1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly
;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
55 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
56 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
59 EXPORT_SYMBOL(jbd2_journal_extend
);
60 EXPORT_SYMBOL(jbd2_journal_stop
);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
68 EXPORT_SYMBOL(jbd2_journal_forget
);
70 EXPORT_SYMBOL(journal_sync_buffer
);
72 EXPORT_SYMBOL(jbd2_journal_flush
);
73 EXPORT_SYMBOL(jbd2_journal_revoke
);
75 EXPORT_SYMBOL(jbd2_journal_init_dev
);
76 EXPORT_SYMBOL(jbd2_journal_init_inode
);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
79 EXPORT_SYMBOL(jbd2_journal_set_features
);
80 EXPORT_SYMBOL(jbd2_journal_load
);
81 EXPORT_SYMBOL(jbd2_journal_destroy
);
82 EXPORT_SYMBOL(jbd2_journal_abort
);
83 EXPORT_SYMBOL(jbd2_journal_errno
);
84 EXPORT_SYMBOL(jbd2_journal_ack_err
);
85 EXPORT_SYMBOL(jbd2_journal_clear_err
);
86 EXPORT_SYMBOL(jbd2_log_wait_commit
);
87 EXPORT_SYMBOL(jbd2_log_start_commit
);
88 EXPORT_SYMBOL(jbd2_journal_start_commit
);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
90 EXPORT_SYMBOL(jbd2_journal_wipe
);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
94 EXPORT_SYMBOL(jbd2_journal_force_commit
);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write
);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait
);
97 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write
);
98 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait
);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
102 EXPORT_SYMBOL(jbd2_inode_cache
);
104 static void __journal_abort_soft (journal_t
*journal
, int errno
);
105 static int jbd2_journal_create_slab(size_t slab_size
);
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level
, const char *file
, const char *func
,
109 unsigned int line
, const char *fmt
, ...)
111 struct va_format vaf
;
114 if (level
> jbd2_journal_enable_debug
)
119 printk(KERN_DEBUG
"%s: (%s, %u): %pV", file
, func
, line
, &vaf
);
122 EXPORT_SYMBOL(__jbd2_debug
);
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
128 if (!jbd2_journal_has_csum_v2or3_feature(j
))
131 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
134 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
139 old_csum
= sb
->s_checksum
;
141 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
142 sb
->s_checksum
= old_csum
;
144 return cpu_to_be32(csum
);
147 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
149 if (!jbd2_journal_has_csum_v2or3(j
))
152 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
155 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
157 if (!jbd2_journal_has_csum_v2or3(j
))
160 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
164 * Helper function used to manage commit timeouts
167 static void commit_timeout(struct timer_list
*t
)
169 journal_t
*journal
= from_timer(journal
, t
, j_commit_timer
);
171 wake_up_process(journal
->j_task
);
175 * kjournald2: The main thread function used to manage a logging device
178 * This kernel thread is responsible for two things:
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
190 static int kjournald2(void *arg
)
192 journal_t
*journal
= arg
;
193 transaction_t
*transaction
;
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
199 timer_setup(&journal
->j_commit_timer
, commit_timeout
, 0);
203 /* Record that the journal thread is running */
204 journal
->j_task
= current
;
205 wake_up(&journal
->j_wait_done_commit
);
208 * Make sure that no allocations from this kernel thread will ever
209 * recurse to the fs layer because we are responsible for the
210 * transaction commit and any fs involvement might get stuck waiting for
213 memalloc_nofs_save();
216 * And now, wait forever for commit wakeup events.
218 write_lock(&journal
->j_state_lock
);
221 if (journal
->j_flags
& JBD2_UNMOUNT
)
224 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
225 journal
->j_commit_sequence
, journal
->j_commit_request
);
227 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
228 jbd_debug(1, "OK, requests differ\n");
229 write_unlock(&journal
->j_state_lock
);
230 del_timer_sync(&journal
->j_commit_timer
);
231 jbd2_journal_commit_transaction(journal
);
232 write_lock(&journal
->j_state_lock
);
236 wake_up(&journal
->j_wait_done_commit
);
237 if (freezing(current
)) {
239 * The simpler the better. Flushing journal isn't a
240 * good idea, because that depends on threads that may
241 * be already stopped.
243 jbd_debug(1, "Now suspending kjournald2\n");
244 write_unlock(&journal
->j_state_lock
);
246 write_lock(&journal
->j_state_lock
);
249 * We assume on resume that commits are already there,
253 int should_sleep
= 1;
255 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
257 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
259 transaction
= journal
->j_running_transaction
;
260 if (transaction
&& time_after_eq(jiffies
,
261 transaction
->t_expires
))
263 if (journal
->j_flags
& JBD2_UNMOUNT
)
266 write_unlock(&journal
->j_state_lock
);
268 write_lock(&journal
->j_state_lock
);
270 finish_wait(&journal
->j_wait_commit
, &wait
);
273 jbd_debug(1, "kjournald2 wakes\n");
276 * Were we woken up by a commit wakeup event?
278 transaction
= journal
->j_running_transaction
;
279 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
280 journal
->j_commit_request
= transaction
->t_tid
;
281 jbd_debug(1, "woke because of timeout\n");
286 del_timer_sync(&journal
->j_commit_timer
);
287 journal
->j_task
= NULL
;
288 wake_up(&journal
->j_wait_done_commit
);
289 jbd_debug(1, "Journal thread exiting.\n");
290 write_unlock(&journal
->j_state_lock
);
294 static int jbd2_journal_start_thread(journal_t
*journal
)
296 struct task_struct
*t
;
298 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
303 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
307 static void journal_kill_thread(journal_t
*journal
)
309 write_lock(&journal
->j_state_lock
);
310 journal
->j_flags
|= JBD2_UNMOUNT
;
312 while (journal
->j_task
) {
313 write_unlock(&journal
->j_state_lock
);
314 wake_up(&journal
->j_wait_commit
);
315 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
316 write_lock(&journal
->j_state_lock
);
318 write_unlock(&journal
->j_state_lock
);
322 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324 * Writes a metadata buffer to a given disk block. The actual IO is not
325 * performed but a new buffer_head is constructed which labels the data
326 * to be written with the correct destination disk block.
328 * Any magic-number escaping which needs to be done will cause a
329 * copy-out here. If the buffer happens to start with the
330 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
331 * magic number is only written to the log for descripter blocks. In
332 * this case, we copy the data and replace the first word with 0, and we
333 * return a result code which indicates that this buffer needs to be
334 * marked as an escaped buffer in the corresponding log descriptor
335 * block. The missing word can then be restored when the block is read
338 * If the source buffer has already been modified by a new transaction
339 * since we took the last commit snapshot, we use the frozen copy of
340 * that data for IO. If we end up using the existing buffer_head's data
341 * for the write, then we have to make sure nobody modifies it while the
342 * IO is in progress. do_get_write_access() handles this.
344 * The function returns a pointer to the buffer_head to be used for IO.
352 * Bit 0 set == escape performed on the data
353 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
356 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
357 struct journal_head
*jh_in
,
358 struct buffer_head
**bh_out
,
361 int need_copy_out
= 0;
362 int done_copy_out
= 0;
365 struct buffer_head
*new_bh
;
366 struct page
*new_page
;
367 unsigned int new_offset
;
368 struct buffer_head
*bh_in
= jh2bh(jh_in
);
369 journal_t
*journal
= transaction
->t_journal
;
372 * The buffer really shouldn't be locked: only the current committing
373 * transaction is allowed to write it, so nobody else is allowed
376 * akpm: except if we're journalling data, and write() output is
377 * also part of a shared mapping, and another thread has
378 * decided to launch a writepage() against this buffer.
380 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
382 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
384 /* keep subsequent assertions sane */
385 atomic_set(&new_bh
->b_count
, 1);
387 jbd_lock_bh_state(bh_in
);
390 * If a new transaction has already done a buffer copy-out, then
391 * we use that version of the data for the commit.
393 if (jh_in
->b_frozen_data
) {
395 new_page
= virt_to_page(jh_in
->b_frozen_data
);
396 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
398 new_page
= jh2bh(jh_in
)->b_page
;
399 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
402 mapped_data
= kmap_atomic(new_page
);
404 * Fire data frozen trigger if data already wasn't frozen. Do this
405 * before checking for escaping, as the trigger may modify the magic
406 * offset. If a copy-out happens afterwards, it will have the correct
407 * data in the buffer.
410 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
416 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
417 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
421 kunmap_atomic(mapped_data
);
424 * Do we need to do a data copy?
426 if (need_copy_out
&& !done_copy_out
) {
429 jbd_unlock_bh_state(bh_in
);
430 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
435 jbd_lock_bh_state(bh_in
);
436 if (jh_in
->b_frozen_data
) {
437 jbd2_free(tmp
, bh_in
->b_size
);
441 jh_in
->b_frozen_data
= tmp
;
442 mapped_data
= kmap_atomic(new_page
);
443 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
444 kunmap_atomic(mapped_data
);
446 new_page
= virt_to_page(tmp
);
447 new_offset
= offset_in_page(tmp
);
451 * This isn't strictly necessary, as we're using frozen
452 * data for the escaping, but it keeps consistency with
453 * b_frozen_data usage.
455 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
459 * Did we need to do an escaping? Now we've done all the
460 * copying, we can finally do so.
463 mapped_data
= kmap_atomic(new_page
);
464 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
465 kunmap_atomic(mapped_data
);
468 set_bh_page(new_bh
, new_page
, new_offset
);
469 new_bh
->b_size
= bh_in
->b_size
;
470 new_bh
->b_bdev
= journal
->j_dev
;
471 new_bh
->b_blocknr
= blocknr
;
472 new_bh
->b_private
= bh_in
;
473 set_buffer_mapped(new_bh
);
474 set_buffer_dirty(new_bh
);
479 * The to-be-written buffer needs to get moved to the io queue,
480 * and the original buffer whose contents we are shadowing or
481 * copying is moved to the transaction's shadow queue.
483 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
484 spin_lock(&journal
->j_list_lock
);
485 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
486 spin_unlock(&journal
->j_list_lock
);
487 set_buffer_shadow(bh_in
);
488 jbd_unlock_bh_state(bh_in
);
490 return do_escape
| (done_copy_out
<< 1);
494 * Allocation code for the journal file. Manage the space left in the
495 * journal, so that we can begin checkpointing when appropriate.
499 * Called with j_state_lock locked for writing.
500 * Returns true if a transaction commit was started.
502 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
504 /* Return if the txn has already requested to be committed */
505 if (journal
->j_commit_request
== target
)
509 * The only transaction we can possibly wait upon is the
510 * currently running transaction (if it exists). Otherwise,
511 * the target tid must be an old one.
513 if (journal
->j_running_transaction
&&
514 journal
->j_running_transaction
->t_tid
== target
) {
516 * We want a new commit: OK, mark the request and wakeup the
517 * commit thread. We do _not_ do the commit ourselves.
520 journal
->j_commit_request
= target
;
521 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
522 journal
->j_commit_request
,
523 journal
->j_commit_sequence
);
524 journal
->j_running_transaction
->t_requested
= jiffies
;
525 wake_up(&journal
->j_wait_commit
);
527 } else if (!tid_geq(journal
->j_commit_request
, target
))
528 /* This should never happen, but if it does, preserve
529 the evidence before kjournald goes into a loop and
530 increments j_commit_sequence beyond all recognition. */
531 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
532 journal
->j_commit_request
,
533 journal
->j_commit_sequence
,
534 target
, journal
->j_running_transaction
?
535 journal
->j_running_transaction
->t_tid
: 0);
539 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
543 write_lock(&journal
->j_state_lock
);
544 ret
= __jbd2_log_start_commit(journal
, tid
);
545 write_unlock(&journal
->j_state_lock
);
550 * Force and wait any uncommitted transactions. We can only force the running
551 * transaction if we don't have an active handle, otherwise, we will deadlock.
552 * Returns: <0 in case of error,
553 * 0 if nothing to commit,
554 * 1 if transaction was successfully committed.
556 static int __jbd2_journal_force_commit(journal_t
*journal
)
558 transaction_t
*transaction
= NULL
;
560 int need_to_start
= 0, ret
= 0;
562 read_lock(&journal
->j_state_lock
);
563 if (journal
->j_running_transaction
&& !current
->journal_info
) {
564 transaction
= journal
->j_running_transaction
;
565 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
567 } else if (journal
->j_committing_transaction
)
568 transaction
= journal
->j_committing_transaction
;
571 /* Nothing to commit */
572 read_unlock(&journal
->j_state_lock
);
575 tid
= transaction
->t_tid
;
576 read_unlock(&journal
->j_state_lock
);
578 jbd2_log_start_commit(journal
, tid
);
579 ret
= jbd2_log_wait_commit(journal
, tid
);
587 * Force and wait upon a commit if the calling process is not within
588 * transaction. This is used for forcing out undo-protected data which contains
589 * bitmaps, when the fs is running out of space.
591 * @journal: journal to force
592 * Returns true if progress was made.
594 int jbd2_journal_force_commit_nested(journal_t
*journal
)
598 ret
= __jbd2_journal_force_commit(journal
);
603 * int journal_force_commit() - force any uncommitted transactions
604 * @journal: journal to force
606 * Caller want unconditional commit. We can only force the running transaction
607 * if we don't have an active handle, otherwise, we will deadlock.
609 int jbd2_journal_force_commit(journal_t
*journal
)
613 J_ASSERT(!current
->journal_info
);
614 ret
= __jbd2_journal_force_commit(journal
);
621 * Start a commit of the current running transaction (if any). Returns true
622 * if a transaction is going to be committed (or is currently already
623 * committing), and fills its tid in at *ptid
625 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
629 write_lock(&journal
->j_state_lock
);
630 if (journal
->j_running_transaction
) {
631 tid_t tid
= journal
->j_running_transaction
->t_tid
;
633 __jbd2_log_start_commit(journal
, tid
);
634 /* There's a running transaction and we've just made sure
635 * it's commit has been scheduled. */
639 } else if (journal
->j_committing_transaction
) {
641 * If commit has been started, then we have to wait for
642 * completion of that transaction.
645 *ptid
= journal
->j_committing_transaction
->t_tid
;
648 write_unlock(&journal
->j_state_lock
);
653 * Return 1 if a given transaction has not yet sent barrier request
654 * connected with a transaction commit. If 0 is returned, transaction
655 * may or may not have sent the barrier. Used to avoid sending barrier
656 * twice in common cases.
658 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
661 transaction_t
*commit_trans
;
663 if (!(journal
->j_flags
& JBD2_BARRIER
))
665 read_lock(&journal
->j_state_lock
);
666 /* Transaction already committed? */
667 if (tid_geq(journal
->j_commit_sequence
, tid
))
669 commit_trans
= journal
->j_committing_transaction
;
670 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
675 * Transaction is being committed and we already proceeded to
676 * submitting a flush to fs partition?
678 if (journal
->j_fs_dev
!= journal
->j_dev
) {
679 if (!commit_trans
->t_need_data_flush
||
680 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
683 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
688 read_unlock(&journal
->j_state_lock
);
691 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
694 * Wait for a specified commit to complete.
695 * The caller may not hold the journal lock.
697 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
701 read_lock(&journal
->j_state_lock
);
702 #ifdef CONFIG_PROVE_LOCKING
704 * Some callers make sure transaction is already committing and in that
705 * case we cannot block on open handles anymore. So don't warn in that
708 if (tid_gt(tid
, journal
->j_commit_sequence
) &&
709 (!journal
->j_committing_transaction
||
710 journal
->j_committing_transaction
->t_tid
!= tid
)) {
711 read_unlock(&journal
->j_state_lock
);
712 jbd2_might_wait_for_commit(journal
);
713 read_lock(&journal
->j_state_lock
);
716 #ifdef CONFIG_JBD2_DEBUG
717 if (!tid_geq(journal
->j_commit_request
, tid
)) {
719 "%s: error: j_commit_request=%d, tid=%d\n",
720 __func__
, journal
->j_commit_request
, tid
);
723 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
724 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
725 tid
, journal
->j_commit_sequence
);
726 read_unlock(&journal
->j_state_lock
);
727 wake_up(&journal
->j_wait_commit
);
728 wait_event(journal
->j_wait_done_commit
,
729 !tid_gt(tid
, journal
->j_commit_sequence
));
730 read_lock(&journal
->j_state_lock
);
732 read_unlock(&journal
->j_state_lock
);
734 if (unlikely(is_journal_aborted(journal
)))
739 /* Return 1 when transaction with given tid has already committed. */
740 int jbd2_transaction_committed(journal_t
*journal
, tid_t tid
)
744 read_lock(&journal
->j_state_lock
);
745 if (journal
->j_running_transaction
&&
746 journal
->j_running_transaction
->t_tid
== tid
)
748 if (journal
->j_committing_transaction
&&
749 journal
->j_committing_transaction
->t_tid
== tid
)
751 read_unlock(&journal
->j_state_lock
);
754 EXPORT_SYMBOL(jbd2_transaction_committed
);
757 * When this function returns the transaction corresponding to tid
758 * will be completed. If the transaction has currently running, start
759 * committing that transaction before waiting for it to complete. If
760 * the transaction id is stale, it is by definition already completed,
761 * so just return SUCCESS.
763 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
765 int need_to_wait
= 1;
767 read_lock(&journal
->j_state_lock
);
768 if (journal
->j_running_transaction
&&
769 journal
->j_running_transaction
->t_tid
== tid
) {
770 if (journal
->j_commit_request
!= tid
) {
771 /* transaction not yet started, so request it */
772 read_unlock(&journal
->j_state_lock
);
773 jbd2_log_start_commit(journal
, tid
);
776 } else if (!(journal
->j_committing_transaction
&&
777 journal
->j_committing_transaction
->t_tid
== tid
))
779 read_unlock(&journal
->j_state_lock
);
783 return jbd2_log_wait_commit(journal
, tid
);
785 EXPORT_SYMBOL(jbd2_complete_transaction
);
788 * Log buffer allocation routines:
791 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
793 unsigned long blocknr
;
795 write_lock(&journal
->j_state_lock
);
796 J_ASSERT(journal
->j_free
> 1);
798 blocknr
= journal
->j_head
;
801 if (journal
->j_head
== journal
->j_last
)
802 journal
->j_head
= journal
->j_first
;
803 write_unlock(&journal
->j_state_lock
);
804 return jbd2_journal_bmap(journal
, blocknr
, retp
);
808 * Conversion of logical to physical block numbers for the journal
810 * On external journals the journal blocks are identity-mapped, so
811 * this is a no-op. If needed, we can use j_blk_offset - everything is
814 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
815 unsigned long long *retp
)
818 unsigned long long ret
;
820 if (journal
->j_inode
) {
821 ret
= bmap(journal
->j_inode
, blocknr
);
825 printk(KERN_ALERT
"%s: journal block not found "
826 "at offset %lu on %s\n",
827 __func__
, blocknr
, journal
->j_devname
);
829 __journal_abort_soft(journal
, err
);
832 *retp
= blocknr
; /* +journal->j_blk_offset */
838 * We play buffer_head aliasing tricks to write data/metadata blocks to
839 * the journal without copying their contents, but for journal
840 * descriptor blocks we do need to generate bona fide buffers.
842 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
843 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
844 * But we don't bother doing that, so there will be coherency problems with
845 * mmaps of blockdevs which hold live JBD-controlled filesystems.
848 jbd2_journal_get_descriptor_buffer(transaction_t
*transaction
, int type
)
850 journal_t
*journal
= transaction
->t_journal
;
851 struct buffer_head
*bh
;
852 unsigned long long blocknr
;
853 journal_header_t
*header
;
856 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
861 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
865 memset(bh
->b_data
, 0, journal
->j_blocksize
);
866 header
= (journal_header_t
*)bh
->b_data
;
867 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
868 header
->h_blocktype
= cpu_to_be32(type
);
869 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
870 set_buffer_uptodate(bh
);
872 BUFFER_TRACE(bh
, "return this buffer");
876 void jbd2_descriptor_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
878 struct jbd2_journal_block_tail
*tail
;
881 if (!jbd2_journal_has_csum_v2or3(j
))
884 tail
= (struct jbd2_journal_block_tail
*)(bh
->b_data
+ j
->j_blocksize
-
885 sizeof(struct jbd2_journal_block_tail
));
886 tail
->t_checksum
= 0;
887 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
888 tail
->t_checksum
= cpu_to_be32(csum
);
892 * Return tid of the oldest transaction in the journal and block in the journal
893 * where the transaction starts.
895 * If the journal is now empty, return which will be the next transaction ID
896 * we will write and where will that transaction start.
898 * The return value is 0 if journal tail cannot be pushed any further, 1 if
901 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
902 unsigned long *block
)
904 transaction_t
*transaction
;
907 read_lock(&journal
->j_state_lock
);
908 spin_lock(&journal
->j_list_lock
);
909 transaction
= journal
->j_checkpoint_transactions
;
911 *tid
= transaction
->t_tid
;
912 *block
= transaction
->t_log_start
;
913 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
914 *tid
= transaction
->t_tid
;
915 *block
= transaction
->t_log_start
;
916 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
917 *tid
= transaction
->t_tid
;
918 *block
= journal
->j_head
;
920 *tid
= journal
->j_transaction_sequence
;
921 *block
= journal
->j_head
;
923 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
924 spin_unlock(&journal
->j_list_lock
);
925 read_unlock(&journal
->j_state_lock
);
931 * Update information in journal structure and in on disk journal superblock
932 * about log tail. This function does not check whether information passed in
933 * really pushes log tail further. It's responsibility of the caller to make
934 * sure provided log tail information is valid (e.g. by holding
935 * j_checkpoint_mutex all the time between computing log tail and calling this
936 * function as is the case with jbd2_cleanup_journal_tail()).
938 * Requires j_checkpoint_mutex
940 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
945 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
948 * We cannot afford for write to remain in drive's caches since as
949 * soon as we update j_tail, next transaction can start reusing journal
950 * space and if we lose sb update during power failure we'd replay
951 * old transaction with possibly newly overwritten data.
953 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
,
958 write_lock(&journal
->j_state_lock
);
959 freed
= block
- journal
->j_tail
;
960 if (block
< journal
->j_tail
)
961 freed
+= journal
->j_last
- journal
->j_first
;
963 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
965 "Cleaning journal tail from %d to %d (offset %lu), "
967 journal
->j_tail_sequence
, tid
, block
, freed
);
969 journal
->j_free
+= freed
;
970 journal
->j_tail_sequence
= tid
;
971 journal
->j_tail
= block
;
972 write_unlock(&journal
->j_state_lock
);
979 * This is a variation of __jbd2_update_log_tail which checks for validity of
980 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
981 * with other threads updating log tail.
983 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
985 mutex_lock_io(&journal
->j_checkpoint_mutex
);
986 if (tid_gt(tid
, journal
->j_tail_sequence
))
987 __jbd2_update_log_tail(journal
, tid
, block
);
988 mutex_unlock(&journal
->j_checkpoint_mutex
);
991 struct jbd2_stats_proc_session
{
993 struct transaction_stats_s
*stats
;
998 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
1000 return *pos
? NULL
: SEQ_START_TOKEN
;
1003 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1009 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
1011 struct jbd2_stats_proc_session
*s
= seq
->private;
1013 if (v
!= SEQ_START_TOKEN
)
1015 seq_printf(seq
, "%lu transactions (%lu requested), "
1016 "each up to %u blocks\n",
1017 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
1018 s
->journal
->j_max_transaction_buffers
);
1019 if (s
->stats
->ts_tid
== 0)
1021 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
1022 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
1023 seq_printf(seq
, " %ums request delay\n",
1024 (s
->stats
->ts_requested
== 0) ? 0 :
1025 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
1026 s
->stats
->ts_requested
));
1027 seq_printf(seq
, " %ums running transaction\n",
1028 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
1029 seq_printf(seq
, " %ums transaction was being locked\n",
1030 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
1031 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
1032 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
1033 seq_printf(seq
, " %ums logging transaction\n",
1034 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
1035 seq_printf(seq
, " %lluus average transaction commit time\n",
1036 div_u64(s
->journal
->j_average_commit_time
, 1000));
1037 seq_printf(seq
, " %lu handles per transaction\n",
1038 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
1039 seq_printf(seq
, " %lu blocks per transaction\n",
1040 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
1041 seq_printf(seq
, " %lu logged blocks per transaction\n",
1042 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
1046 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
1050 static const struct seq_operations jbd2_seq_info_ops
= {
1051 .start
= jbd2_seq_info_start
,
1052 .next
= jbd2_seq_info_next
,
1053 .stop
= jbd2_seq_info_stop
,
1054 .show
= jbd2_seq_info_show
,
1057 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1059 journal_t
*journal
= PDE_DATA(inode
);
1060 struct jbd2_stats_proc_session
*s
;
1063 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1066 size
= sizeof(struct transaction_stats_s
);
1067 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1068 if (s
->stats
== NULL
) {
1072 spin_lock(&journal
->j_history_lock
);
1073 memcpy(s
->stats
, &journal
->j_stats
, size
);
1074 s
->journal
= journal
;
1075 spin_unlock(&journal
->j_history_lock
);
1077 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1079 struct seq_file
*m
= file
->private_data
;
1089 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1091 struct seq_file
*seq
= file
->private_data
;
1092 struct jbd2_stats_proc_session
*s
= seq
->private;
1095 return seq_release(inode
, file
);
1098 static const struct file_operations jbd2_seq_info_fops
= {
1099 .owner
= THIS_MODULE
,
1100 .open
= jbd2_seq_info_open
,
1102 .llseek
= seq_lseek
,
1103 .release
= jbd2_seq_info_release
,
1106 static struct proc_dir_entry
*proc_jbd2_stats
;
1108 static void jbd2_stats_proc_init(journal_t
*journal
)
1110 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1111 if (journal
->j_proc_entry
) {
1112 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1113 &jbd2_seq_info_fops
, journal
);
1117 static void jbd2_stats_proc_exit(journal_t
*journal
)
1119 remove_proc_entry("info", journal
->j_proc_entry
);
1120 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1124 * Management for journal control blocks: functions to create and
1125 * destroy journal_t structures, and to initialise and read existing
1126 * journal blocks from disk. */
1128 /* First: create and setup a journal_t object in memory. We initialise
1129 * very few fields yet: that has to wait until we have created the
1130 * journal structures from from scratch, or loaded them from disk. */
1132 static journal_t
*journal_init_common(struct block_device
*bdev
,
1133 struct block_device
*fs_dev
,
1134 unsigned long long start
, int len
, int blocksize
)
1136 static struct lock_class_key jbd2_trans_commit_key
;
1139 struct buffer_head
*bh
;
1142 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1146 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1147 init_waitqueue_head(&journal
->j_wait_done_commit
);
1148 init_waitqueue_head(&journal
->j_wait_commit
);
1149 init_waitqueue_head(&journal
->j_wait_updates
);
1150 init_waitqueue_head(&journal
->j_wait_reserved
);
1151 mutex_init(&journal
->j_barrier
);
1152 mutex_init(&journal
->j_checkpoint_mutex
);
1153 spin_lock_init(&journal
->j_revoke_lock
);
1154 spin_lock_init(&journal
->j_list_lock
);
1155 rwlock_init(&journal
->j_state_lock
);
1157 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1158 journal
->j_min_batch_time
= 0;
1159 journal
->j_max_batch_time
= 15000; /* 15ms */
1160 atomic_set(&journal
->j_reserved_credits
, 0);
1162 /* The journal is marked for error until we succeed with recovery! */
1163 journal
->j_flags
= JBD2_ABORT
;
1165 /* Set up a default-sized revoke table for the new mount. */
1166 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1170 spin_lock_init(&journal
->j_history_lock
);
1172 lockdep_init_map(&journal
->j_trans_commit_map
, "jbd2_handle",
1173 &jbd2_trans_commit_key
, 0);
1175 /* journal descriptor can store up to n blocks -bzzz */
1176 journal
->j_blocksize
= blocksize
;
1177 journal
->j_dev
= bdev
;
1178 journal
->j_fs_dev
= fs_dev
;
1179 journal
->j_blk_offset
= start
;
1180 journal
->j_maxlen
= len
;
1181 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1182 journal
->j_wbufsize
= n
;
1183 journal
->j_wbuf
= kmalloc_array(n
, sizeof(struct buffer_head
*),
1185 if (!journal
->j_wbuf
)
1188 bh
= getblk_unmovable(journal
->j_dev
, start
, journal
->j_blocksize
);
1190 pr_err("%s: Cannot get buffer for journal superblock\n",
1194 journal
->j_sb_buffer
= bh
;
1195 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1200 kfree(journal
->j_wbuf
);
1201 jbd2_journal_destroy_revoke(journal
);
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1208 * Create a journal structure assigned some fixed set of disk blocks to
1209 * the journal. We don't actually touch those disk blocks yet, but we
1210 * need to set up all of the mapping information to tell the journaling
1211 * system where the journal blocks are.
1216 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217 * @bdev: Block device on which to create the journal
1218 * @fs_dev: Device which hold journalled filesystem for this journal.
1219 * @start: Block nr Start of journal.
1220 * @len: Length of the journal in blocks.
1221 * @blocksize: blocksize of journalling device
1223 * Returns: a newly created journal_t *
1225 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226 * range of blocks on an arbitrary block device.
1229 journal_t
*jbd2_journal_init_dev(struct block_device
*bdev
,
1230 struct block_device
*fs_dev
,
1231 unsigned long long start
, int len
, int blocksize
)
1235 journal
= journal_init_common(bdev
, fs_dev
, start
, len
, blocksize
);
1239 bdevname(journal
->j_dev
, journal
->j_devname
);
1240 strreplace(journal
->j_devname
, '/', '!');
1241 jbd2_stats_proc_init(journal
);
1247 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248 * @inode: An inode to create the journal in
1250 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251 * the journal. The inode must exist already, must support bmap() and
1252 * must have all data blocks preallocated.
1254 journal_t
*jbd2_journal_init_inode(struct inode
*inode
)
1258 unsigned long long blocknr
;
1260 blocknr
= bmap(inode
, 0);
1262 pr_err("%s: Cannot locate journal superblock\n",
1267 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268 inode
->i_sb
->s_id
, inode
->i_ino
, (long long) inode
->i_size
,
1269 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1271 journal
= journal_init_common(inode
->i_sb
->s_bdev
, inode
->i_sb
->s_bdev
,
1272 blocknr
, inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
,
1273 inode
->i_sb
->s_blocksize
);
1277 journal
->j_inode
= inode
;
1278 bdevname(journal
->j_dev
, journal
->j_devname
);
1279 p
= strreplace(journal
->j_devname
, '/', '!');
1280 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1281 jbd2_stats_proc_init(journal
);
1287 * If the journal init or create aborts, we need to mark the journal
1288 * superblock as being NULL to prevent the journal destroy from writing
1289 * back a bogus superblock.
1291 static void journal_fail_superblock (journal_t
*journal
)
1293 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1295 journal
->j_sb_buffer
= NULL
;
1299 * Given a journal_t structure, initialise the various fields for
1300 * startup of a new journaling session. We use this both when creating
1301 * a journal, and after recovering an old journal to reset it for
1305 static int journal_reset(journal_t
*journal
)
1307 journal_superblock_t
*sb
= journal
->j_superblock
;
1308 unsigned long long first
, last
;
1310 first
= be32_to_cpu(sb
->s_first
);
1311 last
= be32_to_cpu(sb
->s_maxlen
);
1312 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1313 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1315 journal_fail_superblock(journal
);
1319 journal
->j_first
= first
;
1320 journal
->j_last
= last
;
1322 journal
->j_head
= first
;
1323 journal
->j_tail
= first
;
1324 journal
->j_free
= last
- first
;
1326 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1327 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1328 journal
->j_commit_request
= journal
->j_commit_sequence
;
1330 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1333 * As a special case, if the on-disk copy is already marked as needing
1334 * no recovery (s_start == 0), then we can safely defer the superblock
1335 * update until the next commit by setting JBD2_FLUSHED. This avoids
1336 * attempting a write to a potential-readonly device.
1338 if (sb
->s_start
== 0) {
1339 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340 "(start %ld, seq %d, errno %d)\n",
1341 journal
->j_tail
, journal
->j_tail_sequence
,
1343 journal
->j_flags
|= JBD2_FLUSHED
;
1345 /* Lock here to make assertions happy... */
1346 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1348 * Update log tail information. We use REQ_FUA since new
1349 * transaction will start reusing journal space and so we
1350 * must make sure information about current log tail is on
1353 jbd2_journal_update_sb_log_tail(journal
,
1354 journal
->j_tail_sequence
,
1356 REQ_SYNC
| REQ_FUA
);
1357 mutex_unlock(&journal
->j_checkpoint_mutex
);
1359 return jbd2_journal_start_thread(journal
);
1363 * This function expects that the caller will have locked the journal
1364 * buffer head, and will return with it unlocked
1366 static int jbd2_write_superblock(journal_t
*journal
, int write_flags
)
1368 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1369 journal_superblock_t
*sb
= journal
->j_superblock
;
1372 /* Buffer got discarded which means block device got invalidated */
1373 if (!buffer_mapped(bh
))
1376 trace_jbd2_write_superblock(journal
, write_flags
);
1377 if (!(journal
->j_flags
& JBD2_BARRIER
))
1378 write_flags
&= ~(REQ_FUA
| REQ_PREFLUSH
);
1379 if (buffer_write_io_error(bh
)) {
1381 * Oh, dear. A previous attempt to write the journal
1382 * superblock failed. This could happen because the
1383 * USB device was yanked out. Or it could happen to
1384 * be a transient write error and maybe the block will
1385 * be remapped. Nothing we can do but to retry the
1386 * write and hope for the best.
1388 printk(KERN_ERR
"JBD2: previous I/O error detected "
1389 "for journal superblock update for %s.\n",
1390 journal
->j_devname
);
1391 clear_buffer_write_io_error(bh
);
1392 set_buffer_uptodate(bh
);
1394 jbd2_superblock_csum_set(journal
, sb
);
1396 bh
->b_end_io
= end_buffer_write_sync
;
1397 ret
= submit_bh(REQ_OP_WRITE
, write_flags
, bh
);
1399 if (buffer_write_io_error(bh
)) {
1400 clear_buffer_write_io_error(bh
);
1401 set_buffer_uptodate(bh
);
1405 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1406 "journal superblock for %s.\n", ret
,
1407 journal
->j_devname
);
1408 jbd2_journal_abort(journal
, ret
);
1415 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1416 * @journal: The journal to update.
1417 * @tail_tid: TID of the new transaction at the tail of the log
1418 * @tail_block: The first block of the transaction at the tail of the log
1419 * @write_op: With which operation should we write the journal sb
1421 * Update a journal's superblock information about log tail and write it to
1422 * disk, waiting for the IO to complete.
1424 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1425 unsigned long tail_block
, int write_op
)
1427 journal_superblock_t
*sb
= journal
->j_superblock
;
1430 if (is_journal_aborted(journal
))
1433 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1434 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1435 tail_block
, tail_tid
);
1437 lock_buffer(journal
->j_sb_buffer
);
1438 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1439 sb
->s_start
= cpu_to_be32(tail_block
);
1441 ret
= jbd2_write_superblock(journal
, write_op
);
1445 /* Log is no longer empty */
1446 write_lock(&journal
->j_state_lock
);
1447 WARN_ON(!sb
->s_sequence
);
1448 journal
->j_flags
&= ~JBD2_FLUSHED
;
1449 write_unlock(&journal
->j_state_lock
);
1456 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1457 * @journal: The journal to update.
1458 * @write_op: With which operation should we write the journal sb
1460 * Update a journal's dynamic superblock fields to show that journal is empty.
1461 * Write updated superblock to disk waiting for IO to complete.
1463 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1465 journal_superblock_t
*sb
= journal
->j_superblock
;
1467 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1468 lock_buffer(journal
->j_sb_buffer
);
1469 if (sb
->s_start
== 0) { /* Is it already empty? */
1470 unlock_buffer(journal
->j_sb_buffer
);
1474 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1475 journal
->j_tail_sequence
);
1477 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1478 sb
->s_start
= cpu_to_be32(0);
1480 jbd2_write_superblock(journal
, write_op
);
1482 /* Log is no longer empty */
1483 write_lock(&journal
->j_state_lock
);
1484 journal
->j_flags
|= JBD2_FLUSHED
;
1485 write_unlock(&journal
->j_state_lock
);
1490 * jbd2_journal_update_sb_errno() - Update error in the journal.
1491 * @journal: The journal to update.
1493 * Update a journal's errno. Write updated superblock to disk waiting for IO
1496 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1498 journal_superblock_t
*sb
= journal
->j_superblock
;
1501 lock_buffer(journal
->j_sb_buffer
);
1502 errcode
= journal
->j_errno
;
1503 if (errcode
== -ESHUTDOWN
)
1505 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode
);
1506 sb
->s_errno
= cpu_to_be32(errcode
);
1508 jbd2_write_superblock(journal
, REQ_SYNC
| REQ_FUA
);
1510 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1513 * Read the superblock for a given journal, performing initial
1514 * validation of the format.
1516 static int journal_get_superblock(journal_t
*journal
)
1518 struct buffer_head
*bh
;
1519 journal_superblock_t
*sb
;
1522 bh
= journal
->j_sb_buffer
;
1524 J_ASSERT(bh
!= NULL
);
1525 if (!buffer_uptodate(bh
)) {
1526 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1528 if (!buffer_uptodate(bh
)) {
1530 "JBD2: IO error reading journal superblock\n");
1535 if (buffer_verified(bh
))
1538 sb
= journal
->j_superblock
;
1542 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1543 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1544 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1548 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1549 case JBD2_SUPERBLOCK_V1
:
1550 journal
->j_format_version
= 1;
1552 case JBD2_SUPERBLOCK_V2
:
1553 journal
->j_format_version
= 2;
1556 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1560 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1561 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1562 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1563 printk(KERN_WARNING
"JBD2: journal file too short\n");
1567 if (be32_to_cpu(sb
->s_first
) == 0 ||
1568 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1570 "JBD2: Invalid start block of journal: %u\n",
1571 be32_to_cpu(sb
->s_first
));
1575 if (jbd2_has_feature_csum2(journal
) &&
1576 jbd2_has_feature_csum3(journal
)) {
1577 /* Can't have checksum v2 and v3 at the same time! */
1578 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1579 "at the same time!\n");
1583 if (jbd2_journal_has_csum_v2or3_feature(journal
) &&
1584 jbd2_has_feature_checksum(journal
)) {
1585 /* Can't have checksum v1 and v2 on at the same time! */
1586 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1587 "at the same time!\n");
1591 if (!jbd2_verify_csum_type(journal
, sb
)) {
1592 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1596 /* Load the checksum driver */
1597 if (jbd2_journal_has_csum_v2or3_feature(journal
)) {
1598 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1599 if (IS_ERR(journal
->j_chksum_driver
)) {
1600 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1601 err
= PTR_ERR(journal
->j_chksum_driver
);
1602 journal
->j_chksum_driver
= NULL
;
1607 /* Check superblock checksum */
1608 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1609 printk(KERN_ERR
"JBD2: journal checksum error\n");
1614 /* Precompute checksum seed for all metadata */
1615 if (jbd2_journal_has_csum_v2or3(journal
))
1616 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1617 sizeof(sb
->s_uuid
));
1619 set_buffer_verified(bh
);
1624 journal_fail_superblock(journal
);
1629 * Load the on-disk journal superblock and read the key fields into the
1633 static int load_superblock(journal_t
*journal
)
1636 journal_superblock_t
*sb
;
1638 err
= journal_get_superblock(journal
);
1642 sb
= journal
->j_superblock
;
1644 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1645 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1646 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1647 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1648 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1655 * int jbd2_journal_load() - Read journal from disk.
1656 * @journal: Journal to act on.
1658 * Given a journal_t structure which tells us which disk blocks contain
1659 * a journal, read the journal from disk to initialise the in-memory
1662 int jbd2_journal_load(journal_t
*journal
)
1665 journal_superblock_t
*sb
;
1667 err
= load_superblock(journal
);
1671 sb
= journal
->j_superblock
;
1672 /* If this is a V2 superblock, then we have to check the
1673 * features flags on it. */
1675 if (journal
->j_format_version
>= 2) {
1676 if ((sb
->s_feature_ro_compat
&
1677 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1678 (sb
->s_feature_incompat
&
1679 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1681 "JBD2: Unrecognised features on journal\n");
1687 * Create a slab for this blocksize
1689 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1693 /* Let the recovery code check whether it needs to recover any
1694 * data from the journal. */
1695 if (jbd2_journal_recover(journal
))
1696 goto recovery_error
;
1698 if (journal
->j_failed_commit
) {
1699 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1700 "is corrupt.\n", journal
->j_failed_commit
,
1701 journal
->j_devname
);
1702 return -EFSCORRUPTED
;
1705 /* OK, we've finished with the dynamic journal bits:
1706 * reinitialise the dynamic contents of the superblock in memory
1707 * and reset them on disk. */
1708 if (journal_reset(journal
))
1709 goto recovery_error
;
1711 journal
->j_flags
&= ~JBD2_ABORT
;
1712 journal
->j_flags
|= JBD2_LOADED
;
1716 printk(KERN_WARNING
"JBD2: recovery failed\n");
1721 * void jbd2_journal_destroy() - Release a journal_t structure.
1722 * @journal: Journal to act on.
1724 * Release a journal_t structure once it is no longer in use by the
1726 * Return <0 if we couldn't clean up the journal.
1728 int jbd2_journal_destroy(journal_t
*journal
)
1732 /* Wait for the commit thread to wake up and die. */
1733 journal_kill_thread(journal
);
1735 /* Force a final log commit */
1736 if (journal
->j_running_transaction
)
1737 jbd2_journal_commit_transaction(journal
);
1739 /* Force any old transactions to disk */
1741 /* Totally anal locking here... */
1742 spin_lock(&journal
->j_list_lock
);
1743 while (journal
->j_checkpoint_transactions
!= NULL
) {
1744 spin_unlock(&journal
->j_list_lock
);
1745 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1746 err
= jbd2_log_do_checkpoint(journal
);
1747 mutex_unlock(&journal
->j_checkpoint_mutex
);
1749 * If checkpointing failed, just free the buffers to avoid
1753 jbd2_journal_destroy_checkpoint(journal
);
1754 spin_lock(&journal
->j_list_lock
);
1757 spin_lock(&journal
->j_list_lock
);
1760 J_ASSERT(journal
->j_running_transaction
== NULL
);
1761 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1762 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1763 spin_unlock(&journal
->j_list_lock
);
1765 if (journal
->j_sb_buffer
) {
1766 if (!is_journal_aborted(journal
)) {
1767 mutex_lock_io(&journal
->j_checkpoint_mutex
);
1769 write_lock(&journal
->j_state_lock
);
1770 journal
->j_tail_sequence
=
1771 ++journal
->j_transaction_sequence
;
1772 write_unlock(&journal
->j_state_lock
);
1774 jbd2_mark_journal_empty(journal
,
1775 REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
1776 mutex_unlock(&journal
->j_checkpoint_mutex
);
1779 brelse(journal
->j_sb_buffer
);
1782 if (journal
->j_proc_entry
)
1783 jbd2_stats_proc_exit(journal
);
1784 iput(journal
->j_inode
);
1785 if (journal
->j_revoke
)
1786 jbd2_journal_destroy_revoke(journal
);
1787 if (journal
->j_chksum_driver
)
1788 crypto_free_shash(journal
->j_chksum_driver
);
1789 kfree(journal
->j_wbuf
);
1797 *int jbd2_journal_check_used_features () - Check if features specified are used.
1798 * @journal: Journal to check.
1799 * @compat: bitmask of compatible features
1800 * @ro: bitmask of features that force read-only mount
1801 * @incompat: bitmask of incompatible features
1803 * Check whether the journal uses all of a given set of
1804 * features. Return true (non-zero) if it does.
1807 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1808 unsigned long ro
, unsigned long incompat
)
1810 journal_superblock_t
*sb
;
1812 if (!compat
&& !ro
&& !incompat
)
1814 /* Load journal superblock if it is not loaded yet. */
1815 if (journal
->j_format_version
== 0 &&
1816 journal_get_superblock(journal
) != 0)
1818 if (journal
->j_format_version
== 1)
1821 sb
= journal
->j_superblock
;
1823 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1824 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1825 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1832 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1833 * @journal: Journal to check.
1834 * @compat: bitmask of compatible features
1835 * @ro: bitmask of features that force read-only mount
1836 * @incompat: bitmask of incompatible features
1838 * Check whether the journaling code supports the use of
1839 * all of a given set of features on this journal. Return true
1840 * (non-zero) if it can. */
1842 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1843 unsigned long ro
, unsigned long incompat
)
1845 if (!compat
&& !ro
&& !incompat
)
1848 /* We can support any known requested features iff the
1849 * superblock is in version 2. Otherwise we fail to support any
1850 * extended sb features. */
1852 if (journal
->j_format_version
!= 2)
1855 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1856 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1857 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1864 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1865 * @journal: Journal to act on.
1866 * @compat: bitmask of compatible features
1867 * @ro: bitmask of features that force read-only mount
1868 * @incompat: bitmask of incompatible features
1870 * Mark a given journal feature as present on the
1871 * superblock. Returns true if the requested features could be set.
1875 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1876 unsigned long ro
, unsigned long incompat
)
1878 #define INCOMPAT_FEATURE_ON(f) \
1879 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1880 #define COMPAT_FEATURE_ON(f) \
1881 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1882 journal_superblock_t
*sb
;
1884 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1887 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1890 /* If enabling v2 checksums, turn on v3 instead */
1891 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1892 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1893 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1896 /* Asking for checksumming v3 and v1? Only give them v3. */
1897 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1898 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1899 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1901 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1902 compat
, ro
, incompat
);
1904 sb
= journal
->j_superblock
;
1906 /* Load the checksum driver if necessary */
1907 if ((journal
->j_chksum_driver
== NULL
) &&
1908 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1909 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1910 if (IS_ERR(journal
->j_chksum_driver
)) {
1911 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1912 journal
->j_chksum_driver
= NULL
;
1915 /* Precompute checksum seed for all metadata */
1916 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1917 sizeof(sb
->s_uuid
));
1920 lock_buffer(journal
->j_sb_buffer
);
1922 /* If enabling v3 checksums, update superblock */
1923 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1924 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1925 sb
->s_feature_compat
&=
1926 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1929 /* If enabling v1 checksums, downgrade superblock */
1930 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1931 sb
->s_feature_incompat
&=
1932 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1933 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1935 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1936 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1937 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1938 unlock_buffer(journal
->j_sb_buffer
);
1941 #undef COMPAT_FEATURE_ON
1942 #undef INCOMPAT_FEATURE_ON
1946 * jbd2_journal_clear_features () - Clear a given journal feature in the
1948 * @journal: Journal to act on.
1949 * @compat: bitmask of compatible features
1950 * @ro: bitmask of features that force read-only mount
1951 * @incompat: bitmask of incompatible features
1953 * Clear a given journal feature as present on the
1956 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1957 unsigned long ro
, unsigned long incompat
)
1959 journal_superblock_t
*sb
;
1961 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1962 compat
, ro
, incompat
);
1964 sb
= journal
->j_superblock
;
1966 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1967 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1968 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1970 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1973 * int jbd2_journal_flush () - Flush journal
1974 * @journal: Journal to act on.
1976 * Flush all data for a given journal to disk and empty the journal.
1977 * Filesystems can use this when remounting readonly to ensure that
1978 * recovery does not need to happen on remount.
1981 int jbd2_journal_flush(journal_t
*journal
)
1984 transaction_t
*transaction
= NULL
;
1986 write_lock(&journal
->j_state_lock
);
1988 /* Force everything buffered to the log... */
1989 if (journal
->j_running_transaction
) {
1990 transaction
= journal
->j_running_transaction
;
1991 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1992 } else if (journal
->j_committing_transaction
)
1993 transaction
= journal
->j_committing_transaction
;
1995 /* Wait for the log commit to complete... */
1997 tid_t tid
= transaction
->t_tid
;
1999 write_unlock(&journal
->j_state_lock
);
2000 jbd2_log_wait_commit(journal
, tid
);
2002 write_unlock(&journal
->j_state_lock
);
2005 /* ...and flush everything in the log out to disk. */
2006 spin_lock(&journal
->j_list_lock
);
2007 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
2008 spin_unlock(&journal
->j_list_lock
);
2009 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2010 err
= jbd2_log_do_checkpoint(journal
);
2011 mutex_unlock(&journal
->j_checkpoint_mutex
);
2012 spin_lock(&journal
->j_list_lock
);
2014 spin_unlock(&journal
->j_list_lock
);
2016 if (is_journal_aborted(journal
))
2019 mutex_lock_io(&journal
->j_checkpoint_mutex
);
2021 err
= jbd2_cleanup_journal_tail(journal
);
2023 mutex_unlock(&journal
->j_checkpoint_mutex
);
2029 /* Finally, mark the journal as really needing no recovery.
2030 * This sets s_start==0 in the underlying superblock, which is
2031 * the magic code for a fully-recovered superblock. Any future
2032 * commits of data to the journal will restore the current
2034 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2035 mutex_unlock(&journal
->j_checkpoint_mutex
);
2036 write_lock(&journal
->j_state_lock
);
2037 J_ASSERT(!journal
->j_running_transaction
);
2038 J_ASSERT(!journal
->j_committing_transaction
);
2039 J_ASSERT(!journal
->j_checkpoint_transactions
);
2040 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2041 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2042 write_unlock(&journal
->j_state_lock
);
2048 * int jbd2_journal_wipe() - Wipe journal contents
2049 * @journal: Journal to act on.
2050 * @write: flag (see below)
2052 * Wipe out all of the contents of a journal, safely. This will produce
2053 * a warning if the journal contains any valid recovery information.
2054 * Must be called between journal_init_*() and jbd2_journal_load().
2056 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2057 * we merely suppress recovery.
2060 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2064 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2066 err
= load_superblock(journal
);
2070 if (!journal
->j_tail
)
2073 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2074 write
? "Clearing" : "Ignoring");
2076 err
= jbd2_journal_skip_recovery(journal
);
2078 /* Lock to make assertions happy... */
2079 mutex_lock(&journal
->j_checkpoint_mutex
);
2080 jbd2_mark_journal_empty(journal
, REQ_SYNC
| REQ_FUA
);
2081 mutex_unlock(&journal
->j_checkpoint_mutex
);
2089 * Journal abort has very specific semantics, which we describe
2090 * for journal abort.
2092 * Two internal functions, which provide abort to the jbd layer
2097 * Quick version for internal journal use (doesn't lock the journal).
2098 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2099 * and don't attempt to make any other journal updates.
2101 void __jbd2_journal_abort_hard(journal_t
*journal
)
2103 transaction_t
*transaction
;
2105 if (journal
->j_flags
& JBD2_ABORT
)
2108 printk(KERN_ERR
"Aborting journal on device %s.\n",
2109 journal
->j_devname
);
2111 write_lock(&journal
->j_state_lock
);
2112 journal
->j_flags
|= JBD2_ABORT
;
2113 transaction
= journal
->j_running_transaction
;
2115 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2116 write_unlock(&journal
->j_state_lock
);
2119 /* Soft abort: record the abort error status in the journal superblock,
2120 * but don't do any other IO. */
2121 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2125 write_lock(&journal
->j_state_lock
);
2126 old_errno
= journal
->j_errno
;
2127 if (!journal
->j_errno
|| errno
== -ESHUTDOWN
)
2128 journal
->j_errno
= errno
;
2130 if (journal
->j_flags
& JBD2_ABORT
) {
2131 write_unlock(&journal
->j_state_lock
);
2132 if (!old_errno
&& old_errno
!= -ESHUTDOWN
&&
2133 errno
== -ESHUTDOWN
)
2134 jbd2_journal_update_sb_errno(journal
);
2137 write_unlock(&journal
->j_state_lock
);
2139 __jbd2_journal_abort_hard(journal
);
2142 jbd2_journal_update_sb_errno(journal
);
2143 write_lock(&journal
->j_state_lock
);
2144 journal
->j_flags
|= JBD2_REC_ERR
;
2145 write_unlock(&journal
->j_state_lock
);
2150 * void jbd2_journal_abort () - Shutdown the journal immediately.
2151 * @journal: the journal to shutdown.
2152 * @errno: an error number to record in the journal indicating
2153 * the reason for the shutdown.
2155 * Perform a complete, immediate shutdown of the ENTIRE
2156 * journal (not of a single transaction). This operation cannot be
2157 * undone without closing and reopening the journal.
2159 * The jbd2_journal_abort function is intended to support higher level error
2160 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2163 * Journal abort has very specific semantics. Any existing dirty,
2164 * unjournaled buffers in the main filesystem will still be written to
2165 * disk by bdflush, but the journaling mechanism will be suspended
2166 * immediately and no further transaction commits will be honoured.
2168 * Any dirty, journaled buffers will be written back to disk without
2169 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2170 * filesystem, but we _do_ attempt to leave as much data as possible
2171 * behind for fsck to use for cleanup.
2173 * Any attempt to get a new transaction handle on a journal which is in
2174 * ABORT state will just result in an -EROFS error return. A
2175 * jbd2_journal_stop on an existing handle will return -EIO if we have
2176 * entered abort state during the update.
2178 * Recursive transactions are not disturbed by journal abort until the
2179 * final jbd2_journal_stop, which will receive the -EIO error.
2181 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2182 * which will be recorded (if possible) in the journal superblock. This
2183 * allows a client to record failure conditions in the middle of a
2184 * transaction without having to complete the transaction to record the
2185 * failure to disk. ext3_error, for example, now uses this
2188 * Errors which originate from within the journaling layer will NOT
2189 * supply an errno; a null errno implies that absolutely no further
2190 * writes are done to the journal (unless there are any already in
2195 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2197 __journal_abort_soft(journal
, errno
);
2201 * int jbd2_journal_errno () - returns the journal's error state.
2202 * @journal: journal to examine.
2204 * This is the errno number set with jbd2_journal_abort(), the last
2205 * time the journal was mounted - if the journal was stopped
2206 * without calling abort this will be 0.
2208 * If the journal has been aborted on this mount time -EROFS will
2211 int jbd2_journal_errno(journal_t
*journal
)
2215 read_lock(&journal
->j_state_lock
);
2216 if (journal
->j_flags
& JBD2_ABORT
)
2219 err
= journal
->j_errno
;
2220 read_unlock(&journal
->j_state_lock
);
2225 * int jbd2_journal_clear_err () - clears the journal's error state
2226 * @journal: journal to act on.
2228 * An error must be cleared or acked to take a FS out of readonly
2231 int jbd2_journal_clear_err(journal_t
*journal
)
2235 write_lock(&journal
->j_state_lock
);
2236 if (journal
->j_flags
& JBD2_ABORT
)
2239 journal
->j_errno
= 0;
2240 write_unlock(&journal
->j_state_lock
);
2245 * void jbd2_journal_ack_err() - Ack journal err.
2246 * @journal: journal to act on.
2248 * An error must be cleared or acked to take a FS out of readonly
2251 void jbd2_journal_ack_err(journal_t
*journal
)
2253 write_lock(&journal
->j_state_lock
);
2254 if (journal
->j_errno
)
2255 journal
->j_flags
|= JBD2_ACK_ERR
;
2256 write_unlock(&journal
->j_state_lock
);
2259 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2261 return 1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2265 * helper functions to deal with 32 or 64bit block numbers.
2267 size_t journal_tag_bytes(journal_t
*journal
)
2271 if (jbd2_has_feature_csum3(journal
))
2272 return sizeof(journal_block_tag3_t
);
2274 sz
= sizeof(journal_block_tag_t
);
2276 if (jbd2_has_feature_csum2(journal
))
2277 sz
+= sizeof(__u16
);
2279 if (jbd2_has_feature_64bit(journal
))
2282 return sz
- sizeof(__u32
);
2286 * JBD memory management
2288 * These functions are used to allocate block-sized chunks of memory
2289 * used for making copies of buffer_head data. Very often it will be
2290 * page-sized chunks of data, but sometimes it will be in
2291 * sub-page-size chunks. (For example, 16k pages on Power systems
2292 * with a 4k block file system.) For blocks smaller than a page, we
2293 * use a SLAB allocator. There are slab caches for each block size,
2294 * which are allocated at mount time, if necessary, and we only free
2295 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2296 * this reason we don't need to a mutex to protect access to
2297 * jbd2_slab[] allocating or releasing memory; only in
2298 * jbd2_journal_create_slab().
2300 #define JBD2_MAX_SLABS 8
2301 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2303 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2304 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2305 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2309 static void jbd2_journal_destroy_slabs(void)
2313 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2314 kmem_cache_destroy(jbd2_slab
[i
]);
2315 jbd2_slab
[i
] = NULL
;
2319 static int jbd2_journal_create_slab(size_t size
)
2321 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2322 int i
= order_base_2(size
) - 10;
2325 if (size
== PAGE_SIZE
)
2328 if (i
>= JBD2_MAX_SLABS
)
2331 if (unlikely(i
< 0))
2333 mutex_lock(&jbd2_slab_create_mutex
);
2335 mutex_unlock(&jbd2_slab_create_mutex
);
2336 return 0; /* Already created */
2339 slab_size
= 1 << (i
+10);
2340 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2341 slab_size
, 0, NULL
);
2342 mutex_unlock(&jbd2_slab_create_mutex
);
2343 if (!jbd2_slab
[i
]) {
2344 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2350 static struct kmem_cache
*get_slab(size_t size
)
2352 int i
= order_base_2(size
) - 10;
2354 BUG_ON(i
>= JBD2_MAX_SLABS
);
2355 if (unlikely(i
< 0))
2357 BUG_ON(jbd2_slab
[i
] == NULL
);
2358 return jbd2_slab
[i
];
2361 void *jbd2_alloc(size_t size
, gfp_t flags
)
2365 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2367 if (size
< PAGE_SIZE
)
2368 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2370 ptr
= (void *)__get_free_pages(flags
, get_order(size
));
2372 /* Check alignment; SLUB has gotten this wrong in the past,
2373 * and this can lead to user data corruption! */
2374 BUG_ON(((unsigned long) ptr
) & (size
-1));
2379 void jbd2_free(void *ptr
, size_t size
)
2381 if (size
< PAGE_SIZE
)
2382 kmem_cache_free(get_slab(size
), ptr
);
2384 free_pages((unsigned long)ptr
, get_order(size
));
2388 * Journal_head storage management
2390 static struct kmem_cache
*jbd2_journal_head_cache
;
2391 #ifdef CONFIG_JBD2_DEBUG
2392 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2395 static int __init
jbd2_journal_init_journal_head_cache(void)
2397 J_ASSERT(!jbd2_journal_head_cache
);
2398 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2399 sizeof(struct journal_head
),
2401 SLAB_TEMPORARY
| SLAB_TYPESAFE_BY_RCU
,
2403 if (!jbd2_journal_head_cache
) {
2404 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2410 static void jbd2_journal_destroy_journal_head_cache(void)
2412 kmem_cache_destroy(jbd2_journal_head_cache
);
2413 jbd2_journal_head_cache
= NULL
;
2417 * journal_head splicing and dicing
2419 static struct journal_head
*journal_alloc_journal_head(void)
2421 struct journal_head
*ret
;
2423 #ifdef CONFIG_JBD2_DEBUG
2424 atomic_inc(&nr_journal_heads
);
2426 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2428 jbd_debug(1, "out of memory for journal_head\n");
2429 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2430 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
,
2431 GFP_NOFS
| __GFP_NOFAIL
);
2436 static void journal_free_journal_head(struct journal_head
*jh
)
2438 #ifdef CONFIG_JBD2_DEBUG
2439 atomic_dec(&nr_journal_heads
);
2440 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2442 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2446 * A journal_head is attached to a buffer_head whenever JBD has an
2447 * interest in the buffer.
2449 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2450 * is set. This bit is tested in core kernel code where we need to take
2451 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2454 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2456 * When a buffer has its BH_JBD bit set it is immune from being released by
2457 * core kernel code, mainly via ->b_count.
2459 * A journal_head is detached from its buffer_head when the journal_head's
2460 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2461 * transaction (b_cp_transaction) hold their references to b_jcount.
2463 * Various places in the kernel want to attach a journal_head to a buffer_head
2464 * _before_ attaching the journal_head to a transaction. To protect the
2465 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2466 * journal_head's b_jcount refcount by one. The caller must call
2467 * jbd2_journal_put_journal_head() to undo this.
2469 * So the typical usage would be:
2471 * (Attach a journal_head if needed. Increments b_jcount)
2472 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2474 * (Get another reference for transaction)
2475 * jbd2_journal_grab_journal_head(bh);
2476 * jh->b_transaction = xxx;
2477 * (Put original reference)
2478 * jbd2_journal_put_journal_head(jh);
2482 * Give a buffer_head a journal_head.
2486 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2488 struct journal_head
*jh
;
2489 struct journal_head
*new_jh
= NULL
;
2492 if (!buffer_jbd(bh
))
2493 new_jh
= journal_alloc_journal_head();
2495 jbd_lock_bh_journal_head(bh
);
2496 if (buffer_jbd(bh
)) {
2500 (atomic_read(&bh
->b_count
) > 0) ||
2501 (bh
->b_page
&& bh
->b_page
->mapping
));
2504 jbd_unlock_bh_journal_head(bh
);
2509 new_jh
= NULL
; /* We consumed it */
2514 BUFFER_TRACE(bh
, "added journal_head");
2517 jbd_unlock_bh_journal_head(bh
);
2519 journal_free_journal_head(new_jh
);
2520 return bh
->b_private
;
2524 * Grab a ref against this buffer_head's journal_head. If it ended up not
2525 * having a journal_head, return NULL
2527 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2529 struct journal_head
*jh
= NULL
;
2531 jbd_lock_bh_journal_head(bh
);
2532 if (buffer_jbd(bh
)) {
2536 jbd_unlock_bh_journal_head(bh
);
2540 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2542 struct journal_head
*jh
= bh2jh(bh
);
2544 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2545 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2546 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2547 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2548 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2549 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2550 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2551 BUFFER_TRACE(bh
, "remove journal_head");
2552 if (jh
->b_frozen_data
) {
2553 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2554 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2556 if (jh
->b_committed_data
) {
2557 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2558 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2560 bh
->b_private
= NULL
;
2561 jh
->b_bh
= NULL
; /* debug, really */
2562 clear_buffer_jbd(bh
);
2563 journal_free_journal_head(jh
);
2567 * Drop a reference on the passed journal_head. If it fell to zero then
2568 * release the journal_head from the buffer_head.
2570 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2572 struct buffer_head
*bh
= jh2bh(jh
);
2574 jbd_lock_bh_journal_head(bh
);
2575 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2577 if (!jh
->b_jcount
) {
2578 __journal_remove_journal_head(bh
);
2579 jbd_unlock_bh_journal_head(bh
);
2582 jbd_unlock_bh_journal_head(bh
);
2586 * Initialize jbd inode head
2588 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2590 jinode
->i_transaction
= NULL
;
2591 jinode
->i_next_transaction
= NULL
;
2592 jinode
->i_vfs_inode
= inode
;
2593 jinode
->i_flags
= 0;
2594 jinode
->i_dirty_start
= 0;
2595 jinode
->i_dirty_end
= 0;
2596 INIT_LIST_HEAD(&jinode
->i_list
);
2600 * Function to be called before we start removing inode from memory (i.e.,
2601 * clear_inode() is a fine place to be called from). It removes inode from
2602 * transaction's lists.
2604 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2605 struct jbd2_inode
*jinode
)
2610 spin_lock(&journal
->j_list_lock
);
2611 /* Is commit writing out inode - we have to wait */
2612 if (jinode
->i_flags
& JI_COMMIT_RUNNING
) {
2613 wait_queue_head_t
*wq
;
2614 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2615 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2616 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2617 spin_unlock(&journal
->j_list_lock
);
2619 finish_wait(wq
, &wait
.wq_entry
);
2623 if (jinode
->i_transaction
) {
2624 list_del(&jinode
->i_list
);
2625 jinode
->i_transaction
= NULL
;
2627 spin_unlock(&journal
->j_list_lock
);
2631 #ifdef CONFIG_PROC_FS
2633 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2635 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2637 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2640 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2642 if (proc_jbd2_stats
)
2643 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2648 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2649 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2653 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2655 static int __init
jbd2_journal_init_inode_cache(void)
2657 J_ASSERT(!jbd2_inode_cache
);
2658 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2659 if (!jbd2_inode_cache
) {
2660 pr_emerg("JBD2: failed to create inode cache\n");
2666 static int __init
jbd2_journal_init_handle_cache(void)
2668 J_ASSERT(!jbd2_handle_cache
);
2669 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2670 if (!jbd2_handle_cache
) {
2671 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2677 static void jbd2_journal_destroy_inode_cache(void)
2679 kmem_cache_destroy(jbd2_inode_cache
);
2680 jbd2_inode_cache
= NULL
;
2683 static void jbd2_journal_destroy_handle_cache(void)
2685 kmem_cache_destroy(jbd2_handle_cache
);
2686 jbd2_handle_cache
= NULL
;
2690 * Module startup and shutdown
2693 static int __init
journal_init_caches(void)
2697 ret
= jbd2_journal_init_revoke_record_cache();
2699 ret
= jbd2_journal_init_revoke_table_cache();
2701 ret
= jbd2_journal_init_journal_head_cache();
2703 ret
= jbd2_journal_init_handle_cache();
2705 ret
= jbd2_journal_init_inode_cache();
2707 ret
= jbd2_journal_init_transaction_cache();
2711 static void jbd2_journal_destroy_caches(void)
2713 jbd2_journal_destroy_revoke_record_cache();
2714 jbd2_journal_destroy_revoke_table_cache();
2715 jbd2_journal_destroy_journal_head_cache();
2716 jbd2_journal_destroy_handle_cache();
2717 jbd2_journal_destroy_inode_cache();
2718 jbd2_journal_destroy_transaction_cache();
2719 jbd2_journal_destroy_slabs();
2722 static int __init
journal_init(void)
2726 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2728 ret
= journal_init_caches();
2730 jbd2_create_jbd_stats_proc_entry();
2732 jbd2_journal_destroy_caches();
2737 static void __exit
journal_exit(void)
2739 #ifdef CONFIG_JBD2_DEBUG
2740 int n
= atomic_read(&nr_journal_heads
);
2742 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2744 jbd2_remove_jbd_stats_proc_entry();
2745 jbd2_journal_destroy_caches();
2748 MODULE_LICENSE("GPL");
2749 module_init(journal_init
);
2750 module_exit(journal_exit
);