2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
79 /* various state flags, see below */
82 struct cfq_data
*cfqd
;
83 /* service_tree member */
84 struct rb_node rb_node
;
85 /* service_tree key */
87 /* prio tree member */
88 struct rb_node p_node
;
89 /* prio tree root we belong to, if any */
90 struct rb_root
*p_root
;
91 /* sorted list of pending requests */
92 struct rb_root sort_list
;
93 /* if fifo isn't expired, next request to serve */
94 struct request
*next_rq
;
95 /* requests queued in sort_list */
97 /* currently allocated requests */
99 /* fifo list of requests in sort_list */
100 struct list_head fifo
;
102 unsigned long slice_end
;
104 unsigned int slice_dispatch
;
106 /* pending metadata requests */
108 /* number of requests that are on the dispatch list or inside driver */
111 /* io prio of this group */
112 unsigned short ioprio
, org_ioprio
;
113 unsigned short ioprio_class
, org_ioprio_class
;
119 * Per block device queue structure
122 struct request_queue
*queue
;
125 * rr list of queues with requests and the count of them
127 struct cfq_rb_root service_tree
;
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
134 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
136 unsigned int busy_queues
;
142 * queue-depth detection
147 int rq_in_driver_peak
;
150 * idle window management
152 struct timer_list idle_slice_timer
;
153 struct work_struct unplug_work
;
155 struct cfq_queue
*active_queue
;
156 struct cfq_io_context
*active_cic
;
159 * async queue for each priority case
161 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
162 struct cfq_queue
*async_idle_cfqq
;
164 sector_t last_position
;
167 * tunables, see top of file
169 unsigned int cfq_quantum
;
170 unsigned int cfq_fifo_expire
[2];
171 unsigned int cfq_back_penalty
;
172 unsigned int cfq_back_max
;
173 unsigned int cfq_slice
[2];
174 unsigned int cfq_slice_async_rq
;
175 unsigned int cfq_slice_idle
;
177 struct list_head cic_list
;
180 * Fallback dummy cfqq for extreme OOM conditions
182 struct cfq_queue oom_cfqq
;
185 enum cfqq_state_flags
{
186 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
187 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
188 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
189 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
198 #define CFQ_CFQQ_FNS(name) \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
213 CFQ_CFQQ_FNS(wait_request
);
214 CFQ_CFQQ_FNS(must_dispatch
);
215 CFQ_CFQQ_FNS(must_alloc_slice
);
216 CFQ_CFQQ_FNS(fifo_expire
);
217 CFQ_CFQQ_FNS(idle_window
);
218 CFQ_CFQQ_FNS(prio_changed
);
219 CFQ_CFQQ_FNS(slice_new
);
224 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
225 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
226 #define cfq_log(cfqd, fmt, args...) \
227 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
230 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
231 struct io_context
*, gfp_t
);
232 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
233 struct io_context
*);
235 static inline int rq_in_driver(struct cfq_data
*cfqd
)
237 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
240 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
243 return cic
->cfqq
[!!is_sync
];
246 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
247 struct cfq_queue
*cfqq
, int is_sync
)
249 cic
->cfqq
[!!is_sync
] = cfqq
;
253 * We regard a request as SYNC, if it's either a read or has the SYNC bit
254 * set (in which case it could also be direct WRITE).
256 static inline int cfq_bio_sync(struct bio
*bio
)
258 if (bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
))
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
268 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
270 if (cfqd
->busy_queues
) {
271 cfq_log(cfqd
, "schedule dispatch");
272 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
276 static int cfq_queue_empty(struct request_queue
*q
)
278 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
280 return !cfqd
->busy_queues
;
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
288 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
291 const int base_slice
= cfqd
->cfq_slice
[sync
];
293 WARN_ON(prio
>= IOPRIO_BE_NR
);
295 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
299 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
301 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
305 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
307 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
308 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
316 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
318 if (cfq_cfqq_slice_new(cfqq
))
320 if (time_before(jiffies
, cfqq
->slice_end
))
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closest to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
331 static struct request
*
332 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
334 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
335 unsigned long back_max
;
336 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
337 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
338 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
340 if (rq1
== NULL
|| rq1
== rq2
)
345 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
347 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
349 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
351 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
354 s1
= blk_rq_pos(rq1
);
355 s2
= blk_rq_pos(rq2
);
357 last
= cfqd
->last_position
;
360 * by definition, 1KiB is 2 sectors
362 back_max
= cfqd
->cfq_back_max
* 2;
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
371 else if (s1
+ back_max
>= last
)
372 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
374 wrap
|= CFQ_RQ1_WRAP
;
378 else if (s2
+ back_max
>= last
)
379 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
381 wrap
|= CFQ_RQ2_WRAP
;
383 /* Found required data */
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
406 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
409 * Since both rqs are wrapped,
410 * start with the one that's further behind head
411 * (--> only *one* back seek required),
412 * since back seek takes more time than forward.
422 * The below is leftmost cache rbtree addon
424 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
427 root
->left
= rb_first(&root
->rb
);
430 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
435 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
441 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
445 rb_erase_init(n
, &root
->rb
);
449 * would be nice to take fifo expire time into account as well
451 static struct request
*
452 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
453 struct request
*last
)
455 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
456 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
457 struct request
*next
= NULL
, *prev
= NULL
;
459 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
462 prev
= rb_entry_rq(rbprev
);
465 next
= rb_entry_rq(rbnext
);
467 rbnext
= rb_first(&cfqq
->sort_list
);
468 if (rbnext
&& rbnext
!= &last
->rb_node
)
469 next
= rb_entry_rq(rbnext
);
472 return cfq_choose_req(cfqd
, next
, prev
);
475 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
476 struct cfq_queue
*cfqq
)
479 * just an approximation, should be ok.
481 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
482 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
490 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
493 struct rb_node
**p
, *parent
;
494 struct cfq_queue
*__cfqq
;
495 unsigned long rb_key
;
498 if (cfq_class_idle(cfqq
)) {
499 rb_key
= CFQ_IDLE_DELAY
;
500 parent
= rb_last(&cfqd
->service_tree
.rb
);
501 if (parent
&& parent
!= &cfqq
->rb_node
) {
502 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
503 rb_key
+= __cfqq
->rb_key
;
506 } else if (!add_front
) {
507 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
508 rb_key
+= cfqq
->slice_resid
;
509 cfqq
->slice_resid
= 0;
513 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
515 * same position, nothing more to do
517 if (rb_key
== cfqq
->rb_key
)
520 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
525 p
= &cfqd
->service_tree
.rb
.rb_node
;
530 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
533 * sort RT queues first, we always want to give
534 * preference to them. IDLE queues goes to the back.
535 * after that, sort on the next service time.
537 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
539 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
541 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
543 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
545 else if (rb_key
< __cfqq
->rb_key
)
550 if (n
== &(*p
)->rb_right
)
557 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
559 cfqq
->rb_key
= rb_key
;
560 rb_link_node(&cfqq
->rb_node
, parent
, p
);
561 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
564 static struct cfq_queue
*
565 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
566 sector_t sector
, struct rb_node
**ret_parent
,
567 struct rb_node
***rb_link
)
569 struct rb_node
**p
, *parent
;
570 struct cfq_queue
*cfqq
= NULL
;
578 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
581 * Sort strictly based on sector. Smallest to the left,
582 * largest to the right.
584 if (sector
> blk_rq_pos(cfqq
->next_rq
))
586 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
594 *ret_parent
= parent
;
600 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
602 struct rb_node
**p
, *parent
;
603 struct cfq_queue
*__cfqq
;
606 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
610 if (cfq_class_idle(cfqq
))
615 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
616 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
617 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
619 rb_link_node(&cfqq
->p_node
, parent
, p
);
620 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
626 * Update cfqq's position in the service tree.
628 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
631 * Resorting requires the cfqq to be on the RR list already.
633 if (cfq_cfqq_on_rr(cfqq
)) {
634 cfq_service_tree_add(cfqd
, cfqq
, 0);
635 cfq_prio_tree_add(cfqd
, cfqq
);
640 * add to busy list of queues for service, trying to be fair in ordering
641 * the pending list according to last request service
643 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
645 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
646 BUG_ON(cfq_cfqq_on_rr(cfqq
));
647 cfq_mark_cfqq_on_rr(cfqq
);
650 cfq_resort_rr_list(cfqd
, cfqq
);
654 * Called when the cfqq no longer has requests pending, remove it from
657 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
659 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
660 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
661 cfq_clear_cfqq_on_rr(cfqq
);
663 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
664 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
666 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
670 BUG_ON(!cfqd
->busy_queues
);
675 * rb tree support functions
677 static void cfq_del_rq_rb(struct request
*rq
)
679 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
680 struct cfq_data
*cfqd
= cfqq
->cfqd
;
681 const int sync
= rq_is_sync(rq
);
683 BUG_ON(!cfqq
->queued
[sync
]);
684 cfqq
->queued
[sync
]--;
686 elv_rb_del(&cfqq
->sort_list
, rq
);
688 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
689 cfq_del_cfqq_rr(cfqd
, cfqq
);
692 static void cfq_add_rq_rb(struct request
*rq
)
694 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
695 struct cfq_data
*cfqd
= cfqq
->cfqd
;
696 struct request
*__alias
, *prev
;
698 cfqq
->queued
[rq_is_sync(rq
)]++;
701 * looks a little odd, but the first insert might return an alias.
702 * if that happens, put the alias on the dispatch list
704 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
705 cfq_dispatch_insert(cfqd
->queue
, __alias
);
707 if (!cfq_cfqq_on_rr(cfqq
))
708 cfq_add_cfqq_rr(cfqd
, cfqq
);
711 * check if this request is a better next-serve candidate
713 prev
= cfqq
->next_rq
;
714 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
717 * adjust priority tree position, if ->next_rq changes
719 if (prev
!= cfqq
->next_rq
)
720 cfq_prio_tree_add(cfqd
, cfqq
);
722 BUG_ON(!cfqq
->next_rq
);
725 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
727 elv_rb_del(&cfqq
->sort_list
, rq
);
728 cfqq
->queued
[rq_is_sync(rq
)]--;
732 static struct request
*
733 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
735 struct task_struct
*tsk
= current
;
736 struct cfq_io_context
*cic
;
737 struct cfq_queue
*cfqq
;
739 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
743 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
745 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
747 return elv_rb_find(&cfqq
->sort_list
, sector
);
753 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
755 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
757 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
758 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
761 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
764 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
766 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
767 const int sync
= rq_is_sync(rq
);
769 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
770 cfqd
->rq_in_driver
[sync
]--;
771 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
775 static void cfq_remove_request(struct request
*rq
)
777 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
779 if (cfqq
->next_rq
== rq
)
780 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
782 list_del_init(&rq
->queuelist
);
785 cfqq
->cfqd
->rq_queued
--;
786 if (rq_is_meta(rq
)) {
787 WARN_ON(!cfqq
->meta_pending
);
788 cfqq
->meta_pending
--;
792 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
795 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
796 struct request
*__rq
;
798 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
799 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
801 return ELEVATOR_FRONT_MERGE
;
804 return ELEVATOR_NO_MERGE
;
807 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
810 if (type
== ELEVATOR_FRONT_MERGE
) {
811 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
813 cfq_reposition_rq_rb(cfqq
, req
);
818 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
819 struct request
*next
)
822 * reposition in fifo if next is older than rq
824 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
825 time_before(next
->start_time
, rq
->start_time
))
826 list_move(&rq
->queuelist
, &next
->queuelist
);
828 cfq_remove_request(next
);
831 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
834 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
835 struct cfq_io_context
*cic
;
836 struct cfq_queue
*cfqq
;
839 * Disallow merge of a sync bio into an async request.
841 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
845 * Lookup the cfqq that this bio will be queued with. Allow
846 * merge only if rq is queued there.
848 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
852 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
853 if (cfqq
== RQ_CFQQ(rq
))
859 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
860 struct cfq_queue
*cfqq
)
863 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
865 cfqq
->slice_dispatch
= 0;
867 cfq_clear_cfqq_wait_request(cfqq
);
868 cfq_clear_cfqq_must_dispatch(cfqq
);
869 cfq_clear_cfqq_must_alloc_slice(cfqq
);
870 cfq_clear_cfqq_fifo_expire(cfqq
);
871 cfq_mark_cfqq_slice_new(cfqq
);
873 del_timer(&cfqd
->idle_slice_timer
);
876 cfqd
->active_queue
= cfqq
;
880 * current cfqq expired its slice (or was too idle), select new one
883 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
886 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
888 if (cfq_cfqq_wait_request(cfqq
))
889 del_timer(&cfqd
->idle_slice_timer
);
891 cfq_clear_cfqq_wait_request(cfqq
);
894 * store what was left of this slice, if the queue idled/timed out
896 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
897 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
898 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
901 cfq_resort_rr_list(cfqd
, cfqq
);
903 if (cfqq
== cfqd
->active_queue
)
904 cfqd
->active_queue
= NULL
;
906 if (cfqd
->active_cic
) {
907 put_io_context(cfqd
->active_cic
->ioc
);
908 cfqd
->active_cic
= NULL
;
912 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
914 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
917 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
921 * Get next queue for service. Unless we have a queue preemption,
922 * we'll simply select the first cfqq in the service tree.
924 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
926 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
929 return cfq_rb_first(&cfqd
->service_tree
);
933 * Get and set a new active queue for service.
935 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
936 struct cfq_queue
*cfqq
)
939 cfqq
= cfq_get_next_queue(cfqd
);
941 cfq_clear_cfqq_coop(cfqq
);
944 __cfq_set_active_queue(cfqd
, cfqq
);
948 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
951 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
952 return blk_rq_pos(rq
) - cfqd
->last_position
;
954 return cfqd
->last_position
- blk_rq_pos(rq
);
957 #define CIC_SEEK_THR 8 * 1024
958 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
960 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
962 struct cfq_io_context
*cic
= cfqd
->active_cic
;
963 sector_t sdist
= cic
->seek_mean
;
965 if (!sample_valid(cic
->seek_samples
))
966 sdist
= CIC_SEEK_THR
;
968 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
971 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
972 struct cfq_queue
*cur_cfqq
)
974 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
975 struct rb_node
*parent
, *node
;
976 struct cfq_queue
*__cfqq
;
977 sector_t sector
= cfqd
->last_position
;
979 if (RB_EMPTY_ROOT(root
))
983 * First, if we find a request starting at the end of the last
984 * request, choose it.
986 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
991 * If the exact sector wasn't found, the parent of the NULL leaf
992 * will contain the closest sector.
994 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
995 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
998 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
999 node
= rb_next(&__cfqq
->p_node
);
1001 node
= rb_prev(&__cfqq
->p_node
);
1005 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1006 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1014 * cur_cfqq - passed in so that we don't decide that the current queue is
1015 * closely cooperating with itself.
1017 * So, basically we're assuming that that cur_cfqq has dispatched at least
1018 * one request, and that cfqd->last_position reflects a position on the disk
1019 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1022 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1023 struct cfq_queue
*cur_cfqq
,
1026 struct cfq_queue
*cfqq
;
1029 * A valid cfq_io_context is necessary to compare requests against
1030 * the seek_mean of the current cfqq.
1032 if (!cfqd
->active_cic
)
1036 * We should notice if some of the queues are cooperating, eg
1037 * working closely on the same area of the disk. In that case,
1038 * we can group them together and don't waste time idling.
1040 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1044 if (cfq_cfqq_coop(cfqq
))
1048 cfq_mark_cfqq_coop(cfqq
);
1052 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1054 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1055 struct cfq_io_context
*cic
;
1059 * SSD device without seek penalty, disable idling. But only do so
1060 * for devices that support queuing, otherwise we still have a problem
1061 * with sync vs async workloads.
1063 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1066 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1067 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1070 * idle is disabled, either manually or by past process history
1072 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1076 * still requests with the driver, don't idle
1078 if (rq_in_driver(cfqd
))
1082 * task has exited, don't wait
1084 cic
= cfqd
->active_cic
;
1085 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1088 cfq_mark_cfqq_wait_request(cfqq
);
1091 * we don't want to idle for seeks, but we do want to allow
1092 * fair distribution of slice time for a process doing back-to-back
1093 * seeks. so allow a little bit of time for him to submit a new rq
1095 sl
= cfqd
->cfq_slice_idle
;
1096 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1097 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1099 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1100 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1104 * Move request from internal lists to the request queue dispatch list.
1106 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1108 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1109 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1111 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1113 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1114 cfq_remove_request(rq
);
1116 elv_dispatch_sort(q
, rq
);
1118 if (cfq_cfqq_sync(cfqq
))
1119 cfqd
->sync_flight
++;
1123 * return expired entry, or NULL to just start from scratch in rbtree
1125 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1127 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1131 if (cfq_cfqq_fifo_expire(cfqq
))
1134 cfq_mark_cfqq_fifo_expire(cfqq
);
1136 if (list_empty(&cfqq
->fifo
))
1139 fifo
= cfq_cfqq_sync(cfqq
);
1140 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1142 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1145 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1150 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1152 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1154 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1156 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1160 * Select a queue for service. If we have a current active queue,
1161 * check whether to continue servicing it, or retrieve and set a new one.
1163 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1165 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1167 cfqq
= cfqd
->active_queue
;
1172 * The active queue has run out of time, expire it and select new.
1174 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1178 * The active queue has requests and isn't expired, allow it to
1181 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1185 * If another queue has a request waiting within our mean seek
1186 * distance, let it run. The expire code will check for close
1187 * cooperators and put the close queue at the front of the service
1190 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1195 * No requests pending. If the active queue still has requests in
1196 * flight or is idling for a new request, allow either of these
1197 * conditions to happen (or time out) before selecting a new queue.
1199 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1200 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1206 cfq_slice_expired(cfqd
, 0);
1208 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1213 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1217 while (cfqq
->next_rq
) {
1218 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1222 BUG_ON(!list_empty(&cfqq
->fifo
));
1227 * Drain our current requests. Used for barriers and when switching
1228 * io schedulers on-the-fly.
1230 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1232 struct cfq_queue
*cfqq
;
1235 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1236 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1238 cfq_slice_expired(cfqd
, 0);
1240 BUG_ON(cfqd
->busy_queues
);
1242 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1247 * Dispatch a request from cfqq, moving them to the request queue
1250 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1254 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1257 * follow expired path, else get first next available
1259 rq
= cfq_check_fifo(cfqq
);
1264 * insert request into driver dispatch list
1266 cfq_dispatch_insert(cfqd
->queue
, rq
);
1268 if (!cfqd
->active_cic
) {
1269 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1271 atomic_long_inc(&cic
->ioc
->refcount
);
1272 cfqd
->active_cic
= cic
;
1277 * Find the cfqq that we need to service and move a request from that to the
1280 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1282 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1283 struct cfq_queue
*cfqq
;
1284 unsigned int max_dispatch
;
1286 if (!cfqd
->busy_queues
)
1289 if (unlikely(force
))
1290 return cfq_forced_dispatch(cfqd
);
1292 cfqq
= cfq_select_queue(cfqd
);
1297 * Drain async requests before we start sync IO
1299 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
1303 * If this is an async queue and we have sync IO in flight, let it wait
1305 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1308 max_dispatch
= cfqd
->cfq_quantum
;
1309 if (cfq_class_idle(cfqq
))
1313 * Does this cfqq already have too much IO in flight?
1315 if (cfqq
->dispatched
>= max_dispatch
) {
1317 * idle queue must always only have a single IO in flight
1319 if (cfq_class_idle(cfqq
))
1323 * We have other queues, don't allow more IO from this one
1325 if (cfqd
->busy_queues
> 1)
1329 * we are the only queue, allow up to 4 times of 'quantum'
1331 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1336 * Dispatch a request from this cfqq
1338 cfq_dispatch_request(cfqd
, cfqq
);
1339 cfqq
->slice_dispatch
++;
1340 cfq_clear_cfqq_must_dispatch(cfqq
);
1343 * expire an async queue immediately if it has used up its slice. idle
1344 * queue always expire after 1 dispatch round.
1346 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1347 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1348 cfq_class_idle(cfqq
))) {
1349 cfqq
->slice_end
= jiffies
+ 1;
1350 cfq_slice_expired(cfqd
, 0);
1353 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
1358 * task holds one reference to the queue, dropped when task exits. each rq
1359 * in-flight on this queue also holds a reference, dropped when rq is freed.
1361 * queue lock must be held here.
1363 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1365 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1367 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1369 if (!atomic_dec_and_test(&cfqq
->ref
))
1372 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1373 BUG_ON(rb_first(&cfqq
->sort_list
));
1374 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1375 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1377 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1378 __cfq_slice_expired(cfqd
, cfqq
, 0);
1379 cfq_schedule_dispatch(cfqd
);
1382 kmem_cache_free(cfq_pool
, cfqq
);
1386 * Must always be called with the rcu_read_lock() held
1389 __call_for_each_cic(struct io_context
*ioc
,
1390 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1392 struct cfq_io_context
*cic
;
1393 struct hlist_node
*n
;
1395 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1400 * Call func for each cic attached to this ioc.
1403 call_for_each_cic(struct io_context
*ioc
,
1404 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1407 __call_for_each_cic(ioc
, func
);
1411 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1413 struct cfq_io_context
*cic
;
1415 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1417 kmem_cache_free(cfq_ioc_pool
, cic
);
1418 elv_ioc_count_dec(ioc_count
);
1422 * CFQ scheduler is exiting, grab exit lock and check
1423 * the pending io context count. If it hits zero,
1424 * complete ioc_gone and set it back to NULL
1426 spin_lock(&ioc_gone_lock
);
1427 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1431 spin_unlock(&ioc_gone_lock
);
1435 static void cfq_cic_free(struct cfq_io_context
*cic
)
1437 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1440 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1442 unsigned long flags
;
1444 BUG_ON(!cic
->dead_key
);
1446 spin_lock_irqsave(&ioc
->lock
, flags
);
1447 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1448 hlist_del_rcu(&cic
->cic_list
);
1449 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1455 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1456 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1457 * and ->trim() which is called with the task lock held
1459 static void cfq_free_io_context(struct io_context
*ioc
)
1462 * ioc->refcount is zero here, or we are called from elv_unregister(),
1463 * so no more cic's are allowed to be linked into this ioc. So it
1464 * should be ok to iterate over the known list, we will see all cic's
1465 * since no new ones are added.
1467 __call_for_each_cic(ioc
, cic_free_func
);
1470 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1472 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1473 __cfq_slice_expired(cfqd
, cfqq
, 0);
1474 cfq_schedule_dispatch(cfqd
);
1477 cfq_put_queue(cfqq
);
1480 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1481 struct cfq_io_context
*cic
)
1483 struct io_context
*ioc
= cic
->ioc
;
1485 list_del_init(&cic
->queue_list
);
1488 * Make sure key == NULL is seen for dead queues
1491 cic
->dead_key
= (unsigned long) cic
->key
;
1494 if (ioc
->ioc_data
== cic
)
1495 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1497 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1498 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1499 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1502 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1503 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1504 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1508 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1509 struct cfq_io_context
*cic
)
1511 struct cfq_data
*cfqd
= cic
->key
;
1514 struct request_queue
*q
= cfqd
->queue
;
1515 unsigned long flags
;
1517 spin_lock_irqsave(q
->queue_lock
, flags
);
1520 * Ensure we get a fresh copy of the ->key to prevent
1521 * race between exiting task and queue
1523 smp_read_barrier_depends();
1525 __cfq_exit_single_io_context(cfqd
, cic
);
1527 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1532 * The process that ioc belongs to has exited, we need to clean up
1533 * and put the internal structures we have that belongs to that process.
1535 static void cfq_exit_io_context(struct io_context
*ioc
)
1537 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1540 static struct cfq_io_context
*
1541 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1543 struct cfq_io_context
*cic
;
1545 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1548 cic
->last_end_request
= jiffies
;
1549 INIT_LIST_HEAD(&cic
->queue_list
);
1550 INIT_HLIST_NODE(&cic
->cic_list
);
1551 cic
->dtor
= cfq_free_io_context
;
1552 cic
->exit
= cfq_exit_io_context
;
1553 elv_ioc_count_inc(ioc_count
);
1559 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1561 struct task_struct
*tsk
= current
;
1564 if (!cfq_cfqq_prio_changed(cfqq
))
1567 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1568 switch (ioprio_class
) {
1570 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1571 case IOPRIO_CLASS_NONE
:
1573 * no prio set, inherit CPU scheduling settings
1575 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1576 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1578 case IOPRIO_CLASS_RT
:
1579 cfqq
->ioprio
= task_ioprio(ioc
);
1580 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1582 case IOPRIO_CLASS_BE
:
1583 cfqq
->ioprio
= task_ioprio(ioc
);
1584 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1586 case IOPRIO_CLASS_IDLE
:
1587 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1589 cfq_clear_cfqq_idle_window(cfqq
);
1594 * keep track of original prio settings in case we have to temporarily
1595 * elevate the priority of this queue
1597 cfqq
->org_ioprio
= cfqq
->ioprio
;
1598 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1599 cfq_clear_cfqq_prio_changed(cfqq
);
1602 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1604 struct cfq_data
*cfqd
= cic
->key
;
1605 struct cfq_queue
*cfqq
;
1606 unsigned long flags
;
1608 if (unlikely(!cfqd
))
1611 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1613 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1615 struct cfq_queue
*new_cfqq
;
1616 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1619 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1620 cfq_put_queue(cfqq
);
1624 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1626 cfq_mark_cfqq_prio_changed(cfqq
);
1628 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1631 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1633 call_for_each_cic(ioc
, changed_ioprio
);
1634 ioc
->ioprio_changed
= 0;
1637 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1638 pid_t pid
, int is_sync
)
1640 RB_CLEAR_NODE(&cfqq
->rb_node
);
1641 RB_CLEAR_NODE(&cfqq
->p_node
);
1642 INIT_LIST_HEAD(&cfqq
->fifo
);
1644 atomic_set(&cfqq
->ref
, 0);
1647 cfq_mark_cfqq_prio_changed(cfqq
);
1650 if (!cfq_class_idle(cfqq
))
1651 cfq_mark_cfqq_idle_window(cfqq
);
1652 cfq_mark_cfqq_sync(cfqq
);
1657 static struct cfq_queue
*
1658 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1659 struct io_context
*ioc
, gfp_t gfp_mask
)
1661 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1662 struct cfq_io_context
*cic
;
1665 cic
= cfq_cic_lookup(cfqd
, ioc
);
1666 /* cic always exists here */
1667 cfqq
= cic_to_cfqq(cic
, is_sync
);
1670 * Always try a new alloc if we fell back to the OOM cfqq
1671 * originally, since it should just be a temporary situation.
1673 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
1678 } else if (gfp_mask
& __GFP_WAIT
) {
1679 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1680 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1681 gfp_mask
| __GFP_ZERO
,
1683 spin_lock_irq(cfqd
->queue
->queue_lock
);
1687 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1688 gfp_mask
| __GFP_ZERO
,
1693 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
1694 cfq_init_prio_data(cfqq
, ioc
);
1695 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1697 cfqq
= &cfqd
->oom_cfqq
;
1701 kmem_cache_free(cfq_pool
, new_cfqq
);
1706 static struct cfq_queue
**
1707 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1709 switch (ioprio_class
) {
1710 case IOPRIO_CLASS_RT
:
1711 return &cfqd
->async_cfqq
[0][ioprio
];
1712 case IOPRIO_CLASS_BE
:
1713 return &cfqd
->async_cfqq
[1][ioprio
];
1714 case IOPRIO_CLASS_IDLE
:
1715 return &cfqd
->async_idle_cfqq
;
1721 static struct cfq_queue
*
1722 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1725 const int ioprio
= task_ioprio(ioc
);
1726 const int ioprio_class
= task_ioprio_class(ioc
);
1727 struct cfq_queue
**async_cfqq
= NULL
;
1728 struct cfq_queue
*cfqq
= NULL
;
1731 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1736 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1739 * pin the queue now that it's allocated, scheduler exit will prune it
1741 if (!is_sync
&& !(*async_cfqq
)) {
1742 atomic_inc(&cfqq
->ref
);
1746 atomic_inc(&cfqq
->ref
);
1751 * We drop cfq io contexts lazily, so we may find a dead one.
1754 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1755 struct cfq_io_context
*cic
)
1757 unsigned long flags
;
1759 WARN_ON(!list_empty(&cic
->queue_list
));
1761 spin_lock_irqsave(&ioc
->lock
, flags
);
1763 BUG_ON(ioc
->ioc_data
== cic
);
1765 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1766 hlist_del_rcu(&cic
->cic_list
);
1767 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1772 static struct cfq_io_context
*
1773 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1775 struct cfq_io_context
*cic
;
1776 unsigned long flags
;
1785 * we maintain a last-hit cache, to avoid browsing over the tree
1787 cic
= rcu_dereference(ioc
->ioc_data
);
1788 if (cic
&& cic
->key
== cfqd
) {
1794 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1798 /* ->key must be copied to avoid race with cfq_exit_queue() */
1801 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1806 spin_lock_irqsave(&ioc
->lock
, flags
);
1807 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1808 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1816 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1817 * the process specific cfq io context when entered from the block layer.
1818 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1820 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1821 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1823 unsigned long flags
;
1826 ret
= radix_tree_preload(gfp_mask
);
1831 spin_lock_irqsave(&ioc
->lock
, flags
);
1832 ret
= radix_tree_insert(&ioc
->radix_root
,
1833 (unsigned long) cfqd
, cic
);
1835 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1836 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1838 radix_tree_preload_end();
1841 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1842 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1843 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1848 printk(KERN_ERR
"cfq: cic link failed!\n");
1854 * Setup general io context and cfq io context. There can be several cfq
1855 * io contexts per general io context, if this process is doing io to more
1856 * than one device managed by cfq.
1858 static struct cfq_io_context
*
1859 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1861 struct io_context
*ioc
= NULL
;
1862 struct cfq_io_context
*cic
;
1864 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1866 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1870 cic
= cfq_cic_lookup(cfqd
, ioc
);
1874 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1878 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1882 smp_read_barrier_depends();
1883 if (unlikely(ioc
->ioprio_changed
))
1884 cfq_ioc_set_ioprio(ioc
);
1890 put_io_context(ioc
);
1895 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1897 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1898 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1900 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1901 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1902 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1906 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1912 if (!cic
->last_request_pos
)
1914 else if (cic
->last_request_pos
< blk_rq_pos(rq
))
1915 sdist
= blk_rq_pos(rq
) - cic
->last_request_pos
;
1917 sdist
= cic
->last_request_pos
- blk_rq_pos(rq
);
1920 * Don't allow the seek distance to get too large from the
1921 * odd fragment, pagein, etc
1923 if (cic
->seek_samples
<= 60) /* second&third seek */
1924 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1926 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1928 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1929 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1930 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1931 do_div(total
, cic
->seek_samples
);
1932 cic
->seek_mean
= (sector_t
)total
;
1936 * Disable idle window if the process thinks too long or seeks so much that
1940 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1941 struct cfq_io_context
*cic
)
1943 int old_idle
, enable_idle
;
1946 * Don't idle for async or idle io prio class
1948 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1951 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1953 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1954 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1956 else if (sample_valid(cic
->ttime_samples
)) {
1957 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1963 if (old_idle
!= enable_idle
) {
1964 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1966 cfq_mark_cfqq_idle_window(cfqq
);
1968 cfq_clear_cfqq_idle_window(cfqq
);
1973 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1974 * no or if we aren't sure, a 1 will cause a preempt.
1977 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1980 struct cfq_queue
*cfqq
;
1982 cfqq
= cfqd
->active_queue
;
1986 if (cfq_slice_used(cfqq
))
1989 if (cfq_class_idle(new_cfqq
))
1992 if (cfq_class_idle(cfqq
))
1996 * if the new request is sync, but the currently running queue is
1997 * not, let the sync request have priority.
1999 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2003 * So both queues are sync. Let the new request get disk time if
2004 * it's a metadata request and the current queue is doing regular IO.
2006 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2010 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2012 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2015 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2019 * if this request is as-good as one we would expect from the
2020 * current cfqq, let it preempt
2022 if (cfq_rq_close(cfqd
, rq
))
2029 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2030 * let it have half of its nominal slice.
2032 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2034 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2035 cfq_slice_expired(cfqd
, 1);
2038 * Put the new queue at the front of the of the current list,
2039 * so we know that it will be selected next.
2041 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2043 cfq_service_tree_add(cfqd
, cfqq
, 1);
2045 cfqq
->slice_end
= 0;
2046 cfq_mark_cfqq_slice_new(cfqq
);
2050 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2051 * something we should do about it
2054 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2057 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2061 cfqq
->meta_pending
++;
2063 cfq_update_io_thinktime(cfqd
, cic
);
2064 cfq_update_io_seektime(cfqd
, cic
, rq
);
2065 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2067 cic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2069 if (cfqq
== cfqd
->active_queue
) {
2071 * Remember that we saw a request from this process, but
2072 * don't start queuing just yet. Otherwise we risk seeing lots
2073 * of tiny requests, because we disrupt the normal plugging
2074 * and merging. If the request is already larger than a single
2075 * page, let it rip immediately. For that case we assume that
2076 * merging is already done. Ditto for a busy system that
2077 * has other work pending, don't risk delaying until the
2078 * idle timer unplug to continue working.
2080 if (cfq_cfqq_wait_request(cfqq
)) {
2081 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2082 cfqd
->busy_queues
> 1) {
2083 del_timer(&cfqd
->idle_slice_timer
);
2084 __blk_run_queue(cfqd
->queue
);
2086 cfq_mark_cfqq_must_dispatch(cfqq
);
2088 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2090 * not the active queue - expire current slice if it is
2091 * idle and has expired it's mean thinktime or this new queue
2092 * has some old slice time left and is of higher priority or
2093 * this new queue is RT and the current one is BE
2095 cfq_preempt_queue(cfqd
, cfqq
);
2096 __blk_run_queue(cfqd
->queue
);
2100 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2102 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2103 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2105 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2106 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2110 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2112 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2116 * Update hw_tag based on peak queue depth over 50 samples under
2119 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2121 if (rq_in_driver(cfqd
) > cfqd
->rq_in_driver_peak
)
2122 cfqd
->rq_in_driver_peak
= rq_in_driver(cfqd
);
2124 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2125 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
2128 if (cfqd
->hw_tag_samples
++ < 50)
2131 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2136 cfqd
->hw_tag_samples
= 0;
2137 cfqd
->rq_in_driver_peak
= 0;
2140 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2142 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2143 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2144 const int sync
= rq_is_sync(rq
);
2148 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2150 cfq_update_hw_tag(cfqd
);
2152 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
2153 WARN_ON(!cfqq
->dispatched
);
2154 cfqd
->rq_in_driver
[sync
]--;
2157 if (cfq_cfqq_sync(cfqq
))
2158 cfqd
->sync_flight
--;
2161 RQ_CIC(rq
)->last_end_request
= now
;
2164 * If this is the active queue, check if it needs to be expired,
2165 * or if we want to idle in case it has no pending requests.
2167 if (cfqd
->active_queue
== cfqq
) {
2168 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2170 if (cfq_cfqq_slice_new(cfqq
)) {
2171 cfq_set_prio_slice(cfqd
, cfqq
);
2172 cfq_clear_cfqq_slice_new(cfqq
);
2175 * If there are no requests waiting in this queue, and
2176 * there are other queues ready to issue requests, AND
2177 * those other queues are issuing requests within our
2178 * mean seek distance, give them a chance to run instead
2181 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2182 cfq_slice_expired(cfqd
, 1);
2183 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2184 sync
&& !rq_noidle(rq
))
2185 cfq_arm_slice_timer(cfqd
);
2188 if (!rq_in_driver(cfqd
))
2189 cfq_schedule_dispatch(cfqd
);
2193 * we temporarily boost lower priority queues if they are holding fs exclusive
2194 * resources. they are boosted to normal prio (CLASS_BE/4)
2196 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2198 if (has_fs_excl()) {
2200 * boost idle prio on transactions that would lock out other
2201 * users of the filesystem
2203 if (cfq_class_idle(cfqq
))
2204 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2205 if (cfqq
->ioprio
> IOPRIO_NORM
)
2206 cfqq
->ioprio
= IOPRIO_NORM
;
2209 * check if we need to unboost the queue
2211 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2212 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2213 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2214 cfqq
->ioprio
= cfqq
->org_ioprio
;
2218 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2220 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
2221 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2222 return ELV_MQUEUE_MUST
;
2225 return ELV_MQUEUE_MAY
;
2228 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2230 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2231 struct task_struct
*tsk
= current
;
2232 struct cfq_io_context
*cic
;
2233 struct cfq_queue
*cfqq
;
2236 * don't force setup of a queue from here, as a call to may_queue
2237 * does not necessarily imply that a request actually will be queued.
2238 * so just lookup a possibly existing queue, or return 'may queue'
2241 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2243 return ELV_MQUEUE_MAY
;
2245 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2247 cfq_init_prio_data(cfqq
, cic
->ioc
);
2248 cfq_prio_boost(cfqq
);
2250 return __cfq_may_queue(cfqq
);
2253 return ELV_MQUEUE_MAY
;
2257 * queue lock held here
2259 static void cfq_put_request(struct request
*rq
)
2261 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2264 const int rw
= rq_data_dir(rq
);
2266 BUG_ON(!cfqq
->allocated
[rw
]);
2267 cfqq
->allocated
[rw
]--;
2269 put_io_context(RQ_CIC(rq
)->ioc
);
2271 rq
->elevator_private
= NULL
;
2272 rq
->elevator_private2
= NULL
;
2274 cfq_put_queue(cfqq
);
2279 * Allocate cfq data structures associated with this request.
2282 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2284 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2285 struct cfq_io_context
*cic
;
2286 const int rw
= rq_data_dir(rq
);
2287 const int is_sync
= rq_is_sync(rq
);
2288 struct cfq_queue
*cfqq
;
2289 unsigned long flags
;
2291 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2293 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2295 spin_lock_irqsave(q
->queue_lock
, flags
);
2300 cfqq
= cic_to_cfqq(cic
, is_sync
);
2301 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2302 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2303 cic_set_cfqq(cic
, cfqq
, is_sync
);
2306 cfqq
->allocated
[rw
]++;
2307 atomic_inc(&cfqq
->ref
);
2309 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2311 rq
->elevator_private
= cic
;
2312 rq
->elevator_private2
= cfqq
;
2317 put_io_context(cic
->ioc
);
2319 cfq_schedule_dispatch(cfqd
);
2320 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2321 cfq_log(cfqd
, "set_request fail");
2325 static void cfq_kick_queue(struct work_struct
*work
)
2327 struct cfq_data
*cfqd
=
2328 container_of(work
, struct cfq_data
, unplug_work
);
2329 struct request_queue
*q
= cfqd
->queue
;
2331 spin_lock_irq(q
->queue_lock
);
2332 __blk_run_queue(cfqd
->queue
);
2333 spin_unlock_irq(q
->queue_lock
);
2337 * Timer running if the active_queue is currently idling inside its time slice
2339 static void cfq_idle_slice_timer(unsigned long data
)
2341 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2342 struct cfq_queue
*cfqq
;
2343 unsigned long flags
;
2346 cfq_log(cfqd
, "idle timer fired");
2348 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2350 cfqq
= cfqd
->active_queue
;
2355 * We saw a request before the queue expired, let it through
2357 if (cfq_cfqq_must_dispatch(cfqq
))
2363 if (cfq_slice_used(cfqq
))
2367 * only expire and reinvoke request handler, if there are
2368 * other queues with pending requests
2370 if (!cfqd
->busy_queues
)
2374 * not expired and it has a request pending, let it dispatch
2376 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2380 cfq_slice_expired(cfqd
, timed_out
);
2382 cfq_schedule_dispatch(cfqd
);
2384 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2387 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2389 del_timer_sync(&cfqd
->idle_slice_timer
);
2390 cancel_work_sync(&cfqd
->unplug_work
);
2393 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2397 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2398 if (cfqd
->async_cfqq
[0][i
])
2399 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2400 if (cfqd
->async_cfqq
[1][i
])
2401 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2404 if (cfqd
->async_idle_cfqq
)
2405 cfq_put_queue(cfqd
->async_idle_cfqq
);
2408 static void cfq_exit_queue(struct elevator_queue
*e
)
2410 struct cfq_data
*cfqd
= e
->elevator_data
;
2411 struct request_queue
*q
= cfqd
->queue
;
2413 cfq_shutdown_timer_wq(cfqd
);
2415 spin_lock_irq(q
->queue_lock
);
2417 if (cfqd
->active_queue
)
2418 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2420 while (!list_empty(&cfqd
->cic_list
)) {
2421 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2422 struct cfq_io_context
,
2425 __cfq_exit_single_io_context(cfqd
, cic
);
2428 cfq_put_async_queues(cfqd
);
2430 spin_unlock_irq(q
->queue_lock
);
2432 cfq_shutdown_timer_wq(cfqd
);
2437 static void *cfq_init_queue(struct request_queue
*q
)
2439 struct cfq_data
*cfqd
;
2442 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2446 cfqd
->service_tree
= CFQ_RB_ROOT
;
2449 * Not strictly needed (since RB_ROOT just clears the node and we
2450 * zeroed cfqd on alloc), but better be safe in case someone decides
2451 * to add magic to the rb code
2453 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2454 cfqd
->prio_trees
[i
] = RB_ROOT
;
2457 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2458 * Grab a permanent reference to it, so that the normal code flow
2459 * will not attempt to free it.
2461 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2462 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2464 INIT_LIST_HEAD(&cfqd
->cic_list
);
2468 init_timer(&cfqd
->idle_slice_timer
);
2469 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2470 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2472 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2474 cfqd
->cfq_quantum
= cfq_quantum
;
2475 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2476 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2477 cfqd
->cfq_back_max
= cfq_back_max
;
2478 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2479 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2480 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2481 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2482 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2488 static void cfq_slab_kill(void)
2491 * Caller already ensured that pending RCU callbacks are completed,
2492 * so we should have no busy allocations at this point.
2495 kmem_cache_destroy(cfq_pool
);
2497 kmem_cache_destroy(cfq_ioc_pool
);
2500 static int __init
cfq_slab_setup(void)
2502 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2506 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2517 * sysfs parts below -->
2520 cfq_var_show(unsigned int var
, char *page
)
2522 return sprintf(page
, "%d\n", var
);
2526 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2528 char *p
= (char *) page
;
2530 *var
= simple_strtoul(p
, &p
, 10);
2534 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2535 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2537 struct cfq_data *cfqd = e->elevator_data; \
2538 unsigned int __data = __VAR; \
2540 __data = jiffies_to_msecs(__data); \
2541 return cfq_var_show(__data, (page)); \
2543 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2544 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2545 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2546 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2547 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2548 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2549 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2550 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2551 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2552 #undef SHOW_FUNCTION
2554 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2555 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2557 struct cfq_data *cfqd = e->elevator_data; \
2558 unsigned int __data; \
2559 int ret = cfq_var_store(&__data, (page), count); \
2560 if (__data < (MIN)) \
2562 else if (__data > (MAX)) \
2565 *(__PTR) = msecs_to_jiffies(__data); \
2567 *(__PTR) = __data; \
2570 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2571 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2573 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2575 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2576 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2578 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2579 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2580 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2581 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2583 #undef STORE_FUNCTION
2585 #define CFQ_ATTR(name) \
2586 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2588 static struct elv_fs_entry cfq_attrs
[] = {
2590 CFQ_ATTR(fifo_expire_sync
),
2591 CFQ_ATTR(fifo_expire_async
),
2592 CFQ_ATTR(back_seek_max
),
2593 CFQ_ATTR(back_seek_penalty
),
2594 CFQ_ATTR(slice_sync
),
2595 CFQ_ATTR(slice_async
),
2596 CFQ_ATTR(slice_async_rq
),
2597 CFQ_ATTR(slice_idle
),
2601 static struct elevator_type iosched_cfq
= {
2603 .elevator_merge_fn
= cfq_merge
,
2604 .elevator_merged_fn
= cfq_merged_request
,
2605 .elevator_merge_req_fn
= cfq_merged_requests
,
2606 .elevator_allow_merge_fn
= cfq_allow_merge
,
2607 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2608 .elevator_add_req_fn
= cfq_insert_request
,
2609 .elevator_activate_req_fn
= cfq_activate_request
,
2610 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2611 .elevator_queue_empty_fn
= cfq_queue_empty
,
2612 .elevator_completed_req_fn
= cfq_completed_request
,
2613 .elevator_former_req_fn
= elv_rb_former_request
,
2614 .elevator_latter_req_fn
= elv_rb_latter_request
,
2615 .elevator_set_req_fn
= cfq_set_request
,
2616 .elevator_put_req_fn
= cfq_put_request
,
2617 .elevator_may_queue_fn
= cfq_may_queue
,
2618 .elevator_init_fn
= cfq_init_queue
,
2619 .elevator_exit_fn
= cfq_exit_queue
,
2620 .trim
= cfq_free_io_context
,
2622 .elevator_attrs
= cfq_attrs
,
2623 .elevator_name
= "cfq",
2624 .elevator_owner
= THIS_MODULE
,
2627 static int __init
cfq_init(void)
2630 * could be 0 on HZ < 1000 setups
2632 if (!cfq_slice_async
)
2633 cfq_slice_async
= 1;
2634 if (!cfq_slice_idle
)
2637 if (cfq_slab_setup())
2640 elv_register(&iosched_cfq
);
2645 static void __exit
cfq_exit(void)
2647 DECLARE_COMPLETION_ONSTACK(all_gone
);
2648 elv_unregister(&iosched_cfq
);
2649 ioc_gone
= &all_gone
;
2650 /* ioc_gone's update must be visible before reading ioc_count */
2654 * this also protects us from entering cfq_slab_kill() with
2655 * pending RCU callbacks
2657 if (elv_ioc_count_read(ioc_count
))
2658 wait_for_completion(&all_gone
);
2662 module_init(cfq_init
);
2663 module_exit(cfq_exit
);
2665 MODULE_AUTHOR("Jens Axboe");
2666 MODULE_LICENSE("GPL");
2667 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");