1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
24 #include <linux/memcontrol.h>
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
31 enum slab_state slab_state
;
32 LIST_HEAD(slab_caches
);
33 DEFINE_MUTEX(slab_mutex
);
34 struct kmem_cache
*kmem_cache
;
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init
=
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK
);
39 module_param(usercopy_fallback
, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback
,
41 "WARN instead of reject usercopy whitelist violations");
44 static LIST_HEAD(slab_caches_to_rcu_destroy
);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
47 slab_caches_to_rcu_destroy_workfn
);
50 * Set of flags that will prevent slab merging
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 SLAB_FAILSLAB | SLAB_KASAN)
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 * Merge control. If this is set then no merging of slab caches will occur.
62 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
64 static int __init
setup_slab_nomerge(char *str
)
71 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
74 __setup("slab_nomerge", setup_slab_nomerge
);
77 * Determine the size of a slab object
79 unsigned int kmem_cache_size(struct kmem_cache
*s
)
81 return s
->object_size
;
83 EXPORT_SYMBOL(kmem_cache_size
);
85 #ifdef CONFIG_DEBUG_VM
86 static int kmem_cache_sanity_check(const char *name
, unsigned int size
)
88 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
89 size
> KMALLOC_MAX_SIZE
) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
94 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
98 static inline int kmem_cache_sanity_check(const char *name
, unsigned int size
)
104 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
108 for (i
= 0; i
< nr
; i
++) {
110 kmem_cache_free(s
, p
[i
]);
116 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
121 for (i
= 0; i
< nr
; i
++) {
122 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
124 __kmem_cache_free_bulk(s
, i
, p
);
131 #ifdef CONFIG_MEMCG_KMEM
133 LIST_HEAD(slab_root_caches
);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock
);
136 static void kmemcg_cache_shutdown(struct percpu_ref
*percpu_ref
);
138 void slab_init_memcg_params(struct kmem_cache
*s
)
140 s
->memcg_params
.root_cache
= NULL
;
141 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
142 INIT_LIST_HEAD(&s
->memcg_params
.children
);
143 s
->memcg_params
.dying
= false;
146 static int init_memcg_params(struct kmem_cache
*s
,
147 struct kmem_cache
*root_cache
)
149 struct memcg_cache_array
*arr
;
152 int ret
= percpu_ref_init(&s
->memcg_params
.refcnt
,
153 kmemcg_cache_shutdown
,
158 s
->memcg_params
.root_cache
= root_cache
;
159 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
160 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
164 slab_init_memcg_params(s
);
166 if (!memcg_nr_cache_ids
)
169 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
170 memcg_nr_cache_ids
* sizeof(void *),
175 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
179 static void destroy_memcg_params(struct kmem_cache
*s
)
181 if (is_root_cache(s
)) {
182 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
184 mem_cgroup_put(s
->memcg_params
.memcg
);
185 WRITE_ONCE(s
->memcg_params
.memcg
, NULL
);
186 percpu_ref_exit(&s
->memcg_params
.refcnt
);
190 static void free_memcg_params(struct rcu_head
*rcu
)
192 struct memcg_cache_array
*old
;
194 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
198 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
200 struct memcg_cache_array
*old
, *new;
202 new = kvzalloc(sizeof(struct memcg_cache_array
) +
203 new_array_size
* sizeof(void *), GFP_KERNEL
);
207 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
208 lockdep_is_held(&slab_mutex
));
210 memcpy(new->entries
, old
->entries
,
211 memcg_nr_cache_ids
* sizeof(void *));
213 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
215 call_rcu(&old
->rcu
, free_memcg_params
);
219 int memcg_update_all_caches(int num_memcgs
)
221 struct kmem_cache
*s
;
224 mutex_lock(&slab_mutex
);
225 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
226 ret
= update_memcg_params(s
, num_memcgs
);
228 * Instead of freeing the memory, we'll just leave the caches
229 * up to this point in an updated state.
234 mutex_unlock(&slab_mutex
);
238 void memcg_link_cache(struct kmem_cache
*s
, struct mem_cgroup
*memcg
)
240 if (is_root_cache(s
)) {
241 list_add(&s
->root_caches_node
, &slab_root_caches
);
243 css_get(&memcg
->css
);
244 s
->memcg_params
.memcg
= memcg
;
245 list_add(&s
->memcg_params
.children_node
,
246 &s
->memcg_params
.root_cache
->memcg_params
.children
);
247 list_add(&s
->memcg_params
.kmem_caches_node
,
248 &s
->memcg_params
.memcg
->kmem_caches
);
252 static void memcg_unlink_cache(struct kmem_cache
*s
)
254 if (is_root_cache(s
)) {
255 list_del(&s
->root_caches_node
);
257 list_del(&s
->memcg_params
.children_node
);
258 list_del(&s
->memcg_params
.kmem_caches_node
);
262 static inline int init_memcg_params(struct kmem_cache
*s
,
263 struct kmem_cache
*root_cache
)
268 static inline void destroy_memcg_params(struct kmem_cache
*s
)
272 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
275 #endif /* CONFIG_MEMCG_KMEM */
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
281 static unsigned int calculate_alignment(slab_flags_t flags
,
282 unsigned int align
, unsigned int size
)
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
291 if (flags
& SLAB_HWCACHE_ALIGN
) {
294 ralign
= cache_line_size();
295 while (size
<= ralign
/ 2)
297 align
= max(align
, ralign
);
300 if (align
< ARCH_SLAB_MINALIGN
)
301 align
= ARCH_SLAB_MINALIGN
;
303 return ALIGN(align
, sizeof(void *));
307 * Find a mergeable slab cache
309 int slab_unmergeable(struct kmem_cache
*s
)
311 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
314 if (!is_root_cache(s
))
324 * We may have set a slab to be unmergeable during bootstrap.
332 struct kmem_cache
*find_mergeable(unsigned int size
, unsigned int align
,
333 slab_flags_t flags
, const char *name
, void (*ctor
)(void *))
335 struct kmem_cache
*s
;
343 size
= ALIGN(size
, sizeof(void *));
344 align
= calculate_alignment(flags
, align
, size
);
345 size
= ALIGN(size
, align
);
346 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
348 if (flags
& SLAB_NEVER_MERGE
)
351 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
352 if (slab_unmergeable(s
))
358 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
361 * Check if alignment is compatible.
362 * Courtesy of Adrian Drzewiecki
364 if ((s
->size
& ~(align
- 1)) != s
->size
)
367 if (s
->size
- size
>= sizeof(void *))
370 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
371 (align
> s
->align
|| s
->align
% align
))
379 static struct kmem_cache
*create_cache(const char *name
,
380 unsigned int object_size
, unsigned int align
,
381 slab_flags_t flags
, unsigned int useroffset
,
382 unsigned int usersize
, void (*ctor
)(void *),
383 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
385 struct kmem_cache
*s
;
388 if (WARN_ON(useroffset
+ usersize
> object_size
))
389 useroffset
= usersize
= 0;
392 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
397 s
->size
= s
->object_size
= object_size
;
400 s
->useroffset
= useroffset
;
401 s
->usersize
= usersize
;
403 err
= init_memcg_params(s
, root_cache
);
407 err
= __kmem_cache_create(s
, flags
);
412 list_add(&s
->list
, &slab_caches
);
413 memcg_link_cache(s
, memcg
);
420 destroy_memcg_params(s
);
421 kmem_cache_free(kmem_cache
, s
);
426 * kmem_cache_create_usercopy - Create a cache with a region suitable
427 * for copying to userspace
428 * @name: A string which is used in /proc/slabinfo to identify this cache.
429 * @size: The size of objects to be created in this cache.
430 * @align: The required alignment for the objects.
432 * @useroffset: Usercopy region offset
433 * @usersize: Usercopy region size
434 * @ctor: A constructor for the objects.
436 * Cannot be called within a interrupt, but can be interrupted.
437 * The @ctor is run when new pages are allocated by the cache.
441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
442 * to catch references to uninitialised memory.
444 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
445 * for buffer overruns.
447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
448 * cacheline. This can be beneficial if you're counting cycles as closely
451 * Return: a pointer to the cache on success, NULL on failure.
454 kmem_cache_create_usercopy(const char *name
,
455 unsigned int size
, unsigned int align
,
457 unsigned int useroffset
, unsigned int usersize
,
458 void (*ctor
)(void *))
460 struct kmem_cache
*s
= NULL
;
461 const char *cache_name
;
466 memcg_get_cache_ids();
468 mutex_lock(&slab_mutex
);
470 err
= kmem_cache_sanity_check(name
, size
);
475 /* Refuse requests with allocator specific flags */
476 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
482 * Some allocators will constraint the set of valid flags to a subset
483 * of all flags. We expect them to define CACHE_CREATE_MASK in this
484 * case, and we'll just provide them with a sanitized version of the
487 flags
&= CACHE_CREATE_MASK
;
489 /* Fail closed on bad usersize of useroffset values. */
490 if (WARN_ON(!usersize
&& useroffset
) ||
491 WARN_ON(size
< usersize
|| size
- usersize
< useroffset
))
492 usersize
= useroffset
= 0;
495 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
499 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
505 s
= create_cache(cache_name
, size
,
506 calculate_alignment(flags
, align
, size
),
507 flags
, useroffset
, usersize
, ctor
, NULL
, NULL
);
510 kfree_const(cache_name
);
514 mutex_unlock(&slab_mutex
);
516 memcg_put_cache_ids();
521 if (flags
& SLAB_PANIC
)
522 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
525 pr_warn("kmem_cache_create(%s) failed with error %d\n",
533 EXPORT_SYMBOL(kmem_cache_create_usercopy
);
536 * kmem_cache_create - Create a cache.
537 * @name: A string which is used in /proc/slabinfo to identify this cache.
538 * @size: The size of objects to be created in this cache.
539 * @align: The required alignment for the objects.
541 * @ctor: A constructor for the objects.
543 * Cannot be called within a interrupt, but can be interrupted.
544 * The @ctor is run when new pages are allocated by the cache.
548 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
549 * to catch references to uninitialised memory.
551 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
552 * for buffer overruns.
554 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
555 * cacheline. This can be beneficial if you're counting cycles as closely
558 * Return: a pointer to the cache on success, NULL on failure.
561 kmem_cache_create(const char *name
, unsigned int size
, unsigned int align
,
562 slab_flags_t flags
, void (*ctor
)(void *))
564 return kmem_cache_create_usercopy(name
, size
, align
, flags
, 0, 0,
567 EXPORT_SYMBOL(kmem_cache_create
);
569 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
571 LIST_HEAD(to_destroy
);
572 struct kmem_cache
*s
, *s2
;
575 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
576 * @slab_caches_to_rcu_destroy list. The slab pages are freed
577 * through RCU and and the associated kmem_cache are dereferenced
578 * while freeing the pages, so the kmem_caches should be freed only
579 * after the pending RCU operations are finished. As rcu_barrier()
580 * is a pretty slow operation, we batch all pending destructions
583 mutex_lock(&slab_mutex
);
584 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
585 mutex_unlock(&slab_mutex
);
587 if (list_empty(&to_destroy
))
592 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
593 #ifdef SLAB_SUPPORTS_SYSFS
594 sysfs_slab_release(s
);
596 slab_kmem_cache_release(s
);
601 static int shutdown_cache(struct kmem_cache
*s
)
603 /* free asan quarantined objects */
604 kasan_cache_shutdown(s
);
606 if (__kmem_cache_shutdown(s
) != 0)
609 memcg_unlink_cache(s
);
612 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
613 #ifdef SLAB_SUPPORTS_SYSFS
614 sysfs_slab_unlink(s
);
616 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
617 schedule_work(&slab_caches_to_rcu_destroy_work
);
619 #ifdef SLAB_SUPPORTS_SYSFS
620 sysfs_slab_unlink(s
);
621 sysfs_slab_release(s
);
623 slab_kmem_cache_release(s
);
630 #ifdef CONFIG_MEMCG_KMEM
632 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
633 * @memcg: The memory cgroup the new cache is for.
634 * @root_cache: The parent of the new cache.
636 * This function attempts to create a kmem cache that will serve allocation
637 * requests going from @memcg to @root_cache. The new cache inherits properties
640 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
641 struct kmem_cache
*root_cache
)
643 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
644 struct cgroup_subsys_state
*css
= &memcg
->css
;
645 struct memcg_cache_array
*arr
;
646 struct kmem_cache
*s
= NULL
;
653 mutex_lock(&slab_mutex
);
656 * The memory cgroup could have been offlined while the cache
657 * creation work was pending.
659 if (memcg
->kmem_state
!= KMEM_ONLINE
)
662 idx
= memcg_cache_id(memcg
);
663 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
664 lockdep_is_held(&slab_mutex
));
667 * Since per-memcg caches are created asynchronously on first
668 * allocation (see memcg_kmem_get_cache()), several threads can try to
669 * create the same cache, but only one of them may succeed.
671 if (arr
->entries
[idx
])
674 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
675 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
676 css
->serial_nr
, memcg_name_buf
);
680 s
= create_cache(cache_name
, root_cache
->object_size
,
682 root_cache
->flags
& CACHE_CREATE_MASK
,
683 root_cache
->useroffset
, root_cache
->usersize
,
684 root_cache
->ctor
, memcg
, root_cache
);
686 * If we could not create a memcg cache, do not complain, because
687 * that's not critical at all as we can always proceed with the root
696 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
697 * barrier here to ensure nobody will see the kmem_cache partially
701 arr
->entries
[idx
] = s
;
704 mutex_unlock(&slab_mutex
);
710 static void kmemcg_workfn(struct work_struct
*work
)
712 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
718 mutex_lock(&slab_mutex
);
719 s
->memcg_params
.work_fn(s
);
720 mutex_unlock(&slab_mutex
);
726 static void kmemcg_rcufn(struct rcu_head
*head
)
728 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
729 memcg_params
.rcu_head
);
732 * We need to grab blocking locks. Bounce to ->work. The
733 * work item shares the space with the RCU head and can't be
734 * initialized earlier.
736 INIT_WORK(&s
->memcg_params
.work
, kmemcg_workfn
);
737 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.work
);
740 static void kmemcg_cache_shutdown_fn(struct kmem_cache
*s
)
742 WARN_ON(shutdown_cache(s
));
745 static void kmemcg_cache_shutdown(struct percpu_ref
*percpu_ref
)
747 struct kmem_cache
*s
= container_of(percpu_ref
, struct kmem_cache
,
748 memcg_params
.refcnt
);
751 spin_lock_irqsave(&memcg_kmem_wq_lock
, flags
);
752 if (s
->memcg_params
.root_cache
->memcg_params
.dying
)
755 s
->memcg_params
.work_fn
= kmemcg_cache_shutdown_fn
;
756 INIT_WORK(&s
->memcg_params
.work
, kmemcg_workfn
);
757 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.work
);
760 spin_unlock_irqrestore(&memcg_kmem_wq_lock
, flags
);
763 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache
*s
)
765 __kmemcg_cache_deactivate_after_rcu(s
);
766 percpu_ref_kill(&s
->memcg_params
.refcnt
);
769 static void kmemcg_cache_deactivate(struct kmem_cache
*s
)
771 if (WARN_ON_ONCE(is_root_cache(s
)))
774 __kmemcg_cache_deactivate(s
);
775 s
->flags
|= SLAB_DEACTIVATED
;
778 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
779 * flag and make sure that no new kmem_cache deactivation tasks
780 * are queued (see flush_memcg_workqueue() ).
782 spin_lock_irq(&memcg_kmem_wq_lock
);
783 if (s
->memcg_params
.root_cache
->memcg_params
.dying
)
786 s
->memcg_params
.work_fn
= kmemcg_cache_deactivate_after_rcu
;
787 call_rcu(&s
->memcg_params
.rcu_head
, kmemcg_rcufn
);
789 spin_unlock_irq(&memcg_kmem_wq_lock
);
792 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
,
793 struct mem_cgroup
*parent
)
796 struct memcg_cache_array
*arr
;
797 struct kmem_cache
*s
, *c
;
798 unsigned int nr_reparented
;
800 idx
= memcg_cache_id(memcg
);
805 mutex_lock(&slab_mutex
);
806 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
807 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
808 lockdep_is_held(&slab_mutex
));
809 c
= arr
->entries
[idx
];
813 kmemcg_cache_deactivate(c
);
814 arr
->entries
[idx
] = NULL
;
817 list_for_each_entry(s
, &memcg
->kmem_caches
,
818 memcg_params
.kmem_caches_node
) {
819 WRITE_ONCE(s
->memcg_params
.memcg
, parent
);
820 css_put(&memcg
->css
);
824 list_splice_init(&memcg
->kmem_caches
,
825 &parent
->kmem_caches
);
826 css_get_many(&parent
->css
, nr_reparented
);
828 mutex_unlock(&slab_mutex
);
834 static int shutdown_memcg_caches(struct kmem_cache
*s
)
836 struct memcg_cache_array
*arr
;
837 struct kmem_cache
*c
, *c2
;
841 BUG_ON(!is_root_cache(s
));
844 * First, shutdown active caches, i.e. caches that belong to online
847 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
848 lockdep_is_held(&slab_mutex
));
849 for_each_memcg_cache_index(i
) {
853 if (shutdown_cache(c
))
855 * The cache still has objects. Move it to a temporary
856 * list so as not to try to destroy it for a second
857 * time while iterating over inactive caches below.
859 list_move(&c
->memcg_params
.children_node
, &busy
);
862 * The cache is empty and will be destroyed soon. Clear
863 * the pointer to it in the memcg_caches array so that
864 * it will never be accessed even if the root cache
867 arr
->entries
[i
] = NULL
;
871 * Second, shutdown all caches left from memory cgroups that are now
874 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
875 memcg_params
.children_node
)
878 list_splice(&busy
, &s
->memcg_params
.children
);
881 * A cache being destroyed must be empty. In particular, this means
882 * that all per memcg caches attached to it must be empty too.
884 if (!list_empty(&s
->memcg_params
.children
))
889 static void flush_memcg_workqueue(struct kmem_cache
*s
)
891 spin_lock_irq(&memcg_kmem_wq_lock
);
892 s
->memcg_params
.dying
= true;
893 spin_unlock_irq(&memcg_kmem_wq_lock
);
896 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
897 * sure all registered rcu callbacks have been invoked.
902 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
903 * deactivates the memcg kmem_caches through workqueue. Make sure all
904 * previous workitems on workqueue are processed.
906 if (likely(memcg_kmem_cache_wq
))
907 flush_workqueue(memcg_kmem_cache_wq
);
910 * If we're racing with children kmem_cache deactivation, it might
911 * take another rcu grace period to complete their destruction.
912 * At this moment the corresponding percpu_ref_kill() call should be
913 * done, but it might take another rcu grace period to complete
914 * switching to the atomic mode.
915 * Please, note that we check without grabbing the slab_mutex. It's safe
916 * because at this moment the children list can't grow.
918 if (!list_empty(&s
->memcg_params
.children
))
922 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
927 static inline void flush_memcg_workqueue(struct kmem_cache
*s
)
930 #endif /* CONFIG_MEMCG_KMEM */
932 void slab_kmem_cache_release(struct kmem_cache
*s
)
934 __kmem_cache_release(s
);
935 destroy_memcg_params(s
);
936 kfree_const(s
->name
);
937 kmem_cache_free(kmem_cache
, s
);
940 void kmem_cache_destroy(struct kmem_cache
*s
)
947 flush_memcg_workqueue(s
);
952 mutex_lock(&slab_mutex
);
958 err
= shutdown_memcg_caches(s
);
960 err
= shutdown_cache(s
);
963 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
968 mutex_unlock(&slab_mutex
);
973 EXPORT_SYMBOL(kmem_cache_destroy
);
976 * kmem_cache_shrink - Shrink a cache.
977 * @cachep: The cache to shrink.
979 * Releases as many slabs as possible for a cache.
980 * To help debugging, a zero exit status indicates all slabs were released.
982 * Return: %0 if all slabs were released, non-zero otherwise
984 int kmem_cache_shrink(struct kmem_cache
*cachep
)
990 kasan_cache_shrink(cachep
);
991 ret
= __kmem_cache_shrink(cachep
);
996 EXPORT_SYMBOL(kmem_cache_shrink
);
999 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1000 * @s: The cache pointer
1002 void kmem_cache_shrink_all(struct kmem_cache
*s
)
1004 struct kmem_cache
*c
;
1006 if (!IS_ENABLED(CONFIG_MEMCG_KMEM
) || !is_root_cache(s
)) {
1007 kmem_cache_shrink(s
);
1013 kasan_cache_shrink(s
);
1014 __kmem_cache_shrink(s
);
1017 * We have to take the slab_mutex to protect from the memcg list
1020 mutex_lock(&slab_mutex
);
1021 for_each_memcg_cache(c
, s
) {
1023 * Don't need to shrink deactivated memcg caches.
1025 if (s
->flags
& SLAB_DEACTIVATED
)
1027 kasan_cache_shrink(c
);
1028 __kmem_cache_shrink(c
);
1030 mutex_unlock(&slab_mutex
);
1035 bool slab_is_available(void)
1037 return slab_state
>= UP
;
1041 /* Create a cache during boot when no slab services are available yet */
1042 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
,
1043 unsigned int size
, slab_flags_t flags
,
1044 unsigned int useroffset
, unsigned int usersize
)
1047 unsigned int align
= ARCH_KMALLOC_MINALIGN
;
1050 s
->size
= s
->object_size
= size
;
1053 * For power of two sizes, guarantee natural alignment for kmalloc
1054 * caches, regardless of SL*B debugging options.
1056 if (is_power_of_2(size
))
1057 align
= max(align
, size
);
1058 s
->align
= calculate_alignment(flags
, align
, size
);
1060 s
->useroffset
= useroffset
;
1061 s
->usersize
= usersize
;
1063 slab_init_memcg_params(s
);
1065 err
= __kmem_cache_create(s
, flags
);
1068 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1071 s
->refcount
= -1; /* Exempt from merging for now */
1074 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
1075 unsigned int size
, slab_flags_t flags
,
1076 unsigned int useroffset
, unsigned int usersize
)
1078 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
1081 panic("Out of memory when creating slab %s\n", name
);
1083 create_boot_cache(s
, name
, size
, flags
, useroffset
, usersize
);
1084 list_add(&s
->list
, &slab_caches
);
1085 memcg_link_cache(s
, NULL
);
1091 kmalloc_caches
[NR_KMALLOC_TYPES
][KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
=
1092 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1093 EXPORT_SYMBOL(kmalloc_caches
);
1096 * Conversion table for small slabs sizes / 8 to the index in the
1097 * kmalloc array. This is necessary for slabs < 192 since we have non power
1098 * of two cache sizes there. The size of larger slabs can be determined using
1101 static u8 size_index
[24] __ro_after_init
= {
1128 static inline unsigned int size_index_elem(unsigned int bytes
)
1130 return (bytes
- 1) / 8;
1134 * Find the kmem_cache structure that serves a given size of
1137 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
1143 return ZERO_SIZE_PTR
;
1145 index
= size_index
[size_index_elem(size
)];
1147 if (WARN_ON_ONCE(size
> KMALLOC_MAX_CACHE_SIZE
))
1149 index
= fls(size
- 1);
1152 return kmalloc_caches
[kmalloc_type(flags
)][index
];
1155 #ifdef CONFIG_ZONE_DMA
1156 #define INIT_KMALLOC_INFO(__size, __short_size) \
1158 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
1159 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
1160 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
1164 #define INIT_KMALLOC_INFO(__size, __short_size) \
1166 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
1167 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
1173 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1174 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1177 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1178 INIT_KMALLOC_INFO(0, 0),
1179 INIT_KMALLOC_INFO(96, 96),
1180 INIT_KMALLOC_INFO(192, 192),
1181 INIT_KMALLOC_INFO(8, 8),
1182 INIT_KMALLOC_INFO(16, 16),
1183 INIT_KMALLOC_INFO(32, 32),
1184 INIT_KMALLOC_INFO(64, 64),
1185 INIT_KMALLOC_INFO(128, 128),
1186 INIT_KMALLOC_INFO(256, 256),
1187 INIT_KMALLOC_INFO(512, 512),
1188 INIT_KMALLOC_INFO(1024, 1k
),
1189 INIT_KMALLOC_INFO(2048, 2k
),
1190 INIT_KMALLOC_INFO(4096, 4k
),
1191 INIT_KMALLOC_INFO(8192, 8k
),
1192 INIT_KMALLOC_INFO(16384, 16k
),
1193 INIT_KMALLOC_INFO(32768, 32k
),
1194 INIT_KMALLOC_INFO(65536, 64k
),
1195 INIT_KMALLOC_INFO(131072, 128k
),
1196 INIT_KMALLOC_INFO(262144, 256k
),
1197 INIT_KMALLOC_INFO(524288, 512k
),
1198 INIT_KMALLOC_INFO(1048576, 1M
),
1199 INIT_KMALLOC_INFO(2097152, 2M
),
1200 INIT_KMALLOC_INFO(4194304, 4M
),
1201 INIT_KMALLOC_INFO(8388608, 8M
),
1202 INIT_KMALLOC_INFO(16777216, 16M
),
1203 INIT_KMALLOC_INFO(33554432, 32M
),
1204 INIT_KMALLOC_INFO(67108864, 64M
)
1208 * Patch up the size_index table if we have strange large alignment
1209 * requirements for the kmalloc array. This is only the case for
1210 * MIPS it seems. The standard arches will not generate any code here.
1212 * Largest permitted alignment is 256 bytes due to the way we
1213 * handle the index determination for the smaller caches.
1215 * Make sure that nothing crazy happens if someone starts tinkering
1216 * around with ARCH_KMALLOC_MINALIGN
1218 void __init
setup_kmalloc_cache_index_table(void)
1222 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1223 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1225 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1226 unsigned int elem
= size_index_elem(i
);
1228 if (elem
>= ARRAY_SIZE(size_index
))
1230 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1233 if (KMALLOC_MIN_SIZE
>= 64) {
1235 * The 96 byte size cache is not used if the alignment
1238 for (i
= 64 + 8; i
<= 96; i
+= 8)
1239 size_index
[size_index_elem(i
)] = 7;
1243 if (KMALLOC_MIN_SIZE
>= 128) {
1245 * The 192 byte sized cache is not used if the alignment
1246 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1249 for (i
= 128 + 8; i
<= 192; i
+= 8)
1250 size_index
[size_index_elem(i
)] = 8;
1255 new_kmalloc_cache(int idx
, enum kmalloc_cache_type type
, slab_flags_t flags
)
1257 if (type
== KMALLOC_RECLAIM
)
1258 flags
|= SLAB_RECLAIM_ACCOUNT
;
1260 kmalloc_caches
[type
][idx
] = create_kmalloc_cache(
1261 kmalloc_info
[idx
].name
[type
],
1262 kmalloc_info
[idx
].size
, flags
, 0,
1263 kmalloc_info
[idx
].size
);
1267 * Create the kmalloc array. Some of the regular kmalloc arrays
1268 * may already have been created because they were needed to
1269 * enable allocations for slab creation.
1271 void __init
create_kmalloc_caches(slab_flags_t flags
)
1274 enum kmalloc_cache_type type
;
1276 for (type
= KMALLOC_NORMAL
; type
<= KMALLOC_RECLAIM
; type
++) {
1277 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1278 if (!kmalloc_caches
[type
][i
])
1279 new_kmalloc_cache(i
, type
, flags
);
1282 * Caches that are not of the two-to-the-power-of size.
1283 * These have to be created immediately after the
1284 * earlier power of two caches
1286 if (KMALLOC_MIN_SIZE
<= 32 && i
== 6 &&
1287 !kmalloc_caches
[type
][1])
1288 new_kmalloc_cache(1, type
, flags
);
1289 if (KMALLOC_MIN_SIZE
<= 64 && i
== 7 &&
1290 !kmalloc_caches
[type
][2])
1291 new_kmalloc_cache(2, type
, flags
);
1295 /* Kmalloc array is now usable */
1298 #ifdef CONFIG_ZONE_DMA
1299 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1300 struct kmem_cache
*s
= kmalloc_caches
[KMALLOC_NORMAL
][i
];
1303 kmalloc_caches
[KMALLOC_DMA
][i
] = create_kmalloc_cache(
1304 kmalloc_info
[i
].name
[KMALLOC_DMA
],
1305 kmalloc_info
[i
].size
,
1306 SLAB_CACHE_DMA
| flags
, 0,
1307 kmalloc_info
[i
].size
);
1312 #endif /* !CONFIG_SLOB */
1315 * To avoid unnecessary overhead, we pass through large allocation requests
1316 * directly to the page allocator. We use __GFP_COMP, because we will need to
1317 * know the allocation order to free the pages properly in kfree.
1319 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1324 flags
|= __GFP_COMP
;
1325 page
= alloc_pages(flags
, order
);
1327 ret
= page_address(page
);
1328 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
1331 ret
= kasan_kmalloc_large(ret
, size
, flags
);
1332 /* As ret might get tagged, call kmemleak hook after KASAN. */
1333 kmemleak_alloc(ret
, size
, 1, flags
);
1336 EXPORT_SYMBOL(kmalloc_order
);
1338 #ifdef CONFIG_TRACING
1339 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1341 void *ret
= kmalloc_order(size
, flags
, order
);
1342 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1345 EXPORT_SYMBOL(kmalloc_order_trace
);
1348 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1349 /* Randomize a generic freelist */
1350 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1356 for (i
= 0; i
< count
; i
++)
1359 /* Fisher-Yates shuffle */
1360 for (i
= count
- 1; i
> 0; i
--) {
1361 rand
= prandom_u32_state(state
);
1363 swap(list
[i
], list
[rand
]);
1367 /* Create a random sequence per cache */
1368 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1371 struct rnd_state state
;
1373 if (count
< 2 || cachep
->random_seq
)
1376 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1377 if (!cachep
->random_seq
)
1380 /* Get best entropy at this stage of boot */
1381 prandom_seed_state(&state
, get_random_long());
1383 freelist_randomize(&state
, cachep
->random_seq
, count
);
1387 /* Destroy the per-cache random freelist sequence */
1388 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1390 kfree(cachep
->random_seq
);
1391 cachep
->random_seq
= NULL
;
1393 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1395 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1397 #define SLABINFO_RIGHTS (0600)
1399 #define SLABINFO_RIGHTS (0400)
1402 static void print_slabinfo_header(struct seq_file
*m
)
1405 * Output format version, so at least we can change it
1406 * without _too_ many complaints.
1408 #ifdef CONFIG_DEBUG_SLAB
1409 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1411 seq_puts(m
, "slabinfo - version: 2.1\n");
1413 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1414 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1415 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1416 #ifdef CONFIG_DEBUG_SLAB
1417 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1418 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1423 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1425 mutex_lock(&slab_mutex
);
1426 return seq_list_start(&slab_root_caches
, *pos
);
1429 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1431 return seq_list_next(p
, &slab_root_caches
, pos
);
1434 void slab_stop(struct seq_file
*m
, void *p
)
1436 mutex_unlock(&slab_mutex
);
1440 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1442 struct kmem_cache
*c
;
1443 struct slabinfo sinfo
;
1445 if (!is_root_cache(s
))
1448 for_each_memcg_cache(c
, s
) {
1449 memset(&sinfo
, 0, sizeof(sinfo
));
1450 get_slabinfo(c
, &sinfo
);
1452 info
->active_slabs
+= sinfo
.active_slabs
;
1453 info
->num_slabs
+= sinfo
.num_slabs
;
1454 info
->shared_avail
+= sinfo
.shared_avail
;
1455 info
->active_objs
+= sinfo
.active_objs
;
1456 info
->num_objs
+= sinfo
.num_objs
;
1460 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1462 struct slabinfo sinfo
;
1464 memset(&sinfo
, 0, sizeof(sinfo
));
1465 get_slabinfo(s
, &sinfo
);
1467 memcg_accumulate_slabinfo(s
, &sinfo
);
1469 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1470 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1471 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1473 seq_printf(m
, " : tunables %4u %4u %4u",
1474 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1475 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1476 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1477 slabinfo_show_stats(m
, s
);
1481 static int slab_show(struct seq_file
*m
, void *p
)
1483 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1485 if (p
== slab_root_caches
.next
)
1486 print_slabinfo_header(m
);
1491 void dump_unreclaimable_slab(void)
1493 struct kmem_cache
*s
, *s2
;
1494 struct slabinfo sinfo
;
1497 * Here acquiring slab_mutex is risky since we don't prefer to get
1498 * sleep in oom path. But, without mutex hold, it may introduce a
1500 * Use mutex_trylock to protect the list traverse, dump nothing
1501 * without acquiring the mutex.
1503 if (!mutex_trylock(&slab_mutex
)) {
1504 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1508 pr_info("Unreclaimable slab info:\n");
1509 pr_info("Name Used Total\n");
1511 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
1512 if (!is_root_cache(s
) || (s
->flags
& SLAB_RECLAIM_ACCOUNT
))
1515 get_slabinfo(s
, &sinfo
);
1517 if (sinfo
.num_objs
> 0)
1518 pr_info("%-17s %10luKB %10luKB\n", cache_name(s
),
1519 (sinfo
.active_objs
* s
->size
) / 1024,
1520 (sinfo
.num_objs
* s
->size
) / 1024);
1522 mutex_unlock(&slab_mutex
);
1525 #if defined(CONFIG_MEMCG_KMEM)
1526 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1528 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1530 mutex_lock(&slab_mutex
);
1531 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1534 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1536 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1538 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1541 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1543 mutex_unlock(&slab_mutex
);
1546 int memcg_slab_show(struct seq_file
*m
, void *p
)
1548 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1549 memcg_params
.kmem_caches_node
);
1550 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
1552 if (p
== memcg
->kmem_caches
.next
)
1553 print_slabinfo_header(m
);
1560 * slabinfo_op - iterator that generates /proc/slabinfo
1569 * num-pages-per-slab
1570 * + further values on SMP and with statistics enabled
1572 static const struct seq_operations slabinfo_op
= {
1573 .start
= slab_start
,
1579 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1581 return seq_open(file
, &slabinfo_op
);
1584 static const struct proc_ops slabinfo_proc_ops
= {
1585 .proc_flags
= PROC_ENTRY_PERMANENT
,
1586 .proc_open
= slabinfo_open
,
1587 .proc_read
= seq_read
,
1588 .proc_write
= slabinfo_write
,
1589 .proc_lseek
= seq_lseek
,
1590 .proc_release
= seq_release
,
1593 static int __init
slab_proc_init(void)
1595 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
, &slabinfo_proc_ops
);
1598 module_init(slab_proc_init
);
1600 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1602 * Display information about kmem caches that have child memcg caches.
1604 static int memcg_slabinfo_show(struct seq_file
*m
, void *unused
)
1606 struct kmem_cache
*s
, *c
;
1607 struct slabinfo sinfo
;
1609 mutex_lock(&slab_mutex
);
1610 seq_puts(m
, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1611 seq_puts(m
, " <active_slabs> <num_slabs>\n");
1612 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
1614 * Skip kmem caches that don't have any memcg children.
1616 if (list_empty(&s
->memcg_params
.children
))
1619 memset(&sinfo
, 0, sizeof(sinfo
));
1620 get_slabinfo(s
, &sinfo
);
1621 seq_printf(m
, "%-17s root %6lu %6lu %6lu %6lu\n",
1622 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
,
1623 sinfo
.active_slabs
, sinfo
.num_slabs
);
1625 for_each_memcg_cache(c
, s
) {
1626 struct cgroup_subsys_state
*css
;
1629 css
= &c
->memcg_params
.memcg
->css
;
1630 if (!(css
->flags
& CSS_ONLINE
))
1632 else if (c
->flags
& SLAB_DEACTIVATED
)
1635 memset(&sinfo
, 0, sizeof(sinfo
));
1636 get_slabinfo(c
, &sinfo
);
1637 seq_printf(m
, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1638 cache_name(c
), css
->id
, status
,
1639 sinfo
.active_objs
, sinfo
.num_objs
,
1640 sinfo
.active_slabs
, sinfo
.num_slabs
);
1643 mutex_unlock(&slab_mutex
);
1646 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo
);
1648 static int __init
memcg_slabinfo_init(void)
1650 debugfs_create_file("memcg_slabinfo", S_IFREG
| S_IRUGO
,
1651 NULL
, NULL
, &memcg_slabinfo_fops
);
1655 late_initcall(memcg_slabinfo_init
);
1656 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1657 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1659 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1668 if (ks
>= new_size
) {
1669 p
= kasan_krealloc((void *)p
, new_size
, flags
);
1673 ret
= kmalloc_track_caller(new_size
, flags
);
1681 * krealloc - reallocate memory. The contents will remain unchanged.
1682 * @p: object to reallocate memory for.
1683 * @new_size: how many bytes of memory are required.
1684 * @flags: the type of memory to allocate.
1686 * The contents of the object pointed to are preserved up to the
1687 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1688 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1689 * %NULL pointer, the object pointed to is freed.
1691 * Return: pointer to the allocated memory or %NULL in case of error
1693 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1697 if (unlikely(!new_size
)) {
1699 return ZERO_SIZE_PTR
;
1702 ret
= __do_krealloc(p
, new_size
, flags
);
1703 if (ret
&& kasan_reset_tag(p
) != kasan_reset_tag(ret
))
1708 EXPORT_SYMBOL(krealloc
);
1711 * kzfree - like kfree but zero memory
1712 * @p: object to free memory of
1714 * The memory of the object @p points to is zeroed before freed.
1715 * If @p is %NULL, kzfree() does nothing.
1717 * Note: this function zeroes the whole allocated buffer which can be a good
1718 * deal bigger than the requested buffer size passed to kmalloc(). So be
1719 * careful when using this function in performance sensitive code.
1721 void kzfree(const void *p
)
1724 void *mem
= (void *)p
;
1726 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1732 EXPORT_SYMBOL(kzfree
);
1735 * ksize - get the actual amount of memory allocated for a given object
1736 * @objp: Pointer to the object
1738 * kmalloc may internally round up allocations and return more memory
1739 * than requested. ksize() can be used to determine the actual amount of
1740 * memory allocated. The caller may use this additional memory, even though
1741 * a smaller amount of memory was initially specified with the kmalloc call.
1742 * The caller must guarantee that objp points to a valid object previously
1743 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1744 * must not be freed during the duration of the call.
1746 * Return: size of the actual memory used by @objp in bytes
1748 size_t ksize(const void *objp
)
1752 if (WARN_ON_ONCE(!objp
))
1755 * We need to check that the pointed to object is valid, and only then
1756 * unpoison the shadow memory below. We use __kasan_check_read(), to
1757 * generate a more useful report at the time ksize() is called (rather
1758 * than later where behaviour is undefined due to potential
1759 * use-after-free or double-free).
1761 * If the pointed to memory is invalid we return 0, to avoid users of
1762 * ksize() writing to and potentially corrupting the memory region.
1764 * We want to perform the check before __ksize(), to avoid potentially
1765 * crashing in __ksize() due to accessing invalid metadata.
1767 if (unlikely(objp
== ZERO_SIZE_PTR
) || !__kasan_check_read(objp
, 1))
1770 size
= __ksize(objp
);
1772 * We assume that ksize callers could use whole allocated area,
1773 * so we need to unpoison this area.
1775 kasan_unpoison_shadow(objp
, size
);
1778 EXPORT_SYMBOL(ksize
);
1780 /* Tracepoints definitions. */
1781 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1782 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1783 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1784 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1785 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1786 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);
1788 int should_failslab(struct kmem_cache
*s
, gfp_t gfpflags
)
1790 if (__should_failslab(s
, gfpflags
))
1794 ALLOW_ERROR_INJECTION(should_failslab
, ERRNO
);