chan->phy = lookup_phy(chan);
315 if (!chan->phy) {
316 dev_dbg(chan->dev, "no free dma channel\n");
317 return;
322 * pending -> running
323 * reintilize pending list
325 desc = list_first_entry(&chan->chain_pending,
326 struct mmp_pdma_desc_sw, node);
327 list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
330 * Program the descriptor's address into the DMA controller,
331 * then start the DMA transaction
333 set_desc(chan->phy, desc->async_tx.phys);
334 enable_chan(chan->phy);
335 chan->idle = false;
339 /* desc->tx_list ==> pending list */
340 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
342 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
343 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
344 struct mmp_pdma_desc_sw *child;
345 unsigned long flags;
346 dma_cookie_t cookie = -EBUSY;
348 spin_lock_irqsave(&chan->desc_lock, flags);
350 list_for_each_entry(child, &desc->tx_list, node) {
351 cookie = dma_cookie_assign(&child->async_tx);
354 /* softly link to pending list - desc->tx_list ==> pending list */
355 list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
357 spin_unlock_irqrestore(&chan->desc_lock, flags);
359 return cookie;
362 static struct mmp_pdma_desc_sw *
363 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
365 struct mmp_pdma_desc_sw *desc;
366 dma_addr_t pdesc;
368 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
369 if (!desc) {
370 dev_err(chan->dev, "out of memory for link descriptor\n");
371 return NULL;
374 memset(desc, 0, sizeof(*desc));
375 INIT_LIST_HEAD(&desc->tx_list);
376 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
377 /* each desc has submit */
378 desc->async_tx.tx_submit = mmp_pdma_tx_submit;
379 desc->async_tx.phys = pdesc;
381 return desc;
385 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
387 * This function will create a dma pool for descriptor allocation.
388 * Request irq only when channel is requested
389 * Return - The number of allocated descriptors.
392 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
394 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
396 if (chan->desc_pool)
397 return 1;
399 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
400 chan->dev,
401 sizeof(struct mmp_pdma_desc_sw),
402 __alignof__(struct mmp_pdma_desc_sw),
404 if (!chan->desc_pool) {
405 dev_err(chan->dev, "unable to allocate descriptor pool\n");
406 return -ENOMEM;
409 mmp_pdma_free_phy(chan);
410 chan->idle = true;
411 chan->dev_addr = 0;
412 return 1;
415 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
416 struct list_head *list)
418 struct mmp_pdma_desc_sw *desc, *_desc;
420 list_for_each_entry_safe(desc, _desc, list, node) {
421 list_del(&desc->node);
422 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
426 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
428 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
429 unsigned long flags;
431 spin_lock_irqsave(&chan->desc_lock, flags);
432 mmp_pdma_free_desc_list(chan, &chan->chain_pending);
433 mmp_pdma_free_desc_list(chan, &chan->chain_running);
434 spin_unlock_irqrestore(&chan->desc_lock, flags);
436 dma_pool_destroy(chan->desc_pool);
437 chan->desc_pool = NULL;
438 chan->idle = true;
439 chan->dev_addr = 0;
440 mmp_pdma_free_phy(chan);
441 return;
444 static struct dma_async_tx_descriptor *
445 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
446 dma_addr_t dma_dst, dma_addr_t dma_src,
447 size_t len, unsigned long flags)
449 struct mmp_pdma_chan *chan;
450 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
451 size_t copy = 0;
453 if (!dchan)
454 return NULL;
456 if (!len)
457 return NULL;
459 chan = to_mmp_pdma_chan(dchan);
460 chan->byte_align = false;
462 if (!chan->dir) {
463 chan->dir = DMA_MEM_TO_MEM;
464 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
465 chan->dcmd |= DCMD_BURST32;
468 do {
469 /* Allocate the link descriptor from DMA pool */
470 new = mmp_pdma_alloc_descriptor(chan);
471 if (!new) {
472 dev_err(chan->dev, "no memory for desc\n");
473 goto fail;
476 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
477 if (dma_src & 0x7 || dma_dst & 0x7)
478 chan->byte_align = true;
480 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
481 new->desc.dsadr = dma_src;
482 new->desc.dtadr = dma_dst;
484 if (!first)
485 first = new;
486 else
487 prev->desc.ddadr = new->async_tx.phys;
489 new->async_tx.cookie = 0;
490 async_tx_ack(&new->async_tx);
492 prev = new;
493 len -= copy;
495 if (chan->dir == DMA_MEM_TO_DEV) {
496 dma_src += copy;
497 } else if (chan->dir == DMA_DEV_TO_MEM) {
498 dma_dst += copy;
499 } else if (chan->dir == DMA_MEM_TO_MEM) {
500 dma_src += copy;
501 dma_dst += copy;
504 /* Insert the link descriptor to the LD ring */
505 list_add_tail(&new->node, &first->tx_list);
506 } while (len);
508 first->async_tx.flags = flags; /* client is in control of this ack */
509 first->async_tx.cookie = -EBUSY;
511 /* last desc and fire IRQ */
512 new->desc.ddadr = DDADR_STOP;
513 new->desc.dcmd |= DCMD_ENDIRQEN;
515 chan->cyclic_first = NULL;
517 return &first->async_tx;
519 fail:
520 if (first)
521 mmp_pdma_free_desc_list(chan, &first->tx_list);
522 return NULL;
525 static struct dma_async_tx_descriptor *
526 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
527 unsigned int sg_len, enum dma_transfer_direction dir,
528 unsigned long flags, void *context)
530 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
531 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
532 size_t len, avail;
533 struct scatterlist *sg;
534 dma_addr_t addr;
535 int i;
537 if ((sgl == NULL) || (sg_len == 0))
538 return NULL;
540 chan->byte_align = false;
542 for_each_sg(sgl, sg, sg_len, i) {
543 addr = sg_dma_address(sg);
544 avail = sg_dma_len(sgl);
546 do {
547 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
548 if (addr & 0x7)
549 chan->byte_align = true;
551 /* allocate and populate the descriptor */
552 new = mmp_pdma_alloc_descriptor(chan);
553 if (!new) {
554 dev_err(chan->dev, "no memory for desc\n");
555 goto fail;
558 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
559 if (dir == DMA_MEM_TO_DEV) {
560 new->desc.dsadr = addr;
561 new->desc.dtadr = chan->dev_addr;
562 } else {
563 new->desc.dsadr = chan->dev_addr;
564 new->desc.dtadr = addr;
567 if (!first)
568 first = new;
569 else
570 prev->desc.ddadr = new->async_tx.phys;
572 new->async_tx.cookie = 0;
573 async_tx_ack(&new->async_tx);
574 prev = new;
576 /* Insert the link descriptor to the LD ring */
577 list_add_tail(&new->node, &first->tx_list);
579 /* update metadata */
580 addr += len;
581 avail -= len;
582 } while (avail);
585 first->async_tx.cookie = -EBUSY;
586 first->async_tx.flags = flags;
588 /* last desc and fire IRQ */
589 new->desc.ddadr = DDADR_STOP;
590 new->desc.dcmd |= DCMD_ENDIRQEN;
592 chan->dir = dir;
593 chan->cyclic_first = NULL;
595 return &first->async_tx;
597 fail:
598 if (first)
599 mmp_pdma_free_desc_list(chan, &first->tx_list);
600 return NULL;
603 static struct dma_async_tx_descriptor *
604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
605 dma_addr_t buf_addr, size_t len, size_t period_len,
606 enum dma_transfer_direction direction,
607 unsigned long flags)
609 struct mmp_pdma_chan *chan;
610 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
611 dma_addr_t dma_src, dma_dst;
613 if (!dchan || !len || !period_len)
614 return NULL;
616 /* the buffer length must be a multiple of period_len */
617 if (len % period_len != 0)
618 return NULL;
620 if (period_len > PDMA_MAX_DESC_BYTES)
621 return NULL;
623 chan = to_mmp_pdma_chan(dchan);
625 switch (direction) {
626 case DMA_MEM_TO_DEV:
627 dma_src = buf_addr;
628 dma_dst = chan->dev_addr;
629 break;
630 case DMA_DEV_TO_MEM:
631 dma_dst = buf_addr;
632 dma_src = chan->dev_addr;
633 break;
634 default:
635 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
636 return NULL;
639 chan->dir = direction;
641 do {
642 /* Allocate the link descriptor from DMA pool */
643 new = mmp_pdma_alloc_descriptor(chan);
644 if (!new) {
645 dev_err(chan->dev, "no memory for desc\n");
646 goto fail;
649 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
650 (DCMD_LENGTH & period_len));
651 new->desc.dsadr = dma_src;
652 new->desc.dtadr = dma_dst;
654 if (!first)
655 first = new;
656 else
657 prev->desc.ddadr = new->async_tx.phys;
659 new->async_tx.cookie = 0;
660 async_tx_ack(&new->async_tx);
662 prev = new;
663 len -= period_len;
665 if (chan->dir == DMA_MEM_TO_DEV)
666 dma_src += period_len;
667 else
668 dma_dst += period_len;
670 /* Insert the link descriptor to the LD ring */
671 list_add_tail(&new->node, &first->tx_list);
672 } while (len);
674 first->async_tx.flags = flags; /* client is in control of this ack */
675 first->async_tx.cookie = -EBUSY;
677 /* make the cyclic link */
678 new->desc.ddadr = first->async_tx.phys;
679 chan->cyclic_first = first;
681 return &first->async_tx;
683 fail:
684 if (first)
685 mmp_pdma_free_desc_list(chan, &first->tx_list);
686 return NULL;
689 static int mmp_pdma_config(struct dma_chan *dchan,
690 struct dma_slave_config *cfg)
692 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
693 u32 maxburst = 0, addr = 0;
694 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
696 if (!dchan)
697 return -EINVAL;
699 if (cfg->direction == DMA_DEV_TO_MEM) {
700 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
701 maxburst = cfg->src_maxburst;
702 width = cfg->src_addr_width;
703 addr = cfg->src_addr;
704 } else if (cfg->direction == DMA_MEM_TO_DEV) {
705 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
706 maxburst = cfg->dst_maxburst;
707 width = cfg->dst_addr_width;
708 addr = cfg->dst_addr;
711 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
712 chan->dcmd |= DCMD_WIDTH1;
713 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
714 chan->dcmd |= DCMD_WIDTH2;
715 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
716 chan->dcmd |= DCMD_WIDTH4;
718 if (maxburst == 8)
719 chan->dcmd |= DCMD_BURST8;
720 else if (maxburst == 16)
721 chan->dcmd |= DCMD_BURST16;
722 else if (maxburst == 32)
723 chan->dcmd |= DCMD_BURST32;
725 chan->dir = cfg->direction;
726 chan->dev_addr = addr;
727 /* FIXME: drivers should be ported over to use the filter
728 * function. Once that's done, the following two lines can
729 * be removed.
731 if (cfg->slave_id)
732 chan->drcmr = cfg->slave_id;
734 return 0;
737 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
739 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
740 unsigned long flags;
742 if (!dchan)
743 return -EINVAL;
745 disable_chan(chan->phy);
746 mmp_pdma_free_phy(chan);
747 spin_lock_irqsave(&chan->desc_lock, flags);
748 mmp_pdma_free_desc_list(chan, &chan->chain_pending);
749 mmp_pdma_free_desc_list(chan, &chan->chain_running);
750 spin_unlock_irqrestore(&chan->desc_lock, flags);
751 chan->idle = true;
753 return 0;
756 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
757 dma_cookie_t cookie)
759 struct mmp_pdma_desc_sw *sw;
760 u32 curr, residue = 0;
761 bool passed = false;
762 bool cyclic = chan->cyclic_first != NULL;
765 * If the channel does not have a phy pointer anymore, it has already
766 * been completed. Therefore, its residue is 0.
768 if (!chan->phy)
769 return 0;
771 if (chan->dir == DMA_DEV_TO_MEM)
772 curr = readl(chan->phy->base + DTADR(chan->phy->idx));
773 else
774 curr = readl(chan->phy->base + DSADR(chan->phy->idx));
776 list_for_each_entry(sw, &chan->chain_running, node) {
777 u32 start, end, len;
779 if (chan->dir == DMA_DEV_TO_MEM)
780 start = sw->desc.dtadr;
781 else
782 start = sw->desc.dsadr;
784 len = sw->desc.dcmd & DCMD_LENGTH;
785 end = start + len;
788 * 'passed' will be latched once we found the descriptor which
789 * lies inside the boundaries of the curr pointer. All
790 * descriptors that occur in the list _after_ we found that
791 * partially handled descriptor are still to be processed and
792 * are hence added to the residual bytes counter.
795 if (passed) {
796 residue += len;
797 } else if (curr >= start && curr <= end) {
798 residue += end - curr;
799 passed = true;
803 * Descriptors that have the ENDIRQEN bit set mark the end of a
804 * transaction chain, and the cookie assigned with it has been
805 * returned previously from mmp_pdma_tx_submit().
807 * In case we have multiple transactions in the running chain,
808 * and the cookie does not match the one the user asked us
809 * about, reset the state variables and start over.
811 * This logic does not apply to cyclic transactions, where all
812 * descriptors have the ENDIRQEN bit set, and for which we
813 * can't have multiple transactions on one channel anyway.
815 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
816 continue;
818 if (sw->async_tx.cookie == cookie) {
819 return residue;
820 } else {
821 residue = 0;
822 passed = false;
826 /* We should only get here in case of cyclic transactions */
827 return residue;
830 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
831 dma_cookie_t cookie,
832 struct dma_tx_state *txstate)
834 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
835 enum dma_status ret;
837 ret = dma_cookie_status(dchan, cookie, txstate);
838 if (likely(ret != DMA_ERROR))
839 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
841 return ret;
845 * mmp_pdma_issue_pending - Issue the DMA start command
846 * pending list ==> running list
848 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
850 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
851 unsigned long flags;
853 spin_lock_irqsave(&chan->desc_lock, flags);
854 start_pending_queue(chan);
855 spin_unlock_irqrestore(&chan->desc_lock, flags);
859 * dma_do_tasklet
860 * Do call back
861 * Start pending list
863 static void dma_do_tasklet(unsigned long data)
865 struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
866 struct mmp_pdma_desc_sw *desc, *_desc;
867 LIST_HEAD(chain_cleanup);
868 unsigned long flags;
870 if (chan->cyclic_first) {
871 dma_async_tx_callback cb = NULL;
872 void *cb_data = NULL;
874 spin_lock_irqsave(&chan->desc_lock, flags);
875 desc = chan->cyclic_first;
876 cb = desc->async_tx.callback;
877 cb_data = desc->async_tx.callback_param;
878 spin_unlock_irqrestore(&chan->desc_lock, flags);
880 if (cb)
881 cb(cb_data);
883 return;
886 /* submit pending list; callback for each desc; free desc */
887 spin_lock_irqsave(&chan->desc_lock, flags);
889 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
891 * move the descriptors to a temporary list so we can drop
892 * the lock during the entire cleanup operation
894 list_move(&desc->node, &chain_cleanup);
897 * Look for the first list entry which has the ENDIRQEN flag
898 * set. That is the descriptor we got an interrupt for, so
899 * complete that transaction and its cookie.
901 if (desc->desc.dcmd & DCMD_ENDIRQEN) {
902 dma_cookie_t cookie = desc->async_tx.cookie;
903 dma_cookie_complete(&desc->async_tx);
904 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
905 break;
910 * The hardware is idle and ready for more when the
911 * chain_running list is empty.
913 chan->idle = list_empty(&chan->chain_running);
915 /* Start any pending transactions automatically */
916 start_pending_queue(chan);
917 spin_unlock_irqrestore(&chan->desc_lock, flags);
919 /* Run the callback for each descriptor, in order */
920 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
921 struct dma_async_tx_descriptor *txd = &desc->async_tx;
923 /* Remove from the list of transactions */
924 list_del(&desc->node);
925 /* Run the link descriptor callback function */
926 if (txd->callback)
927 txd->callback(txd->callback_param);
929 dma_pool_free(chan->desc_pool, desc, txd->phys);
933 static int mmp_pdma_remove(struct platform_device *op)
935 struct mmp_pdma_device *pdev = platform_get_drvdata(op);
937 dma_async_device_unregister(&pdev->device);
938 return 0;
941 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
943 struct mmp_pdma_phy *phy = &pdev->phy[idx];
944 struct mmp_pdma_chan *chan;
945 int ret;
947 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
948 if (chan == NULL)
949 return -ENOMEM;
951 phy->idx = idx;
952 phy->base = pdev->base;
954 if (irq) {
955 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
956 IRQF_SHARED, "pdma", phy);
957 if (ret) {
958 dev_err(pdev->dev, "channel request irq fail!\n");
959 return ret;
963 spin_lock_init(&chan->desc_lock);
964 chan->dev = pdev->dev;
965 chan->chan.device = &pdev->device;
966 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
967 INIT_LIST_HEAD(&chan->chain_pending);
968 INIT_LIST_HEAD(&chan->chain_running);
970 /* register virt channel to dma engine */
971 list_add_tail(&chan->chan.device_node, &pdev->device.channels);
973 return 0;
976 static const struct of_device_id mmp_pdma_dt_ids[] = {
977 { .compatible = "marvell,pdma-1.0", },
980 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
982 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
983 struct of_dma *ofdma)
985 struct mmp_pdma_device *d = ofdma->of_dma_data;
986 struct dma_chan *chan;
988 chan = dma_get_any_slave_channel(&d->device);
989 if (!chan)
990 return NULL;
992 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
994 return chan;
997 static int mmp_pdma_probe(struct platform_device *op)
999 struct mmp_pdma_device *pdev;
1000 const struct of_device_id *of_id;
1001 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1002 struct resource *iores;
1003 int i, ret, irq = 0;
1004 int dma_channels = 0, irq_num = 0;
1005 const enum dma_slave_buswidth widths =
1006 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES |
1007 DMA_SLAVE_BUSWIDTH_4_BYTES;
1009 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1010 if (!pdev)
1011 return -ENOMEM;
1013 pdev->dev = &op->dev;
1015 spin_lock_init(&pdev->phy_lock);
1017 iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1018 pdev->base = devm_ioremap_resource(pdev->dev, iores);
1019 if (IS_ERR(pdev->base))
1020 return PTR_ERR(pdev->base);
1022 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1023 if (of_id)
1024 of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1025 &dma_channels);
1026 else if (pdata && pdata->dma_channels)
1027 dma_channels = pdata->dma_channels;
1028 else
1029 dma_channels = 32; /* default 32 channel */
1030 pdev->dma_channels = dma_channels;
1032 for (i = 0; i < dma_channels; i++) {
1033 if (platform_get_irq(op, i) > 0)
1034 irq_num++;
1037 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1038 GFP_KERNEL);
1039 if (pdev->phy == NULL)
1040 return -ENOMEM;
1042 INIT_LIST_HEAD(&pdev->device.channels);
1044 if (irq_num != dma_channels) {
1045 /* all chan share one irq, demux inside */
1046 irq = platform_get_irq(op, 0);
1047 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1048 IRQF_SHARED, "pdma", pdev);
1049 if (ret)
1050 return ret;
1053 for (i = 0; i < dma_channels; i++) {
1054 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1055 ret = mmp_pdma_chan_init(pdev, i, irq);
1056 if (ret)
1057 return ret;
1060 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1061 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1062 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1063 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1064 pdev->device.dev = &op->dev;
1065 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1066 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1067 pdev->device.device_tx_status = mmp_pdma_tx_status;
1068 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1069 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1070 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1071 pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1072 pdev->device.device_config = mmp_pdma_config;
1073 pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1074 pdev->device.copy_align = PDMA_ALIGNMENT;
1075 pdev->device.src_addr_widths = widths;
1076 pdev->device.dst_addr_widths = widths;
1077 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1078 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1080 if (pdev->dev->coherent_dma_mask)
1081 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1082 else
1083 dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1085 ret = dma_async_device_register(&pdev->device);
1086 if (ret) {
1087 dev_err(pdev->device.dev, "unable to register\n");
1088 return ret;
1091 if (op->dev.of_node) {
1092 /* Device-tree DMA controller registration */
1093 ret = of_dma_controller_register(op->dev.of_node,
1094 mmp_pdma_dma_xlate, pdev);
1095 if (ret < 0) {
1096 dev_err(&op->dev, "of_dma_controller_register failed\n");
1097 return ret;
1101 platform_set_drvdata(op, pdev);
1102 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1103 return 0;
1106 static const struct platform_device_id mmp_pdma_id_table[] = {
1107 { "mmp-pdma", },
1108 { },
1111 static struct platform_driver mmp_pdma_driver = {
1112 .driver = {
1113 .name = "mmp-pdma",
1114 .of_match_table = mmp_pdma_dt_ids,
1116 .id_table = mmp_pdma_id_table,
1117 .probe = mmp_pdma_probe,
1118 .remove = mmp_pdma_remove,
1121 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1123 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1125 if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1126 return false;
1128 c->drcmr = *(unsigned int *)param;
1130 return true;
1132 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1134 module_platform_driver(mmp_pdma_driver);
1136 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1137 MODULE_AUTHOR("Marvell International Ltd.");
1138 MODULE_LICENSE("GPL v2");