netfilter: nf_tables: avoid global info storage
[linux/fpc-iii.git] / mm / memcontrol.c
blobe6f0d5ef320aa65d2b65ceed4b202021a84fd49b
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
251 return (memcg == root_mem_cgroup);
254 #ifndef CONFIG_SLOB
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
306 struct workqueue_struct *memcg_kmem_cache_wq;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
323 struct mem_cgroup *memcg;
325 memcg = page->mem_cgroup;
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
330 return &memcg->css;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t page_cgroup_ino(struct page *page)
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
364 int nid = page_to_nid(page);
366 return memcg->nodeinfo[nid];
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
372 return soft_limit_tree.rb_tree_per_node[nid];
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
378 int nid = page_to_nid(page);
380 return soft_limit_tree.rb_tree_per_node[nid];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
392 if (mz->on_tree)
393 return;
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
426 if (!mz->on_tree)
427 return;
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
439 unsigned long flags;
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
455 return excess;
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess || mz->on_tree) {
479 unsigned long flags;
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 struct mem_cgroup_per_node *mz;
514 retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530 done:
531 return mz;
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 struct mem_cgroup_per_node *mz;
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 int event)
548 return atomic_long_read(&memcg->events[event]);
551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 struct page *page,
553 bool compound, int nr_pages)
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
559 if (PageAnon(page))
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 else {
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
574 __count_memcg_events(memcg, PGPGIN, 1);
575 else {
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
588 enum lru_list lru;
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
597 return nr;
600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
603 unsigned long nr = 0;
604 int nid;
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
614 unsigned long val, next;
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
634 return true;
636 return false;
640 * Check events in order.
643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
648 bool do_softlimit;
649 bool do_numainfo __maybe_unused;
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
653 #if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656 #endif
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
660 #if MAX_NUMNODES > 1
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
663 #endif
667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
674 if (unlikely(!p))
675 return NULL;
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
679 EXPORT_SYMBOL(mem_cgroup_from_task);
681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
683 struct mem_cgroup *memcg = NULL;
685 rcu_read_lock();
686 do {
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
692 if (unlikely(!mm))
693 memcg = root_mem_cgroup;
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
699 } while (!css_tryget_online(&memcg->css));
700 rcu_read_unlock();
701 return memcg;
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
730 if (mem_cgroup_disabled())
731 return NULL;
733 if (!root)
734 root = root_mem_cgroup;
736 if (prev && !reclaim)
737 pos = prev;
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
741 goto out;
742 return root;
745 rcu_read_lock();
747 if (reclaim) {
748 struct mem_cgroup_per_node *mz;
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
756 while (1) {
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
759 break;
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
768 (void)cmpxchg(&iter->position, pos, NULL);
772 if (pos)
773 css = &pos->css;
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
784 if (!prev)
785 continue;
786 break;
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
794 memcg = mem_cgroup_from_css(css);
796 if (css == &root->css)
797 break;
799 if (css_tryget(css))
800 break;
802 memcg = NULL;
805 if (reclaim) {
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
811 (void)cmpxchg(&iter->position, pos, memcg);
813 if (pos)
814 css_put(&pos->css);
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
822 out_unlock:
823 rcu_read_unlock();
824 out:
825 if (prev && prev != root)
826 css_put(&prev->css);
828 return memcg;
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
836 void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
850 int nid;
851 int i;
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
870 #define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
872 iter != NULL; \
873 iter = mem_cgroup_iter(root, iter, NULL))
875 #define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
877 iter != NULL; \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
891 * This function must not be called for the root memory cgroup.
893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
896 struct mem_cgroup *iter;
897 int ret = 0;
899 BUG_ON(memcg == root_mem_cgroup);
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
914 return ret;
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919 * @page: the page
920 * @pgdat: pgdat of the page
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
934 goto out;
937 memcg = page->mem_cgroup;
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
942 if (!memcg)
943 memcg = root_mem_cgroup;
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
947 out:
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
955 return lruvec;
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
974 long size;
976 if (mem_cgroup_disabled())
977 return;
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
985 size = *lru_size;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
989 VM_BUG_ON(1);
990 *lru_size = 0;
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1001 bool ret;
1003 p = find_lock_task_mm(task);
1004 if (p) {
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 task_unlock(p);
1007 } else {
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1013 rcu_read_lock();
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1016 rcu_read_unlock();
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1020 return ret;
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.max);
1038 if (count < limit)
1039 margin = limit - count;
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.max);
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
1046 else
1047 margin = 0;
1050 return margin;
1054 * A routine for checking "mem" is under move_account() or not.
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1064 bool ret = false;
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1077 unlock:
1078 spin_unlock(&mc.lock);
1079 return ret;
1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1095 return false;
1098 static const unsigned int memcg1_stats[] = {
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1109 static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1120 #define K(x) ((x) << (PAGE_SHIFT-10))
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1131 struct mem_cgroup *iter;
1132 unsigned int i;
1134 rcu_read_lock();
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1145 pr_cont("\n");
1147 rcu_read_unlock();
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1162 pr_cont(":");
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 continue;
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1175 pr_cont("\n");
1180 * Return the memory (and swap, if configured) limit for a memcg.
1182 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1184 unsigned long max;
1186 max = memcg->memory.max;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_max;
1189 unsigned long swap_max;
1191 memsw_max = memcg->memsw.max;
1192 swap_max = memcg->swap.max;
1193 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1194 max = min(max + swap_max, memsw_max);
1196 return max;
1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 int order)
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
1205 .memcg = memcg,
1206 .gfp_mask = gfp_mask,
1207 .order = order,
1209 bool ret;
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1214 return ret;
1217 #if MAX_NUMNODES > 1
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 return true;
1238 return false;
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1250 int nid;
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1255 if (!atomic_read(&memcg->numainfo_events))
1256 return;
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 return;
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1283 * Now, we use round-robin. Better algorithm is welcomed.
1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1287 int node;
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1292 node = next_node_in(node, memcg->scan_nodes);
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1301 memcg->last_scanned_node = node;
1302 return node;
1304 #else
1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1307 return 0;
1309 #endif
1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 pg_data_t *pgdat,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1322 .pgdat = pgdat,
1323 .priority = 0,
1326 excess = soft_limit_excess(root_memcg);
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1338 if (!total)
1339 break;
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1350 continue;
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1356 break;
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
1362 #ifdef CONFIG_LOCKDEP
1363 static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1366 #endif
1368 static DEFINE_SPINLOCK(memcg_oom_lock);
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1376 struct mem_cgroup *iter, *failed = NULL;
1378 spin_lock(&memcg_oom_lock);
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1386 failed = iter;
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
1389 } else
1390 iter->oom_lock = true;
1393 if (failed) {
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1403 iter->oom_lock = false;
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1408 spin_unlock(&memcg_oom_lock);
1410 return !failed;
1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1415 struct mem_cgroup *iter;
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1426 struct mem_cgroup *iter;
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1436 struct mem_cgroup *iter;
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1451 struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 return 0;
1469 return autoremove_wake_function(wait, mode, sync, arg);
1472 static void memcg_oom_recover(struct mem_cgroup *memcg)
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 return;
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1527 bool mem_cgroup_oom_synchronize(bool handle)
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1531 bool locked;
1533 /* OOM is global, do not handle */
1534 if (!memcg)
1535 return false;
1537 if (!handle)
1538 goto cleanup;
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1549 locked = mem_cgroup_oom_trylock(memcg);
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1559 } else {
1560 schedule();
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1565 if (locked) {
1566 mem_cgroup_oom_unlock(memcg);
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1572 memcg_oom_recover(memcg);
1574 cleanup:
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1577 return true;
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1591 struct mem_cgroup *lock_page_memcg(struct page *page)
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1607 rcu_read_lock();
1609 if (mem_cgroup_disabled())
1610 return NULL;
1611 again:
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1614 return NULL;
1616 if (atomic_read(&memcg->moving_account) <= 0)
1617 return memcg;
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 goto again;
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1633 return memcg;
1635 EXPORT_SYMBOL(lock_page_memcg);
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1643 void __unlock_page_memcg(struct mem_cgroup *memcg)
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1654 rcu_read_unlock();
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1661 void unlock_page_memcg(struct page *page)
1663 __unlock_page_memcg(page->mem_cgroup);
1665 EXPORT_SYMBOL(unlock_page_memcg);
1667 struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672 #define FLUSHING_CACHED_CHARGE 0
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static DEFINE_MUTEX(percpu_charge_mutex);
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1686 * returns true if successful, false otherwise.
1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1692 bool ret = false;
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1695 return ret;
1697 local_irq_save(flags);
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1702 ret = true;
1705 local_irq_restore(flags);
1707 return ret;
1711 * Returns stocks cached in percpu and reset cached information.
1713 static void drain_stock(struct memcg_stock_pcp *stock)
1715 struct mem_cgroup *old = stock->cached;
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1724 stock->cached = NULL;
1727 static void drain_local_stock(struct work_struct *dummy)
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1736 local_irq_save(flags);
1738 stock = this_cpu_ptr(&memcg_stock);
1739 drain_stock(stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1742 local_irq_restore(flags);
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1754 local_irq_save(flags);
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1758 drain_stock(stock);
1759 stock->cached = memcg;
1761 stock->nr_pages += nr_pages;
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 drain_stock(stock);
1766 local_irq_restore(flags);
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1773 static void drain_all_stock(struct mem_cgroup *root_memcg)
1775 int cpu, curcpu;
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1786 curcpu = get_cpu();
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 continue;
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1796 continue;
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1804 css_put(&memcg->css);
1806 put_cpu();
1807 mutex_unlock(&percpu_charge_mutex);
1810 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 long x;
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1851 return 0;
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1866 static void high_work_func(struct work_struct *work)
1868 struct mem_cgroup *memcg;
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1878 void mem_cgroup_handle_over_high(void)
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1883 if (likely(!nr_pages))
1884 return;
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905 retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1949 if (!gfpflags_allow_blocking(gfp_mask))
1950 goto nomem;
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 goto retry;
1960 if (!drained) {
1961 drain_all_stock(mem_over_limit);
1962 drained = true;
1963 goto retry;
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 goto retry;
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1986 if (nr_retries--)
1987 goto retry;
1989 if (gfp_mask & __GFP_NOFAIL)
1990 goto force;
1992 if (fatal_signal_pending(current))
1993 goto force;
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
1999 nomem:
2000 if (!(gfp_mask & __GFP_NOFAIL))
2001 return -ENOMEM;
2002 force:
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2013 return 0;
2015 done_restock:
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2029 do {
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2038 break;
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2042 return 0;
2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2054 css_put_many(&memcg->css, nr_pages);
2057 static void lock_page_lru(struct page *page, int *isolated)
2059 struct zone *zone = page_zone(page);
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2073 static void unlock_page_lru(struct page *page, int isolated)
2075 struct zone *zone = page_zone(page);
2077 if (isolated) {
2078 struct lruvec *lruvec;
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2085 spin_unlock_irq(zone_lru_lock(zone));
2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 bool lrucare)
2091 int isolated;
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2106 * - the page is uncharged
2108 * - the page is off-LRU
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2116 page->mem_cgroup = memcg;
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
2122 #ifndef CONFIG_SLOB
2123 static int memcg_alloc_cache_id(void)
2125 int id, size;
2126 int err;
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
2133 if (id < memcg_nr_cache_ids)
2134 return id;
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2140 down_write(&memcg_cache_ids_sem);
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2148 err = memcg_update_all_caches(size);
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2154 up_write(&memcg_cache_ids_sem);
2156 if (err) {
2157 ida_simple_remove(&memcg_cache_ida, id);
2158 return err;
2160 return id;
2163 static void memcg_free_cache_id(int id)
2165 ida_simple_remove(&memcg_cache_ida, id);
2168 struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2174 static void memcg_kmem_cache_create_func(struct work_struct *w)
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2181 memcg_create_kmem_cache(memcg, cachep);
2183 css_put(&memcg->css);
2184 kfree(cw);
2188 * Enqueue the creation of a per-memcg kmem_cache.
2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2193 struct memcg_kmem_cache_create_work *cw;
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 if (!cw)
2197 return;
2199 css_get(&memcg->css);
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2227 static inline bool memcg_kmem_bypass(void)
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2254 int kmemcg_id;
2256 VM_BUG_ON(!is_root_cache(cachep));
2258 if (memcg_kmem_bypass())
2259 return cachep;
2261 if (current->memcg_kmem_skip_account)
2262 return cachep;
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 if (kmemcg_id < 0)
2267 goto out;
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2286 out:
2287 css_put(&memcg->css);
2288 return cachep;
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2295 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2308 * Returns 0 on success, an error code on failure.
2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2315 int ret;
2317 ret = try_charge(memcg, gfp, nr_pages);
2318 if (ret)
2319 return ret;
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
2327 page->mem_cgroup = memcg;
2329 return 0;
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2338 * Returns 0 on success, an error code on failure.
2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2345 if (memcg_kmem_bypass())
2346 return 0;
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 if (!ret)
2352 __SetPageKmemcg(page);
2354 css_put(&memcg->css);
2355 return ret;
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2362 void memcg_kmem_uncharge(struct page *page, int order)
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2367 if (!memcg)
2368 return;
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2379 page->mem_cgroup = NULL;
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2385 css_put_many(&memcg->css, nr_pages);
2387 #endif /* !CONFIG_SLOB */
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2397 int i;
2399 if (mem_cgroup_disabled())
2400 return;
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409 #ifdef CONFIG_MEMCG_SWAP
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2419 * Returns 0 on success, -EINVAL on failure.
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2424 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2427 unsigned short old_id, new_id;
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2435 return 0;
2437 return -EINVAL;
2439 #else
2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2443 return -EINVAL;
2445 #endif
2447 static DEFINE_MUTEX(memcg_max_mutex);
2449 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2450 unsigned long max, bool memsw)
2452 bool enlarge = false;
2453 bool drained = false;
2454 int ret;
2455 bool limits_invariant;
2456 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2458 do {
2459 if (signal_pending(current)) {
2460 ret = -EINTR;
2461 break;
2464 mutex_lock(&memcg_max_mutex);
2466 * Make sure that the new limit (memsw or memory limit) doesn't
2467 * break our basic invariant rule memory.max <= memsw.max.
2469 limits_invariant = memsw ? max >= memcg->memory.max :
2470 max <= memcg->memsw.max;
2471 if (!limits_invariant) {
2472 mutex_unlock(&memcg_max_mutex);
2473 ret = -EINVAL;
2474 break;
2476 if (max > counter->max)
2477 enlarge = true;
2478 ret = page_counter_set_max(counter, max);
2479 mutex_unlock(&memcg_max_mutex);
2481 if (!ret)
2482 break;
2484 if (!drained) {
2485 drain_all_stock(memcg);
2486 drained = true;
2487 continue;
2490 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2491 GFP_KERNEL, !memsw)) {
2492 ret = -EBUSY;
2493 break;
2495 } while (true);
2497 if (!ret && enlarge)
2498 memcg_oom_recover(memcg);
2500 return ret;
2503 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2504 gfp_t gfp_mask,
2505 unsigned long *total_scanned)
2507 unsigned long nr_reclaimed = 0;
2508 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2509 unsigned long reclaimed;
2510 int loop = 0;
2511 struct mem_cgroup_tree_per_node *mctz;
2512 unsigned long excess;
2513 unsigned long nr_scanned;
2515 if (order > 0)
2516 return 0;
2518 mctz = soft_limit_tree_node(pgdat->node_id);
2521 * Do not even bother to check the largest node if the root
2522 * is empty. Do it lockless to prevent lock bouncing. Races
2523 * are acceptable as soft limit is best effort anyway.
2525 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2526 return 0;
2529 * This loop can run a while, specially if mem_cgroup's continuously
2530 * keep exceeding their soft limit and putting the system under
2531 * pressure
2533 do {
2534 if (next_mz)
2535 mz = next_mz;
2536 else
2537 mz = mem_cgroup_largest_soft_limit_node(mctz);
2538 if (!mz)
2539 break;
2541 nr_scanned = 0;
2542 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2543 gfp_mask, &nr_scanned);
2544 nr_reclaimed += reclaimed;
2545 *total_scanned += nr_scanned;
2546 spin_lock_irq(&mctz->lock);
2547 __mem_cgroup_remove_exceeded(mz, mctz);
2550 * If we failed to reclaim anything from this memory cgroup
2551 * it is time to move on to the next cgroup
2553 next_mz = NULL;
2554 if (!reclaimed)
2555 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2557 excess = soft_limit_excess(mz->memcg);
2559 * One school of thought says that we should not add
2560 * back the node to the tree if reclaim returns 0.
2561 * But our reclaim could return 0, simply because due
2562 * to priority we are exposing a smaller subset of
2563 * memory to reclaim from. Consider this as a longer
2564 * term TODO.
2566 /* If excess == 0, no tree ops */
2567 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2568 spin_unlock_irq(&mctz->lock);
2569 css_put(&mz->memcg->css);
2570 loop++;
2572 * Could not reclaim anything and there are no more
2573 * mem cgroups to try or we seem to be looping without
2574 * reclaiming anything.
2576 if (!nr_reclaimed &&
2577 (next_mz == NULL ||
2578 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2579 break;
2580 } while (!nr_reclaimed);
2581 if (next_mz)
2582 css_put(&next_mz->memcg->css);
2583 return nr_reclaimed;
2587 * Test whether @memcg has children, dead or alive. Note that this
2588 * function doesn't care whether @memcg has use_hierarchy enabled and
2589 * returns %true if there are child csses according to the cgroup
2590 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2592 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2594 bool ret;
2596 rcu_read_lock();
2597 ret = css_next_child(NULL, &memcg->css);
2598 rcu_read_unlock();
2599 return ret;
2603 * Reclaims as many pages from the given memcg as possible.
2605 * Caller is responsible for holding css reference for memcg.
2607 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2609 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2611 /* we call try-to-free pages for make this cgroup empty */
2612 lru_add_drain_all();
2614 drain_all_stock(memcg);
2616 /* try to free all pages in this cgroup */
2617 while (nr_retries && page_counter_read(&memcg->memory)) {
2618 int progress;
2620 if (signal_pending(current))
2621 return -EINTR;
2623 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2624 GFP_KERNEL, true);
2625 if (!progress) {
2626 nr_retries--;
2627 /* maybe some writeback is necessary */
2628 congestion_wait(BLK_RW_ASYNC, HZ/10);
2633 return 0;
2636 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2637 char *buf, size_t nbytes,
2638 loff_t off)
2640 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2642 if (mem_cgroup_is_root(memcg))
2643 return -EINVAL;
2644 return mem_cgroup_force_empty(memcg) ?: nbytes;
2647 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2648 struct cftype *cft)
2650 return mem_cgroup_from_css(css)->use_hierarchy;
2653 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2654 struct cftype *cft, u64 val)
2656 int retval = 0;
2657 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2658 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2660 if (memcg->use_hierarchy == val)
2661 return 0;
2664 * If parent's use_hierarchy is set, we can't make any modifications
2665 * in the child subtrees. If it is unset, then the change can
2666 * occur, provided the current cgroup has no children.
2668 * For the root cgroup, parent_mem is NULL, we allow value to be
2669 * set if there are no children.
2671 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2672 (val == 1 || val == 0)) {
2673 if (!memcg_has_children(memcg))
2674 memcg->use_hierarchy = val;
2675 else
2676 retval = -EBUSY;
2677 } else
2678 retval = -EINVAL;
2680 return retval;
2683 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2685 struct mem_cgroup *iter;
2686 int i;
2688 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2690 for_each_mem_cgroup_tree(iter, memcg) {
2691 for (i = 0; i < MEMCG_NR_STAT; i++)
2692 stat[i] += memcg_page_state(iter, i);
2696 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2698 struct mem_cgroup *iter;
2699 int i;
2701 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2703 for_each_mem_cgroup_tree(iter, memcg) {
2704 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2705 events[i] += memcg_sum_events(iter, i);
2709 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2711 unsigned long val = 0;
2713 if (mem_cgroup_is_root(memcg)) {
2714 struct mem_cgroup *iter;
2716 for_each_mem_cgroup_tree(iter, memcg) {
2717 val += memcg_page_state(iter, MEMCG_CACHE);
2718 val += memcg_page_state(iter, MEMCG_RSS);
2719 if (swap)
2720 val += memcg_page_state(iter, MEMCG_SWAP);
2722 } else {
2723 if (!swap)
2724 val = page_counter_read(&memcg->memory);
2725 else
2726 val = page_counter_read(&memcg->memsw);
2728 return val;
2731 enum {
2732 RES_USAGE,
2733 RES_LIMIT,
2734 RES_MAX_USAGE,
2735 RES_FAILCNT,
2736 RES_SOFT_LIMIT,
2739 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2740 struct cftype *cft)
2742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2743 struct page_counter *counter;
2745 switch (MEMFILE_TYPE(cft->private)) {
2746 case _MEM:
2747 counter = &memcg->memory;
2748 break;
2749 case _MEMSWAP:
2750 counter = &memcg->memsw;
2751 break;
2752 case _KMEM:
2753 counter = &memcg->kmem;
2754 break;
2755 case _TCP:
2756 counter = &memcg->tcpmem;
2757 break;
2758 default:
2759 BUG();
2762 switch (MEMFILE_ATTR(cft->private)) {
2763 case RES_USAGE:
2764 if (counter == &memcg->memory)
2765 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2766 if (counter == &memcg->memsw)
2767 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2768 return (u64)page_counter_read(counter) * PAGE_SIZE;
2769 case RES_LIMIT:
2770 return (u64)counter->max * PAGE_SIZE;
2771 case RES_MAX_USAGE:
2772 return (u64)counter->watermark * PAGE_SIZE;
2773 case RES_FAILCNT:
2774 return counter->failcnt;
2775 case RES_SOFT_LIMIT:
2776 return (u64)memcg->soft_limit * PAGE_SIZE;
2777 default:
2778 BUG();
2782 #ifndef CONFIG_SLOB
2783 static int memcg_online_kmem(struct mem_cgroup *memcg)
2785 int memcg_id;
2787 if (cgroup_memory_nokmem)
2788 return 0;
2790 BUG_ON(memcg->kmemcg_id >= 0);
2791 BUG_ON(memcg->kmem_state);
2793 memcg_id = memcg_alloc_cache_id();
2794 if (memcg_id < 0)
2795 return memcg_id;
2797 static_branch_inc(&memcg_kmem_enabled_key);
2799 * A memory cgroup is considered kmem-online as soon as it gets
2800 * kmemcg_id. Setting the id after enabling static branching will
2801 * guarantee no one starts accounting before all call sites are
2802 * patched.
2804 memcg->kmemcg_id = memcg_id;
2805 memcg->kmem_state = KMEM_ONLINE;
2806 INIT_LIST_HEAD(&memcg->kmem_caches);
2808 return 0;
2811 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2813 struct cgroup_subsys_state *css;
2814 struct mem_cgroup *parent, *child;
2815 int kmemcg_id;
2817 if (memcg->kmem_state != KMEM_ONLINE)
2818 return;
2820 * Clear the online state before clearing memcg_caches array
2821 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2822 * guarantees that no cache will be created for this cgroup
2823 * after we are done (see memcg_create_kmem_cache()).
2825 memcg->kmem_state = KMEM_ALLOCATED;
2827 memcg_deactivate_kmem_caches(memcg);
2829 kmemcg_id = memcg->kmemcg_id;
2830 BUG_ON(kmemcg_id < 0);
2832 parent = parent_mem_cgroup(memcg);
2833 if (!parent)
2834 parent = root_mem_cgroup;
2837 * Change kmemcg_id of this cgroup and all its descendants to the
2838 * parent's id, and then move all entries from this cgroup's list_lrus
2839 * to ones of the parent. After we have finished, all list_lrus
2840 * corresponding to this cgroup are guaranteed to remain empty. The
2841 * ordering is imposed by list_lru_node->lock taken by
2842 * memcg_drain_all_list_lrus().
2844 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2845 css_for_each_descendant_pre(css, &memcg->css) {
2846 child = mem_cgroup_from_css(css);
2847 BUG_ON(child->kmemcg_id != kmemcg_id);
2848 child->kmemcg_id = parent->kmemcg_id;
2849 if (!memcg->use_hierarchy)
2850 break;
2852 rcu_read_unlock();
2854 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2856 memcg_free_cache_id(kmemcg_id);
2859 static void memcg_free_kmem(struct mem_cgroup *memcg)
2861 /* css_alloc() failed, offlining didn't happen */
2862 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2863 memcg_offline_kmem(memcg);
2865 if (memcg->kmem_state == KMEM_ALLOCATED) {
2866 memcg_destroy_kmem_caches(memcg);
2867 static_branch_dec(&memcg_kmem_enabled_key);
2868 WARN_ON(page_counter_read(&memcg->kmem));
2871 #else
2872 static int memcg_online_kmem(struct mem_cgroup *memcg)
2874 return 0;
2876 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2879 static void memcg_free_kmem(struct mem_cgroup *memcg)
2882 #endif /* !CONFIG_SLOB */
2884 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2885 unsigned long max)
2887 int ret;
2889 mutex_lock(&memcg_max_mutex);
2890 ret = page_counter_set_max(&memcg->kmem, max);
2891 mutex_unlock(&memcg_max_mutex);
2892 return ret;
2895 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2897 int ret;
2899 mutex_lock(&memcg_max_mutex);
2901 ret = page_counter_set_max(&memcg->tcpmem, max);
2902 if (ret)
2903 goto out;
2905 if (!memcg->tcpmem_active) {
2907 * The active flag needs to be written after the static_key
2908 * update. This is what guarantees that the socket activation
2909 * function is the last one to run. See mem_cgroup_sk_alloc()
2910 * for details, and note that we don't mark any socket as
2911 * belonging to this memcg until that flag is up.
2913 * We need to do this, because static_keys will span multiple
2914 * sites, but we can't control their order. If we mark a socket
2915 * as accounted, but the accounting functions are not patched in
2916 * yet, we'll lose accounting.
2918 * We never race with the readers in mem_cgroup_sk_alloc(),
2919 * because when this value change, the code to process it is not
2920 * patched in yet.
2922 static_branch_inc(&memcg_sockets_enabled_key);
2923 memcg->tcpmem_active = true;
2925 out:
2926 mutex_unlock(&memcg_max_mutex);
2927 return ret;
2931 * The user of this function is...
2932 * RES_LIMIT.
2934 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2935 char *buf, size_t nbytes, loff_t off)
2937 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2938 unsigned long nr_pages;
2939 int ret;
2941 buf = strstrip(buf);
2942 ret = page_counter_memparse(buf, "-1", &nr_pages);
2943 if (ret)
2944 return ret;
2946 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2947 case RES_LIMIT:
2948 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2949 ret = -EINVAL;
2950 break;
2952 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2953 case _MEM:
2954 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2955 break;
2956 case _MEMSWAP:
2957 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2958 break;
2959 case _KMEM:
2960 ret = memcg_update_kmem_max(memcg, nr_pages);
2961 break;
2962 case _TCP:
2963 ret = memcg_update_tcp_max(memcg, nr_pages);
2964 break;
2966 break;
2967 case RES_SOFT_LIMIT:
2968 memcg->soft_limit = nr_pages;
2969 ret = 0;
2970 break;
2972 return ret ?: nbytes;
2975 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2976 size_t nbytes, loff_t off)
2978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2979 struct page_counter *counter;
2981 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2982 case _MEM:
2983 counter = &memcg->memory;
2984 break;
2985 case _MEMSWAP:
2986 counter = &memcg->memsw;
2987 break;
2988 case _KMEM:
2989 counter = &memcg->kmem;
2990 break;
2991 case _TCP:
2992 counter = &memcg->tcpmem;
2993 break;
2994 default:
2995 BUG();
2998 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999 case RES_MAX_USAGE:
3000 page_counter_reset_watermark(counter);
3001 break;
3002 case RES_FAILCNT:
3003 counter->failcnt = 0;
3004 break;
3005 default:
3006 BUG();
3009 return nbytes;
3012 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3013 struct cftype *cft)
3015 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3018 #ifdef CONFIG_MMU
3019 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3020 struct cftype *cft, u64 val)
3022 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3024 if (val & ~MOVE_MASK)
3025 return -EINVAL;
3028 * No kind of locking is needed in here, because ->can_attach() will
3029 * check this value once in the beginning of the process, and then carry
3030 * on with stale data. This means that changes to this value will only
3031 * affect task migrations starting after the change.
3033 memcg->move_charge_at_immigrate = val;
3034 return 0;
3036 #else
3037 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3038 struct cftype *cft, u64 val)
3040 return -ENOSYS;
3042 #endif
3044 #ifdef CONFIG_NUMA
3045 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3047 struct numa_stat {
3048 const char *name;
3049 unsigned int lru_mask;
3052 static const struct numa_stat stats[] = {
3053 { "total", LRU_ALL },
3054 { "file", LRU_ALL_FILE },
3055 { "anon", LRU_ALL_ANON },
3056 { "unevictable", BIT(LRU_UNEVICTABLE) },
3058 const struct numa_stat *stat;
3059 int nid;
3060 unsigned long nr;
3061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3063 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3064 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3065 seq_printf(m, "%s=%lu", stat->name, nr);
3066 for_each_node_state(nid, N_MEMORY) {
3067 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3068 stat->lru_mask);
3069 seq_printf(m, " N%d=%lu", nid, nr);
3071 seq_putc(m, '\n');
3074 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3075 struct mem_cgroup *iter;
3077 nr = 0;
3078 for_each_mem_cgroup_tree(iter, memcg)
3079 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3080 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3081 for_each_node_state(nid, N_MEMORY) {
3082 nr = 0;
3083 for_each_mem_cgroup_tree(iter, memcg)
3084 nr += mem_cgroup_node_nr_lru_pages(
3085 iter, nid, stat->lru_mask);
3086 seq_printf(m, " N%d=%lu", nid, nr);
3088 seq_putc(m, '\n');
3091 return 0;
3093 #endif /* CONFIG_NUMA */
3095 /* Universal VM events cgroup1 shows, original sort order */
3096 static const unsigned int memcg1_events[] = {
3097 PGPGIN,
3098 PGPGOUT,
3099 PGFAULT,
3100 PGMAJFAULT,
3103 static const char *const memcg1_event_names[] = {
3104 "pgpgin",
3105 "pgpgout",
3106 "pgfault",
3107 "pgmajfault",
3110 static int memcg_stat_show(struct seq_file *m, void *v)
3112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3113 unsigned long memory, memsw;
3114 struct mem_cgroup *mi;
3115 unsigned int i;
3117 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3118 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3120 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3121 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3122 continue;
3123 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3124 memcg_page_state(memcg, memcg1_stats[i]) *
3125 PAGE_SIZE);
3128 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3129 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3130 memcg_sum_events(memcg, memcg1_events[i]));
3132 for (i = 0; i < NR_LRU_LISTS; i++)
3133 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3134 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3136 /* Hierarchical information */
3137 memory = memsw = PAGE_COUNTER_MAX;
3138 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3139 memory = min(memory, mi->memory.max);
3140 memsw = min(memsw, mi->memsw.max);
3142 seq_printf(m, "hierarchical_memory_limit %llu\n",
3143 (u64)memory * PAGE_SIZE);
3144 if (do_memsw_account())
3145 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3146 (u64)memsw * PAGE_SIZE);
3148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3149 unsigned long long val = 0;
3151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3152 continue;
3153 for_each_mem_cgroup_tree(mi, memcg)
3154 val += memcg_page_state(mi, memcg1_stats[i]) *
3155 PAGE_SIZE;
3156 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3159 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3160 unsigned long long val = 0;
3162 for_each_mem_cgroup_tree(mi, memcg)
3163 val += memcg_sum_events(mi, memcg1_events[i]);
3164 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3167 for (i = 0; i < NR_LRU_LISTS; i++) {
3168 unsigned long long val = 0;
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3175 #ifdef CONFIG_DEBUG_VM
3177 pg_data_t *pgdat;
3178 struct mem_cgroup_per_node *mz;
3179 struct zone_reclaim_stat *rstat;
3180 unsigned long recent_rotated[2] = {0, 0};
3181 unsigned long recent_scanned[2] = {0, 0};
3183 for_each_online_pgdat(pgdat) {
3184 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3185 rstat = &mz->lruvec.reclaim_stat;
3187 recent_rotated[0] += rstat->recent_rotated[0];
3188 recent_rotated[1] += rstat->recent_rotated[1];
3189 recent_scanned[0] += rstat->recent_scanned[0];
3190 recent_scanned[1] += rstat->recent_scanned[1];
3192 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3193 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3194 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3195 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3197 #endif
3199 return 0;
3202 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3203 struct cftype *cft)
3205 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3207 return mem_cgroup_swappiness(memcg);
3210 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3211 struct cftype *cft, u64 val)
3213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3215 if (val > 100)
3216 return -EINVAL;
3218 if (css->parent)
3219 memcg->swappiness = val;
3220 else
3221 vm_swappiness = val;
3223 return 0;
3226 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3228 struct mem_cgroup_threshold_ary *t;
3229 unsigned long usage;
3230 int i;
3232 rcu_read_lock();
3233 if (!swap)
3234 t = rcu_dereference(memcg->thresholds.primary);
3235 else
3236 t = rcu_dereference(memcg->memsw_thresholds.primary);
3238 if (!t)
3239 goto unlock;
3241 usage = mem_cgroup_usage(memcg, swap);
3244 * current_threshold points to threshold just below or equal to usage.
3245 * If it's not true, a threshold was crossed after last
3246 * call of __mem_cgroup_threshold().
3248 i = t->current_threshold;
3251 * Iterate backward over array of thresholds starting from
3252 * current_threshold and check if a threshold is crossed.
3253 * If none of thresholds below usage is crossed, we read
3254 * only one element of the array here.
3256 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3257 eventfd_signal(t->entries[i].eventfd, 1);
3259 /* i = current_threshold + 1 */
3260 i++;
3263 * Iterate forward over array of thresholds starting from
3264 * current_threshold+1 and check if a threshold is crossed.
3265 * If none of thresholds above usage is crossed, we read
3266 * only one element of the array here.
3268 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3269 eventfd_signal(t->entries[i].eventfd, 1);
3271 /* Update current_threshold */
3272 t->current_threshold = i - 1;
3273 unlock:
3274 rcu_read_unlock();
3277 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3279 while (memcg) {
3280 __mem_cgroup_threshold(memcg, false);
3281 if (do_memsw_account())
3282 __mem_cgroup_threshold(memcg, true);
3284 memcg = parent_mem_cgroup(memcg);
3288 static int compare_thresholds(const void *a, const void *b)
3290 const struct mem_cgroup_threshold *_a = a;
3291 const struct mem_cgroup_threshold *_b = b;
3293 if (_a->threshold > _b->threshold)
3294 return 1;
3296 if (_a->threshold < _b->threshold)
3297 return -1;
3299 return 0;
3302 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3304 struct mem_cgroup_eventfd_list *ev;
3306 spin_lock(&memcg_oom_lock);
3308 list_for_each_entry(ev, &memcg->oom_notify, list)
3309 eventfd_signal(ev->eventfd, 1);
3311 spin_unlock(&memcg_oom_lock);
3312 return 0;
3315 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3317 struct mem_cgroup *iter;
3319 for_each_mem_cgroup_tree(iter, memcg)
3320 mem_cgroup_oom_notify_cb(iter);
3323 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3324 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3326 struct mem_cgroup_thresholds *thresholds;
3327 struct mem_cgroup_threshold_ary *new;
3328 unsigned long threshold;
3329 unsigned long usage;
3330 int i, size, ret;
3332 ret = page_counter_memparse(args, "-1", &threshold);
3333 if (ret)
3334 return ret;
3336 mutex_lock(&memcg->thresholds_lock);
3338 if (type == _MEM) {
3339 thresholds = &memcg->thresholds;
3340 usage = mem_cgroup_usage(memcg, false);
3341 } else if (type == _MEMSWAP) {
3342 thresholds = &memcg->memsw_thresholds;
3343 usage = mem_cgroup_usage(memcg, true);
3344 } else
3345 BUG();
3347 /* Check if a threshold crossed before adding a new one */
3348 if (thresholds->primary)
3349 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3351 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3353 /* Allocate memory for new array of thresholds */
3354 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3355 GFP_KERNEL);
3356 if (!new) {
3357 ret = -ENOMEM;
3358 goto unlock;
3360 new->size = size;
3362 /* Copy thresholds (if any) to new array */
3363 if (thresholds->primary) {
3364 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3365 sizeof(struct mem_cgroup_threshold));
3368 /* Add new threshold */
3369 new->entries[size - 1].eventfd = eventfd;
3370 new->entries[size - 1].threshold = threshold;
3372 /* Sort thresholds. Registering of new threshold isn't time-critical */
3373 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3374 compare_thresholds, NULL);
3376 /* Find current threshold */
3377 new->current_threshold = -1;
3378 for (i = 0; i < size; i++) {
3379 if (new->entries[i].threshold <= usage) {
3381 * new->current_threshold will not be used until
3382 * rcu_assign_pointer(), so it's safe to increment
3383 * it here.
3385 ++new->current_threshold;
3386 } else
3387 break;
3390 /* Free old spare buffer and save old primary buffer as spare */
3391 kfree(thresholds->spare);
3392 thresholds->spare = thresholds->primary;
3394 rcu_assign_pointer(thresholds->primary, new);
3396 /* To be sure that nobody uses thresholds */
3397 synchronize_rcu();
3399 unlock:
3400 mutex_unlock(&memcg->thresholds_lock);
3402 return ret;
3405 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3406 struct eventfd_ctx *eventfd, const char *args)
3408 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3411 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3412 struct eventfd_ctx *eventfd, const char *args)
3414 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3418 struct eventfd_ctx *eventfd, enum res_type type)
3420 struct mem_cgroup_thresholds *thresholds;
3421 struct mem_cgroup_threshold_ary *new;
3422 unsigned long usage;
3423 int i, j, size;
3425 mutex_lock(&memcg->thresholds_lock);
3427 if (type == _MEM) {
3428 thresholds = &memcg->thresholds;
3429 usage = mem_cgroup_usage(memcg, false);
3430 } else if (type == _MEMSWAP) {
3431 thresholds = &memcg->memsw_thresholds;
3432 usage = mem_cgroup_usage(memcg, true);
3433 } else
3434 BUG();
3436 if (!thresholds->primary)
3437 goto unlock;
3439 /* Check if a threshold crossed before removing */
3440 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3442 /* Calculate new number of threshold */
3443 size = 0;
3444 for (i = 0; i < thresholds->primary->size; i++) {
3445 if (thresholds->primary->entries[i].eventfd != eventfd)
3446 size++;
3449 new = thresholds->spare;
3451 /* Set thresholds array to NULL if we don't have thresholds */
3452 if (!size) {
3453 kfree(new);
3454 new = NULL;
3455 goto swap_buffers;
3458 new->size = size;
3460 /* Copy thresholds and find current threshold */
3461 new->current_threshold = -1;
3462 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd == eventfd)
3464 continue;
3466 new->entries[j] = thresholds->primary->entries[i];
3467 if (new->entries[j].threshold <= usage) {
3469 * new->current_threshold will not be used
3470 * until rcu_assign_pointer(), so it's safe to increment
3471 * it here.
3473 ++new->current_threshold;
3475 j++;
3478 swap_buffers:
3479 /* Swap primary and spare array */
3480 thresholds->spare = thresholds->primary;
3482 rcu_assign_pointer(thresholds->primary, new);
3484 /* To be sure that nobody uses thresholds */
3485 synchronize_rcu();
3487 /* If all events are unregistered, free the spare array */
3488 if (!new) {
3489 kfree(thresholds->spare);
3490 thresholds->spare = NULL;
3492 unlock:
3493 mutex_unlock(&memcg->thresholds_lock);
3496 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3497 struct eventfd_ctx *eventfd)
3499 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3502 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3503 struct eventfd_ctx *eventfd)
3505 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3508 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3509 struct eventfd_ctx *eventfd, const char *args)
3511 struct mem_cgroup_eventfd_list *event;
3513 event = kmalloc(sizeof(*event), GFP_KERNEL);
3514 if (!event)
3515 return -ENOMEM;
3517 spin_lock(&memcg_oom_lock);
3519 event->eventfd = eventfd;
3520 list_add(&event->list, &memcg->oom_notify);
3522 /* already in OOM ? */
3523 if (memcg->under_oom)
3524 eventfd_signal(eventfd, 1);
3525 spin_unlock(&memcg_oom_lock);
3527 return 0;
3530 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3531 struct eventfd_ctx *eventfd)
3533 struct mem_cgroup_eventfd_list *ev, *tmp;
3535 spin_lock(&memcg_oom_lock);
3537 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3538 if (ev->eventfd == eventfd) {
3539 list_del(&ev->list);
3540 kfree(ev);
3544 spin_unlock(&memcg_oom_lock);
3547 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3549 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3551 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3552 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3553 seq_printf(sf, "oom_kill %lu\n",
3554 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3555 return 0;
3558 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3559 struct cftype *cft, u64 val)
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3563 /* cannot set to root cgroup and only 0 and 1 are allowed */
3564 if (!css->parent || !((val == 0) || (val == 1)))
3565 return -EINVAL;
3567 memcg->oom_kill_disable = val;
3568 if (!val)
3569 memcg_oom_recover(memcg);
3571 return 0;
3574 #ifdef CONFIG_CGROUP_WRITEBACK
3576 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3578 return wb_domain_init(&memcg->cgwb_domain, gfp);
3581 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3583 wb_domain_exit(&memcg->cgwb_domain);
3586 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3588 wb_domain_size_changed(&memcg->cgwb_domain);
3591 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3595 if (!memcg->css.parent)
3596 return NULL;
3598 return &memcg->cgwb_domain;
3602 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3603 * @wb: bdi_writeback in question
3604 * @pfilepages: out parameter for number of file pages
3605 * @pheadroom: out parameter for number of allocatable pages according to memcg
3606 * @pdirty: out parameter for number of dirty pages
3607 * @pwriteback: out parameter for number of pages under writeback
3609 * Determine the numbers of file, headroom, dirty, and writeback pages in
3610 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3611 * is a bit more involved.
3613 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3614 * headroom is calculated as the lowest headroom of itself and the
3615 * ancestors. Note that this doesn't consider the actual amount of
3616 * available memory in the system. The caller should further cap
3617 * *@pheadroom accordingly.
3619 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3620 unsigned long *pheadroom, unsigned long *pdirty,
3621 unsigned long *pwriteback)
3623 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3624 struct mem_cgroup *parent;
3626 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3628 /* this should eventually include NR_UNSTABLE_NFS */
3629 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3630 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3631 (1 << LRU_ACTIVE_FILE));
3632 *pheadroom = PAGE_COUNTER_MAX;
3634 while ((parent = parent_mem_cgroup(memcg))) {
3635 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3636 unsigned long used = page_counter_read(&memcg->memory);
3638 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3639 memcg = parent;
3643 #else /* CONFIG_CGROUP_WRITEBACK */
3645 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3647 return 0;
3650 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3654 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3658 #endif /* CONFIG_CGROUP_WRITEBACK */
3661 * DO NOT USE IN NEW FILES.
3663 * "cgroup.event_control" implementation.
3665 * This is way over-engineered. It tries to support fully configurable
3666 * events for each user. Such level of flexibility is completely
3667 * unnecessary especially in the light of the planned unified hierarchy.
3669 * Please deprecate this and replace with something simpler if at all
3670 * possible.
3674 * Unregister event and free resources.
3676 * Gets called from workqueue.
3678 static void memcg_event_remove(struct work_struct *work)
3680 struct mem_cgroup_event *event =
3681 container_of(work, struct mem_cgroup_event, remove);
3682 struct mem_cgroup *memcg = event->memcg;
3684 remove_wait_queue(event->wqh, &event->wait);
3686 event->unregister_event(memcg, event->eventfd);
3688 /* Notify userspace the event is going away. */
3689 eventfd_signal(event->eventfd, 1);
3691 eventfd_ctx_put(event->eventfd);
3692 kfree(event);
3693 css_put(&memcg->css);
3697 * Gets called on EPOLLHUP on eventfd when user closes it.
3699 * Called with wqh->lock held and interrupts disabled.
3701 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3702 int sync, void *key)
3704 struct mem_cgroup_event *event =
3705 container_of(wait, struct mem_cgroup_event, wait);
3706 struct mem_cgroup *memcg = event->memcg;
3707 __poll_t flags = key_to_poll(key);
3709 if (flags & EPOLLHUP) {
3711 * If the event has been detached at cgroup removal, we
3712 * can simply return knowing the other side will cleanup
3713 * for us.
3715 * We can't race against event freeing since the other
3716 * side will require wqh->lock via remove_wait_queue(),
3717 * which we hold.
3719 spin_lock(&memcg->event_list_lock);
3720 if (!list_empty(&event->list)) {
3721 list_del_init(&event->list);
3723 * We are in atomic context, but cgroup_event_remove()
3724 * may sleep, so we have to call it in workqueue.
3726 schedule_work(&event->remove);
3728 spin_unlock(&memcg->event_list_lock);
3731 return 0;
3734 static void memcg_event_ptable_queue_proc(struct file *file,
3735 wait_queue_head_t *wqh, poll_table *pt)
3737 struct mem_cgroup_event *event =
3738 container_of(pt, struct mem_cgroup_event, pt);
3740 event->wqh = wqh;
3741 add_wait_queue(wqh, &event->wait);
3745 * DO NOT USE IN NEW FILES.
3747 * Parse input and register new cgroup event handler.
3749 * Input must be in format '<event_fd> <control_fd> <args>'.
3750 * Interpretation of args is defined by control file implementation.
3752 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3753 char *buf, size_t nbytes, loff_t off)
3755 struct cgroup_subsys_state *css = of_css(of);
3756 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3757 struct mem_cgroup_event *event;
3758 struct cgroup_subsys_state *cfile_css;
3759 unsigned int efd, cfd;
3760 struct fd efile;
3761 struct fd cfile;
3762 const char *name;
3763 char *endp;
3764 int ret;
3766 buf = strstrip(buf);
3768 efd = simple_strtoul(buf, &endp, 10);
3769 if (*endp != ' ')
3770 return -EINVAL;
3771 buf = endp + 1;
3773 cfd = simple_strtoul(buf, &endp, 10);
3774 if ((*endp != ' ') && (*endp != '\0'))
3775 return -EINVAL;
3776 buf = endp + 1;
3778 event = kzalloc(sizeof(*event), GFP_KERNEL);
3779 if (!event)
3780 return -ENOMEM;
3782 event->memcg = memcg;
3783 INIT_LIST_HEAD(&event->list);
3784 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3785 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3786 INIT_WORK(&event->remove, memcg_event_remove);
3788 efile = fdget(efd);
3789 if (!efile.file) {
3790 ret = -EBADF;
3791 goto out_kfree;
3794 event->eventfd = eventfd_ctx_fileget(efile.file);
3795 if (IS_ERR(event->eventfd)) {
3796 ret = PTR_ERR(event->eventfd);
3797 goto out_put_efile;
3800 cfile = fdget(cfd);
3801 if (!cfile.file) {
3802 ret = -EBADF;
3803 goto out_put_eventfd;
3806 /* the process need read permission on control file */
3807 /* AV: shouldn't we check that it's been opened for read instead? */
3808 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3809 if (ret < 0)
3810 goto out_put_cfile;
3813 * Determine the event callbacks and set them in @event. This used
3814 * to be done via struct cftype but cgroup core no longer knows
3815 * about these events. The following is crude but the whole thing
3816 * is for compatibility anyway.
3818 * DO NOT ADD NEW FILES.
3820 name = cfile.file->f_path.dentry->d_name.name;
3822 if (!strcmp(name, "memory.usage_in_bytes")) {
3823 event->register_event = mem_cgroup_usage_register_event;
3824 event->unregister_event = mem_cgroup_usage_unregister_event;
3825 } else if (!strcmp(name, "memory.oom_control")) {
3826 event->register_event = mem_cgroup_oom_register_event;
3827 event->unregister_event = mem_cgroup_oom_unregister_event;
3828 } else if (!strcmp(name, "memory.pressure_level")) {
3829 event->register_event = vmpressure_register_event;
3830 event->unregister_event = vmpressure_unregister_event;
3831 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3832 event->register_event = memsw_cgroup_usage_register_event;
3833 event->unregister_event = memsw_cgroup_usage_unregister_event;
3834 } else {
3835 ret = -EINVAL;
3836 goto out_put_cfile;
3840 * Verify @cfile should belong to @css. Also, remaining events are
3841 * automatically removed on cgroup destruction but the removal is
3842 * asynchronous, so take an extra ref on @css.
3844 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3845 &memory_cgrp_subsys);
3846 ret = -EINVAL;
3847 if (IS_ERR(cfile_css))
3848 goto out_put_cfile;
3849 if (cfile_css != css) {
3850 css_put(cfile_css);
3851 goto out_put_cfile;
3854 ret = event->register_event(memcg, event->eventfd, buf);
3855 if (ret)
3856 goto out_put_css;
3858 vfs_poll(efile.file, &event->pt);
3860 spin_lock(&memcg->event_list_lock);
3861 list_add(&event->list, &memcg->event_list);
3862 spin_unlock(&memcg->event_list_lock);
3864 fdput(cfile);
3865 fdput(efile);
3867 return nbytes;
3869 out_put_css:
3870 css_put(css);
3871 out_put_cfile:
3872 fdput(cfile);
3873 out_put_eventfd:
3874 eventfd_ctx_put(event->eventfd);
3875 out_put_efile:
3876 fdput(efile);
3877 out_kfree:
3878 kfree(event);
3880 return ret;
3883 static struct cftype mem_cgroup_legacy_files[] = {
3885 .name = "usage_in_bytes",
3886 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3887 .read_u64 = mem_cgroup_read_u64,
3890 .name = "max_usage_in_bytes",
3891 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3892 .write = mem_cgroup_reset,
3893 .read_u64 = mem_cgroup_read_u64,
3896 .name = "limit_in_bytes",
3897 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3898 .write = mem_cgroup_write,
3899 .read_u64 = mem_cgroup_read_u64,
3902 .name = "soft_limit_in_bytes",
3903 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3904 .write = mem_cgroup_write,
3905 .read_u64 = mem_cgroup_read_u64,
3908 .name = "failcnt",
3909 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3910 .write = mem_cgroup_reset,
3911 .read_u64 = mem_cgroup_read_u64,
3914 .name = "stat",
3915 .seq_show = memcg_stat_show,
3918 .name = "force_empty",
3919 .write = mem_cgroup_force_empty_write,
3922 .name = "use_hierarchy",
3923 .write_u64 = mem_cgroup_hierarchy_write,
3924 .read_u64 = mem_cgroup_hierarchy_read,
3927 .name = "cgroup.event_control", /* XXX: for compat */
3928 .write = memcg_write_event_control,
3929 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3932 .name = "swappiness",
3933 .read_u64 = mem_cgroup_swappiness_read,
3934 .write_u64 = mem_cgroup_swappiness_write,
3937 .name = "move_charge_at_immigrate",
3938 .read_u64 = mem_cgroup_move_charge_read,
3939 .write_u64 = mem_cgroup_move_charge_write,
3942 .name = "oom_control",
3943 .seq_show = mem_cgroup_oom_control_read,
3944 .write_u64 = mem_cgroup_oom_control_write,
3945 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3948 .name = "pressure_level",
3950 #ifdef CONFIG_NUMA
3952 .name = "numa_stat",
3953 .seq_show = memcg_numa_stat_show,
3955 #endif
3957 .name = "kmem.limit_in_bytes",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3959 .write = mem_cgroup_write,
3960 .read_u64 = mem_cgroup_read_u64,
3963 .name = "kmem.usage_in_bytes",
3964 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3965 .read_u64 = mem_cgroup_read_u64,
3968 .name = "kmem.failcnt",
3969 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3970 .write = mem_cgroup_reset,
3971 .read_u64 = mem_cgroup_read_u64,
3974 .name = "kmem.max_usage_in_bytes",
3975 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3976 .write = mem_cgroup_reset,
3977 .read_u64 = mem_cgroup_read_u64,
3979 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3981 .name = "kmem.slabinfo",
3982 .seq_start = memcg_slab_start,
3983 .seq_next = memcg_slab_next,
3984 .seq_stop = memcg_slab_stop,
3985 .seq_show = memcg_slab_show,
3987 #endif
3989 .name = "kmem.tcp.limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3991 .write = mem_cgroup_write,
3992 .read_u64 = mem_cgroup_read_u64,
3995 .name = "kmem.tcp.usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3997 .read_u64 = mem_cgroup_read_u64,
4000 .name = "kmem.tcp.failcnt",
4001 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4006 .name = "kmem.tcp.max_usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4008 .write = mem_cgroup_reset,
4009 .read_u64 = mem_cgroup_read_u64,
4011 { }, /* terminate */
4015 * Private memory cgroup IDR
4017 * Swap-out records and page cache shadow entries need to store memcg
4018 * references in constrained space, so we maintain an ID space that is
4019 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4020 * memory-controlled cgroups to 64k.
4022 * However, there usually are many references to the oflline CSS after
4023 * the cgroup has been destroyed, such as page cache or reclaimable
4024 * slab objects, that don't need to hang on to the ID. We want to keep
4025 * those dead CSS from occupying IDs, or we might quickly exhaust the
4026 * relatively small ID space and prevent the creation of new cgroups
4027 * even when there are much fewer than 64k cgroups - possibly none.
4029 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4030 * be freed and recycled when it's no longer needed, which is usually
4031 * when the CSS is offlined.
4033 * The only exception to that are records of swapped out tmpfs/shmem
4034 * pages that need to be attributed to live ancestors on swapin. But
4035 * those references are manageable from userspace.
4038 static DEFINE_IDR(mem_cgroup_idr);
4040 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4042 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4043 atomic_add(n, &memcg->id.ref);
4046 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4048 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4049 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4050 idr_remove(&mem_cgroup_idr, memcg->id.id);
4051 memcg->id.id = 0;
4053 /* Memcg ID pins CSS */
4054 css_put(&memcg->css);
4058 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4060 mem_cgroup_id_get_many(memcg, 1);
4063 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4065 mem_cgroup_id_put_many(memcg, 1);
4069 * mem_cgroup_from_id - look up a memcg from a memcg id
4070 * @id: the memcg id to look up
4072 * Caller must hold rcu_read_lock().
4074 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4076 WARN_ON_ONCE(!rcu_read_lock_held());
4077 return idr_find(&mem_cgroup_idr, id);
4080 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4082 struct mem_cgroup_per_node *pn;
4083 int tmp = node;
4085 * This routine is called against possible nodes.
4086 * But it's BUG to call kmalloc() against offline node.
4088 * TODO: this routine can waste much memory for nodes which will
4089 * never be onlined. It's better to use memory hotplug callback
4090 * function.
4092 if (!node_state(node, N_NORMAL_MEMORY))
4093 tmp = -1;
4094 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4095 if (!pn)
4096 return 1;
4098 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4099 if (!pn->lruvec_stat_cpu) {
4100 kfree(pn);
4101 return 1;
4104 lruvec_init(&pn->lruvec);
4105 pn->usage_in_excess = 0;
4106 pn->on_tree = false;
4107 pn->memcg = memcg;
4109 memcg->nodeinfo[node] = pn;
4110 return 0;
4113 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4115 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4117 if (!pn)
4118 return;
4120 free_percpu(pn->lruvec_stat_cpu);
4121 kfree(pn);
4124 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4126 int node;
4128 for_each_node(node)
4129 free_mem_cgroup_per_node_info(memcg, node);
4130 free_percpu(memcg->stat_cpu);
4131 kfree(memcg);
4134 static void mem_cgroup_free(struct mem_cgroup *memcg)
4136 memcg_wb_domain_exit(memcg);
4137 __mem_cgroup_free(memcg);
4140 static struct mem_cgroup *mem_cgroup_alloc(void)
4142 struct mem_cgroup *memcg;
4143 size_t size;
4144 int node;
4146 size = sizeof(struct mem_cgroup);
4147 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4149 memcg = kzalloc(size, GFP_KERNEL);
4150 if (!memcg)
4151 return NULL;
4153 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4154 1, MEM_CGROUP_ID_MAX,
4155 GFP_KERNEL);
4156 if (memcg->id.id < 0)
4157 goto fail;
4159 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4160 if (!memcg->stat_cpu)
4161 goto fail;
4163 for_each_node(node)
4164 if (alloc_mem_cgroup_per_node_info(memcg, node))
4165 goto fail;
4167 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4168 goto fail;
4170 INIT_WORK(&memcg->high_work, high_work_func);
4171 memcg->last_scanned_node = MAX_NUMNODES;
4172 INIT_LIST_HEAD(&memcg->oom_notify);
4173 mutex_init(&memcg->thresholds_lock);
4174 spin_lock_init(&memcg->move_lock);
4175 vmpressure_init(&memcg->vmpressure);
4176 INIT_LIST_HEAD(&memcg->event_list);
4177 spin_lock_init(&memcg->event_list_lock);
4178 memcg->socket_pressure = jiffies;
4179 #ifndef CONFIG_SLOB
4180 memcg->kmemcg_id = -1;
4181 #endif
4182 #ifdef CONFIG_CGROUP_WRITEBACK
4183 INIT_LIST_HEAD(&memcg->cgwb_list);
4184 #endif
4185 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4186 return memcg;
4187 fail:
4188 if (memcg->id.id > 0)
4189 idr_remove(&mem_cgroup_idr, memcg->id.id);
4190 __mem_cgroup_free(memcg);
4191 return NULL;
4194 static struct cgroup_subsys_state * __ref
4195 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4197 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4198 struct mem_cgroup *memcg;
4199 long error = -ENOMEM;
4201 memcg = mem_cgroup_alloc();
4202 if (!memcg)
4203 return ERR_PTR(error);
4205 memcg->high = PAGE_COUNTER_MAX;
4206 memcg->soft_limit = PAGE_COUNTER_MAX;
4207 if (parent) {
4208 memcg->swappiness = mem_cgroup_swappiness(parent);
4209 memcg->oom_kill_disable = parent->oom_kill_disable;
4211 if (parent && parent->use_hierarchy) {
4212 memcg->use_hierarchy = true;
4213 page_counter_init(&memcg->memory, &parent->memory);
4214 page_counter_init(&memcg->swap, &parent->swap);
4215 page_counter_init(&memcg->memsw, &parent->memsw);
4216 page_counter_init(&memcg->kmem, &parent->kmem);
4217 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4218 } else {
4219 page_counter_init(&memcg->memory, NULL);
4220 page_counter_init(&memcg->swap, NULL);
4221 page_counter_init(&memcg->memsw, NULL);
4222 page_counter_init(&memcg->kmem, NULL);
4223 page_counter_init(&memcg->tcpmem, NULL);
4225 * Deeper hierachy with use_hierarchy == false doesn't make
4226 * much sense so let cgroup subsystem know about this
4227 * unfortunate state in our controller.
4229 if (parent != root_mem_cgroup)
4230 memory_cgrp_subsys.broken_hierarchy = true;
4233 /* The following stuff does not apply to the root */
4234 if (!parent) {
4235 root_mem_cgroup = memcg;
4236 return &memcg->css;
4239 error = memcg_online_kmem(memcg);
4240 if (error)
4241 goto fail;
4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244 static_branch_inc(&memcg_sockets_enabled_key);
4246 return &memcg->css;
4247 fail:
4248 mem_cgroup_free(memcg);
4249 return ERR_PTR(-ENOMEM);
4252 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4254 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4256 /* Online state pins memcg ID, memcg ID pins CSS */
4257 atomic_set(&memcg->id.ref, 1);
4258 css_get(css);
4259 return 0;
4262 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4265 struct mem_cgroup_event *event, *tmp;
4268 * Unregister events and notify userspace.
4269 * Notify userspace about cgroup removing only after rmdir of cgroup
4270 * directory to avoid race between userspace and kernelspace.
4272 spin_lock(&memcg->event_list_lock);
4273 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4274 list_del_init(&event->list);
4275 schedule_work(&event->remove);
4277 spin_unlock(&memcg->event_list_lock);
4279 page_counter_set_min(&memcg->memory, 0);
4280 page_counter_set_low(&memcg->memory, 0);
4282 memcg_offline_kmem(memcg);
4283 wb_memcg_offline(memcg);
4285 mem_cgroup_id_put(memcg);
4288 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4292 invalidate_reclaim_iterators(memcg);
4295 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4300 static_branch_dec(&memcg_sockets_enabled_key);
4302 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4303 static_branch_dec(&memcg_sockets_enabled_key);
4305 vmpressure_cleanup(&memcg->vmpressure);
4306 cancel_work_sync(&memcg->high_work);
4307 mem_cgroup_remove_from_trees(memcg);
4308 memcg_free_kmem(memcg);
4309 mem_cgroup_free(memcg);
4313 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4314 * @css: the target css
4316 * Reset the states of the mem_cgroup associated with @css. This is
4317 * invoked when the userland requests disabling on the default hierarchy
4318 * but the memcg is pinned through dependency. The memcg should stop
4319 * applying policies and should revert to the vanilla state as it may be
4320 * made visible again.
4322 * The current implementation only resets the essential configurations.
4323 * This needs to be expanded to cover all the visible parts.
4325 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4329 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4330 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4331 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4332 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4333 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4334 page_counter_set_min(&memcg->memory, 0);
4335 page_counter_set_low(&memcg->memory, 0);
4336 memcg->high = PAGE_COUNTER_MAX;
4337 memcg->soft_limit = PAGE_COUNTER_MAX;
4338 memcg_wb_domain_size_changed(memcg);
4341 #ifdef CONFIG_MMU
4342 /* Handlers for move charge at task migration. */
4343 static int mem_cgroup_do_precharge(unsigned long count)
4345 int ret;
4347 /* Try a single bulk charge without reclaim first, kswapd may wake */
4348 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4349 if (!ret) {
4350 mc.precharge += count;
4351 return ret;
4354 /* Try charges one by one with reclaim, but do not retry */
4355 while (count--) {
4356 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4357 if (ret)
4358 return ret;
4359 mc.precharge++;
4360 cond_resched();
4362 return 0;
4365 union mc_target {
4366 struct page *page;
4367 swp_entry_t ent;
4370 enum mc_target_type {
4371 MC_TARGET_NONE = 0,
4372 MC_TARGET_PAGE,
4373 MC_TARGET_SWAP,
4374 MC_TARGET_DEVICE,
4377 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4378 unsigned long addr, pte_t ptent)
4380 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4382 if (!page || !page_mapped(page))
4383 return NULL;
4384 if (PageAnon(page)) {
4385 if (!(mc.flags & MOVE_ANON))
4386 return NULL;
4387 } else {
4388 if (!(mc.flags & MOVE_FILE))
4389 return NULL;
4391 if (!get_page_unless_zero(page))
4392 return NULL;
4394 return page;
4397 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4398 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4399 pte_t ptent, swp_entry_t *entry)
4401 struct page *page = NULL;
4402 swp_entry_t ent = pte_to_swp_entry(ptent);
4404 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4405 return NULL;
4408 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4409 * a device and because they are not accessible by CPU they are store
4410 * as special swap entry in the CPU page table.
4412 if (is_device_private_entry(ent)) {
4413 page = device_private_entry_to_page(ent);
4415 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4416 * a refcount of 1 when free (unlike normal page)
4418 if (!page_ref_add_unless(page, 1, 1))
4419 return NULL;
4420 return page;
4424 * Because lookup_swap_cache() updates some statistics counter,
4425 * we call find_get_page() with swapper_space directly.
4427 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4428 if (do_memsw_account())
4429 entry->val = ent.val;
4431 return page;
4433 #else
4434 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4435 pte_t ptent, swp_entry_t *entry)
4437 return NULL;
4439 #endif
4441 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4442 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4444 struct page *page = NULL;
4445 struct address_space *mapping;
4446 pgoff_t pgoff;
4448 if (!vma->vm_file) /* anonymous vma */
4449 return NULL;
4450 if (!(mc.flags & MOVE_FILE))
4451 return NULL;
4453 mapping = vma->vm_file->f_mapping;
4454 pgoff = linear_page_index(vma, addr);
4456 /* page is moved even if it's not RSS of this task(page-faulted). */
4457 #ifdef CONFIG_SWAP
4458 /* shmem/tmpfs may report page out on swap: account for that too. */
4459 if (shmem_mapping(mapping)) {
4460 page = find_get_entry(mapping, pgoff);
4461 if (radix_tree_exceptional_entry(page)) {
4462 swp_entry_t swp = radix_to_swp_entry(page);
4463 if (do_memsw_account())
4464 *entry = swp;
4465 page = find_get_page(swap_address_space(swp),
4466 swp_offset(swp));
4468 } else
4469 page = find_get_page(mapping, pgoff);
4470 #else
4471 page = find_get_page(mapping, pgoff);
4472 #endif
4473 return page;
4477 * mem_cgroup_move_account - move account of the page
4478 * @page: the page
4479 * @compound: charge the page as compound or small page
4480 * @from: mem_cgroup which the page is moved from.
4481 * @to: mem_cgroup which the page is moved to. @from != @to.
4483 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4485 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4486 * from old cgroup.
4488 static int mem_cgroup_move_account(struct page *page,
4489 bool compound,
4490 struct mem_cgroup *from,
4491 struct mem_cgroup *to)
4493 unsigned long flags;
4494 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4495 int ret;
4496 bool anon;
4498 VM_BUG_ON(from == to);
4499 VM_BUG_ON_PAGE(PageLRU(page), page);
4500 VM_BUG_ON(compound && !PageTransHuge(page));
4503 * Prevent mem_cgroup_migrate() from looking at
4504 * page->mem_cgroup of its source page while we change it.
4506 ret = -EBUSY;
4507 if (!trylock_page(page))
4508 goto out;
4510 ret = -EINVAL;
4511 if (page->mem_cgroup != from)
4512 goto out_unlock;
4514 anon = PageAnon(page);
4516 spin_lock_irqsave(&from->move_lock, flags);
4518 if (!anon && page_mapped(page)) {
4519 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4520 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4524 * move_lock grabbed above and caller set from->moving_account, so
4525 * mod_memcg_page_state will serialize updates to PageDirty.
4526 * So mapping should be stable for dirty pages.
4528 if (!anon && PageDirty(page)) {
4529 struct address_space *mapping = page_mapping(page);
4531 if (mapping_cap_account_dirty(mapping)) {
4532 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4533 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4537 if (PageWriteback(page)) {
4538 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4539 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4543 * It is safe to change page->mem_cgroup here because the page
4544 * is referenced, charged, and isolated - we can't race with
4545 * uncharging, charging, migration, or LRU putback.
4548 /* caller should have done css_get */
4549 page->mem_cgroup = to;
4550 spin_unlock_irqrestore(&from->move_lock, flags);
4552 ret = 0;
4554 local_irq_disable();
4555 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4556 memcg_check_events(to, page);
4557 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4558 memcg_check_events(from, page);
4559 local_irq_enable();
4560 out_unlock:
4561 unlock_page(page);
4562 out:
4563 return ret;
4567 * get_mctgt_type - get target type of moving charge
4568 * @vma: the vma the pte to be checked belongs
4569 * @addr: the address corresponding to the pte to be checked
4570 * @ptent: the pte to be checked
4571 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4573 * Returns
4574 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4575 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4576 * move charge. if @target is not NULL, the page is stored in target->page
4577 * with extra refcnt got(Callers should handle it).
4578 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4579 * target for charge migration. if @target is not NULL, the entry is stored
4580 * in target->ent.
4581 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4582 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4583 * For now we such page is charge like a regular page would be as for all
4584 * intent and purposes it is just special memory taking the place of a
4585 * regular page.
4587 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4589 * Called with pte lock held.
4592 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4593 unsigned long addr, pte_t ptent, union mc_target *target)
4595 struct page *page = NULL;
4596 enum mc_target_type ret = MC_TARGET_NONE;
4597 swp_entry_t ent = { .val = 0 };
4599 if (pte_present(ptent))
4600 page = mc_handle_present_pte(vma, addr, ptent);
4601 else if (is_swap_pte(ptent))
4602 page = mc_handle_swap_pte(vma, ptent, &ent);
4603 else if (pte_none(ptent))
4604 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4606 if (!page && !ent.val)
4607 return ret;
4608 if (page) {
4610 * Do only loose check w/o serialization.
4611 * mem_cgroup_move_account() checks the page is valid or
4612 * not under LRU exclusion.
4614 if (page->mem_cgroup == mc.from) {
4615 ret = MC_TARGET_PAGE;
4616 if (is_device_private_page(page) ||
4617 is_device_public_page(page))
4618 ret = MC_TARGET_DEVICE;
4619 if (target)
4620 target->page = page;
4622 if (!ret || !target)
4623 put_page(page);
4626 * There is a swap entry and a page doesn't exist or isn't charged.
4627 * But we cannot move a tail-page in a THP.
4629 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4630 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4631 ret = MC_TARGET_SWAP;
4632 if (target)
4633 target->ent = ent;
4635 return ret;
4638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 * We don't consider PMD mapped swapping or file mapped pages because THP does
4641 * not support them for now.
4642 * Caller should make sure that pmd_trans_huge(pmd) is true.
4644 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4645 unsigned long addr, pmd_t pmd, union mc_target *target)
4647 struct page *page = NULL;
4648 enum mc_target_type ret = MC_TARGET_NONE;
4650 if (unlikely(is_swap_pmd(pmd))) {
4651 VM_BUG_ON(thp_migration_supported() &&
4652 !is_pmd_migration_entry(pmd));
4653 return ret;
4655 page = pmd_page(pmd);
4656 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4657 if (!(mc.flags & MOVE_ANON))
4658 return ret;
4659 if (page->mem_cgroup == mc.from) {
4660 ret = MC_TARGET_PAGE;
4661 if (target) {
4662 get_page(page);
4663 target->page = page;
4666 return ret;
4668 #else
4669 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4670 unsigned long addr, pmd_t pmd, union mc_target *target)
4672 return MC_TARGET_NONE;
4674 #endif
4676 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4677 unsigned long addr, unsigned long end,
4678 struct mm_walk *walk)
4680 struct vm_area_struct *vma = walk->vma;
4681 pte_t *pte;
4682 spinlock_t *ptl;
4684 ptl = pmd_trans_huge_lock(pmd, vma);
4685 if (ptl) {
4687 * Note their can not be MC_TARGET_DEVICE for now as we do not
4688 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4689 * MEMORY_DEVICE_PRIVATE but this might change.
4691 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4692 mc.precharge += HPAGE_PMD_NR;
4693 spin_unlock(ptl);
4694 return 0;
4697 if (pmd_trans_unstable(pmd))
4698 return 0;
4699 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4700 for (; addr != end; pte++, addr += PAGE_SIZE)
4701 if (get_mctgt_type(vma, addr, *pte, NULL))
4702 mc.precharge++; /* increment precharge temporarily */
4703 pte_unmap_unlock(pte - 1, ptl);
4704 cond_resched();
4706 return 0;
4709 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4711 unsigned long precharge;
4713 struct mm_walk mem_cgroup_count_precharge_walk = {
4714 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4715 .mm = mm,
4717 down_read(&mm->mmap_sem);
4718 walk_page_range(0, mm->highest_vm_end,
4719 &mem_cgroup_count_precharge_walk);
4720 up_read(&mm->mmap_sem);
4722 precharge = mc.precharge;
4723 mc.precharge = 0;
4725 return precharge;
4728 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4730 unsigned long precharge = mem_cgroup_count_precharge(mm);
4732 VM_BUG_ON(mc.moving_task);
4733 mc.moving_task = current;
4734 return mem_cgroup_do_precharge(precharge);
4737 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738 static void __mem_cgroup_clear_mc(void)
4740 struct mem_cgroup *from = mc.from;
4741 struct mem_cgroup *to = mc.to;
4743 /* we must uncharge all the leftover precharges from mc.to */
4744 if (mc.precharge) {
4745 cancel_charge(mc.to, mc.precharge);
4746 mc.precharge = 0;
4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 * we must uncharge here.
4752 if (mc.moved_charge) {
4753 cancel_charge(mc.from, mc.moved_charge);
4754 mc.moved_charge = 0;
4756 /* we must fixup refcnts and charges */
4757 if (mc.moved_swap) {
4758 /* uncharge swap account from the old cgroup */
4759 if (!mem_cgroup_is_root(mc.from))
4760 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4762 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4765 * we charged both to->memory and to->memsw, so we
4766 * should uncharge to->memory.
4768 if (!mem_cgroup_is_root(mc.to))
4769 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4771 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4772 css_put_many(&mc.to->css, mc.moved_swap);
4774 mc.moved_swap = 0;
4776 memcg_oom_recover(from);
4777 memcg_oom_recover(to);
4778 wake_up_all(&mc.waitq);
4781 static void mem_cgroup_clear_mc(void)
4783 struct mm_struct *mm = mc.mm;
4786 * we must clear moving_task before waking up waiters at the end of
4787 * task migration.
4789 mc.moving_task = NULL;
4790 __mem_cgroup_clear_mc();
4791 spin_lock(&mc.lock);
4792 mc.from = NULL;
4793 mc.to = NULL;
4794 mc.mm = NULL;
4795 spin_unlock(&mc.lock);
4797 mmput(mm);
4800 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4802 struct cgroup_subsys_state *css;
4803 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4804 struct mem_cgroup *from;
4805 struct task_struct *leader, *p;
4806 struct mm_struct *mm;
4807 unsigned long move_flags;
4808 int ret = 0;
4810 /* charge immigration isn't supported on the default hierarchy */
4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4812 return 0;
4815 * Multi-process migrations only happen on the default hierarchy
4816 * where charge immigration is not used. Perform charge
4817 * immigration if @tset contains a leader and whine if there are
4818 * multiple.
4820 p = NULL;
4821 cgroup_taskset_for_each_leader(leader, css, tset) {
4822 WARN_ON_ONCE(p);
4823 p = leader;
4824 memcg = mem_cgroup_from_css(css);
4826 if (!p)
4827 return 0;
4830 * We are now commited to this value whatever it is. Changes in this
4831 * tunable will only affect upcoming migrations, not the current one.
4832 * So we need to save it, and keep it going.
4834 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4835 if (!move_flags)
4836 return 0;
4838 from = mem_cgroup_from_task(p);
4840 VM_BUG_ON(from == memcg);
4842 mm = get_task_mm(p);
4843 if (!mm)
4844 return 0;
4845 /* We move charges only when we move a owner of the mm */
4846 if (mm->owner == p) {
4847 VM_BUG_ON(mc.from);
4848 VM_BUG_ON(mc.to);
4849 VM_BUG_ON(mc.precharge);
4850 VM_BUG_ON(mc.moved_charge);
4851 VM_BUG_ON(mc.moved_swap);
4853 spin_lock(&mc.lock);
4854 mc.mm = mm;
4855 mc.from = from;
4856 mc.to = memcg;
4857 mc.flags = move_flags;
4858 spin_unlock(&mc.lock);
4859 /* We set mc.moving_task later */
4861 ret = mem_cgroup_precharge_mc(mm);
4862 if (ret)
4863 mem_cgroup_clear_mc();
4864 } else {
4865 mmput(mm);
4867 return ret;
4870 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4872 if (mc.to)
4873 mem_cgroup_clear_mc();
4876 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4877 unsigned long addr, unsigned long end,
4878 struct mm_walk *walk)
4880 int ret = 0;
4881 struct vm_area_struct *vma = walk->vma;
4882 pte_t *pte;
4883 spinlock_t *ptl;
4884 enum mc_target_type target_type;
4885 union mc_target target;
4886 struct page *page;
4888 ptl = pmd_trans_huge_lock(pmd, vma);
4889 if (ptl) {
4890 if (mc.precharge < HPAGE_PMD_NR) {
4891 spin_unlock(ptl);
4892 return 0;
4894 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4895 if (target_type == MC_TARGET_PAGE) {
4896 page = target.page;
4897 if (!isolate_lru_page(page)) {
4898 if (!mem_cgroup_move_account(page, true,
4899 mc.from, mc.to)) {
4900 mc.precharge -= HPAGE_PMD_NR;
4901 mc.moved_charge += HPAGE_PMD_NR;
4903 putback_lru_page(page);
4905 put_page(page);
4906 } else if (target_type == MC_TARGET_DEVICE) {
4907 page = target.page;
4908 if (!mem_cgroup_move_account(page, true,
4909 mc.from, mc.to)) {
4910 mc.precharge -= HPAGE_PMD_NR;
4911 mc.moved_charge += HPAGE_PMD_NR;
4913 put_page(page);
4915 spin_unlock(ptl);
4916 return 0;
4919 if (pmd_trans_unstable(pmd))
4920 return 0;
4921 retry:
4922 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4923 for (; addr != end; addr += PAGE_SIZE) {
4924 pte_t ptent = *(pte++);
4925 bool device = false;
4926 swp_entry_t ent;
4928 if (!mc.precharge)
4929 break;
4931 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4932 case MC_TARGET_DEVICE:
4933 device = true;
4934 /* fall through */
4935 case MC_TARGET_PAGE:
4936 page = target.page;
4938 * We can have a part of the split pmd here. Moving it
4939 * can be done but it would be too convoluted so simply
4940 * ignore such a partial THP and keep it in original
4941 * memcg. There should be somebody mapping the head.
4943 if (PageTransCompound(page))
4944 goto put;
4945 if (!device && isolate_lru_page(page))
4946 goto put;
4947 if (!mem_cgroup_move_account(page, false,
4948 mc.from, mc.to)) {
4949 mc.precharge--;
4950 /* we uncharge from mc.from later. */
4951 mc.moved_charge++;
4953 if (!device)
4954 putback_lru_page(page);
4955 put: /* get_mctgt_type() gets the page */
4956 put_page(page);
4957 break;
4958 case MC_TARGET_SWAP:
4959 ent = target.ent;
4960 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4961 mc.precharge--;
4962 /* we fixup refcnts and charges later. */
4963 mc.moved_swap++;
4965 break;
4966 default:
4967 break;
4970 pte_unmap_unlock(pte - 1, ptl);
4971 cond_resched();
4973 if (addr != end) {
4975 * We have consumed all precharges we got in can_attach().
4976 * We try charge one by one, but don't do any additional
4977 * charges to mc.to if we have failed in charge once in attach()
4978 * phase.
4980 ret = mem_cgroup_do_precharge(1);
4981 if (!ret)
4982 goto retry;
4985 return ret;
4988 static void mem_cgroup_move_charge(void)
4990 struct mm_walk mem_cgroup_move_charge_walk = {
4991 .pmd_entry = mem_cgroup_move_charge_pte_range,
4992 .mm = mc.mm,
4995 lru_add_drain_all();
4997 * Signal lock_page_memcg() to take the memcg's move_lock
4998 * while we're moving its pages to another memcg. Then wait
4999 * for already started RCU-only updates to finish.
5001 atomic_inc(&mc.from->moving_account);
5002 synchronize_rcu();
5003 retry:
5004 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5006 * Someone who are holding the mmap_sem might be waiting in
5007 * waitq. So we cancel all extra charges, wake up all waiters,
5008 * and retry. Because we cancel precharges, we might not be able
5009 * to move enough charges, but moving charge is a best-effort
5010 * feature anyway, so it wouldn't be a big problem.
5012 __mem_cgroup_clear_mc();
5013 cond_resched();
5014 goto retry;
5017 * When we have consumed all precharges and failed in doing
5018 * additional charge, the page walk just aborts.
5020 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5022 up_read(&mc.mm->mmap_sem);
5023 atomic_dec(&mc.from->moving_account);
5026 static void mem_cgroup_move_task(void)
5028 if (mc.to) {
5029 mem_cgroup_move_charge();
5030 mem_cgroup_clear_mc();
5033 #else /* !CONFIG_MMU */
5034 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5036 return 0;
5038 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5041 static void mem_cgroup_move_task(void)
5044 #endif
5047 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5048 * to verify whether we're attached to the default hierarchy on each mount
5049 * attempt.
5051 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5054 * use_hierarchy is forced on the default hierarchy. cgroup core
5055 * guarantees that @root doesn't have any children, so turning it
5056 * on for the root memcg is enough.
5058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5059 root_mem_cgroup->use_hierarchy = true;
5060 else
5061 root_mem_cgroup->use_hierarchy = false;
5064 static u64 memory_current_read(struct cgroup_subsys_state *css,
5065 struct cftype *cft)
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5069 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5072 static int memory_min_show(struct seq_file *m, void *v)
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075 unsigned long min = READ_ONCE(memcg->memory.min);
5077 if (min == PAGE_COUNTER_MAX)
5078 seq_puts(m, "max\n");
5079 else
5080 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5082 return 0;
5085 static ssize_t memory_min_write(struct kernfs_open_file *of,
5086 char *buf, size_t nbytes, loff_t off)
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5089 unsigned long min;
5090 int err;
5092 buf = strstrip(buf);
5093 err = page_counter_memparse(buf, "max", &min);
5094 if (err)
5095 return err;
5097 page_counter_set_min(&memcg->memory, min);
5099 return nbytes;
5102 static int memory_low_show(struct seq_file *m, void *v)
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 unsigned long low = READ_ONCE(memcg->memory.low);
5107 if (low == PAGE_COUNTER_MAX)
5108 seq_puts(m, "max\n");
5109 else
5110 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5112 return 0;
5115 static ssize_t memory_low_write(struct kernfs_open_file *of,
5116 char *buf, size_t nbytes, loff_t off)
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5119 unsigned long low;
5120 int err;
5122 buf = strstrip(buf);
5123 err = page_counter_memparse(buf, "max", &low);
5124 if (err)
5125 return err;
5127 page_counter_set_low(&memcg->memory, low);
5129 return nbytes;
5132 static int memory_high_show(struct seq_file *m, void *v)
5134 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5135 unsigned long high = READ_ONCE(memcg->high);
5137 if (high == PAGE_COUNTER_MAX)
5138 seq_puts(m, "max\n");
5139 else
5140 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5142 return 0;
5145 static ssize_t memory_high_write(struct kernfs_open_file *of,
5146 char *buf, size_t nbytes, loff_t off)
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5149 unsigned long nr_pages;
5150 unsigned long high;
5151 int err;
5153 buf = strstrip(buf);
5154 err = page_counter_memparse(buf, "max", &high);
5155 if (err)
5156 return err;
5158 memcg->high = high;
5160 nr_pages = page_counter_read(&memcg->memory);
5161 if (nr_pages > high)
5162 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5163 GFP_KERNEL, true);
5165 memcg_wb_domain_size_changed(memcg);
5166 return nbytes;
5169 static int memory_max_show(struct seq_file *m, void *v)
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 unsigned long max = READ_ONCE(memcg->memory.max);
5174 if (max == PAGE_COUNTER_MAX)
5175 seq_puts(m, "max\n");
5176 else
5177 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5179 return 0;
5182 static ssize_t memory_max_write(struct kernfs_open_file *of,
5183 char *buf, size_t nbytes, loff_t off)
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5186 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5187 bool drained = false;
5188 unsigned long max;
5189 int err;
5191 buf = strstrip(buf);
5192 err = page_counter_memparse(buf, "max", &max);
5193 if (err)
5194 return err;
5196 xchg(&memcg->memory.max, max);
5198 for (;;) {
5199 unsigned long nr_pages = page_counter_read(&memcg->memory);
5201 if (nr_pages <= max)
5202 break;
5204 if (signal_pending(current)) {
5205 err = -EINTR;
5206 break;
5209 if (!drained) {
5210 drain_all_stock(memcg);
5211 drained = true;
5212 continue;
5215 if (nr_reclaims) {
5216 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5217 GFP_KERNEL, true))
5218 nr_reclaims--;
5219 continue;
5222 memcg_memory_event(memcg, MEMCG_OOM);
5223 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5224 break;
5227 memcg_wb_domain_size_changed(memcg);
5228 return nbytes;
5231 static int memory_events_show(struct seq_file *m, void *v)
5233 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5235 seq_printf(m, "low %lu\n",
5236 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5237 seq_printf(m, "high %lu\n",
5238 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5239 seq_printf(m, "max %lu\n",
5240 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5241 seq_printf(m, "oom %lu\n",
5242 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5243 seq_printf(m, "oom_kill %lu\n",
5244 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5246 return 0;
5249 static int memory_stat_show(struct seq_file *m, void *v)
5251 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5252 unsigned long stat[MEMCG_NR_STAT];
5253 unsigned long events[NR_VM_EVENT_ITEMS];
5254 int i;
5257 * Provide statistics on the state of the memory subsystem as
5258 * well as cumulative event counters that show past behavior.
5260 * This list is ordered following a combination of these gradients:
5261 * 1) generic big picture -> specifics and details
5262 * 2) reflecting userspace activity -> reflecting kernel heuristics
5264 * Current memory state:
5267 tree_stat(memcg, stat);
5268 tree_events(memcg, events);
5270 seq_printf(m, "anon %llu\n",
5271 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5272 seq_printf(m, "file %llu\n",
5273 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5274 seq_printf(m, "kernel_stack %llu\n",
5275 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5276 seq_printf(m, "slab %llu\n",
5277 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5278 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5279 seq_printf(m, "sock %llu\n",
5280 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5282 seq_printf(m, "shmem %llu\n",
5283 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5284 seq_printf(m, "file_mapped %llu\n",
5285 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5286 seq_printf(m, "file_dirty %llu\n",
5287 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5288 seq_printf(m, "file_writeback %llu\n",
5289 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5291 for (i = 0; i < NR_LRU_LISTS; i++) {
5292 struct mem_cgroup *mi;
5293 unsigned long val = 0;
5295 for_each_mem_cgroup_tree(mi, memcg)
5296 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5297 seq_printf(m, "%s %llu\n",
5298 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5301 seq_printf(m, "slab_reclaimable %llu\n",
5302 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5303 seq_printf(m, "slab_unreclaimable %llu\n",
5304 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5306 /* Accumulated memory events */
5308 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5309 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5311 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5312 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5313 events[PGSCAN_DIRECT]);
5314 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5315 events[PGSTEAL_DIRECT]);
5316 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5317 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5318 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5319 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5321 seq_printf(m, "workingset_refault %lu\n",
5322 stat[WORKINGSET_REFAULT]);
5323 seq_printf(m, "workingset_activate %lu\n",
5324 stat[WORKINGSET_ACTIVATE]);
5325 seq_printf(m, "workingset_nodereclaim %lu\n",
5326 stat[WORKINGSET_NODERECLAIM]);
5328 return 0;
5331 static struct cftype memory_files[] = {
5333 .name = "current",
5334 .flags = CFTYPE_NOT_ON_ROOT,
5335 .read_u64 = memory_current_read,
5338 .name = "min",
5339 .flags = CFTYPE_NOT_ON_ROOT,
5340 .seq_show = memory_min_show,
5341 .write = memory_min_write,
5344 .name = "low",
5345 .flags = CFTYPE_NOT_ON_ROOT,
5346 .seq_show = memory_low_show,
5347 .write = memory_low_write,
5350 .name = "high",
5351 .flags = CFTYPE_NOT_ON_ROOT,
5352 .seq_show = memory_high_show,
5353 .write = memory_high_write,
5356 .name = "max",
5357 .flags = CFTYPE_NOT_ON_ROOT,
5358 .seq_show = memory_max_show,
5359 .write = memory_max_write,
5362 .name = "events",
5363 .flags = CFTYPE_NOT_ON_ROOT,
5364 .file_offset = offsetof(struct mem_cgroup, events_file),
5365 .seq_show = memory_events_show,
5368 .name = "stat",
5369 .flags = CFTYPE_NOT_ON_ROOT,
5370 .seq_show = memory_stat_show,
5372 { } /* terminate */
5375 struct cgroup_subsys memory_cgrp_subsys = {
5376 .css_alloc = mem_cgroup_css_alloc,
5377 .css_online = mem_cgroup_css_online,
5378 .css_offline = mem_cgroup_css_offline,
5379 .css_released = mem_cgroup_css_released,
5380 .css_free = mem_cgroup_css_free,
5381 .css_reset = mem_cgroup_css_reset,
5382 .can_attach = mem_cgroup_can_attach,
5383 .cancel_attach = mem_cgroup_cancel_attach,
5384 .post_attach = mem_cgroup_move_task,
5385 .bind = mem_cgroup_bind,
5386 .dfl_cftypes = memory_files,
5387 .legacy_cftypes = mem_cgroup_legacy_files,
5388 .early_init = 0,
5392 * mem_cgroup_protected - check if memory consumption is in the normal range
5393 * @root: the top ancestor of the sub-tree being checked
5394 * @memcg: the memory cgroup to check
5396 * WARNING: This function is not stateless! It can only be used as part
5397 * of a top-down tree iteration, not for isolated queries.
5399 * Returns one of the following:
5400 * MEMCG_PROT_NONE: cgroup memory is not protected
5401 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5402 * an unprotected supply of reclaimable memory from other cgroups.
5403 * MEMCG_PROT_MIN: cgroup memory is protected
5405 * @root is exclusive; it is never protected when looked at directly
5407 * To provide a proper hierarchical behavior, effective memory.min/low values
5408 * are used. Below is the description of how effective memory.low is calculated.
5409 * Effective memory.min values is calculated in the same way.
5411 * Effective memory.low is always equal or less than the original memory.low.
5412 * If there is no memory.low overcommittment (which is always true for
5413 * top-level memory cgroups), these two values are equal.
5414 * Otherwise, it's a part of parent's effective memory.low,
5415 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5416 * memory.low usages, where memory.low usage is the size of actually
5417 * protected memory.
5419 * low_usage
5420 * elow = min( memory.low, parent->elow * ------------------ ),
5421 * siblings_low_usage
5423 * | memory.current, if memory.current < memory.low
5424 * low_usage = |
5425 | 0, otherwise.
5428 * Such definition of the effective memory.low provides the expected
5429 * hierarchical behavior: parent's memory.low value is limiting
5430 * children, unprotected memory is reclaimed first and cgroups,
5431 * which are not using their guarantee do not affect actual memory
5432 * distribution.
5434 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5436 * A A/memory.low = 2G, A/memory.current = 6G
5437 * //\\
5438 * BC DE B/memory.low = 3G B/memory.current = 2G
5439 * C/memory.low = 1G C/memory.current = 2G
5440 * D/memory.low = 0 D/memory.current = 2G
5441 * E/memory.low = 10G E/memory.current = 0
5443 * and the memory pressure is applied, the following memory distribution
5444 * is expected (approximately):
5446 * A/memory.current = 2G
5448 * B/memory.current = 1.3G
5449 * C/memory.current = 0.6G
5450 * D/memory.current = 0
5451 * E/memory.current = 0
5453 * These calculations require constant tracking of the actual low usages
5454 * (see propagate_protected_usage()), as well as recursive calculation of
5455 * effective memory.low values. But as we do call mem_cgroup_protected()
5456 * path for each memory cgroup top-down from the reclaim,
5457 * it's possible to optimize this part, and save calculated elow
5458 * for next usage. This part is intentionally racy, but it's ok,
5459 * as memory.low is a best-effort mechanism.
5461 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5462 struct mem_cgroup *memcg)
5464 struct mem_cgroup *parent;
5465 unsigned long emin, parent_emin;
5466 unsigned long elow, parent_elow;
5467 unsigned long usage;
5469 if (mem_cgroup_disabled())
5470 return MEMCG_PROT_NONE;
5472 if (!root)
5473 root = root_mem_cgroup;
5474 if (memcg == root)
5475 return MEMCG_PROT_NONE;
5477 usage = page_counter_read(&memcg->memory);
5478 if (!usage)
5479 return MEMCG_PROT_NONE;
5481 emin = memcg->memory.min;
5482 elow = memcg->memory.low;
5484 parent = parent_mem_cgroup(memcg);
5485 /* No parent means a non-hierarchical mode on v1 memcg */
5486 if (!parent)
5487 return MEMCG_PROT_NONE;
5489 if (parent == root)
5490 goto exit;
5492 parent_emin = READ_ONCE(parent->memory.emin);
5493 emin = min(emin, parent_emin);
5494 if (emin && parent_emin) {
5495 unsigned long min_usage, siblings_min_usage;
5497 min_usage = min(usage, memcg->memory.min);
5498 siblings_min_usage = atomic_long_read(
5499 &parent->memory.children_min_usage);
5501 if (min_usage && siblings_min_usage)
5502 emin = min(emin, parent_emin * min_usage /
5503 siblings_min_usage);
5506 parent_elow = READ_ONCE(parent->memory.elow);
5507 elow = min(elow, parent_elow);
5508 if (elow && parent_elow) {
5509 unsigned long low_usage, siblings_low_usage;
5511 low_usage = min(usage, memcg->memory.low);
5512 siblings_low_usage = atomic_long_read(
5513 &parent->memory.children_low_usage);
5515 if (low_usage && siblings_low_usage)
5516 elow = min(elow, parent_elow * low_usage /
5517 siblings_low_usage);
5520 exit:
5521 memcg->memory.emin = emin;
5522 memcg->memory.elow = elow;
5524 if (usage <= emin)
5525 return MEMCG_PROT_MIN;
5526 else if (usage <= elow)
5527 return MEMCG_PROT_LOW;
5528 else
5529 return MEMCG_PROT_NONE;
5533 * mem_cgroup_try_charge - try charging a page
5534 * @page: page to charge
5535 * @mm: mm context of the victim
5536 * @gfp_mask: reclaim mode
5537 * @memcgp: charged memcg return
5538 * @compound: charge the page as compound or small page
5540 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5541 * pages according to @gfp_mask if necessary.
5543 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5544 * Otherwise, an error code is returned.
5546 * After page->mapping has been set up, the caller must finalize the
5547 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5548 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5550 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5551 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5552 bool compound)
5554 struct mem_cgroup *memcg = NULL;
5555 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5556 int ret = 0;
5558 if (mem_cgroup_disabled())
5559 goto out;
5561 if (PageSwapCache(page)) {
5563 * Every swap fault against a single page tries to charge the
5564 * page, bail as early as possible. shmem_unuse() encounters
5565 * already charged pages, too. The USED bit is protected by
5566 * the page lock, which serializes swap cache removal, which
5567 * in turn serializes uncharging.
5569 VM_BUG_ON_PAGE(!PageLocked(page), page);
5570 if (compound_head(page)->mem_cgroup)
5571 goto out;
5573 if (do_swap_account) {
5574 swp_entry_t ent = { .val = page_private(page), };
5575 unsigned short id = lookup_swap_cgroup_id(ent);
5577 rcu_read_lock();
5578 memcg = mem_cgroup_from_id(id);
5579 if (memcg && !css_tryget_online(&memcg->css))
5580 memcg = NULL;
5581 rcu_read_unlock();
5585 if (!memcg)
5586 memcg = get_mem_cgroup_from_mm(mm);
5588 ret = try_charge(memcg, gfp_mask, nr_pages);
5590 css_put(&memcg->css);
5591 out:
5592 *memcgp = memcg;
5593 return ret;
5597 * mem_cgroup_commit_charge - commit a page charge
5598 * @page: page to charge
5599 * @memcg: memcg to charge the page to
5600 * @lrucare: page might be on LRU already
5601 * @compound: charge the page as compound or small page
5603 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5604 * after page->mapping has been set up. This must happen atomically
5605 * as part of the page instantiation, i.e. under the page table lock
5606 * for anonymous pages, under the page lock for page and swap cache.
5608 * In addition, the page must not be on the LRU during the commit, to
5609 * prevent racing with task migration. If it might be, use @lrucare.
5611 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5613 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5614 bool lrucare, bool compound)
5616 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5618 VM_BUG_ON_PAGE(!page->mapping, page);
5619 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5621 if (mem_cgroup_disabled())
5622 return;
5624 * Swap faults will attempt to charge the same page multiple
5625 * times. But reuse_swap_page() might have removed the page
5626 * from swapcache already, so we can't check PageSwapCache().
5628 if (!memcg)
5629 return;
5631 commit_charge(page, memcg, lrucare);
5633 local_irq_disable();
5634 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5635 memcg_check_events(memcg, page);
5636 local_irq_enable();
5638 if (do_memsw_account() && PageSwapCache(page)) {
5639 swp_entry_t entry = { .val = page_private(page) };
5641 * The swap entry might not get freed for a long time,
5642 * let's not wait for it. The page already received a
5643 * memory+swap charge, drop the swap entry duplicate.
5645 mem_cgroup_uncharge_swap(entry, nr_pages);
5650 * mem_cgroup_cancel_charge - cancel a page charge
5651 * @page: page to charge
5652 * @memcg: memcg to charge the page to
5653 * @compound: charge the page as compound or small page
5655 * Cancel a charge transaction started by mem_cgroup_try_charge().
5657 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5658 bool compound)
5660 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5662 if (mem_cgroup_disabled())
5663 return;
5665 * Swap faults will attempt to charge the same page multiple
5666 * times. But reuse_swap_page() might have removed the page
5667 * from swapcache already, so we can't check PageSwapCache().
5669 if (!memcg)
5670 return;
5672 cancel_charge(memcg, nr_pages);
5675 struct uncharge_gather {
5676 struct mem_cgroup *memcg;
5677 unsigned long pgpgout;
5678 unsigned long nr_anon;
5679 unsigned long nr_file;
5680 unsigned long nr_kmem;
5681 unsigned long nr_huge;
5682 unsigned long nr_shmem;
5683 struct page *dummy_page;
5686 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5688 memset(ug, 0, sizeof(*ug));
5691 static void uncharge_batch(const struct uncharge_gather *ug)
5693 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5694 unsigned long flags;
5696 if (!mem_cgroup_is_root(ug->memcg)) {
5697 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5698 if (do_memsw_account())
5699 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5701 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5702 memcg_oom_recover(ug->memcg);
5705 local_irq_save(flags);
5706 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5707 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5708 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5709 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5710 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5711 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5712 memcg_check_events(ug->memcg, ug->dummy_page);
5713 local_irq_restore(flags);
5715 if (!mem_cgroup_is_root(ug->memcg))
5716 css_put_many(&ug->memcg->css, nr_pages);
5719 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5721 VM_BUG_ON_PAGE(PageLRU(page), page);
5722 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5723 !PageHWPoison(page) , page);
5725 if (!page->mem_cgroup)
5726 return;
5729 * Nobody should be changing or seriously looking at
5730 * page->mem_cgroup at this point, we have fully
5731 * exclusive access to the page.
5734 if (ug->memcg != page->mem_cgroup) {
5735 if (ug->memcg) {
5736 uncharge_batch(ug);
5737 uncharge_gather_clear(ug);
5739 ug->memcg = page->mem_cgroup;
5742 if (!PageKmemcg(page)) {
5743 unsigned int nr_pages = 1;
5745 if (PageTransHuge(page)) {
5746 nr_pages <<= compound_order(page);
5747 ug->nr_huge += nr_pages;
5749 if (PageAnon(page))
5750 ug->nr_anon += nr_pages;
5751 else {
5752 ug->nr_file += nr_pages;
5753 if (PageSwapBacked(page))
5754 ug->nr_shmem += nr_pages;
5756 ug->pgpgout++;
5757 } else {
5758 ug->nr_kmem += 1 << compound_order(page);
5759 __ClearPageKmemcg(page);
5762 ug->dummy_page = page;
5763 page->mem_cgroup = NULL;
5766 static void uncharge_list(struct list_head *page_list)
5768 struct uncharge_gather ug;
5769 struct list_head *next;
5771 uncharge_gather_clear(&ug);
5774 * Note that the list can be a single page->lru; hence the
5775 * do-while loop instead of a simple list_for_each_entry().
5777 next = page_list->next;
5778 do {
5779 struct page *page;
5781 page = list_entry(next, struct page, lru);
5782 next = page->lru.next;
5784 uncharge_page(page, &ug);
5785 } while (next != page_list);
5787 if (ug.memcg)
5788 uncharge_batch(&ug);
5792 * mem_cgroup_uncharge - uncharge a page
5793 * @page: page to uncharge
5795 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5796 * mem_cgroup_commit_charge().
5798 void mem_cgroup_uncharge(struct page *page)
5800 struct uncharge_gather ug;
5802 if (mem_cgroup_disabled())
5803 return;
5805 /* Don't touch page->lru of any random page, pre-check: */
5806 if (!page->mem_cgroup)
5807 return;
5809 uncharge_gather_clear(&ug);
5810 uncharge_page(page, &ug);
5811 uncharge_batch(&ug);
5815 * mem_cgroup_uncharge_list - uncharge a list of page
5816 * @page_list: list of pages to uncharge
5818 * Uncharge a list of pages previously charged with
5819 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5821 void mem_cgroup_uncharge_list(struct list_head *page_list)
5823 if (mem_cgroup_disabled())
5824 return;
5826 if (!list_empty(page_list))
5827 uncharge_list(page_list);
5831 * mem_cgroup_migrate - charge a page's replacement
5832 * @oldpage: currently circulating page
5833 * @newpage: replacement page
5835 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5836 * be uncharged upon free.
5838 * Both pages must be locked, @newpage->mapping must be set up.
5840 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5842 struct mem_cgroup *memcg;
5843 unsigned int nr_pages;
5844 bool compound;
5845 unsigned long flags;
5847 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5848 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5849 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5850 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5851 newpage);
5853 if (mem_cgroup_disabled())
5854 return;
5856 /* Page cache replacement: new page already charged? */
5857 if (newpage->mem_cgroup)
5858 return;
5860 /* Swapcache readahead pages can get replaced before being charged */
5861 memcg = oldpage->mem_cgroup;
5862 if (!memcg)
5863 return;
5865 /* Force-charge the new page. The old one will be freed soon */
5866 compound = PageTransHuge(newpage);
5867 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5869 page_counter_charge(&memcg->memory, nr_pages);
5870 if (do_memsw_account())
5871 page_counter_charge(&memcg->memsw, nr_pages);
5872 css_get_many(&memcg->css, nr_pages);
5874 commit_charge(newpage, memcg, false);
5876 local_irq_save(flags);
5877 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5878 memcg_check_events(memcg, newpage);
5879 local_irq_restore(flags);
5882 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5883 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5885 void mem_cgroup_sk_alloc(struct sock *sk)
5887 struct mem_cgroup *memcg;
5889 if (!mem_cgroup_sockets_enabled)
5890 return;
5893 * Socket cloning can throw us here with sk_memcg already
5894 * filled. It won't however, necessarily happen from
5895 * process context. So the test for root memcg given
5896 * the current task's memcg won't help us in this case.
5898 * Respecting the original socket's memcg is a better
5899 * decision in this case.
5901 if (sk->sk_memcg) {
5902 css_get(&sk->sk_memcg->css);
5903 return;
5906 rcu_read_lock();
5907 memcg = mem_cgroup_from_task(current);
5908 if (memcg == root_mem_cgroup)
5909 goto out;
5910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5911 goto out;
5912 if (css_tryget_online(&memcg->css))
5913 sk->sk_memcg = memcg;
5914 out:
5915 rcu_read_unlock();
5918 void mem_cgroup_sk_free(struct sock *sk)
5920 if (sk->sk_memcg)
5921 css_put(&sk->sk_memcg->css);
5925 * mem_cgroup_charge_skmem - charge socket memory
5926 * @memcg: memcg to charge
5927 * @nr_pages: number of pages to charge
5929 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5930 * @memcg's configured limit, %false if the charge had to be forced.
5932 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5934 gfp_t gfp_mask = GFP_KERNEL;
5936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5937 struct page_counter *fail;
5939 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5940 memcg->tcpmem_pressure = 0;
5941 return true;
5943 page_counter_charge(&memcg->tcpmem, nr_pages);
5944 memcg->tcpmem_pressure = 1;
5945 return false;
5948 /* Don't block in the packet receive path */
5949 if (in_softirq())
5950 gfp_mask = GFP_NOWAIT;
5952 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5954 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5955 return true;
5957 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5958 return false;
5962 * mem_cgroup_uncharge_skmem - uncharge socket memory
5963 * @memcg: memcg to uncharge
5964 * @nr_pages: number of pages to uncharge
5966 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5968 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5969 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5970 return;
5973 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5975 refill_stock(memcg, nr_pages);
5978 static int __init cgroup_memory(char *s)
5980 char *token;
5982 while ((token = strsep(&s, ",")) != NULL) {
5983 if (!*token)
5984 continue;
5985 if (!strcmp(token, "nosocket"))
5986 cgroup_memory_nosocket = true;
5987 if (!strcmp(token, "nokmem"))
5988 cgroup_memory_nokmem = true;
5990 return 0;
5992 __setup("cgroup.memory=", cgroup_memory);
5995 * subsys_initcall() for memory controller.
5997 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5998 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5999 * basically everything that doesn't depend on a specific mem_cgroup structure
6000 * should be initialized from here.
6002 static int __init mem_cgroup_init(void)
6004 int cpu, node;
6006 #ifndef CONFIG_SLOB
6008 * Kmem cache creation is mostly done with the slab_mutex held,
6009 * so use a workqueue with limited concurrency to avoid stalling
6010 * all worker threads in case lots of cgroups are created and
6011 * destroyed simultaneously.
6013 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6014 BUG_ON(!memcg_kmem_cache_wq);
6015 #endif
6017 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6018 memcg_hotplug_cpu_dead);
6020 for_each_possible_cpu(cpu)
6021 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6022 drain_local_stock);
6024 for_each_node(node) {
6025 struct mem_cgroup_tree_per_node *rtpn;
6027 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6028 node_online(node) ? node : NUMA_NO_NODE);
6030 rtpn->rb_root = RB_ROOT;
6031 rtpn->rb_rightmost = NULL;
6032 spin_lock_init(&rtpn->lock);
6033 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6036 return 0;
6038 subsys_initcall(mem_cgroup_init);
6040 #ifdef CONFIG_MEMCG_SWAP
6041 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6043 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6045 * The root cgroup cannot be destroyed, so it's refcount must
6046 * always be >= 1.
6048 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6049 VM_BUG_ON(1);
6050 break;
6052 memcg = parent_mem_cgroup(memcg);
6053 if (!memcg)
6054 memcg = root_mem_cgroup;
6056 return memcg;
6060 * mem_cgroup_swapout - transfer a memsw charge to swap
6061 * @page: page whose memsw charge to transfer
6062 * @entry: swap entry to move the charge to
6064 * Transfer the memsw charge of @page to @entry.
6066 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6068 struct mem_cgroup *memcg, *swap_memcg;
6069 unsigned int nr_entries;
6070 unsigned short oldid;
6072 VM_BUG_ON_PAGE(PageLRU(page), page);
6073 VM_BUG_ON_PAGE(page_count(page), page);
6075 if (!do_memsw_account())
6076 return;
6078 memcg = page->mem_cgroup;
6080 /* Readahead page, never charged */
6081 if (!memcg)
6082 return;
6085 * In case the memcg owning these pages has been offlined and doesn't
6086 * have an ID allocated to it anymore, charge the closest online
6087 * ancestor for the swap instead and transfer the memory+swap charge.
6089 swap_memcg = mem_cgroup_id_get_online(memcg);
6090 nr_entries = hpage_nr_pages(page);
6091 /* Get references for the tail pages, too */
6092 if (nr_entries > 1)
6093 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6094 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6095 nr_entries);
6096 VM_BUG_ON_PAGE(oldid, page);
6097 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6099 page->mem_cgroup = NULL;
6101 if (!mem_cgroup_is_root(memcg))
6102 page_counter_uncharge(&memcg->memory, nr_entries);
6104 if (memcg != swap_memcg) {
6105 if (!mem_cgroup_is_root(swap_memcg))
6106 page_counter_charge(&swap_memcg->memsw, nr_entries);
6107 page_counter_uncharge(&memcg->memsw, nr_entries);
6111 * Interrupts should be disabled here because the caller holds the
6112 * i_pages lock which is taken with interrupts-off. It is
6113 * important here to have the interrupts disabled because it is the
6114 * only synchronisation we have for updating the per-CPU variables.
6116 VM_BUG_ON(!irqs_disabled());
6117 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6118 -nr_entries);
6119 memcg_check_events(memcg, page);
6121 if (!mem_cgroup_is_root(memcg))
6122 css_put_many(&memcg->css, nr_entries);
6126 * mem_cgroup_try_charge_swap - try charging swap space for a page
6127 * @page: page being added to swap
6128 * @entry: swap entry to charge
6130 * Try to charge @page's memcg for the swap space at @entry.
6132 * Returns 0 on success, -ENOMEM on failure.
6134 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6136 unsigned int nr_pages = hpage_nr_pages(page);
6137 struct page_counter *counter;
6138 struct mem_cgroup *memcg;
6139 unsigned short oldid;
6141 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6142 return 0;
6144 memcg = page->mem_cgroup;
6146 /* Readahead page, never charged */
6147 if (!memcg)
6148 return 0;
6150 if (!entry.val) {
6151 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6152 return 0;
6155 memcg = mem_cgroup_id_get_online(memcg);
6157 if (!mem_cgroup_is_root(memcg) &&
6158 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6159 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6160 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6161 mem_cgroup_id_put(memcg);
6162 return -ENOMEM;
6165 /* Get references for the tail pages, too */
6166 if (nr_pages > 1)
6167 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6168 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6169 VM_BUG_ON_PAGE(oldid, page);
6170 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6172 return 0;
6176 * mem_cgroup_uncharge_swap - uncharge swap space
6177 * @entry: swap entry to uncharge
6178 * @nr_pages: the amount of swap space to uncharge
6180 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6182 struct mem_cgroup *memcg;
6183 unsigned short id;
6185 if (!do_swap_account)
6186 return;
6188 id = swap_cgroup_record(entry, 0, nr_pages);
6189 rcu_read_lock();
6190 memcg = mem_cgroup_from_id(id);
6191 if (memcg) {
6192 if (!mem_cgroup_is_root(memcg)) {
6193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6194 page_counter_uncharge(&memcg->swap, nr_pages);
6195 else
6196 page_counter_uncharge(&memcg->memsw, nr_pages);
6198 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6199 mem_cgroup_id_put_many(memcg, nr_pages);
6201 rcu_read_unlock();
6204 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6206 long nr_swap_pages = get_nr_swap_pages();
6208 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6209 return nr_swap_pages;
6210 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6211 nr_swap_pages = min_t(long, nr_swap_pages,
6212 READ_ONCE(memcg->swap.max) -
6213 page_counter_read(&memcg->swap));
6214 return nr_swap_pages;
6217 bool mem_cgroup_swap_full(struct page *page)
6219 struct mem_cgroup *memcg;
6221 VM_BUG_ON_PAGE(!PageLocked(page), page);
6223 if (vm_swap_full())
6224 return true;
6225 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6226 return false;
6228 memcg = page->mem_cgroup;
6229 if (!memcg)
6230 return false;
6232 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6233 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6234 return true;
6236 return false;
6239 /* for remember boot option*/
6240 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6241 static int really_do_swap_account __initdata = 1;
6242 #else
6243 static int really_do_swap_account __initdata;
6244 #endif
6246 static int __init enable_swap_account(char *s)
6248 if (!strcmp(s, "1"))
6249 really_do_swap_account = 1;
6250 else if (!strcmp(s, "0"))
6251 really_do_swap_account = 0;
6252 return 1;
6254 __setup("swapaccount=", enable_swap_account);
6256 static u64 swap_current_read(struct cgroup_subsys_state *css,
6257 struct cftype *cft)
6259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6261 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6264 static int swap_max_show(struct seq_file *m, void *v)
6266 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6267 unsigned long max = READ_ONCE(memcg->swap.max);
6269 if (max == PAGE_COUNTER_MAX)
6270 seq_puts(m, "max\n");
6271 else
6272 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6274 return 0;
6277 static ssize_t swap_max_write(struct kernfs_open_file *of,
6278 char *buf, size_t nbytes, loff_t off)
6280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6281 unsigned long max;
6282 int err;
6284 buf = strstrip(buf);
6285 err = page_counter_memparse(buf, "max", &max);
6286 if (err)
6287 return err;
6289 xchg(&memcg->swap.max, max);
6291 return nbytes;
6294 static int swap_events_show(struct seq_file *m, void *v)
6296 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6298 seq_printf(m, "max %lu\n",
6299 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6300 seq_printf(m, "fail %lu\n",
6301 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6303 return 0;
6306 static struct cftype swap_files[] = {
6308 .name = "swap.current",
6309 .flags = CFTYPE_NOT_ON_ROOT,
6310 .read_u64 = swap_current_read,
6313 .name = "swap.max",
6314 .flags = CFTYPE_NOT_ON_ROOT,
6315 .seq_show = swap_max_show,
6316 .write = swap_max_write,
6319 .name = "swap.events",
6320 .flags = CFTYPE_NOT_ON_ROOT,
6321 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6322 .seq_show = swap_events_show,
6324 { } /* terminate */
6327 static struct cftype memsw_cgroup_files[] = {
6329 .name = "memsw.usage_in_bytes",
6330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6331 .read_u64 = mem_cgroup_read_u64,
6334 .name = "memsw.max_usage_in_bytes",
6335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6336 .write = mem_cgroup_reset,
6337 .read_u64 = mem_cgroup_read_u64,
6340 .name = "memsw.limit_in_bytes",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6342 .write = mem_cgroup_write,
6343 .read_u64 = mem_cgroup_read_u64,
6346 .name = "memsw.failcnt",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6348 .write = mem_cgroup_reset,
6349 .read_u64 = mem_cgroup_read_u64,
6351 { }, /* terminate */
6354 static int __init mem_cgroup_swap_init(void)
6356 if (!mem_cgroup_disabled() && really_do_swap_account) {
6357 do_swap_account = 1;
6358 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6359 swap_files));
6360 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6361 memsw_cgroup_files));
6363 return 0;
6365 subsys_initcall(mem_cgroup_swap_init);
6367 #endif /* CONFIG_MEMCG_SWAP */