2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
71 * @cpufreq_val: integer value representing the absolute value of the clipped
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device
{
92 struct thermal_cooling_device
*cool_dev
;
93 unsigned int cpufreq_state
;
94 unsigned int cpufreq_val
;
95 unsigned int max_level
;
96 unsigned int *freq_table
; /* In descending order */
97 struct cpumask allowed_cpus
;
98 struct list_head node
;
101 u64
*time_in_idle_timestamp
;
102 struct power_table
*dyn_power_table
;
103 int dyn_power_table_entries
;
104 struct device
*cpu_dev
;
105 get_static_t plat_get_static_power
;
107 static DEFINE_IDR(cpufreq_idr
);
108 static DEFINE_MUTEX(cooling_cpufreq_lock
);
110 static LIST_HEAD(cpufreq_dev_list
);
113 * get_idr - function to get a unique id.
114 * @idr: struct idr * handle used to create a id.
115 * @id: int * value generated by this function.
117 * This function will populate @id with an unique
118 * id, using the idr API.
120 * Return: 0 on success, an error code on failure.
122 static int get_idr(struct idr
*idr
, int *id
)
126 mutex_lock(&cooling_cpufreq_lock
);
127 ret
= idr_alloc(idr
, NULL
, 0, 0, GFP_KERNEL
);
128 mutex_unlock(&cooling_cpufreq_lock
);
129 if (unlikely(ret
< 0))
137 * release_idr - function to free the unique id.
138 * @idr: struct idr * handle used for creating the id.
139 * @id: int value representing the unique id.
141 static void release_idr(struct idr
*idr
, int id
)
143 mutex_lock(&cooling_cpufreq_lock
);
145 mutex_unlock(&cooling_cpufreq_lock
);
148 /* Below code defines functions to be used for cpufreq as cooling device */
151 * get_level: Find the level for a particular frequency
152 * @cpufreq_dev: cpufreq_dev for which the property is required
155 * Return: level on success, THERMAL_CSTATE_INVALID on error.
157 static unsigned long get_level(struct cpufreq_cooling_device
*cpufreq_dev
,
162 for (level
= 0; level
<= cpufreq_dev
->max_level
; level
++) {
163 if (freq
== cpufreq_dev
->freq_table
[level
])
166 if (freq
> cpufreq_dev
->freq_table
[level
])
170 return THERMAL_CSTATE_INVALID
;
174 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
175 * @cpu: cpu for which the level is required
176 * @freq: the frequency of interest
178 * This function will match the cooling level corresponding to the
179 * requested @freq and return it.
181 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
184 unsigned long cpufreq_cooling_get_level(unsigned int cpu
, unsigned int freq
)
186 struct cpufreq_cooling_device
*cpufreq_dev
;
188 mutex_lock(&cooling_cpufreq_lock
);
189 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
190 if (cpumask_test_cpu(cpu
, &cpufreq_dev
->allowed_cpus
)) {
191 mutex_unlock(&cooling_cpufreq_lock
);
192 return get_level(cpufreq_dev
, freq
);
195 mutex_unlock(&cooling_cpufreq_lock
);
197 pr_err("%s: cpu:%d not part of any cooling device\n", __func__
, cpu
);
198 return THERMAL_CSTATE_INVALID
;
200 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level
);
203 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
204 * @nb: struct notifier_block * with callback info.
205 * @event: value showing cpufreq event for which this function invoked.
206 * @data: callback-specific data
208 * Callback to hijack the notification on cpufreq policy transition.
209 * Every time there is a change in policy, we will intercept and
210 * update the cpufreq policy with thermal constraints.
212 * Return: 0 (success)
214 static int cpufreq_thermal_notifier(struct notifier_block
*nb
,
215 unsigned long event
, void *data
)
217 struct cpufreq_policy
*policy
= data
;
218 unsigned long max_freq
= 0;
219 struct cpufreq_cooling_device
*cpufreq_dev
;
224 mutex_lock(&cooling_cpufreq_lock
);
225 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
226 if (!cpumask_test_cpu(policy
->cpu
,
227 &cpufreq_dev
->allowed_cpus
))
230 max_freq
= cpufreq_dev
->cpufreq_val
;
232 if (policy
->max
!= max_freq
)
233 cpufreq_verify_within_limits(policy
, 0,
236 mutex_unlock(&cooling_cpufreq_lock
);
246 * build_dyn_power_table() - create a dynamic power to frequency table
247 * @cpufreq_device: the cpufreq cooling device in which to store the table
248 * @capacitance: dynamic power coefficient for these cpus
250 * Build a dynamic power to frequency table for this cpu and store it
251 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
252 * cpu_freq_to_power() to convert between power and frequency
253 * efficiently. Power is stored in mW, frequency in KHz. The
254 * resulting table is in ascending order.
256 * Return: 0 on success, -E* on error.
258 static int build_dyn_power_table(struct cpufreq_cooling_device
*cpufreq_device
,
261 struct power_table
*power_table
;
262 struct dev_pm_opp
*opp
;
263 struct device
*dev
= NULL
;
264 int num_opps
= 0, cpu
, i
, ret
= 0;
269 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
270 dev
= get_cpu_device(cpu
);
272 dev_warn(&cpufreq_device
->cool_dev
->device
,
273 "No cpu device for cpu %d\n", cpu
);
277 num_opps
= dev_pm_opp_get_opp_count(dev
);
280 } else if (num_opps
< 0) {
291 power_table
= kcalloc(num_opps
, sizeof(*power_table
), GFP_KERNEL
);
297 for (freq
= 0, i
= 0;
298 opp
= dev_pm_opp_find_freq_ceil(dev
, &freq
), !IS_ERR(opp
);
300 u32 freq_mhz
, voltage_mv
;
303 freq_mhz
= freq
/ 1000000;
304 voltage_mv
= dev_pm_opp_get_voltage(opp
) / 1000;
307 * Do the multiplication with MHz and millivolt so as
310 power
= (u64
)capacitance
* freq_mhz
* voltage_mv
* voltage_mv
;
311 do_div(power
, 1000000000);
313 /* frequency is stored in power_table in KHz */
314 power_table
[i
].frequency
= freq
/ 1000;
316 /* power is stored in mW */
317 power_table
[i
].power
= power
;
325 cpufreq_device
->cpu_dev
= dev
;
326 cpufreq_device
->dyn_power_table
= power_table
;
327 cpufreq_device
->dyn_power_table_entries
= i
;
334 static u32
cpu_freq_to_power(struct cpufreq_cooling_device
*cpufreq_device
,
338 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
340 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
341 if (freq
< pt
[i
].frequency
)
344 return pt
[i
- 1].power
;
347 static u32
cpu_power_to_freq(struct cpufreq_cooling_device
*cpufreq_device
,
351 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
353 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
354 if (power
< pt
[i
].power
)
357 return pt
[i
- 1].frequency
;
361 * get_load() - get load for a cpu since last updated
362 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
365 * Return: The average load of cpu @cpu in percentage since this
366 * function was last called.
368 static u32
get_load(struct cpufreq_cooling_device
*cpufreq_device
, int cpu
)
371 u64 now
, now_idle
, delta_time
, delta_idle
;
373 now_idle
= get_cpu_idle_time(cpu
, &now
, 0);
374 delta_idle
= now_idle
- cpufreq_device
->time_in_idle
[cpu
];
375 delta_time
= now
- cpufreq_device
->time_in_idle_timestamp
[cpu
];
377 if (delta_time
<= delta_idle
)
380 load
= div64_u64(100 * (delta_time
- delta_idle
), delta_time
);
382 cpufreq_device
->time_in_idle
[cpu
] = now_idle
;
383 cpufreq_device
->time_in_idle_timestamp
[cpu
] = now
;
389 * get_static_power() - calculate the static power consumed by the cpus
390 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
391 * @tz: thermal zone device in which we're operating
392 * @freq: frequency in KHz
393 * @power: pointer in which to store the calculated static power
395 * Calculate the static power consumed by the cpus described by
396 * @cpu_actor running at frequency @freq. This function relies on a
397 * platform specific function that should have been provided when the
398 * actor was registered. If it wasn't, the static power is assumed to
399 * be negligible. The calculated static power is stored in @power.
401 * Return: 0 on success, -E* on failure.
403 static int get_static_power(struct cpufreq_cooling_device
*cpufreq_device
,
404 struct thermal_zone_device
*tz
, unsigned long freq
,
407 struct dev_pm_opp
*opp
;
408 unsigned long voltage
;
409 struct cpumask
*cpumask
= &cpufreq_device
->allowed_cpus
;
410 unsigned long freq_hz
= freq
* 1000;
412 if (!cpufreq_device
->plat_get_static_power
||
413 !cpufreq_device
->cpu_dev
) {
420 opp
= dev_pm_opp_find_freq_exact(cpufreq_device
->cpu_dev
, freq_hz
,
422 voltage
= dev_pm_opp_get_voltage(opp
);
427 dev_warn_ratelimited(cpufreq_device
->cpu_dev
,
428 "Failed to get voltage for frequency %lu: %ld\n",
429 freq_hz
, IS_ERR(opp
) ? PTR_ERR(opp
) : 0);
433 return cpufreq_device
->plat_get_static_power(cpumask
, tz
->passive_delay
,
438 * get_dynamic_power() - calculate the dynamic power
439 * @cpufreq_device: &cpufreq_cooling_device for this cdev
440 * @freq: current frequency
442 * Return: the dynamic power consumed by the cpus described by
445 static u32
get_dynamic_power(struct cpufreq_cooling_device
*cpufreq_device
,
450 raw_cpu_power
= cpu_freq_to_power(cpufreq_device
, freq
);
451 return (raw_cpu_power
* cpufreq_device
->last_load
) / 100;
454 /* cpufreq cooling device callback functions are defined below */
457 * cpufreq_get_max_state - callback function to get the max cooling state.
458 * @cdev: thermal cooling device pointer.
459 * @state: fill this variable with the max cooling state.
461 * Callback for the thermal cooling device to return the cpufreq
464 * Return: 0 on success, an error code otherwise.
466 static int cpufreq_get_max_state(struct thermal_cooling_device
*cdev
,
467 unsigned long *state
)
469 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
471 *state
= cpufreq_device
->max_level
;
476 * cpufreq_get_cur_state - callback function to get the current cooling state.
477 * @cdev: thermal cooling device pointer.
478 * @state: fill this variable with the current cooling state.
480 * Callback for the thermal cooling device to return the cpufreq
481 * current cooling state.
483 * Return: 0 on success, an error code otherwise.
485 static int cpufreq_get_cur_state(struct thermal_cooling_device
*cdev
,
486 unsigned long *state
)
488 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
490 *state
= cpufreq_device
->cpufreq_state
;
496 * cpufreq_set_cur_state - callback function to set the current cooling state.
497 * @cdev: thermal cooling device pointer.
498 * @state: set this variable to the current cooling state.
500 * Callback for the thermal cooling device to change the cpufreq
501 * current cooling state.
503 * Return: 0 on success, an error code otherwise.
505 static int cpufreq_set_cur_state(struct thermal_cooling_device
*cdev
,
508 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
509 unsigned int cpu
= cpumask_any(&cpufreq_device
->allowed_cpus
);
510 unsigned int clip_freq
;
512 /* Request state should be less than max_level */
513 if (WARN_ON(state
> cpufreq_device
->max_level
))
516 /* Check if the old cooling action is same as new cooling action */
517 if (cpufreq_device
->cpufreq_state
== state
)
520 clip_freq
= cpufreq_device
->freq_table
[state
];
521 cpufreq_device
->cpufreq_state
= state
;
522 cpufreq_device
->cpufreq_val
= clip_freq
;
524 cpufreq_update_policy(cpu
);
530 * cpufreq_get_requested_power() - get the current power
531 * @cdev: &thermal_cooling_device pointer
532 * @tz: a valid thermal zone device pointer
533 * @power: pointer in which to store the resulting power
535 * Calculate the current power consumption of the cpus in milliwatts
536 * and store it in @power. This function should actually calculate
537 * the requested power, but it's hard to get the frequency that
538 * cpufreq would have assigned if there were no thermal limits.
539 * Instead, we calculate the current power on the assumption that the
540 * immediate future will look like the immediate past.
542 * We use the current frequency and the average load since this
543 * function was last called. In reality, there could have been
544 * multiple opps since this function was last called and that affects
545 * the load calculation. While it's not perfectly accurate, this
546 * simplification is good enough and works. REVISIT this, as more
547 * complex code may be needed if experiments show that it's not
550 * Return: 0 on success, -E* if getting the static power failed.
552 static int cpufreq_get_requested_power(struct thermal_cooling_device
*cdev
,
553 struct thermal_zone_device
*tz
,
558 u32 static_power
, dynamic_power
, total_load
= 0;
559 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
560 u32
*load_cpu
= NULL
;
562 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
565 * All the CPUs are offline, thus the requested power by
568 if (cpu
>= nr_cpu_ids
) {
573 freq
= cpufreq_quick_get(cpu
);
575 if (trace_thermal_power_cpu_get_power_enabled()) {
576 u32 ncpus
= cpumask_weight(&cpufreq_device
->allowed_cpus
);
578 load_cpu
= devm_kcalloc(&cdev
->device
, ncpus
, sizeof(*load_cpu
),
582 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
586 load
= get_load(cpufreq_device
, cpu
);
591 if (trace_thermal_power_cpu_limit_enabled() && load_cpu
)
597 cpufreq_device
->last_load
= total_load
;
599 dynamic_power
= get_dynamic_power(cpufreq_device
, freq
);
600 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
603 devm_kfree(&cdev
->device
, load_cpu
);
608 trace_thermal_power_cpu_get_power(
609 &cpufreq_device
->allowed_cpus
,
610 freq
, load_cpu
, i
, dynamic_power
, static_power
);
612 devm_kfree(&cdev
->device
, load_cpu
);
615 *power
= static_power
+ dynamic_power
;
620 * cpufreq_state2power() - convert a cpu cdev state to power consumed
621 * @cdev: &thermal_cooling_device pointer
622 * @tz: a valid thermal zone device pointer
623 * @state: cooling device state to be converted
624 * @power: pointer in which to store the resulting power
626 * Convert cooling device state @state into power consumption in
627 * milliwatts assuming 100% load. Store the calculated power in
630 * Return: 0 on success, -EINVAL if the cooling device state could not
631 * be converted into a frequency or other -E* if there was an error
632 * when calculating the static power.
634 static int cpufreq_state2power(struct thermal_cooling_device
*cdev
,
635 struct thermal_zone_device
*tz
,
636 unsigned long state
, u32
*power
)
638 unsigned int freq
, num_cpus
;
640 u32 static_power
, dynamic_power
;
642 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
644 cpumask_and(&cpumask
, &cpufreq_device
->allowed_cpus
, cpu_online_mask
);
645 num_cpus
= cpumask_weight(&cpumask
);
647 /* None of our cpus are online, so no power */
653 freq
= cpufreq_device
->freq_table
[state
];
657 dynamic_power
= cpu_freq_to_power(cpufreq_device
, freq
) * num_cpus
;
658 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
662 *power
= static_power
+ dynamic_power
;
667 * cpufreq_power2state() - convert power to a cooling device state
668 * @cdev: &thermal_cooling_device pointer
669 * @tz: a valid thermal zone device pointer
670 * @power: power in milliwatts to be converted
671 * @state: pointer in which to store the resulting state
673 * Calculate a cooling device state for the cpus described by @cdev
674 * that would allow them to consume at most @power mW and store it in
675 * @state. Note that this calculation depends on external factors
676 * such as the cpu load or the current static power. Calling this
677 * function with the same power as input can yield different cooling
678 * device states depending on those external factors.
680 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
681 * the calculated frequency could not be converted to a valid state.
682 * The latter should not happen unless the frequencies available to
683 * cpufreq have changed since the initialization of the cpu cooling
686 static int cpufreq_power2state(struct thermal_cooling_device
*cdev
,
687 struct thermal_zone_device
*tz
, u32 power
,
688 unsigned long *state
)
690 unsigned int cpu
, cur_freq
, target_freq
;
693 u32 last_load
, normalised_power
, static_power
;
694 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
696 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
698 /* None of our cpus are online */
699 if (cpu
>= nr_cpu_ids
)
702 cur_freq
= cpufreq_quick_get(cpu
);
703 ret
= get_static_power(cpufreq_device
, tz
, cur_freq
, &static_power
);
707 dyn_power
= power
- static_power
;
708 dyn_power
= dyn_power
> 0 ? dyn_power
: 0;
709 last_load
= cpufreq_device
->last_load
?: 1;
710 normalised_power
= (dyn_power
* 100) / last_load
;
711 target_freq
= cpu_power_to_freq(cpufreq_device
, normalised_power
);
713 *state
= cpufreq_cooling_get_level(cpu
, target_freq
);
714 if (*state
== THERMAL_CSTATE_INVALID
) {
715 dev_warn_ratelimited(&cdev
->device
,
716 "Failed to convert %dKHz for cpu %d into a cdev state\n",
721 trace_thermal_power_cpu_limit(&cpufreq_device
->allowed_cpus
,
722 target_freq
, *state
, power
);
726 /* Bind cpufreq callbacks to thermal cooling device ops */
727 static struct thermal_cooling_device_ops cpufreq_cooling_ops
= {
728 .get_max_state
= cpufreq_get_max_state
,
729 .get_cur_state
= cpufreq_get_cur_state
,
730 .set_cur_state
= cpufreq_set_cur_state
,
733 /* Notifier for cpufreq policy change */
734 static struct notifier_block thermal_cpufreq_notifier_block
= {
735 .notifier_call
= cpufreq_thermal_notifier
,
738 static unsigned int find_next_max(struct cpufreq_frequency_table
*table
,
739 unsigned int prev_max
)
741 struct cpufreq_frequency_table
*pos
;
742 unsigned int max
= 0;
744 cpufreq_for_each_valid_entry(pos
, table
) {
745 if (pos
->frequency
> max
&& pos
->frequency
< prev_max
)
746 max
= pos
->frequency
;
753 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
754 * @np: a valid struct device_node to the cooling device device tree node
755 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
756 * Normally this should be same as cpufreq policy->related_cpus.
757 * @capacitance: dynamic power coefficient for these cpus
758 * @plat_static_func: function to calculate the static power consumed by these
761 * This interface function registers the cpufreq cooling device with the name
762 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
763 * cooling devices. It also gives the opportunity to link the cooling device
764 * with a device tree node, in order to bind it via the thermal DT code.
766 * Return: a valid struct thermal_cooling_device pointer on success,
767 * on failure, it returns a corresponding ERR_PTR().
769 static struct thermal_cooling_device
*
770 __cpufreq_cooling_register(struct device_node
*np
,
771 const struct cpumask
*clip_cpus
, u32 capacitance
,
772 get_static_t plat_static_func
)
774 struct thermal_cooling_device
*cool_dev
;
775 struct cpufreq_cooling_device
*cpufreq_dev
;
776 char dev_name
[THERMAL_NAME_LENGTH
];
777 struct cpufreq_frequency_table
*pos
, *table
;
778 unsigned int freq
, i
, num_cpus
;
781 table
= cpufreq_frequency_get_table(cpumask_first(clip_cpus
));
783 pr_debug("%s: CPUFreq table not found\n", __func__
);
784 return ERR_PTR(-EPROBE_DEFER
);
787 cpufreq_dev
= kzalloc(sizeof(*cpufreq_dev
), GFP_KERNEL
);
789 return ERR_PTR(-ENOMEM
);
791 num_cpus
= cpumask_weight(clip_cpus
);
792 cpufreq_dev
->time_in_idle
= kcalloc(num_cpus
,
793 sizeof(*cpufreq_dev
->time_in_idle
),
795 if (!cpufreq_dev
->time_in_idle
) {
796 cool_dev
= ERR_PTR(-ENOMEM
);
800 cpufreq_dev
->time_in_idle_timestamp
=
801 kcalloc(num_cpus
, sizeof(*cpufreq_dev
->time_in_idle_timestamp
),
803 if (!cpufreq_dev
->time_in_idle_timestamp
) {
804 cool_dev
= ERR_PTR(-ENOMEM
);
805 goto free_time_in_idle
;
808 /* Find max levels */
809 cpufreq_for_each_valid_entry(pos
, table
)
810 cpufreq_dev
->max_level
++;
812 cpufreq_dev
->freq_table
= kmalloc(sizeof(*cpufreq_dev
->freq_table
) *
813 cpufreq_dev
->max_level
, GFP_KERNEL
);
814 if (!cpufreq_dev
->freq_table
) {
815 cool_dev
= ERR_PTR(-ENOMEM
);
816 goto free_time_in_idle_timestamp
;
819 /* max_level is an index, not a counter */
820 cpufreq_dev
->max_level
--;
822 cpumask_copy(&cpufreq_dev
->allowed_cpus
, clip_cpus
);
825 cpufreq_cooling_ops
.get_requested_power
=
826 cpufreq_get_requested_power
;
827 cpufreq_cooling_ops
.state2power
= cpufreq_state2power
;
828 cpufreq_cooling_ops
.power2state
= cpufreq_power2state
;
829 cpufreq_dev
->plat_get_static_power
= plat_static_func
;
831 ret
= build_dyn_power_table(cpufreq_dev
, capacitance
);
833 cool_dev
= ERR_PTR(ret
);
838 ret
= get_idr(&cpufreq_idr
, &cpufreq_dev
->id
);
840 cool_dev
= ERR_PTR(ret
);
844 snprintf(dev_name
, sizeof(dev_name
), "thermal-cpufreq-%d",
847 cool_dev
= thermal_of_cooling_device_register(np
, dev_name
, cpufreq_dev
,
848 &cpufreq_cooling_ops
);
849 if (IS_ERR(cool_dev
))
852 /* Fill freq-table in descending order of frequencies */
853 for (i
= 0, freq
= -1; i
<= cpufreq_dev
->max_level
; i
++) {
854 freq
= find_next_max(table
, freq
);
855 cpufreq_dev
->freq_table
[i
] = freq
;
857 /* Warn for duplicate entries */
859 pr_warn("%s: table has duplicate entries\n", __func__
);
861 pr_debug("%s: freq:%u KHz\n", __func__
, freq
);
864 cpufreq_dev
->cpufreq_val
= cpufreq_dev
->freq_table
[0];
865 cpufreq_dev
->cool_dev
= cool_dev
;
867 mutex_lock(&cooling_cpufreq_lock
);
869 /* Register the notifier for first cpufreq cooling device */
870 if (list_empty(&cpufreq_dev_list
))
871 cpufreq_register_notifier(&thermal_cpufreq_notifier_block
,
872 CPUFREQ_POLICY_NOTIFIER
);
873 list_add(&cpufreq_dev
->node
, &cpufreq_dev_list
);
875 mutex_unlock(&cooling_cpufreq_lock
);
880 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
882 kfree(cpufreq_dev
->freq_table
);
883 free_time_in_idle_timestamp
:
884 kfree(cpufreq_dev
->time_in_idle_timestamp
);
886 kfree(cpufreq_dev
->time_in_idle
);
894 * cpufreq_cooling_register - function to create cpufreq cooling device.
895 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
897 * This interface function registers the cpufreq cooling device with the name
898 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
901 * Return: a valid struct thermal_cooling_device pointer on success,
902 * on failure, it returns a corresponding ERR_PTR().
904 struct thermal_cooling_device
*
905 cpufreq_cooling_register(const struct cpumask
*clip_cpus
)
907 return __cpufreq_cooling_register(NULL
, clip_cpus
, 0, NULL
);
909 EXPORT_SYMBOL_GPL(cpufreq_cooling_register
);
912 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
913 * @np: a valid struct device_node to the cooling device device tree node
914 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
916 * This interface function registers the cpufreq cooling device with the name
917 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
918 * cooling devices. Using this API, the cpufreq cooling device will be
919 * linked to the device tree node provided.
921 * Return: a valid struct thermal_cooling_device pointer on success,
922 * on failure, it returns a corresponding ERR_PTR().
924 struct thermal_cooling_device
*
925 of_cpufreq_cooling_register(struct device_node
*np
,
926 const struct cpumask
*clip_cpus
)
929 return ERR_PTR(-EINVAL
);
931 return __cpufreq_cooling_register(np
, clip_cpus
, 0, NULL
);
933 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register
);
936 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
937 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
938 * @capacitance: dynamic power coefficient for these cpus
939 * @plat_static_func: function to calculate the static power consumed by these
942 * This interface function registers the cpufreq cooling device with
943 * the name "thermal-cpufreq-%x". This api can support multiple
944 * instances of cpufreq cooling devices. Using this function, the
945 * cooling device will implement the power extensions by using a
946 * simple cpu power model. The cpus must have registered their OPPs
947 * using the OPP library.
949 * An optional @plat_static_func may be provided to calculate the
950 * static power consumed by these cpus. If the platform's static
951 * power consumption is unknown or negligible, make it NULL.
953 * Return: a valid struct thermal_cooling_device pointer on success,
954 * on failure, it returns a corresponding ERR_PTR().
956 struct thermal_cooling_device
*
957 cpufreq_power_cooling_register(const struct cpumask
*clip_cpus
, u32 capacitance
,
958 get_static_t plat_static_func
)
960 return __cpufreq_cooling_register(NULL
, clip_cpus
, capacitance
,
963 EXPORT_SYMBOL(cpufreq_power_cooling_register
);
966 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
967 * @np: a valid struct device_node to the cooling device device tree node
968 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
969 * @capacitance: dynamic power coefficient for these cpus
970 * @plat_static_func: function to calculate the static power consumed by these
973 * This interface function registers the cpufreq cooling device with
974 * the name "thermal-cpufreq-%x". This api can support multiple
975 * instances of cpufreq cooling devices. Using this API, the cpufreq
976 * cooling device will be linked to the device tree node provided.
977 * Using this function, the cooling device will implement the power
978 * extensions by using a simple cpu power model. The cpus must have
979 * registered their OPPs using the OPP library.
981 * An optional @plat_static_func may be provided to calculate the
982 * static power consumed by these cpus. If the platform's static
983 * power consumption is unknown or negligible, make it NULL.
985 * Return: a valid struct thermal_cooling_device pointer on success,
986 * on failure, it returns a corresponding ERR_PTR().
988 struct thermal_cooling_device
*
989 of_cpufreq_power_cooling_register(struct device_node
*np
,
990 const struct cpumask
*clip_cpus
,
992 get_static_t plat_static_func
)
995 return ERR_PTR(-EINVAL
);
997 return __cpufreq_cooling_register(np
, clip_cpus
, capacitance
,
1000 EXPORT_SYMBOL(of_cpufreq_power_cooling_register
);
1003 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1004 * @cdev: thermal cooling device pointer.
1006 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1008 void cpufreq_cooling_unregister(struct thermal_cooling_device
*cdev
)
1010 struct cpufreq_cooling_device
*cpufreq_dev
;
1015 cpufreq_dev
= cdev
->devdata
;
1016 mutex_lock(&cooling_cpufreq_lock
);
1017 list_del(&cpufreq_dev
->node
);
1019 /* Unregister the notifier for the last cpufreq cooling device */
1020 if (list_empty(&cpufreq_dev_list
))
1021 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block
,
1022 CPUFREQ_POLICY_NOTIFIER
);
1023 mutex_unlock(&cooling_cpufreq_lock
);
1025 thermal_cooling_device_unregister(cpufreq_dev
->cool_dev
);
1026 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
1027 kfree(cpufreq_dev
->time_in_idle_timestamp
);
1028 kfree(cpufreq_dev
->time_in_idle
);
1029 kfree(cpufreq_dev
->freq_table
);
1032 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister
);