1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
122 struct rb_node
*rb_rightmost
;
126 struct mem_cgroup_tree
{
127 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
133 struct mem_cgroup_eventfd_list
{
134 struct list_head list
;
135 struct eventfd_ctx
*eventfd
;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event
{
143 * memcg which the event belongs to.
145 struct mem_cgroup
*memcg
;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx
*eventfd
;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list
;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
, const char *args
);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t
*wqh
;
174 wait_queue_entry_t wait
;
175 struct work_struct remove
;
178 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
179 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct
{
191 spinlock_t lock
; /* for from, to */
192 struct mm_struct
*mm
;
193 struct mem_cgroup
*from
;
194 struct mem_cgroup
*to
;
196 unsigned long precharge
;
197 unsigned long moved_charge
;
198 unsigned long moved_swap
;
199 struct task_struct
*moving_task
; /* a task moving charges */
200 wait_queue_head_t waitq
; /* a waitq for other context */
202 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
203 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON
,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
240 memcg
= root_mem_cgroup
;
241 return &memcg
->vmpressure
;
244 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
246 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
251 return (memcg
== root_mem_cgroup
);
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida
);
267 int memcg_nr_cache_ids
;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem
);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem
);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem
);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
306 struct workqueue_struct
*memcg_kmem_cache_wq
;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
321 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
323 struct mem_cgroup
*memcg
;
325 memcg
= page
->mem_cgroup
;
327 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
328 memcg
= root_mem_cgroup
;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t
page_cgroup_ino(struct page
*page
)
348 struct mem_cgroup
*memcg
;
349 unsigned long ino
= 0;
352 memcg
= READ_ONCE(page
->mem_cgroup
);
353 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
354 memcg
= parent_mem_cgroup(memcg
);
356 ino
= cgroup_ino(memcg
->css
.cgroup
);
361 static struct mem_cgroup_per_node
*
362 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
364 int nid
= page_to_nid(page
);
366 return memcg
->nodeinfo
[nid
];
369 static struct mem_cgroup_tree_per_node
*
370 soft_limit_tree_node(int nid
)
372 return soft_limit_tree
.rb_tree_per_node
[nid
];
375 static struct mem_cgroup_tree_per_node
*
376 soft_limit_tree_from_page(struct page
*page
)
378 int nid
= page_to_nid(page
);
380 return soft_limit_tree
.rb_tree_per_node
[nid
];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
384 struct mem_cgroup_tree_per_node
*mctz
,
385 unsigned long new_usage_in_excess
)
387 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
388 struct rb_node
*parent
= NULL
;
389 struct mem_cgroup_per_node
*mz_node
;
390 bool rightmost
= true;
395 mz
->usage_in_excess
= new_usage_in_excess
;
396 if (!mz
->usage_in_excess
)
400 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
402 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
416 mctz
->rb_rightmost
= &mz
->tree_node
;
418 rb_link_node(&mz
->tree_node
, parent
, p
);
419 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
424 struct mem_cgroup_tree_per_node
*mctz
)
429 if (&mz
->tree_node
== mctz
->rb_rightmost
)
430 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
472 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
473 excess
= soft_limit_excess(memcg
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
481 spin_lock_irqsave(&mctz
->lock
, flags
);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz
, mctz
);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
490 spin_unlock_irqrestore(&mctz
->lock
, flags
);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
497 struct mem_cgroup_tree_per_node
*mctz
;
498 struct mem_cgroup_per_node
*mz
;
502 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
503 mctz
= soft_limit_tree_node(nid
);
505 mem_cgroup_remove_exceeded(mz
, mctz
);
509 static struct mem_cgroup_per_node
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
512 struct mem_cgroup_per_node
*mz
;
516 if (!mctz
->rb_rightmost
)
517 goto done
; /* Nothing to reclaim from */
519 mz
= rb_entry(mctz
->rb_rightmost
,
520 struct mem_cgroup_per_node
, tree_node
);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz
, mctz
);
527 if (!soft_limit_excess(mz
->memcg
) ||
528 !css_tryget_online(&mz
->memcg
->css
))
534 static struct mem_cgroup_per_node
*
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
537 struct mem_cgroup_per_node
*mz
;
539 spin_lock_irq(&mctz
->lock
);
540 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
541 spin_unlock_irq(&mctz
->lock
);
545 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
548 return atomic_long_read(&memcg
->events
[event
]);
551 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
553 bool compound
, int nr_pages
)
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
560 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
562 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
563 if (PageSwapBacked(page
))
564 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
568 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
569 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
572 /* pagein of a big page is an event. So, ignore page size */
574 __count_memcg_events(memcg
, PGPGIN
, 1);
576 __count_memcg_events(memcg
, PGPGOUT
, 1);
577 nr_pages
= -nr_pages
; /* for event */
580 __this_cpu_add(memcg
->stat_cpu
->nr_page_events
, nr_pages
);
583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
584 int nid
, unsigned int lru_mask
)
586 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
587 unsigned long nr
= 0;
590 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
593 if (!(BIT(lru
) & lru_mask
))
595 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
601 unsigned int lru_mask
)
603 unsigned long nr
= 0;
606 for_each_node_state(nid
, N_MEMORY
)
607 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
612 enum mem_cgroup_events_target target
)
614 unsigned long val
, next
;
616 val
= __this_cpu_read(memcg
->stat_cpu
->nr_page_events
);
617 next
= __this_cpu_read(memcg
->stat_cpu
->targets
[target
]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next
- val
) < 0) {
621 case MEM_CGROUP_TARGET_THRESH
:
622 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
624 case MEM_CGROUP_TARGET_SOFTLIMIT
:
625 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
627 case MEM_CGROUP_TARGET_NUMAINFO
:
628 next
= val
+ NUMAINFO_EVENTS_TARGET
;
633 __this_cpu_write(memcg
->stat_cpu
->targets
[target
], next
);
640 * Check events in order.
643 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
647 MEM_CGROUP_TARGET_THRESH
))) {
649 bool do_numainfo __maybe_unused
;
651 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
652 MEM_CGROUP_TARGET_SOFTLIMIT
);
654 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
655 MEM_CGROUP_TARGET_NUMAINFO
);
657 mem_cgroup_threshold(memcg
);
658 if (unlikely(do_softlimit
))
659 mem_cgroup_update_tree(memcg
, page
);
661 if (unlikely(do_numainfo
))
662 atomic_inc(&memcg
->numainfo_events
);
667 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
677 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
679 EXPORT_SYMBOL(mem_cgroup_from_task
);
681 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
683 struct mem_cgroup
*memcg
= NULL
;
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
693 memcg
= root_mem_cgroup
;
695 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
696 if (unlikely(!memcg
))
697 memcg
= root_mem_cgroup
;
699 } while (!css_tryget_online(&memcg
->css
));
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
721 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
722 struct mem_cgroup
*prev
,
723 struct mem_cgroup_reclaim_cookie
*reclaim
)
725 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
726 struct cgroup_subsys_state
*css
= NULL
;
727 struct mem_cgroup
*memcg
= NULL
;
728 struct mem_cgroup
*pos
= NULL
;
730 if (mem_cgroup_disabled())
734 root
= root_mem_cgroup
;
736 if (prev
&& !reclaim
)
739 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
748 struct mem_cgroup_per_node
*mz
;
750 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
751 iter
= &mz
->iter
[reclaim
->priority
];
753 if (prev
&& reclaim
->generation
!= iter
->generation
)
757 pos
= READ_ONCE(iter
->position
);
758 if (!pos
|| css_tryget(&pos
->css
))
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
768 (void)cmpxchg(&iter
->position
, pos
, NULL
);
776 css
= css_next_descendant_pre(css
, &root
->css
);
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
794 memcg
= mem_cgroup_from_css(css
);
796 if (css
== &root
->css
)
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
811 (void)cmpxchg(&iter
->position
, pos
, memcg
);
819 reclaim
->generation
= iter
->generation
;
825 if (prev
&& prev
!= root
)
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
836 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
837 struct mem_cgroup
*prev
)
840 root
= root_mem_cgroup
;
841 if (prev
&& prev
!= root
)
845 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
847 struct mem_cgroup
*memcg
= dead_memcg
;
848 struct mem_cgroup_reclaim_iter
*iter
;
849 struct mem_cgroup_per_node
*mz
;
853 while ((memcg
= parent_mem_cgroup(memcg
))) {
855 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
856 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
858 cmpxchg(&iter
->position
,
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
870 #define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
873 iter = mem_cgroup_iter(root, iter, NULL))
875 #define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
891 * This function must not be called for the root memory cgroup.
893 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
894 int (*fn
)(struct task_struct
*, void *), void *arg
)
896 struct mem_cgroup
*iter
;
899 BUG_ON(memcg
== root_mem_cgroup
);
901 for_each_mem_cgroup_tree(iter
, memcg
) {
902 struct css_task_iter it
;
903 struct task_struct
*task
;
905 css_task_iter_start(&iter
->css
, 0, &it
);
906 while (!ret
&& (task
= css_task_iter_next(&it
)))
908 css_task_iter_end(&it
);
910 mem_cgroup_iter_break(memcg
, iter
);
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
920 * @pgdat: pgdat of the page
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
926 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
928 struct mem_cgroup_per_node
*mz
;
929 struct mem_cgroup
*memcg
;
930 struct lruvec
*lruvec
;
932 if (mem_cgroup_disabled()) {
933 lruvec
= &pgdat
->lruvec
;
937 memcg
= page
->mem_cgroup
;
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
943 memcg
= root_mem_cgroup
;
945 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
946 lruvec
= &mz
->lruvec
;
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
953 if (unlikely(lruvec
->pgdat
!= pgdat
))
954 lruvec
->pgdat
= pgdat
;
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
969 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
970 int zid
, int nr_pages
)
972 struct mem_cgroup_per_node
*mz
;
973 unsigned long *lru_size
;
976 if (mem_cgroup_disabled())
979 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
980 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
983 *lru_size
+= nr_pages
;
986 if (WARN_ONCE(size
< 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__
, lruvec
, lru
, nr_pages
, size
)) {
994 *lru_size
+= nr_pages
;
997 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
999 struct mem_cgroup
*task_memcg
;
1000 struct task_struct
*p
;
1003 p
= find_lock_task_mm(task
);
1005 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1014 task_memcg
= mem_cgroup_from_task(task
);
1015 css_get(&task_memcg
->css
);
1018 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1019 css_put(&task_memcg
->css
);
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1027 * Returns the maximum amount of memory @mem can be charged with, in
1030 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1032 unsigned long margin
= 0;
1033 unsigned long count
;
1034 unsigned long limit
;
1036 count
= page_counter_read(&memcg
->memory
);
1037 limit
= READ_ONCE(memcg
->memory
.max
);
1039 margin
= limit
- count
;
1041 if (do_memsw_account()) {
1042 count
= page_counter_read(&memcg
->memsw
);
1043 limit
= READ_ONCE(memcg
->memsw
.max
);
1045 margin
= min(margin
, limit
- count
);
1054 * A routine for checking "mem" is under move_account() or not.
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1060 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1062 struct mem_cgroup
*from
;
1063 struct mem_cgroup
*to
;
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1069 spin_lock(&mc
.lock
);
1075 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1076 mem_cgroup_is_descendant(to
, memcg
);
1078 spin_unlock(&mc
.lock
);
1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1084 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1085 if (mem_cgroup_under_move(memcg
)) {
1087 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1088 /* moving charge context might have finished. */
1091 finish_wait(&mc
.waitq
, &wait
);
1098 static const unsigned int memcg1_stats
[] = {
1109 static const char *const memcg1_stat_names
[] = {
1120 #define K(x) ((x) << (PAGE_SHIFT-10))
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1129 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1131 struct mem_cgroup
*iter
;
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1139 pr_cont(" killed as a result of limit of ");
1141 pr_info("Memory limit reached of cgroup ");
1144 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64
)page_counter_read(&memcg
->memory
)),
1151 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64
)page_counter_read(&memcg
->memsw
)),
1154 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64
)page_counter_read(&memcg
->kmem
)),
1157 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1159 for_each_mem_cgroup_tree(iter
, memcg
) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter
->css
.cgroup
);
1164 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1165 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1167 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1168 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1171 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1173 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1180 * Return the memory (and swap, if configured) limit for a memcg.
1182 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1186 max
= memcg
->memory
.max
;
1187 if (mem_cgroup_swappiness(memcg
)) {
1188 unsigned long memsw_max
;
1189 unsigned long swap_max
;
1191 memsw_max
= memcg
->memsw
.max
;
1192 swap_max
= memcg
->swap
.max
;
1193 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1194 max
= min(max
+ swap_max
, memsw_max
);
1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1202 struct oom_control oc
= {
1206 .gfp_mask
= gfp_mask
,
1211 mutex_lock(&oom_lock
);
1212 ret
= out_of_memory(&oc
);
1213 mutex_unlock(&oom_lock
);
1217 #if MAX_NUMNODES > 1
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1230 int nid
, bool noswap
)
1232 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1234 if (noswap
|| !total_swap_pages
)
1236 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1255 if (!atomic_read(&memcg
->numainfo_events
))
1257 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1263 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1265 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1266 node_clear(nid
, memcg
->scan_nodes
);
1269 atomic_set(&memcg
->numainfo_events
, 0);
1270 atomic_set(&memcg
->numainfo_updating
, 0);
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1283 * Now, we use round-robin. Better algorithm is welcomed.
1285 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1289 mem_cgroup_may_update_nodemask(memcg
);
1290 node
= memcg
->last_scanned_node
;
1292 node
= next_node_in(node
, memcg
->scan_nodes
);
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1298 if (unlikely(node
== MAX_NUMNODES
))
1299 node
= numa_node_id();
1301 memcg
->last_scanned_node
= node
;
1305 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1314 unsigned long *total_scanned
)
1316 struct mem_cgroup
*victim
= NULL
;
1319 unsigned long excess
;
1320 unsigned long nr_scanned
;
1321 struct mem_cgroup_reclaim_cookie reclaim
= {
1326 excess
= soft_limit_excess(root_memcg
);
1329 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1346 if (total
>= (excess
>> 2) ||
1347 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1352 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1353 pgdat
, &nr_scanned
);
1354 *total_scanned
+= nr_scanned
;
1355 if (!soft_limit_excess(root_memcg
))
1358 mem_cgroup_iter_break(root_memcg
, victim
);
1362 #ifdef CONFIG_LOCKDEP
1363 static struct lockdep_map memcg_oom_lock_dep_map
= {
1364 .name
= "memcg_oom_lock",
1368 static DEFINE_SPINLOCK(memcg_oom_lock
);
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1376 struct mem_cgroup
*iter
, *failed
= NULL
;
1378 spin_lock(&memcg_oom_lock
);
1380 for_each_mem_cgroup_tree(iter
, memcg
) {
1381 if (iter
->oom_lock
) {
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1387 mem_cgroup_iter_break(memcg
, iter
);
1390 iter
->oom_lock
= true;
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1398 for_each_mem_cgroup_tree(iter
, memcg
) {
1399 if (iter
== failed
) {
1400 mem_cgroup_iter_break(memcg
, iter
);
1403 iter
->oom_lock
= false;
1406 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1408 spin_unlock(&memcg_oom_lock
);
1413 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1415 struct mem_cgroup
*iter
;
1417 spin_lock(&memcg_oom_lock
);
1418 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1419 for_each_mem_cgroup_tree(iter
, memcg
)
1420 iter
->oom_lock
= false;
1421 spin_unlock(&memcg_oom_lock
);
1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1426 struct mem_cgroup
*iter
;
1428 spin_lock(&memcg_oom_lock
);
1429 for_each_mem_cgroup_tree(iter
, memcg
)
1431 spin_unlock(&memcg_oom_lock
);
1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1436 struct mem_cgroup
*iter
;
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1442 spin_lock(&memcg_oom_lock
);
1443 for_each_mem_cgroup_tree(iter
, memcg
)
1444 if (iter
->under_oom
> 0)
1446 spin_unlock(&memcg_oom_lock
);
1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1451 struct oom_wait_info
{
1452 struct mem_cgroup
*memcg
;
1453 wait_queue_entry_t wait
;
1456 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1457 unsigned mode
, int sync
, void *arg
)
1459 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1460 struct mem_cgroup
*oom_wait_memcg
;
1461 struct oom_wait_info
*oom_wait_info
;
1463 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1464 oom_wait_memcg
= oom_wait_info
->memcg
;
1466 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1469 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1472 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1482 if (memcg
&& memcg
->under_oom
)
1483 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1486 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1488 if (!current
->memcg_may_oom
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1504 css_get(&memcg
->css
);
1505 current
->memcg_in_oom
= memcg
;
1506 current
->memcg_oom_gfp_mask
= mask
;
1507 current
->memcg_oom_order
= order
;
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1527 bool mem_cgroup_oom_synchronize(bool handle
)
1529 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1530 struct oom_wait_info owait
;
1533 /* OOM is global, do not handle */
1540 owait
.memcg
= memcg
;
1541 owait
.wait
.flags
= 0;
1542 owait
.wait
.func
= memcg_oom_wake_function
;
1543 owait
.wait
.private = current
;
1544 INIT_LIST_HEAD(&owait
.wait
.entry
);
1546 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1547 mem_cgroup_mark_under_oom(memcg
);
1549 locked
= mem_cgroup_oom_trylock(memcg
);
1552 mem_cgroup_oom_notify(memcg
);
1554 if (locked
&& !memcg
->oom_kill_disable
) {
1555 mem_cgroup_unmark_under_oom(memcg
);
1556 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1557 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1558 current
->memcg_oom_order
);
1561 mem_cgroup_unmark_under_oom(memcg
);
1562 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1566 mem_cgroup_oom_unlock(memcg
);
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1572 memcg_oom_recover(memcg
);
1575 current
->memcg_in_oom
= NULL
;
1576 css_put(&memcg
->css
);
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1584 * This function protects unlocked LRU pages from being moved to
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1591 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1593 struct mem_cgroup
*memcg
;
1594 unsigned long flags
;
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1609 if (mem_cgroup_disabled())
1612 memcg
= page
->mem_cgroup
;
1613 if (unlikely(!memcg
))
1616 if (atomic_read(&memcg
->moving_account
) <= 0)
1619 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1620 if (memcg
!= page
->mem_cgroup
) {
1621 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1630 memcg
->move_lock_task
= current
;
1631 memcg
->move_lock_flags
= flags
;
1635 EXPORT_SYMBOL(lock_page_memcg
);
1638 * __unlock_page_memcg - unlock and unpin a memcg
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1643 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1645 if (memcg
&& memcg
->move_lock_task
== current
) {
1646 unsigned long flags
= memcg
->move_lock_flags
;
1648 memcg
->move_lock_task
= NULL
;
1649 memcg
->move_lock_flags
= 0;
1651 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1661 void unlock_page_memcg(struct page
*page
)
1663 __unlock_page_memcg(page
->mem_cgroup
);
1665 EXPORT_SYMBOL(unlock_page_memcg
);
1667 struct memcg_stock_pcp
{
1668 struct mem_cgroup
*cached
; /* this never be root cgroup */
1669 unsigned int nr_pages
;
1670 struct work_struct work
;
1671 unsigned long flags
;
1672 #define FLUSHING_CACHED_CHARGE 0
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1675 static DEFINE_MUTEX(percpu_charge_mutex
);
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1686 * returns true if successful, false otherwise.
1688 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1690 struct memcg_stock_pcp
*stock
;
1691 unsigned long flags
;
1694 if (nr_pages
> MEMCG_CHARGE_BATCH
)
1697 local_irq_save(flags
);
1699 stock
= this_cpu_ptr(&memcg_stock
);
1700 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1701 stock
->nr_pages
-= nr_pages
;
1705 local_irq_restore(flags
);
1711 * Returns stocks cached in percpu and reset cached information.
1713 static void drain_stock(struct memcg_stock_pcp
*stock
)
1715 struct mem_cgroup
*old
= stock
->cached
;
1717 if (stock
->nr_pages
) {
1718 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1721 css_put_many(&old
->css
, stock
->nr_pages
);
1722 stock
->nr_pages
= 0;
1724 stock
->cached
= NULL
;
1727 static void drain_local_stock(struct work_struct
*dummy
)
1729 struct memcg_stock_pcp
*stock
;
1730 unsigned long flags
;
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1736 local_irq_save(flags
);
1738 stock
= this_cpu_ptr(&memcg_stock
);
1740 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1742 local_irq_restore(flags
);
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1749 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1751 struct memcg_stock_pcp
*stock
;
1752 unsigned long flags
;
1754 local_irq_save(flags
);
1756 stock
= this_cpu_ptr(&memcg_stock
);
1757 if (stock
->cached
!= memcg
) { /* reset if necessary */
1759 stock
->cached
= memcg
;
1761 stock
->nr_pages
+= nr_pages
;
1763 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
1766 local_irq_restore(flags
);
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1773 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex
))
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1787 for_each_online_cpu(cpu
) {
1788 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1789 struct mem_cgroup
*memcg
;
1791 memcg
= stock
->cached
;
1792 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
1794 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
1795 css_put(&memcg
->css
);
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1800 drain_local_stock(&stock
->work
);
1802 schedule_work_on(cpu
, &stock
->work
);
1804 css_put(&memcg
->css
);
1807 mutex_unlock(&percpu_charge_mutex
);
1810 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1812 struct memcg_stock_pcp
*stock
;
1813 struct mem_cgroup
*memcg
;
1815 stock
= &per_cpu(memcg_stock
, cpu
);
1818 for_each_mem_cgroup(memcg
) {
1821 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
1825 x
= this_cpu_xchg(memcg
->stat_cpu
->count
[i
], 0);
1827 atomic_long_add(x
, &memcg
->stat
[i
]);
1829 if (i
>= NR_VM_NODE_STAT_ITEMS
)
1832 for_each_node(nid
) {
1833 struct mem_cgroup_per_node
*pn
;
1835 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
1836 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
1838 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
1842 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
1845 x
= this_cpu_xchg(memcg
->stat_cpu
->events
[i
], 0);
1847 atomic_long_add(x
, &memcg
->events
[i
]);
1854 static void reclaim_high(struct mem_cgroup
*memcg
,
1855 unsigned int nr_pages
,
1859 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1861 memcg_memory_event(memcg
, MEMCG_HIGH
);
1862 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1863 } while ((memcg
= parent_mem_cgroup(memcg
)));
1866 static void high_work_func(struct work_struct
*work
)
1868 struct mem_cgroup
*memcg
;
1870 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1871 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1878 void mem_cgroup_handle_over_high(void)
1880 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1881 struct mem_cgroup
*memcg
;
1883 if (likely(!nr_pages
))
1886 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1887 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1888 css_put(&memcg
->css
);
1889 current
->memcg_nr_pages_over_high
= 0;
1892 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1893 unsigned int nr_pages
)
1895 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
1896 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1897 struct mem_cgroup
*mem_over_limit
;
1898 struct page_counter
*counter
;
1899 unsigned long nr_reclaimed
;
1900 bool may_swap
= true;
1901 bool drained
= false;
1903 if (mem_cgroup_is_root(memcg
))
1906 if (consume_stock(memcg
, nr_pages
))
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1911 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg
->memsw
, batch
);
1915 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1917 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1921 if (batch
> nr_pages
) {
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1932 if (unlikely(tsk_is_oom_victim(current
) ||
1933 fatal_signal_pending(current
) ||
1934 current
->flags
& PF_EXITING
))
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1943 if (unlikely(current
->flags
& PF_MEMALLOC
))
1946 if (unlikely(task_in_memcg_oom(current
)))
1949 if (!gfpflags_allow_blocking(gfp_mask
))
1952 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
1954 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1955 gfp_mask
, may_swap
);
1957 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1961 drain_all_stock(mem_over_limit
);
1966 if (gfp_mask
& __GFP_NORETRY
)
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1977 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1983 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1989 if (gfp_mask
& __GFP_NOFAIL
)
1992 if (fatal_signal_pending(current
))
1995 memcg_memory_event(mem_over_limit
, MEMCG_OOM
);
1997 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
1998 get_order(nr_pages
* PAGE_SIZE
));
2000 if (!(gfp_mask
& __GFP_NOFAIL
))
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2008 page_counter_charge(&memcg
->memory
, nr_pages
);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg
->memsw
, nr_pages
);
2011 css_get_many(&memcg
->css
, nr_pages
);
2016 css_get_many(&memcg
->css
, batch
);
2017 if (batch
> nr_pages
)
2018 refill_stock(memcg
, batch
- nr_pages
);
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2030 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg
->high_work
);
2036 current
->memcg_nr_pages_over_high
+= batch
;
2037 set_notify_resume(current
);
2040 } while ((memcg
= parent_mem_cgroup(memcg
)));
2045 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2047 if (mem_cgroup_is_root(memcg
))
2050 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2054 css_put_many(&memcg
->css
, nr_pages
);
2057 static void lock_page_lru(struct page
*page
, int *isolated
)
2059 struct zone
*zone
= page_zone(page
);
2061 spin_lock_irq(zone_lru_lock(zone
));
2062 if (PageLRU(page
)) {
2063 struct lruvec
*lruvec
;
2065 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2067 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2073 static void unlock_page_lru(struct page
*page
, int isolated
)
2075 struct zone
*zone
= page_zone(page
);
2078 struct lruvec
*lruvec
;
2080 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2081 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2083 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2085 spin_unlock_irq(zone_lru_lock(zone
));
2088 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2093 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2100 lock_page_lru(page
, &isolated
);
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2106 * - the page is uncharged
2108 * - the page is off-LRU
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2116 page
->mem_cgroup
= memcg
;
2119 unlock_page_lru(page
, isolated
);
2123 static int memcg_alloc_cache_id(void)
2128 id
= ida_simple_get(&memcg_cache_ida
,
2129 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2133 if (id
< memcg_nr_cache_ids
)
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2140 down_write(&memcg_cache_ids_sem
);
2142 size
= 2 * (id
+ 1);
2143 if (size
< MEMCG_CACHES_MIN_SIZE
)
2144 size
= MEMCG_CACHES_MIN_SIZE
;
2145 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2146 size
= MEMCG_CACHES_MAX_SIZE
;
2148 err
= memcg_update_all_caches(size
);
2150 err
= memcg_update_all_list_lrus(size
);
2152 memcg_nr_cache_ids
= size
;
2154 up_write(&memcg_cache_ids_sem
);
2157 ida_simple_remove(&memcg_cache_ida
, id
);
2163 static void memcg_free_cache_id(int id
)
2165 ida_simple_remove(&memcg_cache_ida
, id
);
2168 struct memcg_kmem_cache_create_work
{
2169 struct mem_cgroup
*memcg
;
2170 struct kmem_cache
*cachep
;
2171 struct work_struct work
;
2174 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2176 struct memcg_kmem_cache_create_work
*cw
=
2177 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2178 struct mem_cgroup
*memcg
= cw
->memcg
;
2179 struct kmem_cache
*cachep
= cw
->cachep
;
2181 memcg_create_kmem_cache(memcg
, cachep
);
2183 css_put(&memcg
->css
);
2188 * Enqueue the creation of a per-memcg kmem_cache.
2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2191 struct kmem_cache
*cachep
)
2193 struct memcg_kmem_cache_create_work
*cw
;
2195 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2199 css_get(&memcg
->css
);
2202 cw
->cachep
= cachep
;
2203 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2205 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2209 struct kmem_cache
*cachep
)
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2222 current
->memcg_kmem_skip_account
= 1;
2223 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2224 current
->memcg_kmem_skip_account
= 0;
2227 static inline bool memcg_kmem_bypass(void)
2229 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2250 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2252 struct mem_cgroup
*memcg
;
2253 struct kmem_cache
*memcg_cachep
;
2256 VM_BUG_ON(!is_root_cache(cachep
));
2258 if (memcg_kmem_bypass())
2261 if (current
->memcg_kmem_skip_account
)
2264 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2265 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2269 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2270 if (likely(memcg_cachep
))
2271 return memcg_cachep
;
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2285 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2287 css_put(&memcg
->css
);
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2295 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2297 if (!is_root_cache(cachep
))
2298 css_put(&cachep
->memcg_params
.memcg
->css
);
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2308 * Returns 0 on success, an error code on failure.
2310 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2311 struct mem_cgroup
*memcg
)
2313 unsigned int nr_pages
= 1 << order
;
2314 struct page_counter
*counter
;
2317 ret
= try_charge(memcg
, gfp
, nr_pages
);
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2322 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2323 cancel_charge(memcg
, nr_pages
);
2327 page
->mem_cgroup
= memcg
;
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2338 * Returns 0 on success, an error code on failure.
2340 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2342 struct mem_cgroup
*memcg
;
2345 if (memcg_kmem_bypass())
2348 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2349 if (!mem_cgroup_is_root(memcg
)) {
2350 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2352 __SetPageKmemcg(page
);
2354 css_put(&memcg
->css
);
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2362 void memcg_kmem_uncharge(struct page
*page
, int order
)
2364 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2365 unsigned int nr_pages
= 1 << order
;
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2373 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2375 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2379 page
->mem_cgroup
= NULL
;
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page
))
2383 __ClearPageKmemcg(page
);
2385 css_put_many(&memcg
->css
, nr_pages
);
2387 #endif /* !CONFIG_SLOB */
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2395 void mem_cgroup_split_huge_fixup(struct page
*head
)
2399 if (mem_cgroup_disabled())
2402 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2403 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2405 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409 #ifdef CONFIG_MEMCG_SWAP
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2419 * Returns 0 on success, -EINVAL on failure.
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2424 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2425 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2427 unsigned short old_id
, new_id
;
2429 old_id
= mem_cgroup_id(from
);
2430 new_id
= mem_cgroup_id(to
);
2432 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2433 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2434 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2441 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2447 static DEFINE_MUTEX(memcg_max_mutex
);
2449 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2450 unsigned long max
, bool memsw
)
2452 bool enlarge
= false;
2453 bool drained
= false;
2455 bool limits_invariant
;
2456 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2459 if (signal_pending(current
)) {
2464 mutex_lock(&memcg_max_mutex
);
2466 * Make sure that the new limit (memsw or memory limit) doesn't
2467 * break our basic invariant rule memory.max <= memsw.max.
2469 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
2470 max
<= memcg
->memsw
.max
;
2471 if (!limits_invariant
) {
2472 mutex_unlock(&memcg_max_mutex
);
2476 if (max
> counter
->max
)
2478 ret
= page_counter_set_max(counter
, max
);
2479 mutex_unlock(&memcg_max_mutex
);
2485 drain_all_stock(memcg
);
2490 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
2491 GFP_KERNEL
, !memsw
)) {
2497 if (!ret
&& enlarge
)
2498 memcg_oom_recover(memcg
);
2503 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2505 unsigned long *total_scanned
)
2507 unsigned long nr_reclaimed
= 0;
2508 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2509 unsigned long reclaimed
;
2511 struct mem_cgroup_tree_per_node
*mctz
;
2512 unsigned long excess
;
2513 unsigned long nr_scanned
;
2518 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2521 * Do not even bother to check the largest node if the root
2522 * is empty. Do it lockless to prevent lock bouncing. Races
2523 * are acceptable as soft limit is best effort anyway.
2525 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2529 * This loop can run a while, specially if mem_cgroup's continuously
2530 * keep exceeding their soft limit and putting the system under
2537 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2542 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2543 gfp_mask
, &nr_scanned
);
2544 nr_reclaimed
+= reclaimed
;
2545 *total_scanned
+= nr_scanned
;
2546 spin_lock_irq(&mctz
->lock
);
2547 __mem_cgroup_remove_exceeded(mz
, mctz
);
2550 * If we failed to reclaim anything from this memory cgroup
2551 * it is time to move on to the next cgroup
2555 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2557 excess
= soft_limit_excess(mz
->memcg
);
2559 * One school of thought says that we should not add
2560 * back the node to the tree if reclaim returns 0.
2561 * But our reclaim could return 0, simply because due
2562 * to priority we are exposing a smaller subset of
2563 * memory to reclaim from. Consider this as a longer
2566 /* If excess == 0, no tree ops */
2567 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2568 spin_unlock_irq(&mctz
->lock
);
2569 css_put(&mz
->memcg
->css
);
2572 * Could not reclaim anything and there are no more
2573 * mem cgroups to try or we seem to be looping without
2574 * reclaiming anything.
2576 if (!nr_reclaimed
&&
2578 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2580 } while (!nr_reclaimed
);
2582 css_put(&next_mz
->memcg
->css
);
2583 return nr_reclaimed
;
2587 * Test whether @memcg has children, dead or alive. Note that this
2588 * function doesn't care whether @memcg has use_hierarchy enabled and
2589 * returns %true if there are child csses according to the cgroup
2590 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2592 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2597 ret
= css_next_child(NULL
, &memcg
->css
);
2603 * Reclaims as many pages from the given memcg as possible.
2605 * Caller is responsible for holding css reference for memcg.
2607 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2609 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2611 /* we call try-to-free pages for make this cgroup empty */
2612 lru_add_drain_all();
2614 drain_all_stock(memcg
);
2616 /* try to free all pages in this cgroup */
2617 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2620 if (signal_pending(current
))
2623 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2627 /* maybe some writeback is necessary */
2628 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2636 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2637 char *buf
, size_t nbytes
,
2640 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2642 if (mem_cgroup_is_root(memcg
))
2644 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2647 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2650 return mem_cgroup_from_css(css
)->use_hierarchy
;
2653 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2654 struct cftype
*cft
, u64 val
)
2657 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2658 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2660 if (memcg
->use_hierarchy
== val
)
2664 * If parent's use_hierarchy is set, we can't make any modifications
2665 * in the child subtrees. If it is unset, then the change can
2666 * occur, provided the current cgroup has no children.
2668 * For the root cgroup, parent_mem is NULL, we allow value to be
2669 * set if there are no children.
2671 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2672 (val
== 1 || val
== 0)) {
2673 if (!memcg_has_children(memcg
))
2674 memcg
->use_hierarchy
= val
;
2683 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2685 struct mem_cgroup
*iter
;
2688 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2690 for_each_mem_cgroup_tree(iter
, memcg
) {
2691 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2692 stat
[i
] += memcg_page_state(iter
, i
);
2696 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2698 struct mem_cgroup
*iter
;
2701 memset(events
, 0, sizeof(*events
) * NR_VM_EVENT_ITEMS
);
2703 for_each_mem_cgroup_tree(iter
, memcg
) {
2704 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
2705 events
[i
] += memcg_sum_events(iter
, i
);
2709 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2711 unsigned long val
= 0;
2713 if (mem_cgroup_is_root(memcg
)) {
2714 struct mem_cgroup
*iter
;
2716 for_each_mem_cgroup_tree(iter
, memcg
) {
2717 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
2718 val
+= memcg_page_state(iter
, MEMCG_RSS
);
2720 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
2724 val
= page_counter_read(&memcg
->memory
);
2726 val
= page_counter_read(&memcg
->memsw
);
2739 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2742 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2743 struct page_counter
*counter
;
2745 switch (MEMFILE_TYPE(cft
->private)) {
2747 counter
= &memcg
->memory
;
2750 counter
= &memcg
->memsw
;
2753 counter
= &memcg
->kmem
;
2756 counter
= &memcg
->tcpmem
;
2762 switch (MEMFILE_ATTR(cft
->private)) {
2764 if (counter
== &memcg
->memory
)
2765 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2766 if (counter
== &memcg
->memsw
)
2767 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2768 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2770 return (u64
)counter
->max
* PAGE_SIZE
;
2772 return (u64
)counter
->watermark
* PAGE_SIZE
;
2774 return counter
->failcnt
;
2775 case RES_SOFT_LIMIT
:
2776 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2783 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2787 if (cgroup_memory_nokmem
)
2790 BUG_ON(memcg
->kmemcg_id
>= 0);
2791 BUG_ON(memcg
->kmem_state
);
2793 memcg_id
= memcg_alloc_cache_id();
2797 static_branch_inc(&memcg_kmem_enabled_key
);
2799 * A memory cgroup is considered kmem-online as soon as it gets
2800 * kmemcg_id. Setting the id after enabling static branching will
2801 * guarantee no one starts accounting before all call sites are
2804 memcg
->kmemcg_id
= memcg_id
;
2805 memcg
->kmem_state
= KMEM_ONLINE
;
2806 INIT_LIST_HEAD(&memcg
->kmem_caches
);
2811 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2813 struct cgroup_subsys_state
*css
;
2814 struct mem_cgroup
*parent
, *child
;
2817 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2820 * Clear the online state before clearing memcg_caches array
2821 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2822 * guarantees that no cache will be created for this cgroup
2823 * after we are done (see memcg_create_kmem_cache()).
2825 memcg
->kmem_state
= KMEM_ALLOCATED
;
2827 memcg_deactivate_kmem_caches(memcg
);
2829 kmemcg_id
= memcg
->kmemcg_id
;
2830 BUG_ON(kmemcg_id
< 0);
2832 parent
= parent_mem_cgroup(memcg
);
2834 parent
= root_mem_cgroup
;
2837 * Change kmemcg_id of this cgroup and all its descendants to the
2838 * parent's id, and then move all entries from this cgroup's list_lrus
2839 * to ones of the parent. After we have finished, all list_lrus
2840 * corresponding to this cgroup are guaranteed to remain empty. The
2841 * ordering is imposed by list_lru_node->lock taken by
2842 * memcg_drain_all_list_lrus().
2844 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2845 css_for_each_descendant_pre(css
, &memcg
->css
) {
2846 child
= mem_cgroup_from_css(css
);
2847 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2848 child
->kmemcg_id
= parent
->kmemcg_id
;
2849 if (!memcg
->use_hierarchy
)
2854 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2856 memcg_free_cache_id(kmemcg_id
);
2859 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2861 /* css_alloc() failed, offlining didn't happen */
2862 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2863 memcg_offline_kmem(memcg
);
2865 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2866 memcg_destroy_kmem_caches(memcg
);
2867 static_branch_dec(&memcg_kmem_enabled_key
);
2868 WARN_ON(page_counter_read(&memcg
->kmem
));
2872 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2876 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2879 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2882 #endif /* !CONFIG_SLOB */
2884 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
2889 mutex_lock(&memcg_max_mutex
);
2890 ret
= page_counter_set_max(&memcg
->kmem
, max
);
2891 mutex_unlock(&memcg_max_mutex
);
2895 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
2899 mutex_lock(&memcg_max_mutex
);
2901 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
2905 if (!memcg
->tcpmem_active
) {
2907 * The active flag needs to be written after the static_key
2908 * update. This is what guarantees that the socket activation
2909 * function is the last one to run. See mem_cgroup_sk_alloc()
2910 * for details, and note that we don't mark any socket as
2911 * belonging to this memcg until that flag is up.
2913 * We need to do this, because static_keys will span multiple
2914 * sites, but we can't control their order. If we mark a socket
2915 * as accounted, but the accounting functions are not patched in
2916 * yet, we'll lose accounting.
2918 * We never race with the readers in mem_cgroup_sk_alloc(),
2919 * because when this value change, the code to process it is not
2922 static_branch_inc(&memcg_sockets_enabled_key
);
2923 memcg
->tcpmem_active
= true;
2926 mutex_unlock(&memcg_max_mutex
);
2931 * The user of this function is...
2934 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2935 char *buf
, size_t nbytes
, loff_t off
)
2937 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2938 unsigned long nr_pages
;
2941 buf
= strstrip(buf
);
2942 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2946 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2948 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2952 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2954 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
2957 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
2960 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
2963 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
2967 case RES_SOFT_LIMIT
:
2968 memcg
->soft_limit
= nr_pages
;
2972 return ret
?: nbytes
;
2975 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
2976 size_t nbytes
, loff_t off
)
2978 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2979 struct page_counter
*counter
;
2981 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2983 counter
= &memcg
->memory
;
2986 counter
= &memcg
->memsw
;
2989 counter
= &memcg
->kmem
;
2992 counter
= &memcg
->tcpmem
;
2998 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3000 page_counter_reset_watermark(counter
);
3003 counter
->failcnt
= 0;
3012 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3015 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3019 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3020 struct cftype
*cft
, u64 val
)
3022 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3024 if (val
& ~MOVE_MASK
)
3028 * No kind of locking is needed in here, because ->can_attach() will
3029 * check this value once in the beginning of the process, and then carry
3030 * on with stale data. This means that changes to this value will only
3031 * affect task migrations starting after the change.
3033 memcg
->move_charge_at_immigrate
= val
;
3037 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3038 struct cftype
*cft
, u64 val
)
3045 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3049 unsigned int lru_mask
;
3052 static const struct numa_stat stats
[] = {
3053 { "total", LRU_ALL
},
3054 { "file", LRU_ALL_FILE
},
3055 { "anon", LRU_ALL_ANON
},
3056 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3058 const struct numa_stat
*stat
;
3061 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3063 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3064 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3065 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3066 for_each_node_state(nid
, N_MEMORY
) {
3067 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3069 seq_printf(m
, " N%d=%lu", nid
, nr
);
3074 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3075 struct mem_cgroup
*iter
;
3078 for_each_mem_cgroup_tree(iter
, memcg
)
3079 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3080 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3081 for_each_node_state(nid
, N_MEMORY
) {
3083 for_each_mem_cgroup_tree(iter
, memcg
)
3084 nr
+= mem_cgroup_node_nr_lru_pages(
3085 iter
, nid
, stat
->lru_mask
);
3086 seq_printf(m
, " N%d=%lu", nid
, nr
);
3093 #endif /* CONFIG_NUMA */
3095 /* Universal VM events cgroup1 shows, original sort order */
3096 static const unsigned int memcg1_events
[] = {
3103 static const char *const memcg1_event_names
[] = {
3110 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3112 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3113 unsigned long memory
, memsw
;
3114 struct mem_cgroup
*mi
;
3117 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3118 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3120 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3121 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3123 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3124 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3128 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3129 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3130 memcg_sum_events(memcg
, memcg1_events
[i
]));
3132 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3133 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3134 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3136 /* Hierarchical information */
3137 memory
= memsw
= PAGE_COUNTER_MAX
;
3138 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3139 memory
= min(memory
, mi
->memory
.max
);
3140 memsw
= min(memsw
, mi
->memsw
.max
);
3142 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3143 (u64
)memory
* PAGE_SIZE
);
3144 if (do_memsw_account())
3145 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3146 (u64
)memsw
* PAGE_SIZE
);
3148 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3149 unsigned long long val
= 0;
3151 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3153 for_each_mem_cgroup_tree(mi
, memcg
)
3154 val
+= memcg_page_state(mi
, memcg1_stats
[i
]) *
3156 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
], val
);
3159 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++) {
3160 unsigned long long val
= 0;
3162 for_each_mem_cgroup_tree(mi
, memcg
)
3163 val
+= memcg_sum_events(mi
, memcg1_events
[i
]);
3164 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
], val
);
3167 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3168 unsigned long long val
= 0;
3170 for_each_mem_cgroup_tree(mi
, memcg
)
3171 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3172 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3175 #ifdef CONFIG_DEBUG_VM
3178 struct mem_cgroup_per_node
*mz
;
3179 struct zone_reclaim_stat
*rstat
;
3180 unsigned long recent_rotated
[2] = {0, 0};
3181 unsigned long recent_scanned
[2] = {0, 0};
3183 for_each_online_pgdat(pgdat
) {
3184 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3185 rstat
= &mz
->lruvec
.reclaim_stat
;
3187 recent_rotated
[0] += rstat
->recent_rotated
[0];
3188 recent_rotated
[1] += rstat
->recent_rotated
[1];
3189 recent_scanned
[0] += rstat
->recent_scanned
[0];
3190 recent_scanned
[1] += rstat
->recent_scanned
[1];
3192 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3193 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3194 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3195 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3202 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3205 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3207 return mem_cgroup_swappiness(memcg
);
3210 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3211 struct cftype
*cft
, u64 val
)
3213 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3219 memcg
->swappiness
= val
;
3221 vm_swappiness
= val
;
3226 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3228 struct mem_cgroup_threshold_ary
*t
;
3229 unsigned long usage
;
3234 t
= rcu_dereference(memcg
->thresholds
.primary
);
3236 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3241 usage
= mem_cgroup_usage(memcg
, swap
);
3244 * current_threshold points to threshold just below or equal to usage.
3245 * If it's not true, a threshold was crossed after last
3246 * call of __mem_cgroup_threshold().
3248 i
= t
->current_threshold
;
3251 * Iterate backward over array of thresholds starting from
3252 * current_threshold and check if a threshold is crossed.
3253 * If none of thresholds below usage is crossed, we read
3254 * only one element of the array here.
3256 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3257 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3259 /* i = current_threshold + 1 */
3263 * Iterate forward over array of thresholds starting from
3264 * current_threshold+1 and check if a threshold is crossed.
3265 * If none of thresholds above usage is crossed, we read
3266 * only one element of the array here.
3268 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3269 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3271 /* Update current_threshold */
3272 t
->current_threshold
= i
- 1;
3277 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3280 __mem_cgroup_threshold(memcg
, false);
3281 if (do_memsw_account())
3282 __mem_cgroup_threshold(memcg
, true);
3284 memcg
= parent_mem_cgroup(memcg
);
3288 static int compare_thresholds(const void *a
, const void *b
)
3290 const struct mem_cgroup_threshold
*_a
= a
;
3291 const struct mem_cgroup_threshold
*_b
= b
;
3293 if (_a
->threshold
> _b
->threshold
)
3296 if (_a
->threshold
< _b
->threshold
)
3302 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3304 struct mem_cgroup_eventfd_list
*ev
;
3306 spin_lock(&memcg_oom_lock
);
3308 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3309 eventfd_signal(ev
->eventfd
, 1);
3311 spin_unlock(&memcg_oom_lock
);
3315 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3317 struct mem_cgroup
*iter
;
3319 for_each_mem_cgroup_tree(iter
, memcg
)
3320 mem_cgroup_oom_notify_cb(iter
);
3323 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3324 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3326 struct mem_cgroup_thresholds
*thresholds
;
3327 struct mem_cgroup_threshold_ary
*new;
3328 unsigned long threshold
;
3329 unsigned long usage
;
3332 ret
= page_counter_memparse(args
, "-1", &threshold
);
3336 mutex_lock(&memcg
->thresholds_lock
);
3339 thresholds
= &memcg
->thresholds
;
3340 usage
= mem_cgroup_usage(memcg
, false);
3341 } else if (type
== _MEMSWAP
) {
3342 thresholds
= &memcg
->memsw_thresholds
;
3343 usage
= mem_cgroup_usage(memcg
, true);
3347 /* Check if a threshold crossed before adding a new one */
3348 if (thresholds
->primary
)
3349 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3351 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3353 /* Allocate memory for new array of thresholds */
3354 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3362 /* Copy thresholds (if any) to new array */
3363 if (thresholds
->primary
) {
3364 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3365 sizeof(struct mem_cgroup_threshold
));
3368 /* Add new threshold */
3369 new->entries
[size
- 1].eventfd
= eventfd
;
3370 new->entries
[size
- 1].threshold
= threshold
;
3372 /* Sort thresholds. Registering of new threshold isn't time-critical */
3373 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3374 compare_thresholds
, NULL
);
3376 /* Find current threshold */
3377 new->current_threshold
= -1;
3378 for (i
= 0; i
< size
; i
++) {
3379 if (new->entries
[i
].threshold
<= usage
) {
3381 * new->current_threshold will not be used until
3382 * rcu_assign_pointer(), so it's safe to increment
3385 ++new->current_threshold
;
3390 /* Free old spare buffer and save old primary buffer as spare */
3391 kfree(thresholds
->spare
);
3392 thresholds
->spare
= thresholds
->primary
;
3394 rcu_assign_pointer(thresholds
->primary
, new);
3396 /* To be sure that nobody uses thresholds */
3400 mutex_unlock(&memcg
->thresholds_lock
);
3405 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3406 struct eventfd_ctx
*eventfd
, const char *args
)
3408 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3411 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3412 struct eventfd_ctx
*eventfd
, const char *args
)
3414 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3418 struct eventfd_ctx
*eventfd
, enum res_type type
)
3420 struct mem_cgroup_thresholds
*thresholds
;
3421 struct mem_cgroup_threshold_ary
*new;
3422 unsigned long usage
;
3425 mutex_lock(&memcg
->thresholds_lock
);
3428 thresholds
= &memcg
->thresholds
;
3429 usage
= mem_cgroup_usage(memcg
, false);
3430 } else if (type
== _MEMSWAP
) {
3431 thresholds
= &memcg
->memsw_thresholds
;
3432 usage
= mem_cgroup_usage(memcg
, true);
3436 if (!thresholds
->primary
)
3439 /* Check if a threshold crossed before removing */
3440 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3442 /* Calculate new number of threshold */
3444 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3445 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3449 new = thresholds
->spare
;
3451 /* Set thresholds array to NULL if we don't have thresholds */
3460 /* Copy thresholds and find current threshold */
3461 new->current_threshold
= -1;
3462 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3463 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3466 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3467 if (new->entries
[j
].threshold
<= usage
) {
3469 * new->current_threshold will not be used
3470 * until rcu_assign_pointer(), so it's safe to increment
3473 ++new->current_threshold
;
3479 /* Swap primary and spare array */
3480 thresholds
->spare
= thresholds
->primary
;
3482 rcu_assign_pointer(thresholds
->primary
, new);
3484 /* To be sure that nobody uses thresholds */
3487 /* If all events are unregistered, free the spare array */
3489 kfree(thresholds
->spare
);
3490 thresholds
->spare
= NULL
;
3493 mutex_unlock(&memcg
->thresholds_lock
);
3496 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3497 struct eventfd_ctx
*eventfd
)
3499 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3502 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3503 struct eventfd_ctx
*eventfd
)
3505 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3508 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3509 struct eventfd_ctx
*eventfd
, const char *args
)
3511 struct mem_cgroup_eventfd_list
*event
;
3513 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3517 spin_lock(&memcg_oom_lock
);
3519 event
->eventfd
= eventfd
;
3520 list_add(&event
->list
, &memcg
->oom_notify
);
3522 /* already in OOM ? */
3523 if (memcg
->under_oom
)
3524 eventfd_signal(eventfd
, 1);
3525 spin_unlock(&memcg_oom_lock
);
3530 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3531 struct eventfd_ctx
*eventfd
)
3533 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3535 spin_lock(&memcg_oom_lock
);
3537 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3538 if (ev
->eventfd
== eventfd
) {
3539 list_del(&ev
->list
);
3544 spin_unlock(&memcg_oom_lock
);
3547 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3549 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3551 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3552 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3553 seq_printf(sf
, "oom_kill %lu\n",
3554 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
3558 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3559 struct cftype
*cft
, u64 val
)
3561 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3563 /* cannot set to root cgroup and only 0 and 1 are allowed */
3564 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3567 memcg
->oom_kill_disable
= val
;
3569 memcg_oom_recover(memcg
);
3574 #ifdef CONFIG_CGROUP_WRITEBACK
3576 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3578 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3581 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3583 wb_domain_exit(&memcg
->cgwb_domain
);
3586 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3588 wb_domain_size_changed(&memcg
->cgwb_domain
);
3591 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3593 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3595 if (!memcg
->css
.parent
)
3598 return &memcg
->cgwb_domain
;
3602 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3603 * @wb: bdi_writeback in question
3604 * @pfilepages: out parameter for number of file pages
3605 * @pheadroom: out parameter for number of allocatable pages according to memcg
3606 * @pdirty: out parameter for number of dirty pages
3607 * @pwriteback: out parameter for number of pages under writeback
3609 * Determine the numbers of file, headroom, dirty, and writeback pages in
3610 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3611 * is a bit more involved.
3613 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3614 * headroom is calculated as the lowest headroom of itself and the
3615 * ancestors. Note that this doesn't consider the actual amount of
3616 * available memory in the system. The caller should further cap
3617 * *@pheadroom accordingly.
3619 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3620 unsigned long *pheadroom
, unsigned long *pdirty
,
3621 unsigned long *pwriteback
)
3623 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3624 struct mem_cgroup
*parent
;
3626 *pdirty
= memcg_page_state(memcg
, NR_FILE_DIRTY
);
3628 /* this should eventually include NR_UNSTABLE_NFS */
3629 *pwriteback
= memcg_page_state(memcg
, NR_WRITEBACK
);
3630 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3631 (1 << LRU_ACTIVE_FILE
));
3632 *pheadroom
= PAGE_COUNTER_MAX
;
3634 while ((parent
= parent_mem_cgroup(memcg
))) {
3635 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
3636 unsigned long used
= page_counter_read(&memcg
->memory
);
3638 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3643 #else /* CONFIG_CGROUP_WRITEBACK */
3645 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3650 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3654 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3658 #endif /* CONFIG_CGROUP_WRITEBACK */
3661 * DO NOT USE IN NEW FILES.
3663 * "cgroup.event_control" implementation.
3665 * This is way over-engineered. It tries to support fully configurable
3666 * events for each user. Such level of flexibility is completely
3667 * unnecessary especially in the light of the planned unified hierarchy.
3669 * Please deprecate this and replace with something simpler if at all
3674 * Unregister event and free resources.
3676 * Gets called from workqueue.
3678 static void memcg_event_remove(struct work_struct
*work
)
3680 struct mem_cgroup_event
*event
=
3681 container_of(work
, struct mem_cgroup_event
, remove
);
3682 struct mem_cgroup
*memcg
= event
->memcg
;
3684 remove_wait_queue(event
->wqh
, &event
->wait
);
3686 event
->unregister_event(memcg
, event
->eventfd
);
3688 /* Notify userspace the event is going away. */
3689 eventfd_signal(event
->eventfd
, 1);
3691 eventfd_ctx_put(event
->eventfd
);
3693 css_put(&memcg
->css
);
3697 * Gets called on EPOLLHUP on eventfd when user closes it.
3699 * Called with wqh->lock held and interrupts disabled.
3701 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
3702 int sync
, void *key
)
3704 struct mem_cgroup_event
*event
=
3705 container_of(wait
, struct mem_cgroup_event
, wait
);
3706 struct mem_cgroup
*memcg
= event
->memcg
;
3707 __poll_t flags
= key_to_poll(key
);
3709 if (flags
& EPOLLHUP
) {
3711 * If the event has been detached at cgroup removal, we
3712 * can simply return knowing the other side will cleanup
3715 * We can't race against event freeing since the other
3716 * side will require wqh->lock via remove_wait_queue(),
3719 spin_lock(&memcg
->event_list_lock
);
3720 if (!list_empty(&event
->list
)) {
3721 list_del_init(&event
->list
);
3723 * We are in atomic context, but cgroup_event_remove()
3724 * may sleep, so we have to call it in workqueue.
3726 schedule_work(&event
->remove
);
3728 spin_unlock(&memcg
->event_list_lock
);
3734 static void memcg_event_ptable_queue_proc(struct file
*file
,
3735 wait_queue_head_t
*wqh
, poll_table
*pt
)
3737 struct mem_cgroup_event
*event
=
3738 container_of(pt
, struct mem_cgroup_event
, pt
);
3741 add_wait_queue(wqh
, &event
->wait
);
3745 * DO NOT USE IN NEW FILES.
3747 * Parse input and register new cgroup event handler.
3749 * Input must be in format '<event_fd> <control_fd> <args>'.
3750 * Interpretation of args is defined by control file implementation.
3752 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3753 char *buf
, size_t nbytes
, loff_t off
)
3755 struct cgroup_subsys_state
*css
= of_css(of
);
3756 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3757 struct mem_cgroup_event
*event
;
3758 struct cgroup_subsys_state
*cfile_css
;
3759 unsigned int efd
, cfd
;
3766 buf
= strstrip(buf
);
3768 efd
= simple_strtoul(buf
, &endp
, 10);
3773 cfd
= simple_strtoul(buf
, &endp
, 10);
3774 if ((*endp
!= ' ') && (*endp
!= '\0'))
3778 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3782 event
->memcg
= memcg
;
3783 INIT_LIST_HEAD(&event
->list
);
3784 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3785 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3786 INIT_WORK(&event
->remove
, memcg_event_remove
);
3794 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3795 if (IS_ERR(event
->eventfd
)) {
3796 ret
= PTR_ERR(event
->eventfd
);
3803 goto out_put_eventfd
;
3806 /* the process need read permission on control file */
3807 /* AV: shouldn't we check that it's been opened for read instead? */
3808 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3813 * Determine the event callbacks and set them in @event. This used
3814 * to be done via struct cftype but cgroup core no longer knows
3815 * about these events. The following is crude but the whole thing
3816 * is for compatibility anyway.
3818 * DO NOT ADD NEW FILES.
3820 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3822 if (!strcmp(name
, "memory.usage_in_bytes")) {
3823 event
->register_event
= mem_cgroup_usage_register_event
;
3824 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3825 } else if (!strcmp(name
, "memory.oom_control")) {
3826 event
->register_event
= mem_cgroup_oom_register_event
;
3827 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3828 } else if (!strcmp(name
, "memory.pressure_level")) {
3829 event
->register_event
= vmpressure_register_event
;
3830 event
->unregister_event
= vmpressure_unregister_event
;
3831 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3832 event
->register_event
= memsw_cgroup_usage_register_event
;
3833 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3840 * Verify @cfile should belong to @css. Also, remaining events are
3841 * automatically removed on cgroup destruction but the removal is
3842 * asynchronous, so take an extra ref on @css.
3844 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3845 &memory_cgrp_subsys
);
3847 if (IS_ERR(cfile_css
))
3849 if (cfile_css
!= css
) {
3854 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3858 vfs_poll(efile
.file
, &event
->pt
);
3860 spin_lock(&memcg
->event_list_lock
);
3861 list_add(&event
->list
, &memcg
->event_list
);
3862 spin_unlock(&memcg
->event_list_lock
);
3874 eventfd_ctx_put(event
->eventfd
);
3883 static struct cftype mem_cgroup_legacy_files
[] = {
3885 .name
= "usage_in_bytes",
3886 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3887 .read_u64
= mem_cgroup_read_u64
,
3890 .name
= "max_usage_in_bytes",
3891 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3892 .write
= mem_cgroup_reset
,
3893 .read_u64
= mem_cgroup_read_u64
,
3896 .name
= "limit_in_bytes",
3897 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3898 .write
= mem_cgroup_write
,
3899 .read_u64
= mem_cgroup_read_u64
,
3902 .name
= "soft_limit_in_bytes",
3903 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3904 .write
= mem_cgroup_write
,
3905 .read_u64
= mem_cgroup_read_u64
,
3909 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3910 .write
= mem_cgroup_reset
,
3911 .read_u64
= mem_cgroup_read_u64
,
3915 .seq_show
= memcg_stat_show
,
3918 .name
= "force_empty",
3919 .write
= mem_cgroup_force_empty_write
,
3922 .name
= "use_hierarchy",
3923 .write_u64
= mem_cgroup_hierarchy_write
,
3924 .read_u64
= mem_cgroup_hierarchy_read
,
3927 .name
= "cgroup.event_control", /* XXX: for compat */
3928 .write
= memcg_write_event_control
,
3929 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3932 .name
= "swappiness",
3933 .read_u64
= mem_cgroup_swappiness_read
,
3934 .write_u64
= mem_cgroup_swappiness_write
,
3937 .name
= "move_charge_at_immigrate",
3938 .read_u64
= mem_cgroup_move_charge_read
,
3939 .write_u64
= mem_cgroup_move_charge_write
,
3942 .name
= "oom_control",
3943 .seq_show
= mem_cgroup_oom_control_read
,
3944 .write_u64
= mem_cgroup_oom_control_write
,
3945 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3948 .name
= "pressure_level",
3952 .name
= "numa_stat",
3953 .seq_show
= memcg_numa_stat_show
,
3957 .name
= "kmem.limit_in_bytes",
3958 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
3959 .write
= mem_cgroup_write
,
3960 .read_u64
= mem_cgroup_read_u64
,
3963 .name
= "kmem.usage_in_bytes",
3964 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
3965 .read_u64
= mem_cgroup_read_u64
,
3968 .name
= "kmem.failcnt",
3969 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
3970 .write
= mem_cgroup_reset
,
3971 .read_u64
= mem_cgroup_read_u64
,
3974 .name
= "kmem.max_usage_in_bytes",
3975 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
3976 .write
= mem_cgroup_reset
,
3977 .read_u64
= mem_cgroup_read_u64
,
3979 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3981 .name
= "kmem.slabinfo",
3982 .seq_start
= memcg_slab_start
,
3983 .seq_next
= memcg_slab_next
,
3984 .seq_stop
= memcg_slab_stop
,
3985 .seq_show
= memcg_slab_show
,
3989 .name
= "kmem.tcp.limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
3991 .write
= mem_cgroup_write
,
3992 .read_u64
= mem_cgroup_read_u64
,
3995 .name
= "kmem.tcp.usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
3997 .read_u64
= mem_cgroup_read_u64
,
4000 .name
= "kmem.tcp.failcnt",
4001 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4002 .write
= mem_cgroup_reset
,
4003 .read_u64
= mem_cgroup_read_u64
,
4006 .name
= "kmem.tcp.max_usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4008 .write
= mem_cgroup_reset
,
4009 .read_u64
= mem_cgroup_read_u64
,
4011 { }, /* terminate */
4015 * Private memory cgroup IDR
4017 * Swap-out records and page cache shadow entries need to store memcg
4018 * references in constrained space, so we maintain an ID space that is
4019 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4020 * memory-controlled cgroups to 64k.
4022 * However, there usually are many references to the oflline CSS after
4023 * the cgroup has been destroyed, such as page cache or reclaimable
4024 * slab objects, that don't need to hang on to the ID. We want to keep
4025 * those dead CSS from occupying IDs, or we might quickly exhaust the
4026 * relatively small ID space and prevent the creation of new cgroups
4027 * even when there are much fewer than 64k cgroups - possibly none.
4029 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4030 * be freed and recycled when it's no longer needed, which is usually
4031 * when the CSS is offlined.
4033 * The only exception to that are records of swapped out tmpfs/shmem
4034 * pages that need to be attributed to live ancestors on swapin. But
4035 * those references are manageable from userspace.
4038 static DEFINE_IDR(mem_cgroup_idr
);
4040 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4042 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4043 atomic_add(n
, &memcg
->id
.ref
);
4046 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4048 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4049 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4050 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4053 /* Memcg ID pins CSS */
4054 css_put(&memcg
->css
);
4058 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4060 mem_cgroup_id_get_many(memcg
, 1);
4063 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4065 mem_cgroup_id_put_many(memcg
, 1);
4069 * mem_cgroup_from_id - look up a memcg from a memcg id
4070 * @id: the memcg id to look up
4072 * Caller must hold rcu_read_lock().
4074 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4076 WARN_ON_ONCE(!rcu_read_lock_held());
4077 return idr_find(&mem_cgroup_idr
, id
);
4080 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4082 struct mem_cgroup_per_node
*pn
;
4085 * This routine is called against possible nodes.
4086 * But it's BUG to call kmalloc() against offline node.
4088 * TODO: this routine can waste much memory for nodes which will
4089 * never be onlined. It's better to use memory hotplug callback
4092 if (!node_state(node
, N_NORMAL_MEMORY
))
4094 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4098 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4099 if (!pn
->lruvec_stat_cpu
) {
4104 lruvec_init(&pn
->lruvec
);
4105 pn
->usage_in_excess
= 0;
4106 pn
->on_tree
= false;
4109 memcg
->nodeinfo
[node
] = pn
;
4113 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4115 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4120 free_percpu(pn
->lruvec_stat_cpu
);
4124 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4129 free_mem_cgroup_per_node_info(memcg
, node
);
4130 free_percpu(memcg
->stat_cpu
);
4134 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4136 memcg_wb_domain_exit(memcg
);
4137 __mem_cgroup_free(memcg
);
4140 static struct mem_cgroup
*mem_cgroup_alloc(void)
4142 struct mem_cgroup
*memcg
;
4146 size
= sizeof(struct mem_cgroup
);
4147 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4149 memcg
= kzalloc(size
, GFP_KERNEL
);
4153 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4154 1, MEM_CGROUP_ID_MAX
,
4156 if (memcg
->id
.id
< 0)
4159 memcg
->stat_cpu
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4160 if (!memcg
->stat_cpu
)
4164 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4167 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4170 INIT_WORK(&memcg
->high_work
, high_work_func
);
4171 memcg
->last_scanned_node
= MAX_NUMNODES
;
4172 INIT_LIST_HEAD(&memcg
->oom_notify
);
4173 mutex_init(&memcg
->thresholds_lock
);
4174 spin_lock_init(&memcg
->move_lock
);
4175 vmpressure_init(&memcg
->vmpressure
);
4176 INIT_LIST_HEAD(&memcg
->event_list
);
4177 spin_lock_init(&memcg
->event_list_lock
);
4178 memcg
->socket_pressure
= jiffies
;
4180 memcg
->kmemcg_id
= -1;
4182 #ifdef CONFIG_CGROUP_WRITEBACK
4183 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4185 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4188 if (memcg
->id
.id
> 0)
4189 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4190 __mem_cgroup_free(memcg
);
4194 static struct cgroup_subsys_state
* __ref
4195 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4197 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4198 struct mem_cgroup
*memcg
;
4199 long error
= -ENOMEM
;
4201 memcg
= mem_cgroup_alloc();
4203 return ERR_PTR(error
);
4205 memcg
->high
= PAGE_COUNTER_MAX
;
4206 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4208 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4209 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4211 if (parent
&& parent
->use_hierarchy
) {
4212 memcg
->use_hierarchy
= true;
4213 page_counter_init(&memcg
->memory
, &parent
->memory
);
4214 page_counter_init(&memcg
->swap
, &parent
->swap
);
4215 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4216 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4217 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4219 page_counter_init(&memcg
->memory
, NULL
);
4220 page_counter_init(&memcg
->swap
, NULL
);
4221 page_counter_init(&memcg
->memsw
, NULL
);
4222 page_counter_init(&memcg
->kmem
, NULL
);
4223 page_counter_init(&memcg
->tcpmem
, NULL
);
4225 * Deeper hierachy with use_hierarchy == false doesn't make
4226 * much sense so let cgroup subsystem know about this
4227 * unfortunate state in our controller.
4229 if (parent
!= root_mem_cgroup
)
4230 memory_cgrp_subsys
.broken_hierarchy
= true;
4233 /* The following stuff does not apply to the root */
4235 root_mem_cgroup
= memcg
;
4239 error
= memcg_online_kmem(memcg
);
4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4244 static_branch_inc(&memcg_sockets_enabled_key
);
4248 mem_cgroup_free(memcg
);
4249 return ERR_PTR(-ENOMEM
);
4252 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4254 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4256 /* Online state pins memcg ID, memcg ID pins CSS */
4257 atomic_set(&memcg
->id
.ref
, 1);
4262 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4264 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4265 struct mem_cgroup_event
*event
, *tmp
;
4268 * Unregister events and notify userspace.
4269 * Notify userspace about cgroup removing only after rmdir of cgroup
4270 * directory to avoid race between userspace and kernelspace.
4272 spin_lock(&memcg
->event_list_lock
);
4273 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4274 list_del_init(&event
->list
);
4275 schedule_work(&event
->remove
);
4277 spin_unlock(&memcg
->event_list_lock
);
4279 page_counter_set_min(&memcg
->memory
, 0);
4280 page_counter_set_low(&memcg
->memory
, 0);
4282 memcg_offline_kmem(memcg
);
4283 wb_memcg_offline(memcg
);
4285 mem_cgroup_id_put(memcg
);
4288 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4290 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4292 invalidate_reclaim_iterators(memcg
);
4295 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4297 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4300 static_branch_dec(&memcg_sockets_enabled_key
);
4302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4303 static_branch_dec(&memcg_sockets_enabled_key
);
4305 vmpressure_cleanup(&memcg
->vmpressure
);
4306 cancel_work_sync(&memcg
->high_work
);
4307 mem_cgroup_remove_from_trees(memcg
);
4308 memcg_free_kmem(memcg
);
4309 mem_cgroup_free(memcg
);
4313 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4314 * @css: the target css
4316 * Reset the states of the mem_cgroup associated with @css. This is
4317 * invoked when the userland requests disabling on the default hierarchy
4318 * but the memcg is pinned through dependency. The memcg should stop
4319 * applying policies and should revert to the vanilla state as it may be
4320 * made visible again.
4322 * The current implementation only resets the essential configurations.
4323 * This needs to be expanded to cover all the visible parts.
4325 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4327 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4329 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
4330 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
4331 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4332 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4333 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4334 page_counter_set_min(&memcg
->memory
, 0);
4335 page_counter_set_low(&memcg
->memory
, 0);
4336 memcg
->high
= PAGE_COUNTER_MAX
;
4337 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4338 memcg_wb_domain_size_changed(memcg
);
4342 /* Handlers for move charge at task migration. */
4343 static int mem_cgroup_do_precharge(unsigned long count
)
4347 /* Try a single bulk charge without reclaim first, kswapd may wake */
4348 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4350 mc
.precharge
+= count
;
4354 /* Try charges one by one with reclaim, but do not retry */
4356 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4370 enum mc_target_type
{
4377 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4378 unsigned long addr
, pte_t ptent
)
4380 struct page
*page
= _vm_normal_page(vma
, addr
, ptent
, true);
4382 if (!page
|| !page_mapped(page
))
4384 if (PageAnon(page
)) {
4385 if (!(mc
.flags
& MOVE_ANON
))
4388 if (!(mc
.flags
& MOVE_FILE
))
4391 if (!get_page_unless_zero(page
))
4397 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4398 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4399 pte_t ptent
, swp_entry_t
*entry
)
4401 struct page
*page
= NULL
;
4402 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4404 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4408 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4409 * a device and because they are not accessible by CPU they are store
4410 * as special swap entry in the CPU page table.
4412 if (is_device_private_entry(ent
)) {
4413 page
= device_private_entry_to_page(ent
);
4415 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4416 * a refcount of 1 when free (unlike normal page)
4418 if (!page_ref_add_unless(page
, 1, 1))
4424 * Because lookup_swap_cache() updates some statistics counter,
4425 * we call find_get_page() with swapper_space directly.
4427 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4428 if (do_memsw_account())
4429 entry
->val
= ent
.val
;
4434 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4435 pte_t ptent
, swp_entry_t
*entry
)
4441 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4442 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4444 struct page
*page
= NULL
;
4445 struct address_space
*mapping
;
4448 if (!vma
->vm_file
) /* anonymous vma */
4450 if (!(mc
.flags
& MOVE_FILE
))
4453 mapping
= vma
->vm_file
->f_mapping
;
4454 pgoff
= linear_page_index(vma
, addr
);
4456 /* page is moved even if it's not RSS of this task(page-faulted). */
4458 /* shmem/tmpfs may report page out on swap: account for that too. */
4459 if (shmem_mapping(mapping
)) {
4460 page
= find_get_entry(mapping
, pgoff
);
4461 if (radix_tree_exceptional_entry(page
)) {
4462 swp_entry_t swp
= radix_to_swp_entry(page
);
4463 if (do_memsw_account())
4465 page
= find_get_page(swap_address_space(swp
),
4469 page
= find_get_page(mapping
, pgoff
);
4471 page
= find_get_page(mapping
, pgoff
);
4477 * mem_cgroup_move_account - move account of the page
4479 * @compound: charge the page as compound or small page
4480 * @from: mem_cgroup which the page is moved from.
4481 * @to: mem_cgroup which the page is moved to. @from != @to.
4483 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4485 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4488 static int mem_cgroup_move_account(struct page
*page
,
4490 struct mem_cgroup
*from
,
4491 struct mem_cgroup
*to
)
4493 unsigned long flags
;
4494 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4498 VM_BUG_ON(from
== to
);
4499 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4500 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4503 * Prevent mem_cgroup_migrate() from looking at
4504 * page->mem_cgroup of its source page while we change it.
4507 if (!trylock_page(page
))
4511 if (page
->mem_cgroup
!= from
)
4514 anon
= PageAnon(page
);
4516 spin_lock_irqsave(&from
->move_lock
, flags
);
4518 if (!anon
&& page_mapped(page
)) {
4519 __mod_memcg_state(from
, NR_FILE_MAPPED
, -nr_pages
);
4520 __mod_memcg_state(to
, NR_FILE_MAPPED
, nr_pages
);
4524 * move_lock grabbed above and caller set from->moving_account, so
4525 * mod_memcg_page_state will serialize updates to PageDirty.
4526 * So mapping should be stable for dirty pages.
4528 if (!anon
&& PageDirty(page
)) {
4529 struct address_space
*mapping
= page_mapping(page
);
4531 if (mapping_cap_account_dirty(mapping
)) {
4532 __mod_memcg_state(from
, NR_FILE_DIRTY
, -nr_pages
);
4533 __mod_memcg_state(to
, NR_FILE_DIRTY
, nr_pages
);
4537 if (PageWriteback(page
)) {
4538 __mod_memcg_state(from
, NR_WRITEBACK
, -nr_pages
);
4539 __mod_memcg_state(to
, NR_WRITEBACK
, nr_pages
);
4543 * It is safe to change page->mem_cgroup here because the page
4544 * is referenced, charged, and isolated - we can't race with
4545 * uncharging, charging, migration, or LRU putback.
4548 /* caller should have done css_get */
4549 page
->mem_cgroup
= to
;
4550 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4554 local_irq_disable();
4555 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4556 memcg_check_events(to
, page
);
4557 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4558 memcg_check_events(from
, page
);
4567 * get_mctgt_type - get target type of moving charge
4568 * @vma: the vma the pte to be checked belongs
4569 * @addr: the address corresponding to the pte to be checked
4570 * @ptent: the pte to be checked
4571 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4574 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4575 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4576 * move charge. if @target is not NULL, the page is stored in target->page
4577 * with extra refcnt got(Callers should handle it).
4578 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4579 * target for charge migration. if @target is not NULL, the entry is stored
4581 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4582 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4583 * For now we such page is charge like a regular page would be as for all
4584 * intent and purposes it is just special memory taking the place of a
4587 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4589 * Called with pte lock held.
4592 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4593 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4595 struct page
*page
= NULL
;
4596 enum mc_target_type ret
= MC_TARGET_NONE
;
4597 swp_entry_t ent
= { .val
= 0 };
4599 if (pte_present(ptent
))
4600 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4601 else if (is_swap_pte(ptent
))
4602 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4603 else if (pte_none(ptent
))
4604 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4606 if (!page
&& !ent
.val
)
4610 * Do only loose check w/o serialization.
4611 * mem_cgroup_move_account() checks the page is valid or
4612 * not under LRU exclusion.
4614 if (page
->mem_cgroup
== mc
.from
) {
4615 ret
= MC_TARGET_PAGE
;
4616 if (is_device_private_page(page
) ||
4617 is_device_public_page(page
))
4618 ret
= MC_TARGET_DEVICE
;
4620 target
->page
= page
;
4622 if (!ret
|| !target
)
4626 * There is a swap entry and a page doesn't exist or isn't charged.
4627 * But we cannot move a tail-page in a THP.
4629 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
4630 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4631 ret
= MC_TARGET_SWAP
;
4638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 * We don't consider PMD mapped swapping or file mapped pages because THP does
4641 * not support them for now.
4642 * Caller should make sure that pmd_trans_huge(pmd) is true.
4644 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4645 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4647 struct page
*page
= NULL
;
4648 enum mc_target_type ret
= MC_TARGET_NONE
;
4650 if (unlikely(is_swap_pmd(pmd
))) {
4651 VM_BUG_ON(thp_migration_supported() &&
4652 !is_pmd_migration_entry(pmd
));
4655 page
= pmd_page(pmd
);
4656 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4657 if (!(mc
.flags
& MOVE_ANON
))
4659 if (page
->mem_cgroup
== mc
.from
) {
4660 ret
= MC_TARGET_PAGE
;
4663 target
->page
= page
;
4669 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4670 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4672 return MC_TARGET_NONE
;
4676 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4677 unsigned long addr
, unsigned long end
,
4678 struct mm_walk
*walk
)
4680 struct vm_area_struct
*vma
= walk
->vma
;
4684 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4687 * Note their can not be MC_TARGET_DEVICE for now as we do not
4688 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4689 * MEMORY_DEVICE_PRIVATE but this might change.
4691 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4692 mc
.precharge
+= HPAGE_PMD_NR
;
4697 if (pmd_trans_unstable(pmd
))
4699 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4700 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4701 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4702 mc
.precharge
++; /* increment precharge temporarily */
4703 pte_unmap_unlock(pte
- 1, ptl
);
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4711 unsigned long precharge
;
4713 struct mm_walk mem_cgroup_count_precharge_walk
= {
4714 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4717 down_read(&mm
->mmap_sem
);
4718 walk_page_range(0, mm
->highest_vm_end
,
4719 &mem_cgroup_count_precharge_walk
);
4720 up_read(&mm
->mmap_sem
);
4722 precharge
= mc
.precharge
;
4728 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4730 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4732 VM_BUG_ON(mc
.moving_task
);
4733 mc
.moving_task
= current
;
4734 return mem_cgroup_do_precharge(precharge
);
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4740 struct mem_cgroup
*from
= mc
.from
;
4741 struct mem_cgroup
*to
= mc
.to
;
4743 /* we must uncharge all the leftover precharges from mc.to */
4745 cancel_charge(mc
.to
, mc
.precharge
);
4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 * we must uncharge here.
4752 if (mc
.moved_charge
) {
4753 cancel_charge(mc
.from
, mc
.moved_charge
);
4754 mc
.moved_charge
= 0;
4756 /* we must fixup refcnts and charges */
4757 if (mc
.moved_swap
) {
4758 /* uncharge swap account from the old cgroup */
4759 if (!mem_cgroup_is_root(mc
.from
))
4760 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4762 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4765 * we charged both to->memory and to->memsw, so we
4766 * should uncharge to->memory.
4768 if (!mem_cgroup_is_root(mc
.to
))
4769 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4771 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4772 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4776 memcg_oom_recover(from
);
4777 memcg_oom_recover(to
);
4778 wake_up_all(&mc
.waitq
);
4781 static void mem_cgroup_clear_mc(void)
4783 struct mm_struct
*mm
= mc
.mm
;
4786 * we must clear moving_task before waking up waiters at the end of
4789 mc
.moving_task
= NULL
;
4790 __mem_cgroup_clear_mc();
4791 spin_lock(&mc
.lock
);
4795 spin_unlock(&mc
.lock
);
4800 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4802 struct cgroup_subsys_state
*css
;
4803 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4804 struct mem_cgroup
*from
;
4805 struct task_struct
*leader
, *p
;
4806 struct mm_struct
*mm
;
4807 unsigned long move_flags
;
4810 /* charge immigration isn't supported on the default hierarchy */
4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4815 * Multi-process migrations only happen on the default hierarchy
4816 * where charge immigration is not used. Perform charge
4817 * immigration if @tset contains a leader and whine if there are
4821 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4824 memcg
= mem_cgroup_from_css(css
);
4830 * We are now commited to this value whatever it is. Changes in this
4831 * tunable will only affect upcoming migrations, not the current one.
4832 * So we need to save it, and keep it going.
4834 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4838 from
= mem_cgroup_from_task(p
);
4840 VM_BUG_ON(from
== memcg
);
4842 mm
= get_task_mm(p
);
4845 /* We move charges only when we move a owner of the mm */
4846 if (mm
->owner
== p
) {
4849 VM_BUG_ON(mc
.precharge
);
4850 VM_BUG_ON(mc
.moved_charge
);
4851 VM_BUG_ON(mc
.moved_swap
);
4853 spin_lock(&mc
.lock
);
4857 mc
.flags
= move_flags
;
4858 spin_unlock(&mc
.lock
);
4859 /* We set mc.moving_task later */
4861 ret
= mem_cgroup_precharge_mc(mm
);
4863 mem_cgroup_clear_mc();
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4873 mem_cgroup_clear_mc();
4876 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4877 unsigned long addr
, unsigned long end
,
4878 struct mm_walk
*walk
)
4881 struct vm_area_struct
*vma
= walk
->vma
;
4884 enum mc_target_type target_type
;
4885 union mc_target target
;
4888 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4890 if (mc
.precharge
< HPAGE_PMD_NR
) {
4894 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4895 if (target_type
== MC_TARGET_PAGE
) {
4897 if (!isolate_lru_page(page
)) {
4898 if (!mem_cgroup_move_account(page
, true,
4900 mc
.precharge
-= HPAGE_PMD_NR
;
4901 mc
.moved_charge
+= HPAGE_PMD_NR
;
4903 putback_lru_page(page
);
4906 } else if (target_type
== MC_TARGET_DEVICE
) {
4908 if (!mem_cgroup_move_account(page
, true,
4910 mc
.precharge
-= HPAGE_PMD_NR
;
4911 mc
.moved_charge
+= HPAGE_PMD_NR
;
4919 if (pmd_trans_unstable(pmd
))
4922 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4923 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4924 pte_t ptent
= *(pte
++);
4925 bool device
= false;
4931 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4932 case MC_TARGET_DEVICE
:
4935 case MC_TARGET_PAGE
:
4938 * We can have a part of the split pmd here. Moving it
4939 * can be done but it would be too convoluted so simply
4940 * ignore such a partial THP and keep it in original
4941 * memcg. There should be somebody mapping the head.
4943 if (PageTransCompound(page
))
4945 if (!device
&& isolate_lru_page(page
))
4947 if (!mem_cgroup_move_account(page
, false,
4950 /* we uncharge from mc.from later. */
4954 putback_lru_page(page
);
4955 put
: /* get_mctgt_type() gets the page */
4958 case MC_TARGET_SWAP
:
4960 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4962 /* we fixup refcnts and charges later. */
4970 pte_unmap_unlock(pte
- 1, ptl
);
4975 * We have consumed all precharges we got in can_attach().
4976 * We try charge one by one, but don't do any additional
4977 * charges to mc.to if we have failed in charge once in attach()
4980 ret
= mem_cgroup_do_precharge(1);
4988 static void mem_cgroup_move_charge(void)
4990 struct mm_walk mem_cgroup_move_charge_walk
= {
4991 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4995 lru_add_drain_all();
4997 * Signal lock_page_memcg() to take the memcg's move_lock
4998 * while we're moving its pages to another memcg. Then wait
4999 * for already started RCU-only updates to finish.
5001 atomic_inc(&mc
.from
->moving_account
);
5004 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5006 * Someone who are holding the mmap_sem might be waiting in
5007 * waitq. So we cancel all extra charges, wake up all waiters,
5008 * and retry. Because we cancel precharges, we might not be able
5009 * to move enough charges, but moving charge is a best-effort
5010 * feature anyway, so it wouldn't be a big problem.
5012 __mem_cgroup_clear_mc();
5017 * When we have consumed all precharges and failed in doing
5018 * additional charge, the page walk just aborts.
5020 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5022 up_read(&mc
.mm
->mmap_sem
);
5023 atomic_dec(&mc
.from
->moving_account
);
5026 static void mem_cgroup_move_task(void)
5029 mem_cgroup_move_charge();
5030 mem_cgroup_clear_mc();
5033 #else /* !CONFIG_MMU */
5034 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5038 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5041 static void mem_cgroup_move_task(void)
5047 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5048 * to verify whether we're attached to the default hierarchy on each mount
5051 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5054 * use_hierarchy is forced on the default hierarchy. cgroup core
5055 * guarantees that @root doesn't have any children, so turning it
5056 * on for the root memcg is enough.
5058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5059 root_mem_cgroup
->use_hierarchy
= true;
5061 root_mem_cgroup
->use_hierarchy
= false;
5064 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5067 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5069 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5072 static int memory_min_show(struct seq_file
*m
, void *v
)
5074 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5075 unsigned long min
= READ_ONCE(memcg
->memory
.min
);
5077 if (min
== PAGE_COUNTER_MAX
)
5078 seq_puts(m
, "max\n");
5080 seq_printf(m
, "%llu\n", (u64
)min
* PAGE_SIZE
);
5085 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5086 char *buf
, size_t nbytes
, loff_t off
)
5088 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5092 buf
= strstrip(buf
);
5093 err
= page_counter_memparse(buf
, "max", &min
);
5097 page_counter_set_min(&memcg
->memory
, min
);
5102 static int memory_low_show(struct seq_file
*m
, void *v
)
5104 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5105 unsigned long low
= READ_ONCE(memcg
->memory
.low
);
5107 if (low
== PAGE_COUNTER_MAX
)
5108 seq_puts(m
, "max\n");
5110 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5115 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5116 char *buf
, size_t nbytes
, loff_t off
)
5118 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5122 buf
= strstrip(buf
);
5123 err
= page_counter_memparse(buf
, "max", &low
);
5127 page_counter_set_low(&memcg
->memory
, low
);
5132 static int memory_high_show(struct seq_file
*m
, void *v
)
5134 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5135 unsigned long high
= READ_ONCE(memcg
->high
);
5137 if (high
== PAGE_COUNTER_MAX
)
5138 seq_puts(m
, "max\n");
5140 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5145 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5146 char *buf
, size_t nbytes
, loff_t off
)
5148 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5149 unsigned long nr_pages
;
5153 buf
= strstrip(buf
);
5154 err
= page_counter_memparse(buf
, "max", &high
);
5160 nr_pages
= page_counter_read(&memcg
->memory
);
5161 if (nr_pages
> high
)
5162 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5165 memcg_wb_domain_size_changed(memcg
);
5169 static int memory_max_show(struct seq_file
*m
, void *v
)
5171 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5172 unsigned long max
= READ_ONCE(memcg
->memory
.max
);
5174 if (max
== PAGE_COUNTER_MAX
)
5175 seq_puts(m
, "max\n");
5177 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5182 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5183 char *buf
, size_t nbytes
, loff_t off
)
5185 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5186 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5187 bool drained
= false;
5191 buf
= strstrip(buf
);
5192 err
= page_counter_memparse(buf
, "max", &max
);
5196 xchg(&memcg
->memory
.max
, max
);
5199 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5201 if (nr_pages
<= max
)
5204 if (signal_pending(current
)) {
5210 drain_all_stock(memcg
);
5216 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5222 memcg_memory_event(memcg
, MEMCG_OOM
);
5223 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5227 memcg_wb_domain_size_changed(memcg
);
5231 static int memory_events_show(struct seq_file
*m
, void *v
)
5233 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5235 seq_printf(m
, "low %lu\n",
5236 atomic_long_read(&memcg
->memory_events
[MEMCG_LOW
]));
5237 seq_printf(m
, "high %lu\n",
5238 atomic_long_read(&memcg
->memory_events
[MEMCG_HIGH
]));
5239 seq_printf(m
, "max %lu\n",
5240 atomic_long_read(&memcg
->memory_events
[MEMCG_MAX
]));
5241 seq_printf(m
, "oom %lu\n",
5242 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM
]));
5243 seq_printf(m
, "oom_kill %lu\n",
5244 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
5249 static int memory_stat_show(struct seq_file
*m
, void *v
)
5251 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5252 unsigned long stat
[MEMCG_NR_STAT
];
5253 unsigned long events
[NR_VM_EVENT_ITEMS
];
5257 * Provide statistics on the state of the memory subsystem as
5258 * well as cumulative event counters that show past behavior.
5260 * This list is ordered following a combination of these gradients:
5261 * 1) generic big picture -> specifics and details
5262 * 2) reflecting userspace activity -> reflecting kernel heuristics
5264 * Current memory state:
5267 tree_stat(memcg
, stat
);
5268 tree_events(memcg
, events
);
5270 seq_printf(m
, "anon %llu\n",
5271 (u64
)stat
[MEMCG_RSS
] * PAGE_SIZE
);
5272 seq_printf(m
, "file %llu\n",
5273 (u64
)stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5274 seq_printf(m
, "kernel_stack %llu\n",
5275 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5276 seq_printf(m
, "slab %llu\n",
5277 (u64
)(stat
[NR_SLAB_RECLAIMABLE
] +
5278 stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5279 seq_printf(m
, "sock %llu\n",
5280 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5282 seq_printf(m
, "shmem %llu\n",
5283 (u64
)stat
[NR_SHMEM
] * PAGE_SIZE
);
5284 seq_printf(m
, "file_mapped %llu\n",
5285 (u64
)stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5286 seq_printf(m
, "file_dirty %llu\n",
5287 (u64
)stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5288 seq_printf(m
, "file_writeback %llu\n",
5289 (u64
)stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5291 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5292 struct mem_cgroup
*mi
;
5293 unsigned long val
= 0;
5295 for_each_mem_cgroup_tree(mi
, memcg
)
5296 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5297 seq_printf(m
, "%s %llu\n",
5298 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5301 seq_printf(m
, "slab_reclaimable %llu\n",
5302 (u64
)stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5303 seq_printf(m
, "slab_unreclaimable %llu\n",
5304 (u64
)stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5306 /* Accumulated memory events */
5308 seq_printf(m
, "pgfault %lu\n", events
[PGFAULT
]);
5309 seq_printf(m
, "pgmajfault %lu\n", events
[PGMAJFAULT
]);
5311 seq_printf(m
, "pgrefill %lu\n", events
[PGREFILL
]);
5312 seq_printf(m
, "pgscan %lu\n", events
[PGSCAN_KSWAPD
] +
5313 events
[PGSCAN_DIRECT
]);
5314 seq_printf(m
, "pgsteal %lu\n", events
[PGSTEAL_KSWAPD
] +
5315 events
[PGSTEAL_DIRECT
]);
5316 seq_printf(m
, "pgactivate %lu\n", events
[PGACTIVATE
]);
5317 seq_printf(m
, "pgdeactivate %lu\n", events
[PGDEACTIVATE
]);
5318 seq_printf(m
, "pglazyfree %lu\n", events
[PGLAZYFREE
]);
5319 seq_printf(m
, "pglazyfreed %lu\n", events
[PGLAZYFREED
]);
5321 seq_printf(m
, "workingset_refault %lu\n",
5322 stat
[WORKINGSET_REFAULT
]);
5323 seq_printf(m
, "workingset_activate %lu\n",
5324 stat
[WORKINGSET_ACTIVATE
]);
5325 seq_printf(m
, "workingset_nodereclaim %lu\n",
5326 stat
[WORKINGSET_NODERECLAIM
]);
5331 static struct cftype memory_files
[] = {
5334 .flags
= CFTYPE_NOT_ON_ROOT
,
5335 .read_u64
= memory_current_read
,
5339 .flags
= CFTYPE_NOT_ON_ROOT
,
5340 .seq_show
= memory_min_show
,
5341 .write
= memory_min_write
,
5345 .flags
= CFTYPE_NOT_ON_ROOT
,
5346 .seq_show
= memory_low_show
,
5347 .write
= memory_low_write
,
5351 .flags
= CFTYPE_NOT_ON_ROOT
,
5352 .seq_show
= memory_high_show
,
5353 .write
= memory_high_write
,
5357 .flags
= CFTYPE_NOT_ON_ROOT
,
5358 .seq_show
= memory_max_show
,
5359 .write
= memory_max_write
,
5363 .flags
= CFTYPE_NOT_ON_ROOT
,
5364 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5365 .seq_show
= memory_events_show
,
5369 .flags
= CFTYPE_NOT_ON_ROOT
,
5370 .seq_show
= memory_stat_show
,
5375 struct cgroup_subsys memory_cgrp_subsys
= {
5376 .css_alloc
= mem_cgroup_css_alloc
,
5377 .css_online
= mem_cgroup_css_online
,
5378 .css_offline
= mem_cgroup_css_offline
,
5379 .css_released
= mem_cgroup_css_released
,
5380 .css_free
= mem_cgroup_css_free
,
5381 .css_reset
= mem_cgroup_css_reset
,
5382 .can_attach
= mem_cgroup_can_attach
,
5383 .cancel_attach
= mem_cgroup_cancel_attach
,
5384 .post_attach
= mem_cgroup_move_task
,
5385 .bind
= mem_cgroup_bind
,
5386 .dfl_cftypes
= memory_files
,
5387 .legacy_cftypes
= mem_cgroup_legacy_files
,
5392 * mem_cgroup_protected - check if memory consumption is in the normal range
5393 * @root: the top ancestor of the sub-tree being checked
5394 * @memcg: the memory cgroup to check
5396 * WARNING: This function is not stateless! It can only be used as part
5397 * of a top-down tree iteration, not for isolated queries.
5399 * Returns one of the following:
5400 * MEMCG_PROT_NONE: cgroup memory is not protected
5401 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5402 * an unprotected supply of reclaimable memory from other cgroups.
5403 * MEMCG_PROT_MIN: cgroup memory is protected
5405 * @root is exclusive; it is never protected when looked at directly
5407 * To provide a proper hierarchical behavior, effective memory.min/low values
5408 * are used. Below is the description of how effective memory.low is calculated.
5409 * Effective memory.min values is calculated in the same way.
5411 * Effective memory.low is always equal or less than the original memory.low.
5412 * If there is no memory.low overcommittment (which is always true for
5413 * top-level memory cgroups), these two values are equal.
5414 * Otherwise, it's a part of parent's effective memory.low,
5415 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5416 * memory.low usages, where memory.low usage is the size of actually
5420 * elow = min( memory.low, parent->elow * ------------------ ),
5421 * siblings_low_usage
5423 * | memory.current, if memory.current < memory.low
5428 * Such definition of the effective memory.low provides the expected
5429 * hierarchical behavior: parent's memory.low value is limiting
5430 * children, unprotected memory is reclaimed first and cgroups,
5431 * which are not using their guarantee do not affect actual memory
5434 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5436 * A A/memory.low = 2G, A/memory.current = 6G
5438 * BC DE B/memory.low = 3G B/memory.current = 2G
5439 * C/memory.low = 1G C/memory.current = 2G
5440 * D/memory.low = 0 D/memory.current = 2G
5441 * E/memory.low = 10G E/memory.current = 0
5443 * and the memory pressure is applied, the following memory distribution
5444 * is expected (approximately):
5446 * A/memory.current = 2G
5448 * B/memory.current = 1.3G
5449 * C/memory.current = 0.6G
5450 * D/memory.current = 0
5451 * E/memory.current = 0
5453 * These calculations require constant tracking of the actual low usages
5454 * (see propagate_protected_usage()), as well as recursive calculation of
5455 * effective memory.low values. But as we do call mem_cgroup_protected()
5456 * path for each memory cgroup top-down from the reclaim,
5457 * it's possible to optimize this part, and save calculated elow
5458 * for next usage. This part is intentionally racy, but it's ok,
5459 * as memory.low is a best-effort mechanism.
5461 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
5462 struct mem_cgroup
*memcg
)
5464 struct mem_cgroup
*parent
;
5465 unsigned long emin
, parent_emin
;
5466 unsigned long elow
, parent_elow
;
5467 unsigned long usage
;
5469 if (mem_cgroup_disabled())
5470 return MEMCG_PROT_NONE
;
5473 root
= root_mem_cgroup
;
5475 return MEMCG_PROT_NONE
;
5477 usage
= page_counter_read(&memcg
->memory
);
5479 return MEMCG_PROT_NONE
;
5481 emin
= memcg
->memory
.min
;
5482 elow
= memcg
->memory
.low
;
5484 parent
= parent_mem_cgroup(memcg
);
5485 /* No parent means a non-hierarchical mode on v1 memcg */
5487 return MEMCG_PROT_NONE
;
5492 parent_emin
= READ_ONCE(parent
->memory
.emin
);
5493 emin
= min(emin
, parent_emin
);
5494 if (emin
&& parent_emin
) {
5495 unsigned long min_usage
, siblings_min_usage
;
5497 min_usage
= min(usage
, memcg
->memory
.min
);
5498 siblings_min_usage
= atomic_long_read(
5499 &parent
->memory
.children_min_usage
);
5501 if (min_usage
&& siblings_min_usage
)
5502 emin
= min(emin
, parent_emin
* min_usage
/
5503 siblings_min_usage
);
5506 parent_elow
= READ_ONCE(parent
->memory
.elow
);
5507 elow
= min(elow
, parent_elow
);
5508 if (elow
&& parent_elow
) {
5509 unsigned long low_usage
, siblings_low_usage
;
5511 low_usage
= min(usage
, memcg
->memory
.low
);
5512 siblings_low_usage
= atomic_long_read(
5513 &parent
->memory
.children_low_usage
);
5515 if (low_usage
&& siblings_low_usage
)
5516 elow
= min(elow
, parent_elow
* low_usage
/
5517 siblings_low_usage
);
5521 memcg
->memory
.emin
= emin
;
5522 memcg
->memory
.elow
= elow
;
5525 return MEMCG_PROT_MIN
;
5526 else if (usage
<= elow
)
5527 return MEMCG_PROT_LOW
;
5529 return MEMCG_PROT_NONE
;
5533 * mem_cgroup_try_charge - try charging a page
5534 * @page: page to charge
5535 * @mm: mm context of the victim
5536 * @gfp_mask: reclaim mode
5537 * @memcgp: charged memcg return
5538 * @compound: charge the page as compound or small page
5540 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5541 * pages according to @gfp_mask if necessary.
5543 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5544 * Otherwise, an error code is returned.
5546 * After page->mapping has been set up, the caller must finalize the
5547 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5548 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5550 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5551 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5554 struct mem_cgroup
*memcg
= NULL
;
5555 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5558 if (mem_cgroup_disabled())
5561 if (PageSwapCache(page
)) {
5563 * Every swap fault against a single page tries to charge the
5564 * page, bail as early as possible. shmem_unuse() encounters
5565 * already charged pages, too. The USED bit is protected by
5566 * the page lock, which serializes swap cache removal, which
5567 * in turn serializes uncharging.
5569 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5570 if (compound_head(page
)->mem_cgroup
)
5573 if (do_swap_account
) {
5574 swp_entry_t ent
= { .val
= page_private(page
), };
5575 unsigned short id
= lookup_swap_cgroup_id(ent
);
5578 memcg
= mem_cgroup_from_id(id
);
5579 if (memcg
&& !css_tryget_online(&memcg
->css
))
5586 memcg
= get_mem_cgroup_from_mm(mm
);
5588 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5590 css_put(&memcg
->css
);
5597 * mem_cgroup_commit_charge - commit a page charge
5598 * @page: page to charge
5599 * @memcg: memcg to charge the page to
5600 * @lrucare: page might be on LRU already
5601 * @compound: charge the page as compound or small page
5603 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5604 * after page->mapping has been set up. This must happen atomically
5605 * as part of the page instantiation, i.e. under the page table lock
5606 * for anonymous pages, under the page lock for page and swap cache.
5608 * In addition, the page must not be on the LRU during the commit, to
5609 * prevent racing with task migration. If it might be, use @lrucare.
5611 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5613 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5614 bool lrucare
, bool compound
)
5616 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5618 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5619 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5621 if (mem_cgroup_disabled())
5624 * Swap faults will attempt to charge the same page multiple
5625 * times. But reuse_swap_page() might have removed the page
5626 * from swapcache already, so we can't check PageSwapCache().
5631 commit_charge(page
, memcg
, lrucare
);
5633 local_irq_disable();
5634 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5635 memcg_check_events(memcg
, page
);
5638 if (do_memsw_account() && PageSwapCache(page
)) {
5639 swp_entry_t entry
= { .val
= page_private(page
) };
5641 * The swap entry might not get freed for a long time,
5642 * let's not wait for it. The page already received a
5643 * memory+swap charge, drop the swap entry duplicate.
5645 mem_cgroup_uncharge_swap(entry
, nr_pages
);
5650 * mem_cgroup_cancel_charge - cancel a page charge
5651 * @page: page to charge
5652 * @memcg: memcg to charge the page to
5653 * @compound: charge the page as compound or small page
5655 * Cancel a charge transaction started by mem_cgroup_try_charge().
5657 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5660 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5662 if (mem_cgroup_disabled())
5665 * Swap faults will attempt to charge the same page multiple
5666 * times. But reuse_swap_page() might have removed the page
5667 * from swapcache already, so we can't check PageSwapCache().
5672 cancel_charge(memcg
, nr_pages
);
5675 struct uncharge_gather
{
5676 struct mem_cgroup
*memcg
;
5677 unsigned long pgpgout
;
5678 unsigned long nr_anon
;
5679 unsigned long nr_file
;
5680 unsigned long nr_kmem
;
5681 unsigned long nr_huge
;
5682 unsigned long nr_shmem
;
5683 struct page
*dummy_page
;
5686 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
5688 memset(ug
, 0, sizeof(*ug
));
5691 static void uncharge_batch(const struct uncharge_gather
*ug
)
5693 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
5694 unsigned long flags
;
5696 if (!mem_cgroup_is_root(ug
->memcg
)) {
5697 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
5698 if (do_memsw_account())
5699 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
5700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
5701 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
5702 memcg_oom_recover(ug
->memcg
);
5705 local_irq_save(flags
);
5706 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
5707 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
5708 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
5709 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
5710 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
5711 __this_cpu_add(ug
->memcg
->stat_cpu
->nr_page_events
, nr_pages
);
5712 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
5713 local_irq_restore(flags
);
5715 if (!mem_cgroup_is_root(ug
->memcg
))
5716 css_put_many(&ug
->memcg
->css
, nr_pages
);
5719 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
5721 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5722 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
5723 !PageHWPoison(page
) , page
);
5725 if (!page
->mem_cgroup
)
5729 * Nobody should be changing or seriously looking at
5730 * page->mem_cgroup at this point, we have fully
5731 * exclusive access to the page.
5734 if (ug
->memcg
!= page
->mem_cgroup
) {
5737 uncharge_gather_clear(ug
);
5739 ug
->memcg
= page
->mem_cgroup
;
5742 if (!PageKmemcg(page
)) {
5743 unsigned int nr_pages
= 1;
5745 if (PageTransHuge(page
)) {
5746 nr_pages
<<= compound_order(page
);
5747 ug
->nr_huge
+= nr_pages
;
5750 ug
->nr_anon
+= nr_pages
;
5752 ug
->nr_file
+= nr_pages
;
5753 if (PageSwapBacked(page
))
5754 ug
->nr_shmem
+= nr_pages
;
5758 ug
->nr_kmem
+= 1 << compound_order(page
);
5759 __ClearPageKmemcg(page
);
5762 ug
->dummy_page
= page
;
5763 page
->mem_cgroup
= NULL
;
5766 static void uncharge_list(struct list_head
*page_list
)
5768 struct uncharge_gather ug
;
5769 struct list_head
*next
;
5771 uncharge_gather_clear(&ug
);
5774 * Note that the list can be a single page->lru; hence the
5775 * do-while loop instead of a simple list_for_each_entry().
5777 next
= page_list
->next
;
5781 page
= list_entry(next
, struct page
, lru
);
5782 next
= page
->lru
.next
;
5784 uncharge_page(page
, &ug
);
5785 } while (next
!= page_list
);
5788 uncharge_batch(&ug
);
5792 * mem_cgroup_uncharge - uncharge a page
5793 * @page: page to uncharge
5795 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5796 * mem_cgroup_commit_charge().
5798 void mem_cgroup_uncharge(struct page
*page
)
5800 struct uncharge_gather ug
;
5802 if (mem_cgroup_disabled())
5805 /* Don't touch page->lru of any random page, pre-check: */
5806 if (!page
->mem_cgroup
)
5809 uncharge_gather_clear(&ug
);
5810 uncharge_page(page
, &ug
);
5811 uncharge_batch(&ug
);
5815 * mem_cgroup_uncharge_list - uncharge a list of page
5816 * @page_list: list of pages to uncharge
5818 * Uncharge a list of pages previously charged with
5819 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5821 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5823 if (mem_cgroup_disabled())
5826 if (!list_empty(page_list
))
5827 uncharge_list(page_list
);
5831 * mem_cgroup_migrate - charge a page's replacement
5832 * @oldpage: currently circulating page
5833 * @newpage: replacement page
5835 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5836 * be uncharged upon free.
5838 * Both pages must be locked, @newpage->mapping must be set up.
5840 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5842 struct mem_cgroup
*memcg
;
5843 unsigned int nr_pages
;
5845 unsigned long flags
;
5847 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5848 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5849 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5850 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5853 if (mem_cgroup_disabled())
5856 /* Page cache replacement: new page already charged? */
5857 if (newpage
->mem_cgroup
)
5860 /* Swapcache readahead pages can get replaced before being charged */
5861 memcg
= oldpage
->mem_cgroup
;
5865 /* Force-charge the new page. The old one will be freed soon */
5866 compound
= PageTransHuge(newpage
);
5867 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5869 page_counter_charge(&memcg
->memory
, nr_pages
);
5870 if (do_memsw_account())
5871 page_counter_charge(&memcg
->memsw
, nr_pages
);
5872 css_get_many(&memcg
->css
, nr_pages
);
5874 commit_charge(newpage
, memcg
, false);
5876 local_irq_save(flags
);
5877 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5878 memcg_check_events(memcg
, newpage
);
5879 local_irq_restore(flags
);
5882 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5883 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5885 void mem_cgroup_sk_alloc(struct sock
*sk
)
5887 struct mem_cgroup
*memcg
;
5889 if (!mem_cgroup_sockets_enabled
)
5893 * Socket cloning can throw us here with sk_memcg already
5894 * filled. It won't however, necessarily happen from
5895 * process context. So the test for root memcg given
5896 * the current task's memcg won't help us in this case.
5898 * Respecting the original socket's memcg is a better
5899 * decision in this case.
5902 css_get(&sk
->sk_memcg
->css
);
5907 memcg
= mem_cgroup_from_task(current
);
5908 if (memcg
== root_mem_cgroup
)
5910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5912 if (css_tryget_online(&memcg
->css
))
5913 sk
->sk_memcg
= memcg
;
5918 void mem_cgroup_sk_free(struct sock
*sk
)
5921 css_put(&sk
->sk_memcg
->css
);
5925 * mem_cgroup_charge_skmem - charge socket memory
5926 * @memcg: memcg to charge
5927 * @nr_pages: number of pages to charge
5929 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5930 * @memcg's configured limit, %false if the charge had to be forced.
5932 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5934 gfp_t gfp_mask
= GFP_KERNEL
;
5936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5937 struct page_counter
*fail
;
5939 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5940 memcg
->tcpmem_pressure
= 0;
5943 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5944 memcg
->tcpmem_pressure
= 1;
5948 /* Don't block in the packet receive path */
5950 gfp_mask
= GFP_NOWAIT
;
5952 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
5954 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5957 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5962 * mem_cgroup_uncharge_skmem - uncharge socket memory
5963 * @memcg: memcg to uncharge
5964 * @nr_pages: number of pages to uncharge
5966 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5968 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5969 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5973 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
5975 refill_stock(memcg
, nr_pages
);
5978 static int __init
cgroup_memory(char *s
)
5982 while ((token
= strsep(&s
, ",")) != NULL
) {
5985 if (!strcmp(token
, "nosocket"))
5986 cgroup_memory_nosocket
= true;
5987 if (!strcmp(token
, "nokmem"))
5988 cgroup_memory_nokmem
= true;
5992 __setup("cgroup.memory=", cgroup_memory
);
5995 * subsys_initcall() for memory controller.
5997 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5998 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5999 * basically everything that doesn't depend on a specific mem_cgroup structure
6000 * should be initialized from here.
6002 static int __init
mem_cgroup_init(void)
6008 * Kmem cache creation is mostly done with the slab_mutex held,
6009 * so use a workqueue with limited concurrency to avoid stalling
6010 * all worker threads in case lots of cgroups are created and
6011 * destroyed simultaneously.
6013 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6014 BUG_ON(!memcg_kmem_cache_wq
);
6017 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6018 memcg_hotplug_cpu_dead
);
6020 for_each_possible_cpu(cpu
)
6021 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6024 for_each_node(node
) {
6025 struct mem_cgroup_tree_per_node
*rtpn
;
6027 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6028 node_online(node
) ? node
: NUMA_NO_NODE
);
6030 rtpn
->rb_root
= RB_ROOT
;
6031 rtpn
->rb_rightmost
= NULL
;
6032 spin_lock_init(&rtpn
->lock
);
6033 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6038 subsys_initcall(mem_cgroup_init
);
6040 #ifdef CONFIG_MEMCG_SWAP
6041 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6043 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
6045 * The root cgroup cannot be destroyed, so it's refcount must
6048 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6052 memcg
= parent_mem_cgroup(memcg
);
6054 memcg
= root_mem_cgroup
;
6060 * mem_cgroup_swapout - transfer a memsw charge to swap
6061 * @page: page whose memsw charge to transfer
6062 * @entry: swap entry to move the charge to
6064 * Transfer the memsw charge of @page to @entry.
6066 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6068 struct mem_cgroup
*memcg
, *swap_memcg
;
6069 unsigned int nr_entries
;
6070 unsigned short oldid
;
6072 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6073 VM_BUG_ON_PAGE(page_count(page
), page
);
6075 if (!do_memsw_account())
6078 memcg
= page
->mem_cgroup
;
6080 /* Readahead page, never charged */
6085 * In case the memcg owning these pages has been offlined and doesn't
6086 * have an ID allocated to it anymore, charge the closest online
6087 * ancestor for the swap instead and transfer the memory+swap charge.
6089 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6090 nr_entries
= hpage_nr_pages(page
);
6091 /* Get references for the tail pages, too */
6093 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6094 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6096 VM_BUG_ON_PAGE(oldid
, page
);
6097 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6099 page
->mem_cgroup
= NULL
;
6101 if (!mem_cgroup_is_root(memcg
))
6102 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6104 if (memcg
!= swap_memcg
) {
6105 if (!mem_cgroup_is_root(swap_memcg
))
6106 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6107 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6111 * Interrupts should be disabled here because the caller holds the
6112 * i_pages lock which is taken with interrupts-off. It is
6113 * important here to have the interrupts disabled because it is the
6114 * only synchronisation we have for updating the per-CPU variables.
6116 VM_BUG_ON(!irqs_disabled());
6117 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6119 memcg_check_events(memcg
, page
);
6121 if (!mem_cgroup_is_root(memcg
))
6122 css_put_many(&memcg
->css
, nr_entries
);
6126 * mem_cgroup_try_charge_swap - try charging swap space for a page
6127 * @page: page being added to swap
6128 * @entry: swap entry to charge
6130 * Try to charge @page's memcg for the swap space at @entry.
6132 * Returns 0 on success, -ENOMEM on failure.
6134 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6136 unsigned int nr_pages
= hpage_nr_pages(page
);
6137 struct page_counter
*counter
;
6138 struct mem_cgroup
*memcg
;
6139 unsigned short oldid
;
6141 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6144 memcg
= page
->mem_cgroup
;
6146 /* Readahead page, never charged */
6151 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6155 memcg
= mem_cgroup_id_get_online(memcg
);
6157 if (!mem_cgroup_is_root(memcg
) &&
6158 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6159 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6160 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6161 mem_cgroup_id_put(memcg
);
6165 /* Get references for the tail pages, too */
6167 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6168 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6169 VM_BUG_ON_PAGE(oldid
, page
);
6170 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
6176 * mem_cgroup_uncharge_swap - uncharge swap space
6177 * @entry: swap entry to uncharge
6178 * @nr_pages: the amount of swap space to uncharge
6180 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6182 struct mem_cgroup
*memcg
;
6185 if (!do_swap_account
)
6188 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6190 memcg
= mem_cgroup_from_id(id
);
6192 if (!mem_cgroup_is_root(memcg
)) {
6193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6194 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6196 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6198 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
6199 mem_cgroup_id_put_many(memcg
, nr_pages
);
6204 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6206 long nr_swap_pages
= get_nr_swap_pages();
6208 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6209 return nr_swap_pages
;
6210 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6211 nr_swap_pages
= min_t(long, nr_swap_pages
,
6212 READ_ONCE(memcg
->swap
.max
) -
6213 page_counter_read(&memcg
->swap
));
6214 return nr_swap_pages
;
6217 bool mem_cgroup_swap_full(struct page
*page
)
6219 struct mem_cgroup
*memcg
;
6221 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6225 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6228 memcg
= page
->mem_cgroup
;
6232 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6233 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
6239 /* for remember boot option*/
6240 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6241 static int really_do_swap_account __initdata
= 1;
6243 static int really_do_swap_account __initdata
;
6246 static int __init
enable_swap_account(char *s
)
6248 if (!strcmp(s
, "1"))
6249 really_do_swap_account
= 1;
6250 else if (!strcmp(s
, "0"))
6251 really_do_swap_account
= 0;
6254 __setup("swapaccount=", enable_swap_account
);
6256 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6259 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6261 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6264 static int swap_max_show(struct seq_file
*m
, void *v
)
6266 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6267 unsigned long max
= READ_ONCE(memcg
->swap
.max
);
6269 if (max
== PAGE_COUNTER_MAX
)
6270 seq_puts(m
, "max\n");
6272 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6277 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6278 char *buf
, size_t nbytes
, loff_t off
)
6280 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6284 buf
= strstrip(buf
);
6285 err
= page_counter_memparse(buf
, "max", &max
);
6289 xchg(&memcg
->swap
.max
, max
);
6294 static int swap_events_show(struct seq_file
*m
, void *v
)
6296 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6298 seq_printf(m
, "max %lu\n",
6299 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
6300 seq_printf(m
, "fail %lu\n",
6301 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
6306 static struct cftype swap_files
[] = {
6308 .name
= "swap.current",
6309 .flags
= CFTYPE_NOT_ON_ROOT
,
6310 .read_u64
= swap_current_read
,
6314 .flags
= CFTYPE_NOT_ON_ROOT
,
6315 .seq_show
= swap_max_show
,
6316 .write
= swap_max_write
,
6319 .name
= "swap.events",
6320 .flags
= CFTYPE_NOT_ON_ROOT
,
6321 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
6322 .seq_show
= swap_events_show
,
6327 static struct cftype memsw_cgroup_files
[] = {
6329 .name
= "memsw.usage_in_bytes",
6330 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6331 .read_u64
= mem_cgroup_read_u64
,
6334 .name
= "memsw.max_usage_in_bytes",
6335 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6336 .write
= mem_cgroup_reset
,
6337 .read_u64
= mem_cgroup_read_u64
,
6340 .name
= "memsw.limit_in_bytes",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6342 .write
= mem_cgroup_write
,
6343 .read_u64
= mem_cgroup_read_u64
,
6346 .name
= "memsw.failcnt",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6348 .write
= mem_cgroup_reset
,
6349 .read_u64
= mem_cgroup_read_u64
,
6351 { }, /* terminate */
6354 static int __init
mem_cgroup_swap_init(void)
6356 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6357 do_swap_account
= 1;
6358 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6360 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6361 memsw_cgroup_files
));
6365 subsys_initcall(mem_cgroup_swap_init
);
6367 #endif /* CONFIG_MEMCG_SWAP */