Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / block / as-iosched.c
blob7a12cf6ee1d35e212a6d26007a1eb2057c189357
1 /*
2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
21 * See Documentation/block/as-iosched.txt
25 * max time before a read is submitted.
27 #define default_read_expire (HZ / 8)
30 * ditto for writes, these limits are not hard, even
31 * if the disk is capable of satisfying them.
33 #define default_write_expire (HZ / 4)
36 * read_batch_expire describes how long we will allow a stream of reads to
37 * persist before looking to see whether it is time to switch over to writes.
39 #define default_read_batch_expire (HZ / 2)
42 * write_batch_expire describes how long we want a stream of writes to run for.
43 * This is not a hard limit, but a target we set for the auto-tuning thingy.
44 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
45 * a short amount of time...
47 #define default_write_batch_expire (HZ / 8)
50 * max time we may wait to anticipate a read (default around 6ms)
52 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
55 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
56 * however huge values tend to interfere and not decay fast enough. A program
57 * might be in a non-io phase of operation. Waiting on user input for example,
58 * or doing a lengthy computation. A small penalty can be justified there, and
59 * will still catch out those processes that constantly have large thinktimes.
61 #define MAX_THINKTIME (HZ/50UL)
63 /* Bits in as_io_context.state */
64 enum as_io_states {
65 AS_TASK_RUNNING=0, /* Process has not exited */
66 AS_TASK_IOSTARTED, /* Process has started some IO */
67 AS_TASK_IORUNNING, /* Process has completed some IO */
70 enum anticipation_status {
71 ANTIC_OFF=0, /* Not anticipating (normal operation) */
72 ANTIC_WAIT_REQ, /* The last read has not yet completed */
73 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
74 last read (which has completed) */
75 ANTIC_FINISHED, /* Anticipating but have found a candidate
76 * or timed out */
79 struct as_data {
81 * run time data
84 struct request_queue *q; /* the "owner" queue */
87 * requests (as_rq s) are present on both sort_list and fifo_list
89 struct rb_root sort_list[2];
90 struct list_head fifo_list[2];
92 struct request *next_rq[2]; /* next in sort order */
93 sector_t last_sector[2]; /* last SYNC & ASYNC sectors */
95 unsigned long exit_prob; /* probability a task will exit while
96 being waited on */
97 unsigned long exit_no_coop; /* probablility an exited task will
98 not be part of a later cooperating
99 request */
100 unsigned long new_ttime_total; /* mean thinktime on new proc */
101 unsigned long new_ttime_mean;
102 u64 new_seek_total; /* mean seek on new proc */
103 sector_t new_seek_mean;
105 unsigned long current_batch_expires;
106 unsigned long last_check_fifo[2];
107 int changed_batch; /* 1: waiting for old batch to end */
108 int new_batch; /* 1: waiting on first read complete */
109 int batch_data_dir; /* current batch SYNC / ASYNC */
110 int write_batch_count; /* max # of reqs in a write batch */
111 int current_write_count; /* how many requests left this batch */
112 int write_batch_idled; /* has the write batch gone idle? */
114 enum anticipation_status antic_status;
115 unsigned long antic_start; /* jiffies: when it started */
116 struct timer_list antic_timer; /* anticipatory scheduling timer */
117 struct work_struct antic_work; /* Deferred unplugging */
118 struct io_context *io_context; /* Identify the expected process */
119 int ioc_finished; /* IO associated with io_context is finished */
120 int nr_dispatched;
123 * settings that change how the i/o scheduler behaves
125 unsigned long fifo_expire[2];
126 unsigned long batch_expire[2];
127 unsigned long antic_expire;
131 * per-request data.
133 enum arq_state {
134 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
135 AS_RQ_QUEUED, /* In the request queue. It belongs to the
136 scheduler */
137 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
138 driver now */
139 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
140 AS_RQ_REMOVED,
141 AS_RQ_MERGED,
142 AS_RQ_POSTSCHED, /* when they shouldn't be */
145 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
146 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
147 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
149 static DEFINE_PER_CPU(unsigned long, ioc_count);
150 static struct completion *ioc_gone;
151 static DEFINE_SPINLOCK(ioc_gone_lock);
153 static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
154 static void as_antic_stop(struct as_data *ad);
157 * IO Context helper functions
160 /* Called to deallocate the as_io_context */
161 static void free_as_io_context(struct as_io_context *aic)
163 kfree(aic);
164 elv_ioc_count_dec(ioc_count);
165 if (ioc_gone) {
167 * AS scheduler is exiting, grab exit lock and check
168 * the pending io context count. If it hits zero,
169 * complete ioc_gone and set it back to NULL.
171 spin_lock(&ioc_gone_lock);
172 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
173 complete(ioc_gone);
174 ioc_gone = NULL;
176 spin_unlock(&ioc_gone_lock);
180 static void as_trim(struct io_context *ioc)
182 spin_lock_irq(&ioc->lock);
183 if (ioc->aic)
184 free_as_io_context(ioc->aic);
185 ioc->aic = NULL;
186 spin_unlock_irq(&ioc->lock);
189 /* Called when the task exits */
190 static void exit_as_io_context(struct as_io_context *aic)
192 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
193 clear_bit(AS_TASK_RUNNING, &aic->state);
196 static struct as_io_context *alloc_as_io_context(void)
198 struct as_io_context *ret;
200 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
201 if (ret) {
202 ret->dtor = free_as_io_context;
203 ret->exit = exit_as_io_context;
204 ret->state = 1 << AS_TASK_RUNNING;
205 atomic_set(&ret->nr_queued, 0);
206 atomic_set(&ret->nr_dispatched, 0);
207 spin_lock_init(&ret->lock);
208 ret->ttime_total = 0;
209 ret->ttime_samples = 0;
210 ret->ttime_mean = 0;
211 ret->seek_total = 0;
212 ret->seek_samples = 0;
213 ret->seek_mean = 0;
214 elv_ioc_count_inc(ioc_count);
217 return ret;
221 * If the current task has no AS IO context then create one and initialise it.
222 * Then take a ref on the task's io context and return it.
224 static struct io_context *as_get_io_context(int node)
226 struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
227 if (ioc && !ioc->aic) {
228 ioc->aic = alloc_as_io_context();
229 if (!ioc->aic) {
230 put_io_context(ioc);
231 ioc = NULL;
234 return ioc;
237 static void as_put_io_context(struct request *rq)
239 struct as_io_context *aic;
241 if (unlikely(!RQ_IOC(rq)))
242 return;
244 aic = RQ_IOC(rq)->aic;
246 if (rq_is_sync(rq) && aic) {
247 unsigned long flags;
249 spin_lock_irqsave(&aic->lock, flags);
250 set_bit(AS_TASK_IORUNNING, &aic->state);
251 aic->last_end_request = jiffies;
252 spin_unlock_irqrestore(&aic->lock, flags);
255 put_io_context(RQ_IOC(rq));
259 * rb tree support functions
261 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
263 static void as_add_rq_rb(struct as_data *ad, struct request *rq)
265 struct request *alias;
267 while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
268 as_move_to_dispatch(ad, alias);
269 as_antic_stop(ad);
273 static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
275 elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
279 * IO Scheduler proper
282 #define MAXBACK (1024 * 1024) /*
283 * Maximum distance the disk will go backward
284 * for a request.
287 #define BACK_PENALTY 2
290 * as_choose_req selects the preferred one of two requests of the same data_dir
291 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
293 static struct request *
294 as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
296 int data_dir;
297 sector_t last, s1, s2, d1, d2;
298 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
299 const sector_t maxback = MAXBACK;
301 if (rq1 == NULL || rq1 == rq2)
302 return rq2;
303 if (rq2 == NULL)
304 return rq1;
306 data_dir = rq_is_sync(rq1);
308 last = ad->last_sector[data_dir];
309 s1 = blk_rq_pos(rq1);
310 s2 = blk_rq_pos(rq2);
312 BUG_ON(data_dir != rq_is_sync(rq2));
315 * Strict one way elevator _except_ in the case where we allow
316 * short backward seeks which are biased as twice the cost of a
317 * similar forward seek.
319 if (s1 >= last)
320 d1 = s1 - last;
321 else if (s1+maxback >= last)
322 d1 = (last - s1)*BACK_PENALTY;
323 else {
324 r1_wrap = 1;
325 d1 = 0; /* shut up, gcc */
328 if (s2 >= last)
329 d2 = s2 - last;
330 else if (s2+maxback >= last)
331 d2 = (last - s2)*BACK_PENALTY;
332 else {
333 r2_wrap = 1;
334 d2 = 0;
337 /* Found required data */
338 if (!r1_wrap && r2_wrap)
339 return rq1;
340 else if (!r2_wrap && r1_wrap)
341 return rq2;
342 else if (r1_wrap && r2_wrap) {
343 /* both behind the head */
344 if (s1 <= s2)
345 return rq1;
346 else
347 return rq2;
350 /* Both requests in front of the head */
351 if (d1 < d2)
352 return rq1;
353 else if (d2 < d1)
354 return rq2;
355 else {
356 if (s1 >= s2)
357 return rq1;
358 else
359 return rq2;
364 * as_find_next_rq finds the next request after @prev in elevator order.
365 * this with as_choose_req form the basis for how the scheduler chooses
366 * what request to process next. Anticipation works on top of this.
368 static struct request *
369 as_find_next_rq(struct as_data *ad, struct request *last)
371 struct rb_node *rbnext = rb_next(&last->rb_node);
372 struct rb_node *rbprev = rb_prev(&last->rb_node);
373 struct request *next = NULL, *prev = NULL;
375 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
377 if (rbprev)
378 prev = rb_entry_rq(rbprev);
380 if (rbnext)
381 next = rb_entry_rq(rbnext);
382 else {
383 const int data_dir = rq_is_sync(last);
385 rbnext = rb_first(&ad->sort_list[data_dir]);
386 if (rbnext && rbnext != &last->rb_node)
387 next = rb_entry_rq(rbnext);
390 return as_choose_req(ad, next, prev);
394 * anticipatory scheduling functions follow
398 * as_antic_expired tells us when we have anticipated too long.
399 * The funny "absolute difference" math on the elapsed time is to handle
400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
402 static int as_antic_expired(struct as_data *ad)
404 long delta_jif;
406 delta_jif = jiffies - ad->antic_start;
407 if (unlikely(delta_jif < 0))
408 delta_jif = -delta_jif;
409 if (delta_jif < ad->antic_expire)
410 return 0;
412 return 1;
416 * as_antic_waitnext starts anticipating that a nice request will soon be
417 * submitted. See also as_antic_waitreq
419 static void as_antic_waitnext(struct as_data *ad)
421 unsigned long timeout;
423 BUG_ON(ad->antic_status != ANTIC_OFF
424 && ad->antic_status != ANTIC_WAIT_REQ);
426 timeout = ad->antic_start + ad->antic_expire;
428 mod_timer(&ad->antic_timer, timeout);
430 ad->antic_status = ANTIC_WAIT_NEXT;
434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
435 * until the request that we're anticipating on has finished. This means we
436 * are timing from when the candidate process wakes up hopefully.
438 static void as_antic_waitreq(struct as_data *ad)
440 BUG_ON(ad->antic_status == ANTIC_FINISHED);
441 if (ad->antic_status == ANTIC_OFF) {
442 if (!ad->io_context || ad->ioc_finished)
443 as_antic_waitnext(ad);
444 else
445 ad->antic_status = ANTIC_WAIT_REQ;
450 * This is called directly by the functions in this file to stop anticipation.
451 * We kill the timer and schedule a call to the request_fn asap.
453 static void as_antic_stop(struct as_data *ad)
455 int status = ad->antic_status;
457 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
458 if (status == ANTIC_WAIT_NEXT)
459 del_timer(&ad->antic_timer);
460 ad->antic_status = ANTIC_FINISHED;
461 /* see as_work_handler */
462 kblockd_schedule_work(ad->q, &ad->antic_work);
467 * as_antic_timeout is the timer function set by as_antic_waitnext.
469 static void as_antic_timeout(unsigned long data)
471 struct request_queue *q = (struct request_queue *)data;
472 struct as_data *ad = q->elevator->elevator_data;
473 unsigned long flags;
475 spin_lock_irqsave(q->queue_lock, flags);
476 if (ad->antic_status == ANTIC_WAIT_REQ
477 || ad->antic_status == ANTIC_WAIT_NEXT) {
478 struct as_io_context *aic;
479 spin_lock(&ad->io_context->lock);
480 aic = ad->io_context->aic;
482 ad->antic_status = ANTIC_FINISHED;
483 kblockd_schedule_work(q, &ad->antic_work);
485 if (aic->ttime_samples == 0) {
486 /* process anticipated on has exited or timed out*/
487 ad->exit_prob = (7*ad->exit_prob + 256)/8;
489 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
490 /* process not "saved" by a cooperating request */
491 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
493 spin_unlock(&ad->io_context->lock);
495 spin_unlock_irqrestore(q->queue_lock, flags);
498 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
499 unsigned long ttime)
501 /* fixed point: 1.0 == 1<<8 */
502 if (aic->ttime_samples == 0) {
503 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
504 ad->new_ttime_mean = ad->new_ttime_total / 256;
506 ad->exit_prob = (7*ad->exit_prob)/8;
508 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
509 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
510 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
513 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
514 sector_t sdist)
516 u64 total;
518 if (aic->seek_samples == 0) {
519 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
520 ad->new_seek_mean = ad->new_seek_total / 256;
524 * Don't allow the seek distance to get too large from the
525 * odd fragment, pagein, etc
527 if (aic->seek_samples <= 60) /* second&third seek */
528 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
529 else
530 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
532 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
533 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
534 total = aic->seek_total + (aic->seek_samples/2);
535 do_div(total, aic->seek_samples);
536 aic->seek_mean = (sector_t)total;
540 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
541 * updates @aic->ttime_mean based on that. It is called when a new
542 * request is queued.
544 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
545 struct request *rq)
547 int data_dir = rq_is_sync(rq);
548 unsigned long thinktime = 0;
549 sector_t seek_dist;
551 if (aic == NULL)
552 return;
554 if (data_dir == BLK_RW_SYNC) {
555 unsigned long in_flight = atomic_read(&aic->nr_queued)
556 + atomic_read(&aic->nr_dispatched);
557 spin_lock(&aic->lock);
558 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
559 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
560 /* Calculate read -> read thinktime */
561 if (test_bit(AS_TASK_IORUNNING, &aic->state)
562 && in_flight == 0) {
563 thinktime = jiffies - aic->last_end_request;
564 thinktime = min(thinktime, MAX_THINKTIME-1);
566 as_update_thinktime(ad, aic, thinktime);
568 /* Calculate read -> read seek distance */
569 if (aic->last_request_pos < blk_rq_pos(rq))
570 seek_dist = blk_rq_pos(rq) -
571 aic->last_request_pos;
572 else
573 seek_dist = aic->last_request_pos -
574 blk_rq_pos(rq);
575 as_update_seekdist(ad, aic, seek_dist);
577 aic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
578 set_bit(AS_TASK_IOSTARTED, &aic->state);
579 spin_unlock(&aic->lock);
584 * as_close_req decides if one request is considered "close" to the
585 * previous one issued.
587 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
588 struct request *rq)
590 unsigned long delay; /* jiffies */
591 sector_t last = ad->last_sector[ad->batch_data_dir];
592 sector_t next = blk_rq_pos(rq);
593 sector_t delta; /* acceptable close offset (in sectors) */
594 sector_t s;
596 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
597 delay = 0;
598 else
599 delay = jiffies - ad->antic_start;
601 if (delay == 0)
602 delta = 8192;
603 else if (delay <= (20 * HZ / 1000) && delay <= ad->antic_expire)
604 delta = 8192 << delay;
605 else
606 return 1;
608 if ((last <= next + (delta>>1)) && (next <= last + delta))
609 return 1;
611 if (last < next)
612 s = next - last;
613 else
614 s = last - next;
616 if (aic->seek_samples == 0) {
618 * Process has just started IO. Use past statistics to
619 * gauge success possibility
621 if (ad->new_seek_mean > s) {
622 /* this request is better than what we're expecting */
623 return 1;
626 } else {
627 if (aic->seek_mean > s) {
628 /* this request is better than what we're expecting */
629 return 1;
633 return 0;
637 * as_can_break_anticipation returns true if we have been anticipating this
638 * request.
640 * It also returns true if the process against which we are anticipating
641 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
642 * dispatch it ASAP, because we know that application will not be submitting
643 * any new reads.
645 * If the task which has submitted the request has exited, break anticipation.
647 * If this task has queued some other IO, do not enter enticipation.
649 static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
651 struct io_context *ioc;
652 struct as_io_context *aic;
654 ioc = ad->io_context;
655 BUG_ON(!ioc);
656 spin_lock(&ioc->lock);
658 if (rq && ioc == RQ_IOC(rq)) {
659 /* request from same process */
660 spin_unlock(&ioc->lock);
661 return 1;
664 if (ad->ioc_finished && as_antic_expired(ad)) {
666 * In this situation status should really be FINISHED,
667 * however the timer hasn't had the chance to run yet.
669 spin_unlock(&ioc->lock);
670 return 1;
673 aic = ioc->aic;
674 if (!aic) {
675 spin_unlock(&ioc->lock);
676 return 0;
679 if (atomic_read(&aic->nr_queued) > 0) {
680 /* process has more requests queued */
681 spin_unlock(&ioc->lock);
682 return 1;
685 if (atomic_read(&aic->nr_dispatched) > 0) {
686 /* process has more requests dispatched */
687 spin_unlock(&ioc->lock);
688 return 1;
691 if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
693 * Found a close request that is not one of ours.
695 * This makes close requests from another process update
696 * our IO history. Is generally useful when there are
697 * two or more cooperating processes working in the same
698 * area.
700 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
701 if (aic->ttime_samples == 0)
702 ad->exit_prob = (7*ad->exit_prob + 256)/8;
704 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
707 as_update_iohist(ad, aic, rq);
708 spin_unlock(&ioc->lock);
709 return 1;
712 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
713 /* process anticipated on has exited */
714 if (aic->ttime_samples == 0)
715 ad->exit_prob = (7*ad->exit_prob + 256)/8;
717 if (ad->exit_no_coop > 128) {
718 spin_unlock(&ioc->lock);
719 return 1;
723 if (aic->ttime_samples == 0) {
724 if (ad->new_ttime_mean > ad->antic_expire) {
725 spin_unlock(&ioc->lock);
726 return 1;
728 if (ad->exit_prob * ad->exit_no_coop > 128*256) {
729 spin_unlock(&ioc->lock);
730 return 1;
732 } else if (aic->ttime_mean > ad->antic_expire) {
733 /* the process thinks too much between requests */
734 spin_unlock(&ioc->lock);
735 return 1;
737 spin_unlock(&ioc->lock);
738 return 0;
742 * as_can_anticipate indicates whether we should either run rq
743 * or keep anticipating a better request.
745 static int as_can_anticipate(struct as_data *ad, struct request *rq)
747 #if 0 /* disable for now, we need to check tag level as well */
749 * SSD device without seek penalty, disable idling
751 if (blk_queue_nonrot(ad->q)) axman
752 return 0;
753 #endif
755 if (!ad->io_context)
757 * Last request submitted was a write
759 return 0;
761 if (ad->antic_status == ANTIC_FINISHED)
763 * Don't restart if we have just finished. Run the next request
765 return 0;
767 if (as_can_break_anticipation(ad, rq))
769 * This request is a good candidate. Don't keep anticipating,
770 * run it.
772 return 0;
775 * OK from here, we haven't finished, and don't have a decent request!
776 * Status is either ANTIC_OFF so start waiting,
777 * ANTIC_WAIT_REQ so continue waiting for request to finish
778 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
781 return 1;
785 * as_update_rq must be called whenever a request (rq) is added to
786 * the sort_list. This function keeps caches up to date, and checks if the
787 * request might be one we are "anticipating"
789 static void as_update_rq(struct as_data *ad, struct request *rq)
791 const int data_dir = rq_is_sync(rq);
793 /* keep the next_rq cache up to date */
794 ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
797 * have we been anticipating this request?
798 * or does it come from the same process as the one we are anticipating
799 * for?
801 if (ad->antic_status == ANTIC_WAIT_REQ
802 || ad->antic_status == ANTIC_WAIT_NEXT) {
803 if (as_can_break_anticipation(ad, rq))
804 as_antic_stop(ad);
809 * Gathers timings and resizes the write batch automatically
811 static void update_write_batch(struct as_data *ad)
813 unsigned long batch = ad->batch_expire[BLK_RW_ASYNC];
814 long write_time;
816 write_time = (jiffies - ad->current_batch_expires) + batch;
817 if (write_time < 0)
818 write_time = 0;
820 if (write_time > batch && !ad->write_batch_idled) {
821 if (write_time > batch * 3)
822 ad->write_batch_count /= 2;
823 else
824 ad->write_batch_count--;
825 } else if (write_time < batch && ad->current_write_count == 0) {
826 if (batch > write_time * 3)
827 ad->write_batch_count *= 2;
828 else
829 ad->write_batch_count++;
832 if (ad->write_batch_count < 1)
833 ad->write_batch_count = 1;
837 * as_completed_request is to be called when a request has completed and
838 * returned something to the requesting process, be it an error or data.
840 static void as_completed_request(struct request_queue *q, struct request *rq)
842 struct as_data *ad = q->elevator->elevator_data;
844 WARN_ON(!list_empty(&rq->queuelist));
846 if (RQ_STATE(rq) != AS_RQ_REMOVED) {
847 WARN(1, "rq->state %d\n", RQ_STATE(rq));
848 goto out;
851 if (ad->changed_batch && ad->nr_dispatched == 1) {
852 ad->current_batch_expires = jiffies +
853 ad->batch_expire[ad->batch_data_dir];
854 kblockd_schedule_work(q, &ad->antic_work);
855 ad->changed_batch = 0;
857 if (ad->batch_data_dir == BLK_RW_SYNC)
858 ad->new_batch = 1;
860 WARN_ON(ad->nr_dispatched == 0);
861 ad->nr_dispatched--;
864 * Start counting the batch from when a request of that direction is
865 * actually serviced. This should help devices with big TCQ windows
866 * and writeback caches
868 if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
869 update_write_batch(ad);
870 ad->current_batch_expires = jiffies +
871 ad->batch_expire[BLK_RW_SYNC];
872 ad->new_batch = 0;
875 if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
876 ad->antic_start = jiffies;
877 ad->ioc_finished = 1;
878 if (ad->antic_status == ANTIC_WAIT_REQ) {
880 * We were waiting on this request, now anticipate
881 * the next one
883 as_antic_waitnext(ad);
887 as_put_io_context(rq);
888 out:
889 RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
893 * as_remove_queued_request removes a request from the pre dispatch queue
894 * without updating refcounts. It is expected the caller will drop the
895 * reference unless it replaces the request at somepart of the elevator
896 * (ie. the dispatch queue)
898 static void as_remove_queued_request(struct request_queue *q,
899 struct request *rq)
901 const int data_dir = rq_is_sync(rq);
902 struct as_data *ad = q->elevator->elevator_data;
903 struct io_context *ioc;
905 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
907 ioc = RQ_IOC(rq);
908 if (ioc && ioc->aic) {
909 BUG_ON(!atomic_read(&ioc->aic->nr_queued));
910 atomic_dec(&ioc->aic->nr_queued);
914 * Update the "next_rq" cache if we are about to remove its
915 * entry
917 if (ad->next_rq[data_dir] == rq)
918 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
920 rq_fifo_clear(rq);
921 as_del_rq_rb(ad, rq);
925 * as_fifo_expired returns 0 if there are no expired requests on the fifo,
926 * 1 otherwise. It is ratelimited so that we only perform the check once per
927 * `fifo_expire' interval. Otherwise a large number of expired requests
928 * would create a hopeless seekstorm.
930 * See as_antic_expired comment.
932 static int as_fifo_expired(struct as_data *ad, int adir)
934 struct request *rq;
935 long delta_jif;
937 delta_jif = jiffies - ad->last_check_fifo[adir];
938 if (unlikely(delta_jif < 0))
939 delta_jif = -delta_jif;
940 if (delta_jif < ad->fifo_expire[adir])
941 return 0;
943 ad->last_check_fifo[adir] = jiffies;
945 if (list_empty(&ad->fifo_list[adir]))
946 return 0;
948 rq = rq_entry_fifo(ad->fifo_list[adir].next);
950 return time_after(jiffies, rq_fifo_time(rq));
954 * as_batch_expired returns true if the current batch has expired. A batch
955 * is a set of reads or a set of writes.
957 static inline int as_batch_expired(struct as_data *ad)
959 if (ad->changed_batch || ad->new_batch)
960 return 0;
962 if (ad->batch_data_dir == BLK_RW_SYNC)
963 /* TODO! add a check so a complete fifo gets written? */
964 return time_after(jiffies, ad->current_batch_expires);
966 return time_after(jiffies, ad->current_batch_expires)
967 || ad->current_write_count == 0;
971 * move an entry to dispatch queue
973 static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
975 const int data_dir = rq_is_sync(rq);
977 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
979 as_antic_stop(ad);
980 ad->antic_status = ANTIC_OFF;
983 * This has to be set in order to be correctly updated by
984 * as_find_next_rq
986 ad->last_sector[data_dir] = blk_rq_pos(rq) + blk_rq_sectors(rq);
988 if (data_dir == BLK_RW_SYNC) {
989 struct io_context *ioc = RQ_IOC(rq);
990 /* In case we have to anticipate after this */
991 copy_io_context(&ad->io_context, &ioc);
992 } else {
993 if (ad->io_context) {
994 put_io_context(ad->io_context);
995 ad->io_context = NULL;
998 if (ad->current_write_count != 0)
999 ad->current_write_count--;
1001 ad->ioc_finished = 0;
1003 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
1006 * take it off the sort and fifo list, add to dispatch queue
1008 as_remove_queued_request(ad->q, rq);
1009 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
1011 elv_dispatch_sort(ad->q, rq);
1013 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1014 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1015 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1016 ad->nr_dispatched++;
1020 * as_dispatch_request selects the best request according to
1021 * read/write expire, batch expire, etc, and moves it to the dispatch
1022 * queue. Returns 1 if a request was found, 0 otherwise.
1024 static int as_dispatch_request(struct request_queue *q, int force)
1026 struct as_data *ad = q->elevator->elevator_data;
1027 const int reads = !list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1028 const int writes = !list_empty(&ad->fifo_list[BLK_RW_ASYNC]);
1029 struct request *rq;
1031 if (unlikely(force)) {
1033 * Forced dispatch, accounting is useless. Reset
1034 * accounting states and dump fifo_lists. Note that
1035 * batch_data_dir is reset to BLK_RW_SYNC to avoid
1036 * screwing write batch accounting as write batch
1037 * accounting occurs on W->R transition.
1039 int dispatched = 0;
1041 ad->batch_data_dir = BLK_RW_SYNC;
1042 ad->changed_batch = 0;
1043 ad->new_batch = 0;
1045 while (ad->next_rq[BLK_RW_SYNC]) {
1046 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_SYNC]);
1047 dispatched++;
1049 ad->last_check_fifo[BLK_RW_SYNC] = jiffies;
1051 while (ad->next_rq[BLK_RW_ASYNC]) {
1052 as_move_to_dispatch(ad, ad->next_rq[BLK_RW_ASYNC]);
1053 dispatched++;
1055 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1057 return dispatched;
1060 /* Signal that the write batch was uncontended, so we can't time it */
1061 if (ad->batch_data_dir == BLK_RW_ASYNC && !reads) {
1062 if (ad->current_write_count == 0 || !writes)
1063 ad->write_batch_idled = 1;
1066 if (!(reads || writes)
1067 || ad->antic_status == ANTIC_WAIT_REQ
1068 || ad->antic_status == ANTIC_WAIT_NEXT
1069 || ad->changed_batch)
1070 return 0;
1072 if (!(reads && writes && as_batch_expired(ad))) {
1074 * batch is still running or no reads or no writes
1076 rq = ad->next_rq[ad->batch_data_dir];
1078 if (ad->batch_data_dir == BLK_RW_SYNC && ad->antic_expire) {
1079 if (as_fifo_expired(ad, BLK_RW_SYNC))
1080 goto fifo_expired;
1082 if (as_can_anticipate(ad, rq)) {
1083 as_antic_waitreq(ad);
1084 return 0;
1088 if (rq) {
1089 /* we have a "next request" */
1090 if (reads && !writes)
1091 ad->current_batch_expires =
1092 jiffies + ad->batch_expire[BLK_RW_SYNC];
1093 goto dispatch_request;
1098 * at this point we are not running a batch. select the appropriate
1099 * data direction (read / write)
1102 if (reads) {
1103 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_SYNC]));
1105 if (writes && ad->batch_data_dir == BLK_RW_SYNC)
1107 * Last batch was a read, switch to writes
1109 goto dispatch_writes;
1111 if (ad->batch_data_dir == BLK_RW_ASYNC) {
1112 WARN_ON(ad->new_batch);
1113 ad->changed_batch = 1;
1115 ad->batch_data_dir = BLK_RW_SYNC;
1116 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_SYNC].next);
1117 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1118 goto dispatch_request;
1122 * the last batch was a read
1125 if (writes) {
1126 dispatch_writes:
1127 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[BLK_RW_ASYNC]));
1129 if (ad->batch_data_dir == BLK_RW_SYNC) {
1130 ad->changed_batch = 1;
1133 * new_batch might be 1 when the queue runs out of
1134 * reads. A subsequent submission of a write might
1135 * cause a change of batch before the read is finished.
1137 ad->new_batch = 0;
1139 ad->batch_data_dir = BLK_RW_ASYNC;
1140 ad->current_write_count = ad->write_batch_count;
1141 ad->write_batch_idled = 0;
1142 rq = rq_entry_fifo(ad->fifo_list[BLK_RW_ASYNC].next);
1143 ad->last_check_fifo[BLK_RW_ASYNC] = jiffies;
1144 goto dispatch_request;
1147 BUG();
1148 return 0;
1150 dispatch_request:
1152 * If a request has expired, service it.
1155 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1156 fifo_expired:
1157 rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1160 if (ad->changed_batch) {
1161 WARN_ON(ad->new_batch);
1163 if (ad->nr_dispatched)
1164 return 0;
1166 if (ad->batch_data_dir == BLK_RW_ASYNC)
1167 ad->current_batch_expires = jiffies +
1168 ad->batch_expire[BLK_RW_ASYNC];
1169 else
1170 ad->new_batch = 1;
1172 ad->changed_batch = 0;
1176 * rq is the selected appropriate request.
1178 as_move_to_dispatch(ad, rq);
1180 return 1;
1184 * add rq to rbtree and fifo
1186 static void as_add_request(struct request_queue *q, struct request *rq)
1188 struct as_data *ad = q->elevator->elevator_data;
1189 int data_dir;
1191 RQ_SET_STATE(rq, AS_RQ_NEW);
1193 data_dir = rq_is_sync(rq);
1195 rq->elevator_private = as_get_io_context(q->node);
1197 if (RQ_IOC(rq)) {
1198 as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1199 atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1202 as_add_rq_rb(ad, rq);
1205 * set expire time and add to fifo list
1207 rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1208 list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1210 as_update_rq(ad, rq); /* keep state machine up to date */
1211 RQ_SET_STATE(rq, AS_RQ_QUEUED);
1214 static void as_activate_request(struct request_queue *q, struct request *rq)
1216 WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1217 RQ_SET_STATE(rq, AS_RQ_REMOVED);
1218 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1219 atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1222 static void as_deactivate_request(struct request_queue *q, struct request *rq)
1224 WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1225 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1226 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1227 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1231 * as_queue_empty tells us if there are requests left in the device. It may
1232 * not be the case that a driver can get the next request even if the queue
1233 * is not empty - it is used in the block layer to check for plugging and
1234 * merging opportunities
1236 static int as_queue_empty(struct request_queue *q)
1238 struct as_data *ad = q->elevator->elevator_data;
1240 return list_empty(&ad->fifo_list[BLK_RW_ASYNC])
1241 && list_empty(&ad->fifo_list[BLK_RW_SYNC]);
1244 static int
1245 as_merge(struct request_queue *q, struct request **req, struct bio *bio)
1247 struct as_data *ad = q->elevator->elevator_data;
1248 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1249 struct request *__rq;
1252 * check for front merge
1254 __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1255 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1256 *req = __rq;
1257 return ELEVATOR_FRONT_MERGE;
1260 return ELEVATOR_NO_MERGE;
1263 static void as_merged_request(struct request_queue *q, struct request *req,
1264 int type)
1266 struct as_data *ad = q->elevator->elevator_data;
1269 * if the merge was a front merge, we need to reposition request
1271 if (type == ELEVATOR_FRONT_MERGE) {
1272 as_del_rq_rb(ad, req);
1273 as_add_rq_rb(ad, req);
1275 * Note! At this stage of this and the next function, our next
1276 * request may not be optimal - eg the request may have "grown"
1277 * behind the disk head. We currently don't bother adjusting.
1282 static void as_merged_requests(struct request_queue *q, struct request *req,
1283 struct request *next)
1286 * if next expires before rq, assign its expire time to arq
1287 * and move into next position (next will be deleted) in fifo
1289 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1290 if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1291 list_move(&req->queuelist, &next->queuelist);
1292 rq_set_fifo_time(req, rq_fifo_time(next));
1297 * kill knowledge of next, this one is a goner
1299 as_remove_queued_request(q, next);
1300 as_put_io_context(next);
1302 RQ_SET_STATE(next, AS_RQ_MERGED);
1306 * This is executed in a "deferred" process context, by kblockd. It calls the
1307 * driver's request_fn so the driver can submit that request.
1309 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1310 * state before calling, and don't rely on any state over calls.
1312 * FIXME! dispatch queue is not a queue at all!
1314 static void as_work_handler(struct work_struct *work)
1316 struct as_data *ad = container_of(work, struct as_data, antic_work);
1318 blk_run_queue(ad->q);
1321 static int as_may_queue(struct request_queue *q, int rw)
1323 int ret = ELV_MQUEUE_MAY;
1324 struct as_data *ad = q->elevator->elevator_data;
1325 struct io_context *ioc;
1326 if (ad->antic_status == ANTIC_WAIT_REQ ||
1327 ad->antic_status == ANTIC_WAIT_NEXT) {
1328 ioc = as_get_io_context(q->node);
1329 if (ad->io_context == ioc)
1330 ret = ELV_MQUEUE_MUST;
1331 put_io_context(ioc);
1334 return ret;
1337 static void as_exit_queue(struct elevator_queue *e)
1339 struct as_data *ad = e->elevator_data;
1341 del_timer_sync(&ad->antic_timer);
1342 cancel_work_sync(&ad->antic_work);
1344 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_SYNC]));
1345 BUG_ON(!list_empty(&ad->fifo_list[BLK_RW_ASYNC]));
1347 put_io_context(ad->io_context);
1348 kfree(ad);
1352 * initialize elevator private data (as_data).
1354 static void *as_init_queue(struct request_queue *q)
1356 struct as_data *ad;
1358 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL | __GFP_ZERO, q->node);
1359 if (!ad)
1360 return NULL;
1362 ad->q = q; /* Identify what queue the data belongs to */
1364 /* anticipatory scheduling helpers */
1365 ad->antic_timer.function = as_antic_timeout;
1366 ad->antic_timer.data = (unsigned long)q;
1367 init_timer(&ad->antic_timer);
1368 INIT_WORK(&ad->antic_work, as_work_handler);
1370 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_SYNC]);
1371 INIT_LIST_HEAD(&ad->fifo_list[BLK_RW_ASYNC]);
1372 ad->sort_list[BLK_RW_SYNC] = RB_ROOT;
1373 ad->sort_list[BLK_RW_ASYNC] = RB_ROOT;
1374 ad->fifo_expire[BLK_RW_SYNC] = default_read_expire;
1375 ad->fifo_expire[BLK_RW_ASYNC] = default_write_expire;
1376 ad->antic_expire = default_antic_expire;
1377 ad->batch_expire[BLK_RW_SYNC] = default_read_batch_expire;
1378 ad->batch_expire[BLK_RW_ASYNC] = default_write_batch_expire;
1380 ad->current_batch_expires = jiffies + ad->batch_expire[BLK_RW_SYNC];
1381 ad->write_batch_count = ad->batch_expire[BLK_RW_ASYNC] / 10;
1382 if (ad->write_batch_count < 2)
1383 ad->write_batch_count = 2;
1385 return ad;
1389 * sysfs parts below
1392 static ssize_t
1393 as_var_show(unsigned int var, char *page)
1395 return sprintf(page, "%d\n", var);
1398 static ssize_t
1399 as_var_store(unsigned long *var, const char *page, size_t count)
1401 char *p = (char *) page;
1403 *var = simple_strtoul(p, &p, 10);
1404 return count;
1407 static ssize_t est_time_show(struct elevator_queue *e, char *page)
1409 struct as_data *ad = e->elevator_data;
1410 int pos = 0;
1412 pos += sprintf(page+pos, "%lu %% exit probability\n",
1413 100*ad->exit_prob/256);
1414 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1415 "cooperating process submitting IO\n",
1416 100*ad->exit_no_coop/256);
1417 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1418 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1419 (unsigned long long)ad->new_seek_mean);
1421 return pos;
1424 #define SHOW_FUNCTION(__FUNC, __VAR) \
1425 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1427 struct as_data *ad = e->elevator_data; \
1428 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1430 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[BLK_RW_SYNC]);
1431 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[BLK_RW_ASYNC]);
1432 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1433 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[BLK_RW_SYNC]);
1434 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[BLK_RW_ASYNC]);
1435 #undef SHOW_FUNCTION
1437 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1438 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1440 struct as_data *ad = e->elevator_data; \
1441 int ret = as_var_store(__PTR, (page), count); \
1442 if (*(__PTR) < (MIN)) \
1443 *(__PTR) = (MIN); \
1444 else if (*(__PTR) > (MAX)) \
1445 *(__PTR) = (MAX); \
1446 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1447 return ret; \
1449 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[BLK_RW_SYNC], 0, INT_MAX);
1450 STORE_FUNCTION(as_write_expire_store,
1451 &ad->fifo_expire[BLK_RW_ASYNC], 0, INT_MAX);
1452 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1453 STORE_FUNCTION(as_read_batch_expire_store,
1454 &ad->batch_expire[BLK_RW_SYNC], 0, INT_MAX);
1455 STORE_FUNCTION(as_write_batch_expire_store,
1456 &ad->batch_expire[BLK_RW_ASYNC], 0, INT_MAX);
1457 #undef STORE_FUNCTION
1459 #define AS_ATTR(name) \
1460 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1462 static struct elv_fs_entry as_attrs[] = {
1463 __ATTR_RO(est_time),
1464 AS_ATTR(read_expire),
1465 AS_ATTR(write_expire),
1466 AS_ATTR(antic_expire),
1467 AS_ATTR(read_batch_expire),
1468 AS_ATTR(write_batch_expire),
1469 __ATTR_NULL
1472 static struct elevator_type iosched_as = {
1473 .ops = {
1474 .elevator_merge_fn = as_merge,
1475 .elevator_merged_fn = as_merged_request,
1476 .elevator_merge_req_fn = as_merged_requests,
1477 .elevator_dispatch_fn = as_dispatch_request,
1478 .elevator_add_req_fn = as_add_request,
1479 .elevator_activate_req_fn = as_activate_request,
1480 .elevator_deactivate_req_fn = as_deactivate_request,
1481 .elevator_queue_empty_fn = as_queue_empty,
1482 .elevator_completed_req_fn = as_completed_request,
1483 .elevator_former_req_fn = elv_rb_former_request,
1484 .elevator_latter_req_fn = elv_rb_latter_request,
1485 .elevator_may_queue_fn = as_may_queue,
1486 .elevator_init_fn = as_init_queue,
1487 .elevator_exit_fn = as_exit_queue,
1488 .trim = as_trim,
1491 .elevator_attrs = as_attrs,
1492 .elevator_name = "anticipatory",
1493 .elevator_owner = THIS_MODULE,
1496 static int __init as_init(void)
1498 elv_register(&iosched_as);
1500 return 0;
1503 static void __exit as_exit(void)
1505 DECLARE_COMPLETION_ONSTACK(all_gone);
1506 elv_unregister(&iosched_as);
1507 ioc_gone = &all_gone;
1508 /* ioc_gone's update must be visible before reading ioc_count */
1509 smp_wmb();
1510 if (elv_ioc_count_read(ioc_count))
1511 wait_for_completion(&all_gone);
1512 synchronize_rcu();
1515 module_init(as_init);
1516 module_exit(as_exit);
1518 MODULE_AUTHOR("Nick Piggin");
1519 MODULE_LICENSE("GPL");
1520 MODULE_DESCRIPTION("anticipatory IO scheduler");