rmap: extend try_to_unmap() to be usable by split_huge_page()
[linux/fpc-iii.git] / block / blk-settings.c
blobc7bb666aafd100a329c67b97e616c9f9037c508e
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
15 #include "blk.h"
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 q->prep_rq_fn = pfn;
37 EXPORT_SYMBOL(blk_queue_prep_rq);
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 q->unprep_rq_fn = ufn;
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
56 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58 q->softirq_done_fn = fn;
60 EXPORT_SYMBOL(blk_queue_softirq_done);
62 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64 q->rq_timeout = timeout;
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70 q->rq_timed_out_fn = fn;
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
74 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
76 q->lld_busy_fn = fn;
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
80 /**
81 * blk_set_default_limits - reset limits to default values
82 * @lim: the queue_limits structure to reset
84 * Description:
85 * Returns a queue_limit struct to its default state.
87 void blk_set_default_limits(struct queue_limits *lim)
89 lim->max_segments = BLK_MAX_SEGMENTS;
90 lim->max_integrity_segments = 0;
91 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
92 lim->virt_boundary_mask = 0;
93 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
94 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
95 lim->max_dev_sectors = 0;
96 lim->chunk_sectors = 0;
97 lim->max_write_same_sectors = 0;
98 lim->max_discard_sectors = 0;
99 lim->max_hw_discard_sectors = 0;
100 lim->discard_granularity = 0;
101 lim->discard_alignment = 0;
102 lim->discard_misaligned = 0;
103 lim->discard_zeroes_data = 0;
104 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
105 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
106 lim->alignment_offset = 0;
107 lim->io_opt = 0;
108 lim->misaligned = 0;
109 lim->cluster = 1;
111 EXPORT_SYMBOL(blk_set_default_limits);
114 * blk_set_stacking_limits - set default limits for stacking devices
115 * @lim: the queue_limits structure to reset
117 * Description:
118 * Returns a queue_limit struct to its default state. Should be used
119 * by stacking drivers like DM that have no internal limits.
121 void blk_set_stacking_limits(struct queue_limits *lim)
123 blk_set_default_limits(lim);
125 /* Inherit limits from component devices */
126 lim->discard_zeroes_data = 1;
127 lim->max_segments = USHRT_MAX;
128 lim->max_hw_sectors = UINT_MAX;
129 lim->max_segment_size = UINT_MAX;
130 lim->max_sectors = UINT_MAX;
131 lim->max_dev_sectors = UINT_MAX;
132 lim->max_write_same_sectors = UINT_MAX;
134 EXPORT_SYMBOL(blk_set_stacking_limits);
137 * blk_queue_make_request - define an alternate make_request function for a device
138 * @q: the request queue for the device to be affected
139 * @mfn: the alternate make_request function
141 * Description:
142 * The normal way for &struct bios to be passed to a device
143 * driver is for them to be collected into requests on a request
144 * queue, and then to allow the device driver to select requests
145 * off that queue when it is ready. This works well for many block
146 * devices. However some block devices (typically virtual devices
147 * such as md or lvm) do not benefit from the processing on the
148 * request queue, and are served best by having the requests passed
149 * directly to them. This can be achieved by providing a function
150 * to blk_queue_make_request().
152 * Caveat:
153 * The driver that does this *must* be able to deal appropriately
154 * with buffers in "highmemory". This can be accomplished by either calling
155 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
156 * blk_queue_bounce() to create a buffer in normal memory.
158 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
161 * set defaults
163 q->nr_requests = BLKDEV_MAX_RQ;
165 q->make_request_fn = mfn;
166 blk_queue_dma_alignment(q, 511);
167 blk_queue_congestion_threshold(q);
168 q->nr_batching = BLK_BATCH_REQ;
170 blk_set_default_limits(&q->limits);
173 * by default assume old behaviour and bounce for any highmem page
175 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
177 EXPORT_SYMBOL(blk_queue_make_request);
180 * blk_queue_bounce_limit - set bounce buffer limit for queue
181 * @q: the request queue for the device
182 * @max_addr: the maximum address the device can handle
184 * Description:
185 * Different hardware can have different requirements as to what pages
186 * it can do I/O directly to. A low level driver can call
187 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
188 * buffers for doing I/O to pages residing above @max_addr.
190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
192 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193 int dma = 0;
195 q->bounce_gfp = GFP_NOIO;
196 #if BITS_PER_LONG == 64
198 * Assume anything <= 4GB can be handled by IOMMU. Actually
199 * some IOMMUs can handle everything, but I don't know of a
200 * way to test this here.
202 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203 dma = 1;
204 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205 #else
206 if (b_pfn < blk_max_low_pfn)
207 dma = 1;
208 q->limits.bounce_pfn = b_pfn;
209 #endif
210 if (dma) {
211 init_emergency_isa_pool();
212 q->bounce_gfp = GFP_NOIO | GFP_DMA;
213 q->limits.bounce_pfn = b_pfn;
216 EXPORT_SYMBOL(blk_queue_bounce_limit);
219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220 * @q: the request queue for the device
221 * @max_hw_sectors: max hardware sectors in the usual 512b unit
223 * Description:
224 * Enables a low level driver to set a hard upper limit,
225 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
226 * the device driver based upon the capabilities of the I/O
227 * controller.
229 * max_dev_sectors is a hard limit imposed by the storage device for
230 * READ/WRITE requests. It is set by the disk driver.
232 * max_sectors is a soft limit imposed by the block layer for
233 * filesystem type requests. This value can be overridden on a
234 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235 * The soft limit can not exceed max_hw_sectors.
237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
239 struct queue_limits *limits = &q->limits;
240 unsigned int max_sectors;
242 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
243 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
244 printk(KERN_INFO "%s: set to minimum %d\n",
245 __func__, max_hw_sectors);
248 limits->max_hw_sectors = max_hw_sectors;
249 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251 limits->max_sectors = max_sectors;
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q: the request queue for the device
258 * @chunk_sectors: chunk sectors in the usual 512b unit
260 * Description:
261 * If a driver doesn't want IOs to cross a given chunk size, it can set
262 * this limit and prevent merging across chunks. Note that the chunk size
263 * must currently be a power-of-2 in sectors. Also note that the block
264 * layer must accept a page worth of data at any offset. So if the
265 * crossing of chunks is a hard limitation in the driver, it must still be
266 * prepared to split single page bios.
268 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
270 BUG_ON(!is_power_of_2(chunk_sectors));
271 q->limits.chunk_sectors = chunk_sectors;
273 EXPORT_SYMBOL(blk_queue_chunk_sectors);
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
280 void blk_queue_max_discard_sectors(struct request_queue *q,
281 unsigned int max_discard_sectors)
283 q->limits.max_hw_discard_sectors = max_discard_sectors;
284 q->limits.max_discard_sectors = max_discard_sectors;
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q: the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
293 void blk_queue_max_write_same_sectors(struct request_queue *q,
294 unsigned int max_write_same_sectors)
296 q->limits.max_write_same_sectors = max_write_same_sectors;
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
301 * blk_queue_max_segments - set max hw segments for a request for this queue
302 * @q: the request queue for the device
303 * @max_segments: max number of segments
305 * Description:
306 * Enables a low level driver to set an upper limit on the number of
307 * hw data segments in a request.
309 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
311 if (!max_segments) {
312 max_segments = 1;
313 printk(KERN_INFO "%s: set to minimum %d\n",
314 __func__, max_segments);
317 q->limits.max_segments = max_segments;
319 EXPORT_SYMBOL(blk_queue_max_segments);
322 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
323 * @q: the request queue for the device
324 * @max_size: max size of segment in bytes
326 * Description:
327 * Enables a low level driver to set an upper limit on the size of a
328 * coalesced segment
330 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
332 if (max_size < PAGE_CACHE_SIZE) {
333 max_size = PAGE_CACHE_SIZE;
334 printk(KERN_INFO "%s: set to minimum %d\n",
335 __func__, max_size);
338 q->limits.max_segment_size = max_size;
340 EXPORT_SYMBOL(blk_queue_max_segment_size);
343 * blk_queue_logical_block_size - set logical block size for the queue
344 * @q: the request queue for the device
345 * @size: the logical block size, in bytes
347 * Description:
348 * This should be set to the lowest possible block size that the
349 * storage device can address. The default of 512 covers most
350 * hardware.
352 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
354 q->limits.logical_block_size = size;
356 if (q->limits.physical_block_size < size)
357 q->limits.physical_block_size = size;
359 if (q->limits.io_min < q->limits.physical_block_size)
360 q->limits.io_min = q->limits.physical_block_size;
362 EXPORT_SYMBOL(blk_queue_logical_block_size);
365 * blk_queue_physical_block_size - set physical block size for the queue
366 * @q: the request queue for the device
367 * @size: the physical block size, in bytes
369 * Description:
370 * This should be set to the lowest possible sector size that the
371 * hardware can operate on without reverting to read-modify-write
372 * operations.
374 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
376 q->limits.physical_block_size = size;
378 if (q->limits.physical_block_size < q->limits.logical_block_size)
379 q->limits.physical_block_size = q->limits.logical_block_size;
381 if (q->limits.io_min < q->limits.physical_block_size)
382 q->limits.io_min = q->limits.physical_block_size;
384 EXPORT_SYMBOL(blk_queue_physical_block_size);
387 * blk_queue_alignment_offset - set physical block alignment offset
388 * @q: the request queue for the device
389 * @offset: alignment offset in bytes
391 * Description:
392 * Some devices are naturally misaligned to compensate for things like
393 * the legacy DOS partition table 63-sector offset. Low-level drivers
394 * should call this function for devices whose first sector is not
395 * naturally aligned.
397 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
399 q->limits.alignment_offset =
400 offset & (q->limits.physical_block_size - 1);
401 q->limits.misaligned = 0;
403 EXPORT_SYMBOL(blk_queue_alignment_offset);
406 * blk_limits_io_min - set minimum request size for a device
407 * @limits: the queue limits
408 * @min: smallest I/O size in bytes
410 * Description:
411 * Some devices have an internal block size bigger than the reported
412 * hardware sector size. This function can be used to signal the
413 * smallest I/O the device can perform without incurring a performance
414 * penalty.
416 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
418 limits->io_min = min;
420 if (limits->io_min < limits->logical_block_size)
421 limits->io_min = limits->logical_block_size;
423 if (limits->io_min < limits->physical_block_size)
424 limits->io_min = limits->physical_block_size;
426 EXPORT_SYMBOL(blk_limits_io_min);
429 * blk_queue_io_min - set minimum request size for the queue
430 * @q: the request queue for the device
431 * @min: smallest I/O size in bytes
433 * Description:
434 * Storage devices may report a granularity or preferred minimum I/O
435 * size which is the smallest request the device can perform without
436 * incurring a performance penalty. For disk drives this is often the
437 * physical block size. For RAID arrays it is often the stripe chunk
438 * size. A properly aligned multiple of minimum_io_size is the
439 * preferred request size for workloads where a high number of I/O
440 * operations is desired.
442 void blk_queue_io_min(struct request_queue *q, unsigned int min)
444 blk_limits_io_min(&q->limits, min);
446 EXPORT_SYMBOL(blk_queue_io_min);
449 * blk_limits_io_opt - set optimal request size for a device
450 * @limits: the queue limits
451 * @opt: smallest I/O size in bytes
453 * Description:
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
461 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
463 limits->io_opt = opt;
465 EXPORT_SYMBOL(blk_limits_io_opt);
468 * blk_queue_io_opt - set optimal request size for the queue
469 * @q: the request queue for the device
470 * @opt: optimal request size in bytes
472 * Description:
473 * Storage devices may report an optimal I/O size, which is the
474 * device's preferred unit for sustained I/O. This is rarely reported
475 * for disk drives. For RAID arrays it is usually the stripe width or
476 * the internal track size. A properly aligned multiple of
477 * optimal_io_size is the preferred request size for workloads where
478 * sustained throughput is desired.
480 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
482 blk_limits_io_opt(&q->limits, opt);
484 EXPORT_SYMBOL(blk_queue_io_opt);
487 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
488 * @t: the stacking driver (top)
489 * @b: the underlying device (bottom)
491 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
493 blk_stack_limits(&t->limits, &b->limits, 0);
495 EXPORT_SYMBOL(blk_queue_stack_limits);
498 * blk_stack_limits - adjust queue_limits for stacked devices
499 * @t: the stacking driver limits (top device)
500 * @b: the underlying queue limits (bottom, component device)
501 * @start: first data sector within component device
503 * Description:
504 * This function is used by stacking drivers like MD and DM to ensure
505 * that all component devices have compatible block sizes and
506 * alignments. The stacking driver must provide a queue_limits
507 * struct (top) and then iteratively call the stacking function for
508 * all component (bottom) devices. The stacking function will
509 * attempt to combine the values and ensure proper alignment.
511 * Returns 0 if the top and bottom queue_limits are compatible. The
512 * top device's block sizes and alignment offsets may be adjusted to
513 * ensure alignment with the bottom device. If no compatible sizes
514 * and alignments exist, -1 is returned and the resulting top
515 * queue_limits will have the misaligned flag set to indicate that
516 * the alignment_offset is undefined.
518 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
519 sector_t start)
521 unsigned int top, bottom, alignment, ret = 0;
523 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
524 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
525 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
526 t->max_write_same_sectors = min(t->max_write_same_sectors,
527 b->max_write_same_sectors);
528 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
530 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
531 b->seg_boundary_mask);
532 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
533 b->virt_boundary_mask);
535 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
537 b->max_integrity_segments);
539 t->max_segment_size = min_not_zero(t->max_segment_size,
540 b->max_segment_size);
542 t->misaligned |= b->misaligned;
544 alignment = queue_limit_alignment_offset(b, start);
546 /* Bottom device has different alignment. Check that it is
547 * compatible with the current top alignment.
549 if (t->alignment_offset != alignment) {
551 top = max(t->physical_block_size, t->io_min)
552 + t->alignment_offset;
553 bottom = max(b->physical_block_size, b->io_min) + alignment;
555 /* Verify that top and bottom intervals line up */
556 if (max(top, bottom) % min(top, bottom)) {
557 t->misaligned = 1;
558 ret = -1;
562 t->logical_block_size = max(t->logical_block_size,
563 b->logical_block_size);
565 t->physical_block_size = max(t->physical_block_size,
566 b->physical_block_size);
568 t->io_min = max(t->io_min, b->io_min);
569 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
571 t->cluster &= b->cluster;
572 t->discard_zeroes_data &= b->discard_zeroes_data;
574 /* Physical block size a multiple of the logical block size? */
575 if (t->physical_block_size & (t->logical_block_size - 1)) {
576 t->physical_block_size = t->logical_block_size;
577 t->misaligned = 1;
578 ret = -1;
581 /* Minimum I/O a multiple of the physical block size? */
582 if (t->io_min & (t->physical_block_size - 1)) {
583 t->io_min = t->physical_block_size;
584 t->misaligned = 1;
585 ret = -1;
588 /* Optimal I/O a multiple of the physical block size? */
589 if (t->io_opt & (t->physical_block_size - 1)) {
590 t->io_opt = 0;
591 t->misaligned = 1;
592 ret = -1;
595 t->raid_partial_stripes_expensive =
596 max(t->raid_partial_stripes_expensive,
597 b->raid_partial_stripes_expensive);
599 /* Find lowest common alignment_offset */
600 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
601 % max(t->physical_block_size, t->io_min);
603 /* Verify that new alignment_offset is on a logical block boundary */
604 if (t->alignment_offset & (t->logical_block_size - 1)) {
605 t->misaligned = 1;
606 ret = -1;
609 /* Discard alignment and granularity */
610 if (b->discard_granularity) {
611 alignment = queue_limit_discard_alignment(b, start);
613 if (t->discard_granularity != 0 &&
614 t->discard_alignment != alignment) {
615 top = t->discard_granularity + t->discard_alignment;
616 bottom = b->discard_granularity + alignment;
618 /* Verify that top and bottom intervals line up */
619 if ((max(top, bottom) % min(top, bottom)) != 0)
620 t->discard_misaligned = 1;
623 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
624 b->max_discard_sectors);
625 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
626 b->max_hw_discard_sectors);
627 t->discard_granularity = max(t->discard_granularity,
628 b->discard_granularity);
629 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
630 t->discard_granularity;
633 return ret;
635 EXPORT_SYMBOL(blk_stack_limits);
638 * bdev_stack_limits - adjust queue limits for stacked drivers
639 * @t: the stacking driver limits (top device)
640 * @bdev: the component block_device (bottom)
641 * @start: first data sector within component device
643 * Description:
644 * Merges queue limits for a top device and a block_device. Returns
645 * 0 if alignment didn't change. Returns -1 if adding the bottom
646 * device caused misalignment.
648 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
649 sector_t start)
651 struct request_queue *bq = bdev_get_queue(bdev);
653 start += get_start_sect(bdev);
655 return blk_stack_limits(t, &bq->limits, start);
657 EXPORT_SYMBOL(bdev_stack_limits);
660 * disk_stack_limits - adjust queue limits for stacked drivers
661 * @disk: MD/DM gendisk (top)
662 * @bdev: the underlying block device (bottom)
663 * @offset: offset to beginning of data within component device
665 * Description:
666 * Merges the limits for a top level gendisk and a bottom level
667 * block_device.
669 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
670 sector_t offset)
672 struct request_queue *t = disk->queue;
674 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
675 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
677 disk_name(disk, 0, top);
678 bdevname(bdev, bottom);
680 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
681 top, bottom);
684 EXPORT_SYMBOL(disk_stack_limits);
687 * blk_queue_dma_pad - set pad mask
688 * @q: the request queue for the device
689 * @mask: pad mask
691 * Set dma pad mask.
693 * Appending pad buffer to a request modifies the last entry of a
694 * scatter list such that it includes the pad buffer.
696 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
698 q->dma_pad_mask = mask;
700 EXPORT_SYMBOL(blk_queue_dma_pad);
703 * blk_queue_update_dma_pad - update pad mask
704 * @q: the request queue for the device
705 * @mask: pad mask
707 * Update dma pad mask.
709 * Appending pad buffer to a request modifies the last entry of a
710 * scatter list such that it includes the pad buffer.
712 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
714 if (mask > q->dma_pad_mask)
715 q->dma_pad_mask = mask;
717 EXPORT_SYMBOL(blk_queue_update_dma_pad);
720 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
721 * @q: the request queue for the device
722 * @dma_drain_needed: fn which returns non-zero if drain is necessary
723 * @buf: physically contiguous buffer
724 * @size: size of the buffer in bytes
726 * Some devices have excess DMA problems and can't simply discard (or
727 * zero fill) the unwanted piece of the transfer. They have to have a
728 * real area of memory to transfer it into. The use case for this is
729 * ATAPI devices in DMA mode. If the packet command causes a transfer
730 * bigger than the transfer size some HBAs will lock up if there
731 * aren't DMA elements to contain the excess transfer. What this API
732 * does is adjust the queue so that the buf is always appended
733 * silently to the scatterlist.
735 * Note: This routine adjusts max_hw_segments to make room for appending
736 * the drain buffer. If you call blk_queue_max_segments() after calling
737 * this routine, you must set the limit to one fewer than your device
738 * can support otherwise there won't be room for the drain buffer.
740 int blk_queue_dma_drain(struct request_queue *q,
741 dma_drain_needed_fn *dma_drain_needed,
742 void *buf, unsigned int size)
744 if (queue_max_segments(q) < 2)
745 return -EINVAL;
746 /* make room for appending the drain */
747 blk_queue_max_segments(q, queue_max_segments(q) - 1);
748 q->dma_drain_needed = dma_drain_needed;
749 q->dma_drain_buffer = buf;
750 q->dma_drain_size = size;
752 return 0;
754 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q: the request queue for the device
759 * @mask: the memory boundary mask
761 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
763 if (mask < PAGE_CACHE_SIZE - 1) {
764 mask = PAGE_CACHE_SIZE - 1;
765 printk(KERN_INFO "%s: set to minimum %lx\n",
766 __func__, mask);
769 q->limits.seg_boundary_mask = mask;
771 EXPORT_SYMBOL(blk_queue_segment_boundary);
774 * blk_queue_virt_boundary - set boundary rules for bio merging
775 * @q: the request queue for the device
776 * @mask: the memory boundary mask
778 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
780 q->limits.virt_boundary_mask = mask;
782 EXPORT_SYMBOL(blk_queue_virt_boundary);
785 * blk_queue_dma_alignment - set dma length and memory alignment
786 * @q: the request queue for the device
787 * @mask: alignment mask
789 * description:
790 * set required memory and length alignment for direct dma transactions.
791 * this is used when building direct io requests for the queue.
794 void blk_queue_dma_alignment(struct request_queue *q, int mask)
796 q->dma_alignment = mask;
798 EXPORT_SYMBOL(blk_queue_dma_alignment);
801 * blk_queue_update_dma_alignment - update dma length and memory alignment
802 * @q: the request queue for the device
803 * @mask: alignment mask
805 * description:
806 * update required memory and length alignment for direct dma transactions.
807 * If the requested alignment is larger than the current alignment, then
808 * the current queue alignment is updated to the new value, otherwise it
809 * is left alone. The design of this is to allow multiple objects
810 * (driver, device, transport etc) to set their respective
811 * alignments without having them interfere.
814 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
816 BUG_ON(mask > PAGE_SIZE);
818 if (mask > q->dma_alignment)
819 q->dma_alignment = mask;
821 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
824 * blk_queue_flush - configure queue's cache flush capability
825 * @q: the request queue for the device
826 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
828 * Tell block layer cache flush capability of @q. If it supports
829 * flushing, REQ_FLUSH should be set. If it supports bypassing
830 * write cache for individual writes, REQ_FUA should be set.
832 void blk_queue_flush(struct request_queue *q, unsigned int flush)
834 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
836 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
837 flush &= ~REQ_FUA;
839 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
841 EXPORT_SYMBOL_GPL(blk_queue_flush);
843 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
845 q->flush_not_queueable = !queueable;
847 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
849 static int __init blk_settings_init(void)
851 blk_max_low_pfn = max_low_pfn - 1;
852 blk_max_pfn = max_pfn - 1;
853 return 0;
855 subsys_initcall(blk_settings_init);