posix_timer: Move copy_to_user(created_timer_id) down in timer_create()
[linux/fpc-iii.git] / kernel / srcu.c
blob2980da3fd50925f7902a5ba42e64934f6c4b0650
1 /*
2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2006
20 * Author: Paul McKenney <paulmck@us.ibm.com>
22 * For detailed explanation of Read-Copy Update mechanism see -
23 * Documentation/RCU/ *.txt
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/percpu.h>
30 #include <linux/preempt.h>
31 #include <linux/rcupdate.h>
32 #include <linux/sched.h>
33 #include <linux/smp.h>
34 #include <linux/srcu.h>
36 static int init_srcu_struct_fields(struct srcu_struct *sp)
38 sp->completed = 0;
39 mutex_init(&sp->mutex);
40 sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array);
41 return sp->per_cpu_ref ? 0 : -ENOMEM;
44 #ifdef CONFIG_DEBUG_LOCK_ALLOC
46 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
47 struct lock_class_key *key)
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 /* Don't re-initialize a lock while it is held. */
51 debug_check_no_locks_freed((void *)sp, sizeof(*sp));
52 lockdep_init_map(&sp->dep_map, name, key, 0);
53 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
54 return init_srcu_struct_fields(sp);
56 EXPORT_SYMBOL_GPL(__init_srcu_struct);
58 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
60 /**
61 * init_srcu_struct - initialize a sleep-RCU structure
62 * @sp: structure to initialize.
64 * Must invoke this on a given srcu_struct before passing that srcu_struct
65 * to any other function. Each srcu_struct represents a separate domain
66 * of SRCU protection.
68 int init_srcu_struct(struct srcu_struct *sp)
70 return init_srcu_struct_fields(sp);
72 EXPORT_SYMBOL_GPL(init_srcu_struct);
74 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
77 * srcu_readers_active_idx -- returns approximate number of readers
78 * active on the specified rank of per-CPU counters.
81 static int srcu_readers_active_idx(struct srcu_struct *sp, int idx)
83 int cpu;
84 int sum;
86 sum = 0;
87 for_each_possible_cpu(cpu)
88 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
89 return sum;
92 /**
93 * srcu_readers_active - returns approximate number of readers.
94 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
96 * Note that this is not an atomic primitive, and can therefore suffer
97 * severe errors when invoked on an active srcu_struct. That said, it
98 * can be useful as an error check at cleanup time.
100 static int srcu_readers_active(struct srcu_struct *sp)
102 return srcu_readers_active_idx(sp, 0) + srcu_readers_active_idx(sp, 1);
106 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
107 * @sp: structure to clean up.
109 * Must invoke this after you are finished using a given srcu_struct that
110 * was initialized via init_srcu_struct(), else you leak memory.
112 void cleanup_srcu_struct(struct srcu_struct *sp)
114 int sum;
116 sum = srcu_readers_active(sp);
117 WARN_ON(sum); /* Leakage unless caller handles error. */
118 if (sum != 0)
119 return;
120 free_percpu(sp->per_cpu_ref);
121 sp->per_cpu_ref = NULL;
123 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
126 * Counts the new reader in the appropriate per-CPU element of the
127 * srcu_struct. Must be called from process context.
128 * Returns an index that must be passed to the matching srcu_read_unlock().
130 int __srcu_read_lock(struct srcu_struct *sp)
132 int idx;
134 preempt_disable();
135 idx = sp->completed & 0x1;
136 barrier(); /* ensure compiler looks -once- at sp->completed. */
137 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++;
138 srcu_barrier(); /* ensure compiler won't misorder critical section. */
139 preempt_enable();
140 return idx;
142 EXPORT_SYMBOL_GPL(__srcu_read_lock);
145 * Removes the count for the old reader from the appropriate per-CPU
146 * element of the srcu_struct. Note that this may well be a different
147 * CPU than that which was incremented by the corresponding srcu_read_lock().
148 * Must be called from process context.
150 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
152 preempt_disable();
153 srcu_barrier(); /* ensure compiler won't misorder critical section. */
154 per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--;
155 preempt_enable();
157 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
160 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
162 static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void))
164 int idx;
166 idx = sp->completed;
167 mutex_lock(&sp->mutex);
170 * Check to see if someone else did the work for us while we were
171 * waiting to acquire the lock. We need -two- advances of
172 * the counter, not just one. If there was but one, we might have
173 * shown up -after- our helper's first synchronize_sched(), thus
174 * having failed to prevent CPU-reordering races with concurrent
175 * srcu_read_unlock()s on other CPUs (see comment below). So we
176 * either (1) wait for two or (2) supply the second ourselves.
179 if ((sp->completed - idx) >= 2) {
180 mutex_unlock(&sp->mutex);
181 return;
184 sync_func(); /* Force memory barrier on all CPUs. */
187 * The preceding synchronize_sched() ensures that any CPU that
188 * sees the new value of sp->completed will also see any preceding
189 * changes to data structures made by this CPU. This prevents
190 * some other CPU from reordering the accesses in its SRCU
191 * read-side critical section to precede the corresponding
192 * srcu_read_lock() -- ensuring that such references will in
193 * fact be protected.
195 * So it is now safe to do the flip.
198 idx = sp->completed & 0x1;
199 sp->completed++;
201 sync_func(); /* Force memory barrier on all CPUs. */
204 * At this point, because of the preceding synchronize_sched(),
205 * all srcu_read_lock() calls using the old counters have completed.
206 * Their corresponding critical sections might well be still
207 * executing, but the srcu_read_lock() primitives themselves
208 * will have finished executing.
211 while (srcu_readers_active_idx(sp, idx))
212 schedule_timeout_interruptible(1);
214 sync_func(); /* Force memory barrier on all CPUs. */
217 * The preceding synchronize_sched() forces all srcu_read_unlock()
218 * primitives that were executing concurrently with the preceding
219 * for_each_possible_cpu() loop to have completed by this point.
220 * More importantly, it also forces the corresponding SRCU read-side
221 * critical sections to have also completed, and the corresponding
222 * references to SRCU-protected data items to be dropped.
224 * Note:
226 * Despite what you might think at first glance, the
227 * preceding synchronize_sched() -must- be within the
228 * critical section ended by the following mutex_unlock().
229 * Otherwise, a task taking the early exit can race
230 * with a srcu_read_unlock(), which might have executed
231 * just before the preceding srcu_readers_active() check,
232 * and whose CPU might have reordered the srcu_read_unlock()
233 * with the preceding critical section. In this case, there
234 * is nothing preventing the synchronize_sched() task that is
235 * taking the early exit from freeing a data structure that
236 * is still being referenced (out of order) by the task
237 * doing the srcu_read_unlock().
239 * Alternatively, the comparison with "2" on the early exit
240 * could be changed to "3", but this increases synchronize_srcu()
241 * latency for bulk loads. So the current code is preferred.
244 mutex_unlock(&sp->mutex);
248 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
249 * @sp: srcu_struct with which to synchronize.
251 * Flip the completed counter, and wait for the old count to drain to zero.
252 * As with classic RCU, the updater must use some separate means of
253 * synchronizing concurrent updates. Can block; must be called from
254 * process context.
256 * Note that it is illegal to call synchronize_srcu() from the corresponding
257 * SRCU read-side critical section; doing so will result in deadlock.
258 * However, it is perfectly legal to call synchronize_srcu() on one
259 * srcu_struct from some other srcu_struct's read-side critical section.
261 void synchronize_srcu(struct srcu_struct *sp)
263 __synchronize_srcu(sp, synchronize_sched);
265 EXPORT_SYMBOL_GPL(synchronize_srcu);
268 * synchronize_srcu_expedited - like synchronize_srcu, but less patient
269 * @sp: srcu_struct with which to synchronize.
271 * Flip the completed counter, and wait for the old count to drain to zero.
272 * As with classic RCU, the updater must use some separate means of
273 * synchronizing concurrent updates. Can block; must be called from
274 * process context.
276 * Note that it is illegal to call synchronize_srcu_expedited()
277 * from the corresponding SRCU read-side critical section; doing so
278 * will result in deadlock. However, it is perfectly legal to call
279 * synchronize_srcu_expedited() on one srcu_struct from some other
280 * srcu_struct's read-side critical section.
282 void synchronize_srcu_expedited(struct srcu_struct *sp)
284 __synchronize_srcu(sp, synchronize_sched_expedited);
286 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
289 * srcu_batches_completed - return batches completed.
290 * @sp: srcu_struct on which to report batch completion.
292 * Report the number of batches, correlated with, but not necessarily
293 * precisely the same as, the number of grace periods that have elapsed.
296 long srcu_batches_completed(struct srcu_struct *sp)
298 return sp->completed;
300 EXPORT_SYMBOL_GPL(srcu_batches_completed);