1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
5 #include <linux/blkdev.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
18 #include <trace/events/block.h>
20 #include <linux/blk-mq.h>
23 #include "blk-mq-tag.h"
25 static DEFINE_MUTEX(all_q_mutex
);
26 static LIST_HEAD(all_q_list
);
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
30 static struct blk_mq_ctx
*__blk_mq_get_ctx(struct request_queue
*q
,
33 return per_cpu_ptr(q
->queue_ctx
, cpu
);
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
42 static struct blk_mq_ctx
*blk_mq_get_ctx(struct request_queue
*q
)
44 return __blk_mq_get_ctx(q
, get_cpu());
47 static void blk_mq_put_ctx(struct blk_mq_ctx
*ctx
)
53 * Check if any of the ctx's have pending work in this hardware queue
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
59 for (i
= 0; i
< hctx
->nr_ctx_map
; i
++)
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
70 struct blk_mq_ctx
*ctx
)
72 if (!test_bit(ctx
->index_hw
, hctx
->ctx_map
))
73 set_bit(ctx
->index_hw
, hctx
->ctx_map
);
76 static struct request
*blk_mq_alloc_rq(struct blk_mq_hw_ctx
*hctx
, gfp_t gfp
,
82 tag
= blk_mq_get_tag(hctx
->tags
, gfp
, reserved
);
83 if (tag
!= BLK_MQ_TAG_FAIL
) {
93 static int blk_mq_queue_enter(struct request_queue
*q
)
97 __percpu_counter_add(&q
->mq_usage_counter
, 1, 1000000);
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q
) || !blk_queue_init_done(q
))
103 __percpu_counter_add(&q
->mq_usage_counter
, -1, 1000000);
105 spin_lock_irq(q
->queue_lock
);
106 ret
= wait_event_interruptible_lock_irq(q
->mq_freeze_wq
,
107 !blk_queue_bypass(q
) || blk_queue_dying(q
),
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret
&& !blk_queue_dying(q
))
111 __percpu_counter_add(&q
->mq_usage_counter
, 1, 1000000);
112 else if (blk_queue_dying(q
))
114 spin_unlock_irq(q
->queue_lock
);
119 static void blk_mq_queue_exit(struct request_queue
*q
)
121 __percpu_counter_add(&q
->mq_usage_counter
, -1, 1000000);
124 static void __blk_mq_drain_queue(struct request_queue
*q
)
129 spin_lock_irq(q
->queue_lock
);
130 count
= percpu_counter_sum(&q
->mq_usage_counter
);
131 spin_unlock_irq(q
->queue_lock
);
135 blk_mq_run_queues(q
, false);
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
144 static void blk_mq_freeze_queue(struct request_queue
*q
)
148 spin_lock_irq(q
->queue_lock
);
149 drain
= !q
->bypass_depth
++;
150 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
151 spin_unlock_irq(q
->queue_lock
);
154 __blk_mq_drain_queue(q
);
157 void blk_mq_drain_queue(struct request_queue
*q
)
159 __blk_mq_drain_queue(q
);
162 static void blk_mq_unfreeze_queue(struct request_queue
*q
)
166 spin_lock_irq(q
->queue_lock
);
167 if (!--q
->bypass_depth
) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
171 WARN_ON_ONCE(q
->bypass_depth
< 0);
172 spin_unlock_irq(q
->queue_lock
);
174 wake_up_all(&q
->mq_freeze_wq
);
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
179 return blk_mq_has_free_tags(hctx
->tags
);
181 EXPORT_SYMBOL(blk_mq_can_queue
);
183 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
184 struct request
*rq
, unsigned int rw_flags
)
186 if (blk_queue_io_stat(q
))
187 rw_flags
|= REQ_IO_STAT
;
190 rq
->cmd_flags
= rw_flags
;
191 rq
->start_time
= jiffies
;
192 set_start_time_ns(rq
);
193 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
196 static struct request
*__blk_mq_alloc_request(struct blk_mq_hw_ctx
*hctx
,
197 gfp_t gfp
, bool reserved
)
199 return blk_mq_alloc_rq(hctx
, gfp
, reserved
);
202 static struct request
*blk_mq_alloc_request_pinned(struct request_queue
*q
,
209 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
210 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
212 rq
= __blk_mq_alloc_request(hctx
, gfp
& ~__GFP_WAIT
, reserved
);
214 blk_mq_rq_ctx_init(q
, ctx
, rq
, rw
);
219 if (!(gfp
& __GFP_WAIT
))
222 __blk_mq_run_hw_queue(hctx
);
223 blk_mq_wait_for_tags(hctx
->tags
);
229 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
)
233 if (blk_mq_queue_enter(q
))
236 rq
= blk_mq_alloc_request_pinned(q
, rw
, gfp
, false);
238 blk_mq_put_ctx(rq
->mq_ctx
);
242 struct request
*blk_mq_alloc_reserved_request(struct request_queue
*q
, int rw
,
247 if (blk_mq_queue_enter(q
))
250 rq
= blk_mq_alloc_request_pinned(q
, rw
, gfp
, true);
252 blk_mq_put_ctx(rq
->mq_ctx
);
255 EXPORT_SYMBOL(blk_mq_alloc_reserved_request
);
258 * Re-init and set pdu, if we have it
260 void blk_mq_rq_init(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
262 blk_rq_init(hctx
->queue
, rq
);
265 rq
->special
= blk_mq_rq_to_pdu(rq
);
268 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
269 struct blk_mq_ctx
*ctx
, struct request
*rq
)
271 const int tag
= rq
->tag
;
272 struct request_queue
*q
= rq
->q
;
274 blk_mq_rq_init(hctx
, rq
);
275 blk_mq_put_tag(hctx
->tags
, tag
);
277 blk_mq_queue_exit(q
);
280 void blk_mq_free_request(struct request
*rq
)
282 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
283 struct blk_mq_hw_ctx
*hctx
;
284 struct request_queue
*q
= rq
->q
;
286 ctx
->rq_completed
[rq_is_sync(rq
)]++;
288 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
289 __blk_mq_free_request(hctx
, ctx
, rq
);
292 static void blk_mq_bio_endio(struct request
*rq
, struct bio
*bio
, int error
)
295 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
296 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
299 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
300 set_bit(BIO_QUIET
, &bio
->bi_flags
);
302 /* don't actually finish bio if it's part of flush sequence */
303 if (!(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
304 bio_endio(bio
, error
);
307 void blk_mq_end_io(struct request
*rq
, int error
)
309 struct bio
*bio
= rq
->bio
;
310 unsigned int bytes
= 0;
312 trace_block_rq_complete(rq
->q
, rq
);
315 struct bio
*next
= bio
->bi_next
;
318 bytes
+= bio
->bi_iter
.bi_size
;
319 blk_mq_bio_endio(rq
, bio
, error
);
323 blk_account_io_completion(rq
, bytes
);
325 blk_account_io_done(rq
);
328 rq
->end_io(rq
, error
);
330 blk_mq_free_request(rq
);
332 EXPORT_SYMBOL(blk_mq_end_io
);
334 static void __blk_mq_complete_request_remote(void *data
)
336 struct request
*rq
= data
;
338 rq
->q
->softirq_done_fn(rq
);
341 void __blk_mq_complete_request(struct request
*rq
)
343 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
346 if (!ctx
->ipi_redirect
) {
347 rq
->q
->softirq_done_fn(rq
);
352 if (cpu
!= ctx
->cpu
&& cpu_online(ctx
->cpu
)) {
353 rq
->csd
.func
= __blk_mq_complete_request_remote
;
356 __smp_call_function_single(ctx
->cpu
, &rq
->csd
, 0);
358 rq
->q
->softirq_done_fn(rq
);
364 * blk_mq_complete_request - end I/O on a request
365 * @rq: the request being processed
368 * Ends all I/O on a request. It does not handle partial completions.
369 * The actual completion happens out-of-order, through a IPI handler.
371 void blk_mq_complete_request(struct request
*rq
)
373 if (unlikely(blk_should_fake_timeout(rq
->q
)))
375 if (!blk_mark_rq_complete(rq
))
376 __blk_mq_complete_request(rq
);
378 EXPORT_SYMBOL(blk_mq_complete_request
);
380 static void blk_mq_start_request(struct request
*rq
, bool last
)
382 struct request_queue
*q
= rq
->q
;
384 trace_block_rq_issue(q
, rq
);
387 * Just mark start time and set the started bit. Due to memory
388 * ordering, we know we'll see the correct deadline as long as
389 * REQ_ATOMIC_STARTED is seen.
391 rq
->deadline
= jiffies
+ q
->rq_timeout
;
392 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
394 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
396 * Make sure space for the drain appears. We know we can do
397 * this because max_hw_segments has been adjusted to be one
398 * fewer than the device can handle.
400 rq
->nr_phys_segments
++;
404 * Flag the last request in the series so that drivers know when IO
405 * should be kicked off, if they don't do it on a per-request basis.
407 * Note: the flag isn't the only condition drivers should do kick off.
408 * If drive is busy, the last request might not have the bit set.
411 rq
->cmd_flags
|= REQ_END
;
414 static void blk_mq_requeue_request(struct request
*rq
)
416 struct request_queue
*q
= rq
->q
;
418 trace_block_rq_requeue(q
, rq
);
419 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
421 rq
->cmd_flags
&= ~REQ_END
;
423 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
424 rq
->nr_phys_segments
--;
427 struct blk_mq_timeout_data
{
428 struct blk_mq_hw_ctx
*hctx
;
430 unsigned int *next_set
;
433 static void blk_mq_timeout_check(void *__data
, unsigned long *free_tags
)
435 struct blk_mq_timeout_data
*data
= __data
;
436 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
439 /* It may not be in flight yet (this is where
440 * the REQ_ATOMIC_STARTED flag comes in). The requests are
441 * statically allocated, so we know it's always safe to access the
442 * memory associated with a bit offset into ->rqs[].
448 tag
= find_next_zero_bit(free_tags
, hctx
->queue_depth
, tag
);
449 if (tag
>= hctx
->queue_depth
)
452 rq
= hctx
->rqs
[tag
++];
454 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
457 blk_rq_check_expired(rq
, data
->next
, data
->next_set
);
461 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx
*hctx
,
463 unsigned int *next_set
)
465 struct blk_mq_timeout_data data
= {
468 .next_set
= next_set
,
472 * Ask the tagging code to iterate busy requests, so we can
473 * check them for timeout.
475 blk_mq_tag_busy_iter(hctx
->tags
, blk_mq_timeout_check
, &data
);
478 static void blk_mq_rq_timer(unsigned long data
)
480 struct request_queue
*q
= (struct request_queue
*) data
;
481 struct blk_mq_hw_ctx
*hctx
;
482 unsigned long next
= 0;
485 queue_for_each_hw_ctx(q
, hctx
, i
)
486 blk_mq_hw_ctx_check_timeout(hctx
, &next
, &next_set
);
489 mod_timer(&q
->timeout
, round_jiffies_up(next
));
493 * Reverse check our software queue for entries that we could potentially
494 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
495 * too much time checking for merges.
497 static bool blk_mq_attempt_merge(struct request_queue
*q
,
498 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
503 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
509 if (!blk_rq_merge_ok(rq
, bio
))
512 el_ret
= blk_try_merge(rq
, bio
);
513 if (el_ret
== ELEVATOR_BACK_MERGE
) {
514 if (bio_attempt_back_merge(q
, rq
, bio
)) {
519 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
520 if (bio_attempt_front_merge(q
, rq
, bio
)) {
531 void blk_mq_add_timer(struct request
*rq
)
533 __blk_add_timer(rq
, NULL
);
537 * Run this hardware queue, pulling any software queues mapped to it in.
538 * Note that this function currently has various problems around ordering
539 * of IO. In particular, we'd like FIFO behaviour on handling existing
540 * items on the hctx->dispatch list. Ignore that for now.
542 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
544 struct request_queue
*q
= hctx
->queue
;
545 struct blk_mq_ctx
*ctx
;
550 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->flags
)))
556 * Touch any software queue that has pending entries.
558 for_each_set_bit(bit
, hctx
->ctx_map
, hctx
->nr_ctx
) {
559 clear_bit(bit
, hctx
->ctx_map
);
560 ctx
= hctx
->ctxs
[bit
];
561 BUG_ON(bit
!= ctx
->index_hw
);
563 spin_lock(&ctx
->lock
);
564 list_splice_tail_init(&ctx
->rq_list
, &rq_list
);
565 spin_unlock(&ctx
->lock
);
569 * If we have previous entries on our dispatch list, grab them
570 * and stuff them at the front for more fair dispatch.
572 if (!list_empty_careful(&hctx
->dispatch
)) {
573 spin_lock(&hctx
->lock
);
574 if (!list_empty(&hctx
->dispatch
))
575 list_splice_init(&hctx
->dispatch
, &rq_list
);
576 spin_unlock(&hctx
->lock
);
580 * Delete and return all entries from our dispatch list
585 * Now process all the entries, sending them to the driver.
587 while (!list_empty(&rq_list
)) {
590 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
591 list_del_init(&rq
->queuelist
);
593 blk_mq_start_request(rq
, list_empty(&rq_list
));
595 ret
= q
->mq_ops
->queue_rq(hctx
, rq
);
597 case BLK_MQ_RQ_QUEUE_OK
:
600 case BLK_MQ_RQ_QUEUE_BUSY
:
602 * FIXME: we should have a mechanism to stop the queue
603 * like blk_stop_queue, otherwise we will waste cpu
606 list_add(&rq
->queuelist
, &rq_list
);
607 blk_mq_requeue_request(rq
);
610 pr_err("blk-mq: bad return on queue: %d\n", ret
);
611 case BLK_MQ_RQ_QUEUE_ERROR
:
613 blk_mq_end_io(rq
, rq
->errors
);
617 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
622 hctx
->dispatched
[0]++;
623 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
624 hctx
->dispatched
[ilog2(queued
) + 1]++;
627 * Any items that need requeuing? Stuff them into hctx->dispatch,
628 * that is where we will continue on next queue run.
630 if (!list_empty(&rq_list
)) {
631 spin_lock(&hctx
->lock
);
632 list_splice(&rq_list
, &hctx
->dispatch
);
633 spin_unlock(&hctx
->lock
);
637 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
639 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->flags
)))
643 __blk_mq_run_hw_queue(hctx
);
645 struct request_queue
*q
= hctx
->queue
;
647 kblockd_schedule_delayed_work(q
, &hctx
->delayed_work
, 0);
651 void blk_mq_run_queues(struct request_queue
*q
, bool async
)
653 struct blk_mq_hw_ctx
*hctx
;
656 queue_for_each_hw_ctx(q
, hctx
, i
) {
657 if ((!blk_mq_hctx_has_pending(hctx
) &&
658 list_empty_careful(&hctx
->dispatch
)) ||
659 test_bit(BLK_MQ_S_STOPPED
, &hctx
->flags
))
662 blk_mq_run_hw_queue(hctx
, async
);
665 EXPORT_SYMBOL(blk_mq_run_queues
);
667 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
669 cancel_delayed_work(&hctx
->delayed_work
);
670 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
672 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
674 void blk_mq_stop_hw_queues(struct request_queue
*q
)
676 struct blk_mq_hw_ctx
*hctx
;
679 queue_for_each_hw_ctx(q
, hctx
, i
)
680 blk_mq_stop_hw_queue(hctx
);
682 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
684 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
686 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
687 __blk_mq_run_hw_queue(hctx
);
689 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
691 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
)
693 struct blk_mq_hw_ctx
*hctx
;
696 queue_for_each_hw_ctx(q
, hctx
, i
) {
697 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
700 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
701 blk_mq_run_hw_queue(hctx
, true);
704 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
706 static void blk_mq_work_fn(struct work_struct
*work
)
708 struct blk_mq_hw_ctx
*hctx
;
710 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delayed_work
.work
);
711 __blk_mq_run_hw_queue(hctx
);
714 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
715 struct request
*rq
, bool at_head
)
717 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
719 trace_block_rq_insert(hctx
->queue
, rq
);
722 list_add(&rq
->queuelist
, &ctx
->rq_list
);
724 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
725 blk_mq_hctx_mark_pending(hctx
, ctx
);
728 * We do this early, to ensure we are on the right CPU.
730 blk_mq_add_timer(rq
);
733 void blk_mq_insert_request(struct request_queue
*q
, struct request
*rq
,
734 bool at_head
, bool run_queue
)
736 struct blk_mq_hw_ctx
*hctx
;
737 struct blk_mq_ctx
*ctx
, *current_ctx
;
740 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
742 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
)) {
743 blk_insert_flush(rq
);
745 current_ctx
= blk_mq_get_ctx(q
);
747 if (!cpu_online(ctx
->cpu
)) {
749 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
752 spin_lock(&ctx
->lock
);
753 __blk_mq_insert_request(hctx
, rq
, at_head
);
754 spin_unlock(&ctx
->lock
);
756 blk_mq_put_ctx(current_ctx
);
760 __blk_mq_run_hw_queue(hctx
);
762 EXPORT_SYMBOL(blk_mq_insert_request
);
765 * This is a special version of blk_mq_insert_request to bypass FLUSH request
766 * check. Should only be used internally.
768 void blk_mq_run_request(struct request
*rq
, bool run_queue
, bool async
)
770 struct request_queue
*q
= rq
->q
;
771 struct blk_mq_hw_ctx
*hctx
;
772 struct blk_mq_ctx
*ctx
, *current_ctx
;
774 current_ctx
= blk_mq_get_ctx(q
);
777 if (!cpu_online(ctx
->cpu
)) {
781 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
783 /* ctx->cpu might be offline */
784 spin_lock(&ctx
->lock
);
785 __blk_mq_insert_request(hctx
, rq
, false);
786 spin_unlock(&ctx
->lock
);
788 blk_mq_put_ctx(current_ctx
);
791 blk_mq_run_hw_queue(hctx
, async
);
794 static void blk_mq_insert_requests(struct request_queue
*q
,
795 struct blk_mq_ctx
*ctx
,
796 struct list_head
*list
,
801 struct blk_mq_hw_ctx
*hctx
;
802 struct blk_mq_ctx
*current_ctx
;
804 trace_block_unplug(q
, depth
, !from_schedule
);
806 current_ctx
= blk_mq_get_ctx(q
);
808 if (!cpu_online(ctx
->cpu
))
810 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
813 * preemption doesn't flush plug list, so it's possible ctx->cpu is
816 spin_lock(&ctx
->lock
);
817 while (!list_empty(list
)) {
820 rq
= list_first_entry(list
, struct request
, queuelist
);
821 list_del_init(&rq
->queuelist
);
823 __blk_mq_insert_request(hctx
, rq
, false);
825 spin_unlock(&ctx
->lock
);
827 blk_mq_put_ctx(current_ctx
);
829 blk_mq_run_hw_queue(hctx
, from_schedule
);
832 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
834 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
835 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
837 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
838 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
839 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
842 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
844 struct blk_mq_ctx
*this_ctx
;
845 struct request_queue
*this_q
;
851 list_splice_init(&plug
->mq_list
, &list
);
853 list_sort(NULL
, &list
, plug_ctx_cmp
);
859 while (!list_empty(&list
)) {
860 rq
= list_entry_rq(list
.next
);
861 list_del_init(&rq
->queuelist
);
863 if (rq
->mq_ctx
!= this_ctx
) {
865 blk_mq_insert_requests(this_q
, this_ctx
,
870 this_ctx
= rq
->mq_ctx
;
876 list_add_tail(&rq
->queuelist
, &ctx_list
);
880 * If 'this_ctx' is set, we know we have entries to complete
881 * on 'ctx_list'. Do those.
884 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
889 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
891 init_request_from_bio(rq
, bio
);
892 blk_account_io_start(rq
, 1);
895 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
897 struct blk_mq_hw_ctx
*hctx
;
898 struct blk_mq_ctx
*ctx
;
899 const int is_sync
= rw_is_sync(bio
->bi_rw
);
900 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
901 int rw
= bio_data_dir(bio
);
903 unsigned int use_plug
, request_count
= 0;
906 * If we have multiple hardware queues, just go directly to
907 * one of those for sync IO.
909 use_plug
= !is_flush_fua
&& ((q
->nr_hw_queues
== 1) || !is_sync
);
911 blk_queue_bounce(q
, &bio
);
913 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
914 bio_endio(bio
, -EIO
);
918 if (use_plug
&& blk_attempt_plug_merge(q
, bio
, &request_count
))
921 if (blk_mq_queue_enter(q
)) {
922 bio_endio(bio
, -EIO
);
926 ctx
= blk_mq_get_ctx(q
);
927 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
929 trace_block_getrq(q
, bio
, rw
);
930 rq
= __blk_mq_alloc_request(hctx
, GFP_ATOMIC
, false);
932 blk_mq_rq_ctx_init(q
, ctx
, rq
, rw
);
935 trace_block_sleeprq(q
, bio
, rw
);
936 rq
= blk_mq_alloc_request_pinned(q
, rw
, __GFP_WAIT
|GFP_ATOMIC
,
939 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
944 if (unlikely(is_flush_fua
)) {
945 blk_mq_bio_to_request(rq
, bio
);
947 blk_insert_flush(rq
);
952 * A task plug currently exists. Since this is completely lockless,
953 * utilize that to temporarily store requests until the task is
954 * either done or scheduled away.
957 struct blk_plug
*plug
= current
->plug
;
960 blk_mq_bio_to_request(rq
, bio
);
961 if (list_empty(&plug
->mq_list
))
963 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
964 blk_flush_plug_list(plug
, false);
967 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
973 spin_lock(&ctx
->lock
);
975 if ((hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
976 blk_mq_attempt_merge(q
, ctx
, bio
))
977 __blk_mq_free_request(hctx
, ctx
, rq
);
979 blk_mq_bio_to_request(rq
, bio
);
980 __blk_mq_insert_request(hctx
, rq
, false);
983 spin_unlock(&ctx
->lock
);
987 * For a SYNC request, send it to the hardware immediately. For an
988 * ASYNC request, just ensure that we run it later on. The latter
989 * allows for merging opportunities and more efficient dispatching.
992 blk_mq_run_hw_queue(hctx
, !is_sync
|| is_flush_fua
);
996 * Default mapping to a software queue, since we use one per CPU.
998 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1000 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1002 EXPORT_SYMBOL(blk_mq_map_queue
);
1004 struct blk_mq_hw_ctx
*blk_mq_alloc_single_hw_queue(struct blk_mq_reg
*reg
,
1005 unsigned int hctx_index
)
1007 return kmalloc_node(sizeof(struct blk_mq_hw_ctx
),
1008 GFP_KERNEL
| __GFP_ZERO
, reg
->numa_node
);
1010 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue
);
1012 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx
*hctx
,
1013 unsigned int hctx_index
)
1017 EXPORT_SYMBOL(blk_mq_free_single_hw_queue
);
1019 static void blk_mq_hctx_notify(void *data
, unsigned long action
,
1022 struct blk_mq_hw_ctx
*hctx
= data
;
1023 struct blk_mq_ctx
*ctx
;
1026 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1030 * Move ctx entries to new CPU, if this one is going away.
1032 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1034 spin_lock(&ctx
->lock
);
1035 if (!list_empty(&ctx
->rq_list
)) {
1036 list_splice_init(&ctx
->rq_list
, &tmp
);
1037 clear_bit(ctx
->index_hw
, hctx
->ctx_map
);
1039 spin_unlock(&ctx
->lock
);
1041 if (list_empty(&tmp
))
1044 ctx
= blk_mq_get_ctx(hctx
->queue
);
1045 spin_lock(&ctx
->lock
);
1047 while (!list_empty(&tmp
)) {
1050 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1052 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1055 blk_mq_hctx_mark_pending(hctx
, ctx
);
1057 spin_unlock(&ctx
->lock
);
1058 blk_mq_put_ctx(ctx
);
1061 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx
*hctx
,
1062 void (*init
)(void *, struct blk_mq_hw_ctx
*,
1063 struct request
*, unsigned int),
1068 for (i
= 0; i
< hctx
->queue_depth
; i
++) {
1069 struct request
*rq
= hctx
->rqs
[i
];
1071 init(data
, hctx
, rq
, i
);
1075 void blk_mq_init_commands(struct request_queue
*q
,
1076 void (*init
)(void *, struct blk_mq_hw_ctx
*,
1077 struct request
*, unsigned int),
1080 struct blk_mq_hw_ctx
*hctx
;
1083 queue_for_each_hw_ctx(q
, hctx
, i
)
1084 blk_mq_init_hw_commands(hctx
, init
, data
);
1086 EXPORT_SYMBOL(blk_mq_init_commands
);
1088 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx
*hctx
)
1092 while (!list_empty(&hctx
->page_list
)) {
1093 page
= list_first_entry(&hctx
->page_list
, struct page
, lru
);
1094 list_del_init(&page
->lru
);
1095 __free_pages(page
, page
->private);
1101 blk_mq_free_tags(hctx
->tags
);
1104 static size_t order_to_size(unsigned int order
)
1106 size_t ret
= PAGE_SIZE
;
1114 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx
*hctx
,
1115 unsigned int reserved_tags
, int node
)
1117 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1118 size_t rq_size
, left
;
1120 INIT_LIST_HEAD(&hctx
->page_list
);
1122 hctx
->rqs
= kmalloc_node(hctx
->queue_depth
* sizeof(struct request
*),
1128 * rq_size is the size of the request plus driver payload, rounded
1129 * to the cacheline size
1131 rq_size
= round_up(sizeof(struct request
) + hctx
->cmd_size
,
1133 left
= rq_size
* hctx
->queue_depth
;
1135 for (i
= 0; i
< hctx
->queue_depth
;) {
1136 int this_order
= max_order
;
1141 while (left
< order_to_size(this_order
- 1) && this_order
)
1145 page
= alloc_pages_node(node
, GFP_KERNEL
, this_order
);
1150 if (order_to_size(this_order
) < rq_size
)
1157 page
->private = this_order
;
1158 list_add_tail(&page
->lru
, &hctx
->page_list
);
1160 p
= page_address(page
);
1161 entries_per_page
= order_to_size(this_order
) / rq_size
;
1162 to_do
= min(entries_per_page
, hctx
->queue_depth
- i
);
1163 left
-= to_do
* rq_size
;
1164 for (j
= 0; j
< to_do
; j
++) {
1166 blk_mq_rq_init(hctx
, hctx
->rqs
[i
]);
1172 if (i
< (reserved_tags
+ BLK_MQ_TAG_MIN
))
1174 else if (i
!= hctx
->queue_depth
) {
1175 hctx
->queue_depth
= i
;
1176 pr_warn("%s: queue depth set to %u because of low memory\n",
1180 hctx
->tags
= blk_mq_init_tags(hctx
->queue_depth
, reserved_tags
, node
);
1183 blk_mq_free_rq_map(hctx
);
1190 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1191 struct blk_mq_reg
*reg
, void *driver_data
)
1193 struct blk_mq_hw_ctx
*hctx
;
1197 * Initialize hardware queues
1199 queue_for_each_hw_ctx(q
, hctx
, i
) {
1200 unsigned int num_maps
;
1203 node
= hctx
->numa_node
;
1204 if (node
== NUMA_NO_NODE
)
1205 node
= hctx
->numa_node
= reg
->numa_node
;
1207 INIT_DELAYED_WORK(&hctx
->delayed_work
, blk_mq_work_fn
);
1208 spin_lock_init(&hctx
->lock
);
1209 INIT_LIST_HEAD(&hctx
->dispatch
);
1211 hctx
->queue_num
= i
;
1212 hctx
->flags
= reg
->flags
;
1213 hctx
->queue_depth
= reg
->queue_depth
;
1214 hctx
->cmd_size
= reg
->cmd_size
;
1216 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1217 blk_mq_hctx_notify
, hctx
);
1218 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1220 if (blk_mq_init_rq_map(hctx
, reg
->reserved_tags
, node
))
1224 * Allocate space for all possible cpus to avoid allocation in
1227 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1232 num_maps
= ALIGN(nr_cpu_ids
, BITS_PER_LONG
) / BITS_PER_LONG
;
1233 hctx
->ctx_map
= kzalloc_node(num_maps
* sizeof(unsigned long),
1238 hctx
->nr_ctx_map
= num_maps
;
1241 if (reg
->ops
->init_hctx
&&
1242 reg
->ops
->init_hctx(hctx
, driver_data
, i
))
1246 if (i
== q
->nr_hw_queues
)
1252 queue_for_each_hw_ctx(q
, hctx
, j
) {
1256 if (reg
->ops
->exit_hctx
)
1257 reg
->ops
->exit_hctx(hctx
, j
);
1259 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1260 blk_mq_free_rq_map(hctx
);
1267 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1268 unsigned int nr_hw_queues
)
1272 for_each_possible_cpu(i
) {
1273 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1274 struct blk_mq_hw_ctx
*hctx
;
1276 memset(__ctx
, 0, sizeof(*__ctx
));
1278 spin_lock_init(&__ctx
->lock
);
1279 INIT_LIST_HEAD(&__ctx
->rq_list
);
1282 /* If the cpu isn't online, the cpu is mapped to first hctx */
1283 hctx
= q
->mq_ops
->map_queue(q
, i
);
1290 * Set local node, IFF we have more than one hw queue. If
1291 * not, we remain on the home node of the device
1293 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1294 hctx
->numa_node
= cpu_to_node(i
);
1298 static void blk_mq_map_swqueue(struct request_queue
*q
)
1301 struct blk_mq_hw_ctx
*hctx
;
1302 struct blk_mq_ctx
*ctx
;
1304 queue_for_each_hw_ctx(q
, hctx
, i
) {
1309 * Map software to hardware queues
1311 queue_for_each_ctx(q
, ctx
, i
) {
1312 /* If the cpu isn't online, the cpu is mapped to first hctx */
1313 hctx
= q
->mq_ops
->map_queue(q
, i
);
1314 ctx
->index_hw
= hctx
->nr_ctx
;
1315 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1319 struct request_queue
*blk_mq_init_queue(struct blk_mq_reg
*reg
,
1322 struct blk_mq_hw_ctx
**hctxs
;
1323 struct blk_mq_ctx
*ctx
;
1324 struct request_queue
*q
;
1327 if (!reg
->nr_hw_queues
||
1328 !reg
->ops
->queue_rq
|| !reg
->ops
->map_queue
||
1329 !reg
->ops
->alloc_hctx
|| !reg
->ops
->free_hctx
)
1330 return ERR_PTR(-EINVAL
);
1332 if (!reg
->queue_depth
)
1333 reg
->queue_depth
= BLK_MQ_MAX_DEPTH
;
1334 else if (reg
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
1335 pr_err("blk-mq: queuedepth too large (%u)\n", reg
->queue_depth
);
1336 reg
->queue_depth
= BLK_MQ_MAX_DEPTH
;
1339 if (reg
->queue_depth
< (reg
->reserved_tags
+ BLK_MQ_TAG_MIN
))
1340 return ERR_PTR(-EINVAL
);
1342 ctx
= alloc_percpu(struct blk_mq_ctx
);
1344 return ERR_PTR(-ENOMEM
);
1346 hctxs
= kmalloc_node(reg
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1352 for (i
= 0; i
< reg
->nr_hw_queues
; i
++) {
1353 hctxs
[i
] = reg
->ops
->alloc_hctx(reg
, i
);
1357 hctxs
[i
]->numa_node
= NUMA_NO_NODE
;
1358 hctxs
[i
]->queue_num
= i
;
1361 q
= blk_alloc_queue_node(GFP_KERNEL
, reg
->numa_node
);
1365 q
->mq_map
= blk_mq_make_queue_map(reg
);
1369 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1370 blk_queue_rq_timeout(q
, 30000);
1372 q
->nr_queues
= nr_cpu_ids
;
1373 q
->nr_hw_queues
= reg
->nr_hw_queues
;
1376 q
->queue_hw_ctx
= hctxs
;
1378 q
->mq_ops
= reg
->ops
;
1379 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1381 q
->sg_reserved_size
= INT_MAX
;
1383 blk_queue_make_request(q
, blk_mq_make_request
);
1384 blk_queue_rq_timed_out(q
, reg
->ops
->timeout
);
1386 blk_queue_rq_timeout(q
, reg
->timeout
);
1388 if (reg
->ops
->complete
)
1389 blk_queue_softirq_done(q
, reg
->ops
->complete
);
1391 blk_mq_init_flush(q
);
1392 blk_mq_init_cpu_queues(q
, reg
->nr_hw_queues
);
1394 q
->flush_rq
= kzalloc(round_up(sizeof(struct request
) + reg
->cmd_size
,
1395 cache_line_size()), GFP_KERNEL
);
1399 if (blk_mq_init_hw_queues(q
, reg
, driver_data
))
1402 blk_mq_map_swqueue(q
);
1404 mutex_lock(&all_q_mutex
);
1405 list_add_tail(&q
->all_q_node
, &all_q_list
);
1406 mutex_unlock(&all_q_mutex
);
1415 blk_cleanup_queue(q
);
1417 for (i
= 0; i
< reg
->nr_hw_queues
; i
++) {
1420 reg
->ops
->free_hctx(hctxs
[i
], i
);
1425 return ERR_PTR(-ENOMEM
);
1427 EXPORT_SYMBOL(blk_mq_init_queue
);
1429 void blk_mq_free_queue(struct request_queue
*q
)
1431 struct blk_mq_hw_ctx
*hctx
;
1434 queue_for_each_hw_ctx(q
, hctx
, i
) {
1435 kfree(hctx
->ctx_map
);
1437 blk_mq_free_rq_map(hctx
);
1438 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1439 if (q
->mq_ops
->exit_hctx
)
1440 q
->mq_ops
->exit_hctx(hctx
, i
);
1441 q
->mq_ops
->free_hctx(hctx
, i
);
1444 free_percpu(q
->queue_ctx
);
1445 kfree(q
->queue_hw_ctx
);
1448 q
->queue_ctx
= NULL
;
1449 q
->queue_hw_ctx
= NULL
;
1452 mutex_lock(&all_q_mutex
);
1453 list_del_init(&q
->all_q_node
);
1454 mutex_unlock(&all_q_mutex
);
1457 /* Basically redo blk_mq_init_queue with queue frozen */
1458 static void blk_mq_queue_reinit(struct request_queue
*q
)
1460 blk_mq_freeze_queue(q
);
1462 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
1465 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1466 * we should change hctx numa_node according to new topology (this
1467 * involves free and re-allocate memory, worthy doing?)
1470 blk_mq_map_swqueue(q
);
1472 blk_mq_unfreeze_queue(q
);
1475 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
1476 unsigned long action
, void *hcpu
)
1478 struct request_queue
*q
;
1481 * Before new mapping is established, hotadded cpu might already start
1482 * handling requests. This doesn't break anything as we map offline
1483 * CPUs to first hardware queue. We will re-init queue below to get
1486 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
1487 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
1490 mutex_lock(&all_q_mutex
);
1491 list_for_each_entry(q
, &all_q_list
, all_q_node
)
1492 blk_mq_queue_reinit(q
);
1493 mutex_unlock(&all_q_mutex
);
1497 static int __init
blk_mq_init(void)
1501 /* Must be called after percpu_counter_hotcpu_callback() */
1502 hotcpu_notifier(blk_mq_queue_reinit_notify
, -10);
1506 subsys_initcall(blk_mq_init
);