PM / Domains: Try power off masters in error path of __pm_genpd_poweron()
[linux/fpc-iii.git] / drivers / thermal / cpu_cooling.c
blob6509c61b96484993333a4198138945f43154fdfd
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
50 /**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
58 struct power_table {
59 u32 frequency;
60 u32 power;
63 /**
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @cpufreq_val: integer value representing the absolute value of the clipped
72 * frequency.
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int cpufreq_val;
95 unsigned int max_level;
96 unsigned int *freq_table; /* In descending order */
97 struct cpumask allowed_cpus;
98 struct list_head node;
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
107 static DEFINE_IDR(cpufreq_idr);
108 static DEFINE_MUTEX(cooling_cpufreq_lock);
110 static LIST_HEAD(cpufreq_dev_list);
113 * get_idr - function to get a unique id.
114 * @idr: struct idr * handle used to create a id.
115 * @id: int * value generated by this function.
117 * This function will populate @id with an unique
118 * id, using the idr API.
120 * Return: 0 on success, an error code on failure.
122 static int get_idr(struct idr *idr, int *id)
124 int ret;
126 mutex_lock(&cooling_cpufreq_lock);
127 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
128 mutex_unlock(&cooling_cpufreq_lock);
129 if (unlikely(ret < 0))
130 return ret;
131 *id = ret;
133 return 0;
137 * release_idr - function to free the unique id.
138 * @idr: struct idr * handle used for creating the id.
139 * @id: int value representing the unique id.
141 static void release_idr(struct idr *idr, int id)
143 mutex_lock(&cooling_cpufreq_lock);
144 idr_remove(idr, id);
145 mutex_unlock(&cooling_cpufreq_lock);
148 /* Below code defines functions to be used for cpufreq as cooling device */
151 * get_level: Find the level for a particular frequency
152 * @cpufreq_dev: cpufreq_dev for which the property is required
153 * @freq: Frequency
155 * Return: level on success, THERMAL_CSTATE_INVALID on error.
157 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
158 unsigned int freq)
160 unsigned long level;
162 for (level = 0; level <= cpufreq_dev->max_level; level++) {
163 if (freq == cpufreq_dev->freq_table[level])
164 return level;
166 if (freq > cpufreq_dev->freq_table[level])
167 break;
170 return THERMAL_CSTATE_INVALID;
174 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
175 * @cpu: cpu for which the level is required
176 * @freq: the frequency of interest
178 * This function will match the cooling level corresponding to the
179 * requested @freq and return it.
181 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
182 * otherwise.
184 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
186 struct cpufreq_cooling_device *cpufreq_dev;
188 mutex_lock(&cooling_cpufreq_lock);
189 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
190 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
191 mutex_unlock(&cooling_cpufreq_lock);
192 return get_level(cpufreq_dev, freq);
195 mutex_unlock(&cooling_cpufreq_lock);
197 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
198 return THERMAL_CSTATE_INVALID;
200 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
203 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
204 * @nb: struct notifier_block * with callback info.
205 * @event: value showing cpufreq event for which this function invoked.
206 * @data: callback-specific data
208 * Callback to hijack the notification on cpufreq policy transition.
209 * Every time there is a change in policy, we will intercept and
210 * update the cpufreq policy with thermal constraints.
212 * Return: 0 (success)
214 static int cpufreq_thermal_notifier(struct notifier_block *nb,
215 unsigned long event, void *data)
217 struct cpufreq_policy *policy = data;
218 unsigned long max_freq = 0;
219 struct cpufreq_cooling_device *cpufreq_dev;
221 switch (event) {
223 case CPUFREQ_ADJUST:
224 mutex_lock(&cooling_cpufreq_lock);
225 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
226 if (!cpumask_test_cpu(policy->cpu,
227 &cpufreq_dev->allowed_cpus))
228 continue;
230 max_freq = cpufreq_dev->cpufreq_val;
232 if (policy->max != max_freq)
233 cpufreq_verify_within_limits(policy, 0,
234 max_freq);
236 mutex_unlock(&cooling_cpufreq_lock);
237 break;
238 default:
239 return NOTIFY_DONE;
242 return NOTIFY_OK;
246 * build_dyn_power_table() - create a dynamic power to frequency table
247 * @cpufreq_device: the cpufreq cooling device in which to store the table
248 * @capacitance: dynamic power coefficient for these cpus
250 * Build a dynamic power to frequency table for this cpu and store it
251 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
252 * cpu_freq_to_power() to convert between power and frequency
253 * efficiently. Power is stored in mW, frequency in KHz. The
254 * resulting table is in ascending order.
256 * Return: 0 on success, -E* on error.
258 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
259 u32 capacitance)
261 struct power_table *power_table;
262 struct dev_pm_opp *opp;
263 struct device *dev = NULL;
264 int num_opps = 0, cpu, i, ret = 0;
265 unsigned long freq;
267 rcu_read_lock();
269 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
270 dev = get_cpu_device(cpu);
271 if (!dev) {
272 dev_warn(&cpufreq_device->cool_dev->device,
273 "No cpu device for cpu %d\n", cpu);
274 continue;
277 num_opps = dev_pm_opp_get_opp_count(dev);
278 if (num_opps > 0) {
279 break;
280 } else if (num_opps < 0) {
281 ret = num_opps;
282 goto unlock;
286 if (num_opps == 0) {
287 ret = -EINVAL;
288 goto unlock;
291 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
292 if (!power_table) {
293 ret = -ENOMEM;
294 goto unlock;
297 for (freq = 0, i = 0;
298 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
299 freq++, i++) {
300 u32 freq_mhz, voltage_mv;
301 u64 power;
303 freq_mhz = freq / 1000000;
304 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
307 * Do the multiplication with MHz and millivolt so as
308 * to not overflow.
310 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
311 do_div(power, 1000000000);
313 /* frequency is stored in power_table in KHz */
314 power_table[i].frequency = freq / 1000;
316 /* power is stored in mW */
317 power_table[i].power = power;
320 if (i == 0) {
321 ret = PTR_ERR(opp);
322 goto unlock;
325 cpufreq_device->cpu_dev = dev;
326 cpufreq_device->dyn_power_table = power_table;
327 cpufreq_device->dyn_power_table_entries = i;
329 unlock:
330 rcu_read_unlock();
331 return ret;
334 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
335 u32 freq)
337 int i;
338 struct power_table *pt = cpufreq_device->dyn_power_table;
340 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
341 if (freq < pt[i].frequency)
342 break;
344 return pt[i - 1].power;
347 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
348 u32 power)
350 int i;
351 struct power_table *pt = cpufreq_device->dyn_power_table;
353 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
354 if (power < pt[i].power)
355 break;
357 return pt[i - 1].frequency;
361 * get_load() - get load for a cpu since last updated
362 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
363 * @cpu: cpu number
365 * Return: The average load of cpu @cpu in percentage since this
366 * function was last called.
368 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
370 u32 load;
371 u64 now, now_idle, delta_time, delta_idle;
373 now_idle = get_cpu_idle_time(cpu, &now, 0);
374 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
375 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
377 if (delta_time <= delta_idle)
378 load = 0;
379 else
380 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
382 cpufreq_device->time_in_idle[cpu] = now_idle;
383 cpufreq_device->time_in_idle_timestamp[cpu] = now;
385 return load;
389 * get_static_power() - calculate the static power consumed by the cpus
390 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
391 * @tz: thermal zone device in which we're operating
392 * @freq: frequency in KHz
393 * @power: pointer in which to store the calculated static power
395 * Calculate the static power consumed by the cpus described by
396 * @cpu_actor running at frequency @freq. This function relies on a
397 * platform specific function that should have been provided when the
398 * actor was registered. If it wasn't, the static power is assumed to
399 * be negligible. The calculated static power is stored in @power.
401 * Return: 0 on success, -E* on failure.
403 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
404 struct thermal_zone_device *tz, unsigned long freq,
405 u32 *power)
407 struct dev_pm_opp *opp;
408 unsigned long voltage;
409 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
410 unsigned long freq_hz = freq * 1000;
412 if (!cpufreq_device->plat_get_static_power ||
413 !cpufreq_device->cpu_dev) {
414 *power = 0;
415 return 0;
418 rcu_read_lock();
420 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
421 true);
422 voltage = dev_pm_opp_get_voltage(opp);
424 rcu_read_unlock();
426 if (voltage == 0) {
427 dev_warn_ratelimited(cpufreq_device->cpu_dev,
428 "Failed to get voltage for frequency %lu: %ld\n",
429 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
430 return -EINVAL;
433 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
434 voltage, power);
438 * get_dynamic_power() - calculate the dynamic power
439 * @cpufreq_device: &cpufreq_cooling_device for this cdev
440 * @freq: current frequency
442 * Return: the dynamic power consumed by the cpus described by
443 * @cpufreq_device.
445 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
446 unsigned long freq)
448 u32 raw_cpu_power;
450 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
451 return (raw_cpu_power * cpufreq_device->last_load) / 100;
454 /* cpufreq cooling device callback functions are defined below */
457 * cpufreq_get_max_state - callback function to get the max cooling state.
458 * @cdev: thermal cooling device pointer.
459 * @state: fill this variable with the max cooling state.
461 * Callback for the thermal cooling device to return the cpufreq
462 * max cooling state.
464 * Return: 0 on success, an error code otherwise.
466 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
467 unsigned long *state)
469 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
471 *state = cpufreq_device->max_level;
472 return 0;
476 * cpufreq_get_cur_state - callback function to get the current cooling state.
477 * @cdev: thermal cooling device pointer.
478 * @state: fill this variable with the current cooling state.
480 * Callback for the thermal cooling device to return the cpufreq
481 * current cooling state.
483 * Return: 0 on success, an error code otherwise.
485 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
486 unsigned long *state)
488 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
490 *state = cpufreq_device->cpufreq_state;
492 return 0;
496 * cpufreq_set_cur_state - callback function to set the current cooling state.
497 * @cdev: thermal cooling device pointer.
498 * @state: set this variable to the current cooling state.
500 * Callback for the thermal cooling device to change the cpufreq
501 * current cooling state.
503 * Return: 0 on success, an error code otherwise.
505 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
506 unsigned long state)
508 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
509 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
510 unsigned int clip_freq;
512 /* Request state should be less than max_level */
513 if (WARN_ON(state > cpufreq_device->max_level))
514 return -EINVAL;
516 /* Check if the old cooling action is same as new cooling action */
517 if (cpufreq_device->cpufreq_state == state)
518 return 0;
520 clip_freq = cpufreq_device->freq_table[state];
521 cpufreq_device->cpufreq_state = state;
522 cpufreq_device->cpufreq_val = clip_freq;
524 cpufreq_update_policy(cpu);
526 return 0;
530 * cpufreq_get_requested_power() - get the current power
531 * @cdev: &thermal_cooling_device pointer
532 * @tz: a valid thermal zone device pointer
533 * @power: pointer in which to store the resulting power
535 * Calculate the current power consumption of the cpus in milliwatts
536 * and store it in @power. This function should actually calculate
537 * the requested power, but it's hard to get the frequency that
538 * cpufreq would have assigned if there were no thermal limits.
539 * Instead, we calculate the current power on the assumption that the
540 * immediate future will look like the immediate past.
542 * We use the current frequency and the average load since this
543 * function was last called. In reality, there could have been
544 * multiple opps since this function was last called and that affects
545 * the load calculation. While it's not perfectly accurate, this
546 * simplification is good enough and works. REVISIT this, as more
547 * complex code may be needed if experiments show that it's not
548 * accurate enough.
550 * Return: 0 on success, -E* if getting the static power failed.
552 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
553 struct thermal_zone_device *tz,
554 u32 *power)
556 unsigned long freq;
557 int i = 0, cpu, ret;
558 u32 static_power, dynamic_power, total_load = 0;
559 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
560 u32 *load_cpu = NULL;
562 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
565 * All the CPUs are offline, thus the requested power by
566 * the cdev is 0
568 if (cpu >= nr_cpu_ids) {
569 *power = 0;
570 return 0;
573 freq = cpufreq_quick_get(cpu);
575 if (trace_thermal_power_cpu_get_power_enabled()) {
576 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
578 load_cpu = devm_kcalloc(&cdev->device, ncpus, sizeof(*load_cpu),
579 GFP_KERNEL);
582 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
583 u32 load;
585 if (cpu_online(cpu))
586 load = get_load(cpufreq_device, cpu);
587 else
588 load = 0;
590 total_load += load;
591 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
592 load_cpu[i] = load;
594 i++;
597 cpufreq_device->last_load = total_load;
599 dynamic_power = get_dynamic_power(cpufreq_device, freq);
600 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
601 if (ret) {
602 if (load_cpu)
603 devm_kfree(&cdev->device, load_cpu);
604 return ret;
607 if (load_cpu) {
608 trace_thermal_power_cpu_get_power(
609 &cpufreq_device->allowed_cpus,
610 freq, load_cpu, i, dynamic_power, static_power);
612 devm_kfree(&cdev->device, load_cpu);
615 *power = static_power + dynamic_power;
616 return 0;
620 * cpufreq_state2power() - convert a cpu cdev state to power consumed
621 * @cdev: &thermal_cooling_device pointer
622 * @tz: a valid thermal zone device pointer
623 * @state: cooling device state to be converted
624 * @power: pointer in which to store the resulting power
626 * Convert cooling device state @state into power consumption in
627 * milliwatts assuming 100% load. Store the calculated power in
628 * @power.
630 * Return: 0 on success, -EINVAL if the cooling device state could not
631 * be converted into a frequency or other -E* if there was an error
632 * when calculating the static power.
634 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
635 struct thermal_zone_device *tz,
636 unsigned long state, u32 *power)
638 unsigned int freq, num_cpus;
639 cpumask_t cpumask;
640 u32 static_power, dynamic_power;
641 int ret;
642 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
644 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
645 num_cpus = cpumask_weight(&cpumask);
647 /* None of our cpus are online, so no power */
648 if (num_cpus == 0) {
649 *power = 0;
650 return 0;
653 freq = cpufreq_device->freq_table[state];
654 if (!freq)
655 return -EINVAL;
657 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
658 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
659 if (ret)
660 return ret;
662 *power = static_power + dynamic_power;
663 return 0;
667 * cpufreq_power2state() - convert power to a cooling device state
668 * @cdev: &thermal_cooling_device pointer
669 * @tz: a valid thermal zone device pointer
670 * @power: power in milliwatts to be converted
671 * @state: pointer in which to store the resulting state
673 * Calculate a cooling device state for the cpus described by @cdev
674 * that would allow them to consume at most @power mW and store it in
675 * @state. Note that this calculation depends on external factors
676 * such as the cpu load or the current static power. Calling this
677 * function with the same power as input can yield different cooling
678 * device states depending on those external factors.
680 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
681 * the calculated frequency could not be converted to a valid state.
682 * The latter should not happen unless the frequencies available to
683 * cpufreq have changed since the initialization of the cpu cooling
684 * device.
686 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
687 struct thermal_zone_device *tz, u32 power,
688 unsigned long *state)
690 unsigned int cpu, cur_freq, target_freq;
691 int ret;
692 s32 dyn_power;
693 u32 last_load, normalised_power, static_power;
694 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
696 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
698 /* None of our cpus are online */
699 if (cpu >= nr_cpu_ids)
700 return -ENODEV;
702 cur_freq = cpufreq_quick_get(cpu);
703 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
704 if (ret)
705 return ret;
707 dyn_power = power - static_power;
708 dyn_power = dyn_power > 0 ? dyn_power : 0;
709 last_load = cpufreq_device->last_load ?: 1;
710 normalised_power = (dyn_power * 100) / last_load;
711 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
713 *state = cpufreq_cooling_get_level(cpu, target_freq);
714 if (*state == THERMAL_CSTATE_INVALID) {
715 dev_warn_ratelimited(&cdev->device,
716 "Failed to convert %dKHz for cpu %d into a cdev state\n",
717 target_freq, cpu);
718 return -EINVAL;
721 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
722 target_freq, *state, power);
723 return 0;
726 /* Bind cpufreq callbacks to thermal cooling device ops */
727 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
728 .get_max_state = cpufreq_get_max_state,
729 .get_cur_state = cpufreq_get_cur_state,
730 .set_cur_state = cpufreq_set_cur_state,
733 /* Notifier for cpufreq policy change */
734 static struct notifier_block thermal_cpufreq_notifier_block = {
735 .notifier_call = cpufreq_thermal_notifier,
738 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
739 unsigned int prev_max)
741 struct cpufreq_frequency_table *pos;
742 unsigned int max = 0;
744 cpufreq_for_each_valid_entry(pos, table) {
745 if (pos->frequency > max && pos->frequency < prev_max)
746 max = pos->frequency;
749 return max;
753 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
754 * @np: a valid struct device_node to the cooling device device tree node
755 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
756 * Normally this should be same as cpufreq policy->related_cpus.
757 * @capacitance: dynamic power coefficient for these cpus
758 * @plat_static_func: function to calculate the static power consumed by these
759 * cpus (optional)
761 * This interface function registers the cpufreq cooling device with the name
762 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
763 * cooling devices. It also gives the opportunity to link the cooling device
764 * with a device tree node, in order to bind it via the thermal DT code.
766 * Return: a valid struct thermal_cooling_device pointer on success,
767 * on failure, it returns a corresponding ERR_PTR().
769 static struct thermal_cooling_device *
770 __cpufreq_cooling_register(struct device_node *np,
771 const struct cpumask *clip_cpus, u32 capacitance,
772 get_static_t plat_static_func)
774 struct thermal_cooling_device *cool_dev;
775 struct cpufreq_cooling_device *cpufreq_dev;
776 char dev_name[THERMAL_NAME_LENGTH];
777 struct cpufreq_frequency_table *pos, *table;
778 unsigned int freq, i, num_cpus;
779 int ret;
781 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
782 if (!table) {
783 pr_debug("%s: CPUFreq table not found\n", __func__);
784 return ERR_PTR(-EPROBE_DEFER);
787 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
788 if (!cpufreq_dev)
789 return ERR_PTR(-ENOMEM);
791 num_cpus = cpumask_weight(clip_cpus);
792 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
793 sizeof(*cpufreq_dev->time_in_idle),
794 GFP_KERNEL);
795 if (!cpufreq_dev->time_in_idle) {
796 cool_dev = ERR_PTR(-ENOMEM);
797 goto free_cdev;
800 cpufreq_dev->time_in_idle_timestamp =
801 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
802 GFP_KERNEL);
803 if (!cpufreq_dev->time_in_idle_timestamp) {
804 cool_dev = ERR_PTR(-ENOMEM);
805 goto free_time_in_idle;
808 /* Find max levels */
809 cpufreq_for_each_valid_entry(pos, table)
810 cpufreq_dev->max_level++;
812 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
813 cpufreq_dev->max_level, GFP_KERNEL);
814 if (!cpufreq_dev->freq_table) {
815 cool_dev = ERR_PTR(-ENOMEM);
816 goto free_time_in_idle_timestamp;
819 /* max_level is an index, not a counter */
820 cpufreq_dev->max_level--;
822 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
824 if (capacitance) {
825 cpufreq_cooling_ops.get_requested_power =
826 cpufreq_get_requested_power;
827 cpufreq_cooling_ops.state2power = cpufreq_state2power;
828 cpufreq_cooling_ops.power2state = cpufreq_power2state;
829 cpufreq_dev->plat_get_static_power = plat_static_func;
831 ret = build_dyn_power_table(cpufreq_dev, capacitance);
832 if (ret) {
833 cool_dev = ERR_PTR(ret);
834 goto free_table;
838 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
839 if (ret) {
840 cool_dev = ERR_PTR(ret);
841 goto free_table;
844 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
845 cpufreq_dev->id);
847 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
848 &cpufreq_cooling_ops);
849 if (IS_ERR(cool_dev))
850 goto remove_idr;
852 /* Fill freq-table in descending order of frequencies */
853 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
854 freq = find_next_max(table, freq);
855 cpufreq_dev->freq_table[i] = freq;
857 /* Warn for duplicate entries */
858 if (!freq)
859 pr_warn("%s: table has duplicate entries\n", __func__);
860 else
861 pr_debug("%s: freq:%u KHz\n", __func__, freq);
864 cpufreq_dev->cpufreq_val = cpufreq_dev->freq_table[0];
865 cpufreq_dev->cool_dev = cool_dev;
867 mutex_lock(&cooling_cpufreq_lock);
869 /* Register the notifier for first cpufreq cooling device */
870 if (list_empty(&cpufreq_dev_list))
871 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
872 CPUFREQ_POLICY_NOTIFIER);
873 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
875 mutex_unlock(&cooling_cpufreq_lock);
877 return cool_dev;
879 remove_idr:
880 release_idr(&cpufreq_idr, cpufreq_dev->id);
881 free_table:
882 kfree(cpufreq_dev->freq_table);
883 free_time_in_idle_timestamp:
884 kfree(cpufreq_dev->time_in_idle_timestamp);
885 free_time_in_idle:
886 kfree(cpufreq_dev->time_in_idle);
887 free_cdev:
888 kfree(cpufreq_dev);
890 return cool_dev;
894 * cpufreq_cooling_register - function to create cpufreq cooling device.
895 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
897 * This interface function registers the cpufreq cooling device with the name
898 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
899 * cooling devices.
901 * Return: a valid struct thermal_cooling_device pointer on success,
902 * on failure, it returns a corresponding ERR_PTR().
904 struct thermal_cooling_device *
905 cpufreq_cooling_register(const struct cpumask *clip_cpus)
907 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
909 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
912 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
913 * @np: a valid struct device_node to the cooling device device tree node
914 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
916 * This interface function registers the cpufreq cooling device with the name
917 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
918 * cooling devices. Using this API, the cpufreq cooling device will be
919 * linked to the device tree node provided.
921 * Return: a valid struct thermal_cooling_device pointer on success,
922 * on failure, it returns a corresponding ERR_PTR().
924 struct thermal_cooling_device *
925 of_cpufreq_cooling_register(struct device_node *np,
926 const struct cpumask *clip_cpus)
928 if (!np)
929 return ERR_PTR(-EINVAL);
931 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
933 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
936 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
937 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
938 * @capacitance: dynamic power coefficient for these cpus
939 * @plat_static_func: function to calculate the static power consumed by these
940 * cpus (optional)
942 * This interface function registers the cpufreq cooling device with
943 * the name "thermal-cpufreq-%x". This api can support multiple
944 * instances of cpufreq cooling devices. Using this function, the
945 * cooling device will implement the power extensions by using a
946 * simple cpu power model. The cpus must have registered their OPPs
947 * using the OPP library.
949 * An optional @plat_static_func may be provided to calculate the
950 * static power consumed by these cpus. If the platform's static
951 * power consumption is unknown or negligible, make it NULL.
953 * Return: a valid struct thermal_cooling_device pointer on success,
954 * on failure, it returns a corresponding ERR_PTR().
956 struct thermal_cooling_device *
957 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
958 get_static_t plat_static_func)
960 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
961 plat_static_func);
963 EXPORT_SYMBOL(cpufreq_power_cooling_register);
966 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
967 * @np: a valid struct device_node to the cooling device device tree node
968 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
969 * @capacitance: dynamic power coefficient for these cpus
970 * @plat_static_func: function to calculate the static power consumed by these
971 * cpus (optional)
973 * This interface function registers the cpufreq cooling device with
974 * the name "thermal-cpufreq-%x". This api can support multiple
975 * instances of cpufreq cooling devices. Using this API, the cpufreq
976 * cooling device will be linked to the device tree node provided.
977 * Using this function, the cooling device will implement the power
978 * extensions by using a simple cpu power model. The cpus must have
979 * registered their OPPs using the OPP library.
981 * An optional @plat_static_func may be provided to calculate the
982 * static power consumed by these cpus. If the platform's static
983 * power consumption is unknown or negligible, make it NULL.
985 * Return: a valid struct thermal_cooling_device pointer on success,
986 * on failure, it returns a corresponding ERR_PTR().
988 struct thermal_cooling_device *
989 of_cpufreq_power_cooling_register(struct device_node *np,
990 const struct cpumask *clip_cpus,
991 u32 capacitance,
992 get_static_t plat_static_func)
994 if (!np)
995 return ERR_PTR(-EINVAL);
997 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
998 plat_static_func);
1000 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1003 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1004 * @cdev: thermal cooling device pointer.
1006 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1008 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1010 struct cpufreq_cooling_device *cpufreq_dev;
1012 if (!cdev)
1013 return;
1015 cpufreq_dev = cdev->devdata;
1016 mutex_lock(&cooling_cpufreq_lock);
1017 list_del(&cpufreq_dev->node);
1019 /* Unregister the notifier for the last cpufreq cooling device */
1020 if (list_empty(&cpufreq_dev_list))
1021 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1022 CPUFREQ_POLICY_NOTIFIER);
1023 mutex_unlock(&cooling_cpufreq_lock);
1025 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1026 release_idr(&cpufreq_idr, cpufreq_dev->id);
1027 kfree(cpufreq_dev->time_in_idle_timestamp);
1028 kfree(cpufreq_dev->time_in_idle);
1029 kfree(cpufreq_dev->freq_table);
1030 kfree(cpufreq_dev);
1032 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);