Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / drivers / dma / iop-adma.c
blob2f052265122f62e2681bbdb0dfbbd558cef24713
1 /*
2 * offload engine driver for the Intel Xscale series of i/o processors
3 * Copyright © 2006, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * This driver supports the asynchrounous DMA copy and RAID engines available
22 * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spinlock.h>
30 #include <linux/interrupt.h>
31 #include <linux/platform_device.h>
32 #include <linux/memory.h>
33 #include <linux/ioport.h>
35 #include <mach/adma.h>
37 #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
38 #define to_iop_adma_device(dev) \
39 container_of(dev, struct iop_adma_device, common)
40 #define tx_to_iop_adma_slot(tx) \
41 container_of(tx, struct iop_adma_desc_slot, async_tx)
43 /**
44 * iop_adma_free_slots - flags descriptor slots for reuse
45 * @slot: Slot to free
46 * Caller must hold &iop_chan->lock while calling this function
48 static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
50 int stride = slot->slots_per_op;
52 while (stride--) {
53 slot->slots_per_op = 0;
54 slot = list_entry(slot->slot_node.next,
55 struct iop_adma_desc_slot,
56 slot_node);
60 static dma_cookie_t
61 iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
62 struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
64 BUG_ON(desc->async_tx.cookie < 0);
65 if (desc->async_tx.cookie > 0) {
66 cookie = desc->async_tx.cookie;
67 desc->async_tx.cookie = 0;
69 /* call the callback (must not sleep or submit new
70 * operations to this channel)
72 if (desc->async_tx.callback)
73 desc->async_tx.callback(
74 desc->async_tx.callback_param);
76 /* unmap dma addresses
77 * (unmap_single vs unmap_page?)
79 if (desc->group_head && desc->unmap_len) {
80 struct iop_adma_desc_slot *unmap = desc->group_head;
81 struct device *dev =
82 &iop_chan->device->pdev->dev;
83 u32 len = unmap->unmap_len;
84 enum dma_ctrl_flags flags = desc->async_tx.flags;
85 u32 src_cnt;
86 dma_addr_t addr;
87 dma_addr_t dest;
89 src_cnt = unmap->unmap_src_cnt;
90 dest = iop_desc_get_dest_addr(unmap, iop_chan);
91 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
92 enum dma_data_direction dir;
94 if (src_cnt > 1) /* is xor? */
95 dir = DMA_BIDIRECTIONAL;
96 else
97 dir = DMA_FROM_DEVICE;
99 dma_unmap_page(dev, dest, len, dir);
102 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
103 while (src_cnt--) {
104 addr = iop_desc_get_src_addr(unmap,
105 iop_chan,
106 src_cnt);
107 if (addr == dest)
108 continue;
109 dma_unmap_page(dev, addr, len,
110 DMA_TO_DEVICE);
113 desc->group_head = NULL;
117 /* run dependent operations */
118 dma_run_dependencies(&desc->async_tx);
120 return cookie;
123 static int
124 iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
125 struct iop_adma_chan *iop_chan)
127 /* the client is allowed to attach dependent operations
128 * until 'ack' is set
130 if (!async_tx_test_ack(&desc->async_tx))
131 return 0;
133 /* leave the last descriptor in the chain
134 * so we can append to it
136 if (desc->chain_node.next == &iop_chan->chain)
137 return 1;
139 dev_dbg(iop_chan->device->common.dev,
140 "\tfree slot: %d slots_per_op: %d\n",
141 desc->idx, desc->slots_per_op);
143 list_del(&desc->chain_node);
144 iop_adma_free_slots(desc);
146 return 0;
149 static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
151 struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
152 dma_cookie_t cookie = 0;
153 u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
154 int busy = iop_chan_is_busy(iop_chan);
155 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
157 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
158 /* free completed slots from the chain starting with
159 * the oldest descriptor
161 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
162 chain_node) {
163 pr_debug("\tcookie: %d slot: %d busy: %d "
164 "this_desc: %#x next_desc: %#x ack: %d\n",
165 iter->async_tx.cookie, iter->idx, busy,
166 iter->async_tx.phys, iop_desc_get_next_desc(iter),
167 async_tx_test_ack(&iter->async_tx));
168 prefetch(_iter);
169 prefetch(&_iter->async_tx);
171 /* do not advance past the current descriptor loaded into the
172 * hardware channel, subsequent descriptors are either in
173 * process or have not been submitted
175 if (seen_current)
176 break;
178 /* stop the search if we reach the current descriptor and the
179 * channel is busy, or if it appears that the current descriptor
180 * needs to be re-read (i.e. has been appended to)
182 if (iter->async_tx.phys == current_desc) {
183 BUG_ON(seen_current++);
184 if (busy || iop_desc_get_next_desc(iter))
185 break;
188 /* detect the start of a group transaction */
189 if (!slot_cnt && !slots_per_op) {
190 slot_cnt = iter->slot_cnt;
191 slots_per_op = iter->slots_per_op;
192 if (slot_cnt <= slots_per_op) {
193 slot_cnt = 0;
194 slots_per_op = 0;
198 if (slot_cnt) {
199 pr_debug("\tgroup++\n");
200 if (!grp_start)
201 grp_start = iter;
202 slot_cnt -= slots_per_op;
205 /* all the members of a group are complete */
206 if (slots_per_op != 0 && slot_cnt == 0) {
207 struct iop_adma_desc_slot *grp_iter, *_grp_iter;
208 int end_of_chain = 0;
209 pr_debug("\tgroup end\n");
211 /* collect the total results */
212 if (grp_start->xor_check_result) {
213 u32 zero_sum_result = 0;
214 slot_cnt = grp_start->slot_cnt;
215 grp_iter = grp_start;
217 list_for_each_entry_from(grp_iter,
218 &iop_chan->chain, chain_node) {
219 zero_sum_result |=
220 iop_desc_get_zero_result(grp_iter);
221 pr_debug("\titer%d result: %d\n",
222 grp_iter->idx, zero_sum_result);
223 slot_cnt -= slots_per_op;
224 if (slot_cnt == 0)
225 break;
227 pr_debug("\tgrp_start->xor_check_result: %p\n",
228 grp_start->xor_check_result);
229 *grp_start->xor_check_result = zero_sum_result;
232 /* clean up the group */
233 slot_cnt = grp_start->slot_cnt;
234 grp_iter = grp_start;
235 list_for_each_entry_safe_from(grp_iter, _grp_iter,
236 &iop_chan->chain, chain_node) {
237 cookie = iop_adma_run_tx_complete_actions(
238 grp_iter, iop_chan, cookie);
240 slot_cnt -= slots_per_op;
241 end_of_chain = iop_adma_clean_slot(grp_iter,
242 iop_chan);
244 if (slot_cnt == 0 || end_of_chain)
245 break;
248 /* the group should be complete at this point */
249 BUG_ON(slot_cnt);
251 slots_per_op = 0;
252 grp_start = NULL;
253 if (end_of_chain)
254 break;
255 else
256 continue;
257 } else if (slots_per_op) /* wait for group completion */
258 continue;
260 /* write back zero sum results (single descriptor case) */
261 if (iter->xor_check_result && iter->async_tx.cookie)
262 *iter->xor_check_result =
263 iop_desc_get_zero_result(iter);
265 cookie = iop_adma_run_tx_complete_actions(
266 iter, iop_chan, cookie);
268 if (iop_adma_clean_slot(iter, iop_chan))
269 break;
272 if (cookie > 0) {
273 iop_chan->completed_cookie = cookie;
274 pr_debug("\tcompleted cookie %d\n", cookie);
278 static void
279 iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
281 spin_lock_bh(&iop_chan->lock);
282 __iop_adma_slot_cleanup(iop_chan);
283 spin_unlock_bh(&iop_chan->lock);
286 static void iop_adma_tasklet(unsigned long data)
288 struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
290 spin_lock(&iop_chan->lock);
291 __iop_adma_slot_cleanup(iop_chan);
292 spin_unlock(&iop_chan->lock);
295 static struct iop_adma_desc_slot *
296 iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
297 int slots_per_op)
299 struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
300 LIST_HEAD(chain);
301 int slots_found, retry = 0;
303 /* start search from the last allocated descrtiptor
304 * if a contiguous allocation can not be found start searching
305 * from the beginning of the list
307 retry:
308 slots_found = 0;
309 if (retry == 0)
310 iter = iop_chan->last_used;
311 else
312 iter = list_entry(&iop_chan->all_slots,
313 struct iop_adma_desc_slot,
314 slot_node);
316 list_for_each_entry_safe_continue(
317 iter, _iter, &iop_chan->all_slots, slot_node) {
318 prefetch(_iter);
319 prefetch(&_iter->async_tx);
320 if (iter->slots_per_op) {
321 /* give up after finding the first busy slot
322 * on the second pass through the list
324 if (retry)
325 break;
327 slots_found = 0;
328 continue;
331 /* start the allocation if the slot is correctly aligned */
332 if (!slots_found++) {
333 if (iop_desc_is_aligned(iter, slots_per_op))
334 alloc_start = iter;
335 else {
336 slots_found = 0;
337 continue;
341 if (slots_found == num_slots) {
342 struct iop_adma_desc_slot *alloc_tail = NULL;
343 struct iop_adma_desc_slot *last_used = NULL;
344 iter = alloc_start;
345 while (num_slots) {
346 int i;
347 dev_dbg(iop_chan->device->common.dev,
348 "allocated slot: %d "
349 "(desc %p phys: %#x) slots_per_op %d\n",
350 iter->idx, iter->hw_desc,
351 iter->async_tx.phys, slots_per_op);
353 /* pre-ack all but the last descriptor */
354 if (num_slots != slots_per_op)
355 async_tx_ack(&iter->async_tx);
357 list_add_tail(&iter->chain_node, &chain);
358 alloc_tail = iter;
359 iter->async_tx.cookie = 0;
360 iter->slot_cnt = num_slots;
361 iter->xor_check_result = NULL;
362 for (i = 0; i < slots_per_op; i++) {
363 iter->slots_per_op = slots_per_op - i;
364 last_used = iter;
365 iter = list_entry(iter->slot_node.next,
366 struct iop_adma_desc_slot,
367 slot_node);
369 num_slots -= slots_per_op;
371 alloc_tail->group_head = alloc_start;
372 alloc_tail->async_tx.cookie = -EBUSY;
373 list_splice(&chain, &alloc_tail->async_tx.tx_list);
374 iop_chan->last_used = last_used;
375 iop_desc_clear_next_desc(alloc_start);
376 iop_desc_clear_next_desc(alloc_tail);
377 return alloc_tail;
380 if (!retry++)
381 goto retry;
383 /* perform direct reclaim if the allocation fails */
384 __iop_adma_slot_cleanup(iop_chan);
386 return NULL;
389 static dma_cookie_t
390 iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
391 struct iop_adma_desc_slot *desc)
393 dma_cookie_t cookie = iop_chan->common.cookie;
394 cookie++;
395 if (cookie < 0)
396 cookie = 1;
397 iop_chan->common.cookie = desc->async_tx.cookie = cookie;
398 return cookie;
401 static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
403 dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
404 iop_chan->pending);
406 if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
407 iop_chan->pending = 0;
408 iop_chan_append(iop_chan);
412 static dma_cookie_t
413 iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
415 struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
416 struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
417 struct iop_adma_desc_slot *grp_start, *old_chain_tail;
418 int slot_cnt;
419 int slots_per_op;
420 dma_cookie_t cookie;
421 dma_addr_t next_dma;
423 grp_start = sw_desc->group_head;
424 slot_cnt = grp_start->slot_cnt;
425 slots_per_op = grp_start->slots_per_op;
427 spin_lock_bh(&iop_chan->lock);
428 cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
430 old_chain_tail = list_entry(iop_chan->chain.prev,
431 struct iop_adma_desc_slot, chain_node);
432 list_splice_init(&sw_desc->async_tx.tx_list,
433 &old_chain_tail->chain_node);
435 /* fix up the hardware chain */
436 next_dma = grp_start->async_tx.phys;
437 iop_desc_set_next_desc(old_chain_tail, next_dma);
438 BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
440 /* check for pre-chained descriptors */
441 iop_paranoia(iop_desc_get_next_desc(sw_desc));
443 /* increment the pending count by the number of slots
444 * memcpy operations have a 1:1 (slot:operation) relation
445 * other operations are heavier and will pop the threshold
446 * more often.
448 iop_chan->pending += slot_cnt;
449 iop_adma_check_threshold(iop_chan);
450 spin_unlock_bh(&iop_chan->lock);
452 dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
453 __func__, sw_desc->async_tx.cookie, sw_desc->idx);
455 return cookie;
458 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
459 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
462 * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
463 * @chan - allocate descriptor resources for this channel
464 * @client - current client requesting the channel be ready for requests
466 * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
467 * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
468 * greater than 2x the number slots needed to satisfy a device->max_xor
469 * request.
470 * */
471 static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
473 char *hw_desc;
474 int idx;
475 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
476 struct iop_adma_desc_slot *slot = NULL;
477 int init = iop_chan->slots_allocated ? 0 : 1;
478 struct iop_adma_platform_data *plat_data =
479 iop_chan->device->pdev->dev.platform_data;
480 int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
482 /* Allocate descriptor slots */
483 do {
484 idx = iop_chan->slots_allocated;
485 if (idx == num_descs_in_pool)
486 break;
488 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
489 if (!slot) {
490 printk(KERN_INFO "IOP ADMA Channel only initialized"
491 " %d descriptor slots", idx);
492 break;
494 hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
495 slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
497 dma_async_tx_descriptor_init(&slot->async_tx, chan);
498 slot->async_tx.tx_submit = iop_adma_tx_submit;
499 INIT_LIST_HEAD(&slot->chain_node);
500 INIT_LIST_HEAD(&slot->slot_node);
501 hw_desc = (char *) iop_chan->device->dma_desc_pool;
502 slot->async_tx.phys =
503 (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
504 slot->idx = idx;
506 spin_lock_bh(&iop_chan->lock);
507 iop_chan->slots_allocated++;
508 list_add_tail(&slot->slot_node, &iop_chan->all_slots);
509 spin_unlock_bh(&iop_chan->lock);
510 } while (iop_chan->slots_allocated < num_descs_in_pool);
512 if (idx && !iop_chan->last_used)
513 iop_chan->last_used = list_entry(iop_chan->all_slots.next,
514 struct iop_adma_desc_slot,
515 slot_node);
517 dev_dbg(iop_chan->device->common.dev,
518 "allocated %d descriptor slots last_used: %p\n",
519 iop_chan->slots_allocated, iop_chan->last_used);
521 /* initialize the channel and the chain with a null operation */
522 if (init) {
523 if (dma_has_cap(DMA_MEMCPY,
524 iop_chan->device->common.cap_mask))
525 iop_chan_start_null_memcpy(iop_chan);
526 else if (dma_has_cap(DMA_XOR,
527 iop_chan->device->common.cap_mask))
528 iop_chan_start_null_xor(iop_chan);
529 else
530 BUG();
533 return (idx > 0) ? idx : -ENOMEM;
536 static struct dma_async_tx_descriptor *
537 iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
539 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
540 struct iop_adma_desc_slot *sw_desc, *grp_start;
541 int slot_cnt, slots_per_op;
543 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
545 spin_lock_bh(&iop_chan->lock);
546 slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
547 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
548 if (sw_desc) {
549 grp_start = sw_desc->group_head;
550 iop_desc_init_interrupt(grp_start, iop_chan);
551 grp_start->unmap_len = 0;
552 sw_desc->async_tx.flags = flags;
554 spin_unlock_bh(&iop_chan->lock);
556 return sw_desc ? &sw_desc->async_tx : NULL;
559 static struct dma_async_tx_descriptor *
560 iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
561 dma_addr_t dma_src, size_t len, unsigned long flags)
563 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
564 struct iop_adma_desc_slot *sw_desc, *grp_start;
565 int slot_cnt, slots_per_op;
567 if (unlikely(!len))
568 return NULL;
569 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
571 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
572 __func__, len);
574 spin_lock_bh(&iop_chan->lock);
575 slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
576 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
577 if (sw_desc) {
578 grp_start = sw_desc->group_head;
579 iop_desc_init_memcpy(grp_start, flags);
580 iop_desc_set_byte_count(grp_start, iop_chan, len);
581 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
582 iop_desc_set_memcpy_src_addr(grp_start, dma_src);
583 sw_desc->unmap_src_cnt = 1;
584 sw_desc->unmap_len = len;
585 sw_desc->async_tx.flags = flags;
587 spin_unlock_bh(&iop_chan->lock);
589 return sw_desc ? &sw_desc->async_tx : NULL;
592 static struct dma_async_tx_descriptor *
593 iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
594 int value, size_t len, unsigned long flags)
596 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
597 struct iop_adma_desc_slot *sw_desc, *grp_start;
598 int slot_cnt, slots_per_op;
600 if (unlikely(!len))
601 return NULL;
602 BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
604 dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
605 __func__, len);
607 spin_lock_bh(&iop_chan->lock);
608 slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
609 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
610 if (sw_desc) {
611 grp_start = sw_desc->group_head;
612 iop_desc_init_memset(grp_start, flags);
613 iop_desc_set_byte_count(grp_start, iop_chan, len);
614 iop_desc_set_block_fill_val(grp_start, value);
615 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
616 sw_desc->unmap_src_cnt = 1;
617 sw_desc->unmap_len = len;
618 sw_desc->async_tx.flags = flags;
620 spin_unlock_bh(&iop_chan->lock);
622 return sw_desc ? &sw_desc->async_tx : NULL;
625 static struct dma_async_tx_descriptor *
626 iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
627 dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
628 unsigned long flags)
630 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
631 struct iop_adma_desc_slot *sw_desc, *grp_start;
632 int slot_cnt, slots_per_op;
634 if (unlikely(!len))
635 return NULL;
636 BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
638 dev_dbg(iop_chan->device->common.dev,
639 "%s src_cnt: %d len: %u flags: %lx\n",
640 __func__, src_cnt, len, flags);
642 spin_lock_bh(&iop_chan->lock);
643 slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
644 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
645 if (sw_desc) {
646 grp_start = sw_desc->group_head;
647 iop_desc_init_xor(grp_start, src_cnt, flags);
648 iop_desc_set_byte_count(grp_start, iop_chan, len);
649 iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
650 sw_desc->unmap_src_cnt = src_cnt;
651 sw_desc->unmap_len = len;
652 sw_desc->async_tx.flags = flags;
653 while (src_cnt--)
654 iop_desc_set_xor_src_addr(grp_start, src_cnt,
655 dma_src[src_cnt]);
657 spin_unlock_bh(&iop_chan->lock);
659 return sw_desc ? &sw_desc->async_tx : NULL;
662 static struct dma_async_tx_descriptor *
663 iop_adma_prep_dma_zero_sum(struct dma_chan *chan, dma_addr_t *dma_src,
664 unsigned int src_cnt, size_t len, u32 *result,
665 unsigned long flags)
667 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
668 struct iop_adma_desc_slot *sw_desc, *grp_start;
669 int slot_cnt, slots_per_op;
671 if (unlikely(!len))
672 return NULL;
674 dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
675 __func__, src_cnt, len);
677 spin_lock_bh(&iop_chan->lock);
678 slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
679 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
680 if (sw_desc) {
681 grp_start = sw_desc->group_head;
682 iop_desc_init_zero_sum(grp_start, src_cnt, flags);
683 iop_desc_set_zero_sum_byte_count(grp_start, len);
684 grp_start->xor_check_result = result;
685 pr_debug("\t%s: grp_start->xor_check_result: %p\n",
686 __func__, grp_start->xor_check_result);
687 sw_desc->unmap_src_cnt = src_cnt;
688 sw_desc->unmap_len = len;
689 sw_desc->async_tx.flags = flags;
690 while (src_cnt--)
691 iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
692 dma_src[src_cnt]);
694 spin_unlock_bh(&iop_chan->lock);
696 return sw_desc ? &sw_desc->async_tx : NULL;
699 static void iop_adma_free_chan_resources(struct dma_chan *chan)
701 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
702 struct iop_adma_desc_slot *iter, *_iter;
703 int in_use_descs = 0;
705 iop_adma_slot_cleanup(iop_chan);
707 spin_lock_bh(&iop_chan->lock);
708 list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
709 chain_node) {
710 in_use_descs++;
711 list_del(&iter->chain_node);
713 list_for_each_entry_safe_reverse(
714 iter, _iter, &iop_chan->all_slots, slot_node) {
715 list_del(&iter->slot_node);
716 kfree(iter);
717 iop_chan->slots_allocated--;
719 iop_chan->last_used = NULL;
721 dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
722 __func__, iop_chan->slots_allocated);
723 spin_unlock_bh(&iop_chan->lock);
725 /* one is ok since we left it on there on purpose */
726 if (in_use_descs > 1)
727 printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
728 in_use_descs - 1);
732 * iop_adma_is_complete - poll the status of an ADMA transaction
733 * @chan: ADMA channel handle
734 * @cookie: ADMA transaction identifier
736 static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
737 dma_cookie_t cookie,
738 dma_cookie_t *done,
739 dma_cookie_t *used)
741 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
742 dma_cookie_t last_used;
743 dma_cookie_t last_complete;
744 enum dma_status ret;
746 last_used = chan->cookie;
747 last_complete = iop_chan->completed_cookie;
749 if (done)
750 *done = last_complete;
751 if (used)
752 *used = last_used;
754 ret = dma_async_is_complete(cookie, last_complete, last_used);
755 if (ret == DMA_SUCCESS)
756 return ret;
758 iop_adma_slot_cleanup(iop_chan);
760 last_used = chan->cookie;
761 last_complete = iop_chan->completed_cookie;
763 if (done)
764 *done = last_complete;
765 if (used)
766 *used = last_used;
768 return dma_async_is_complete(cookie, last_complete, last_used);
771 static irqreturn_t iop_adma_eot_handler(int irq, void *data)
773 struct iop_adma_chan *chan = data;
775 dev_dbg(chan->device->common.dev, "%s\n", __func__);
777 tasklet_schedule(&chan->irq_tasklet);
779 iop_adma_device_clear_eot_status(chan);
781 return IRQ_HANDLED;
784 static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
786 struct iop_adma_chan *chan = data;
788 dev_dbg(chan->device->common.dev, "%s\n", __func__);
790 tasklet_schedule(&chan->irq_tasklet);
792 iop_adma_device_clear_eoc_status(chan);
794 return IRQ_HANDLED;
797 static irqreturn_t iop_adma_err_handler(int irq, void *data)
799 struct iop_adma_chan *chan = data;
800 unsigned long status = iop_chan_get_status(chan);
802 dev_printk(KERN_ERR, chan->device->common.dev,
803 "error ( %s%s%s%s%s%s%s)\n",
804 iop_is_err_int_parity(status, chan) ? "int_parity " : "",
805 iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
806 iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
807 iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
808 iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
809 iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
810 iop_is_err_split_tx(status, chan) ? "split_tx " : "");
812 iop_adma_device_clear_err_status(chan);
814 BUG();
816 return IRQ_HANDLED;
819 static void iop_adma_issue_pending(struct dma_chan *chan)
821 struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
823 if (iop_chan->pending) {
824 iop_chan->pending = 0;
825 iop_chan_append(iop_chan);
830 * Perform a transaction to verify the HW works.
832 #define IOP_ADMA_TEST_SIZE 2000
834 static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
836 int i;
837 void *src, *dest;
838 dma_addr_t src_dma, dest_dma;
839 struct dma_chan *dma_chan;
840 dma_cookie_t cookie;
841 struct dma_async_tx_descriptor *tx;
842 int err = 0;
843 struct iop_adma_chan *iop_chan;
845 dev_dbg(device->common.dev, "%s\n", __func__);
847 src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
848 if (!src)
849 return -ENOMEM;
850 dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
851 if (!dest) {
852 kfree(src);
853 return -ENOMEM;
856 /* Fill in src buffer */
857 for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
858 ((u8 *) src)[i] = (u8)i;
860 /* Start copy, using first DMA channel */
861 dma_chan = container_of(device->common.channels.next,
862 struct dma_chan,
863 device_node);
864 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
865 err = -ENODEV;
866 goto out;
869 dest_dma = dma_map_single(dma_chan->device->dev, dest,
870 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
871 src_dma = dma_map_single(dma_chan->device->dev, src,
872 IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
873 tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
874 IOP_ADMA_TEST_SIZE,
875 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
877 cookie = iop_adma_tx_submit(tx);
878 iop_adma_issue_pending(dma_chan);
879 msleep(1);
881 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
882 DMA_SUCCESS) {
883 dev_printk(KERN_ERR, dma_chan->device->dev,
884 "Self-test copy timed out, disabling\n");
885 err = -ENODEV;
886 goto free_resources;
889 iop_chan = to_iop_adma_chan(dma_chan);
890 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
891 IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
892 if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
893 dev_printk(KERN_ERR, dma_chan->device->dev,
894 "Self-test copy failed compare, disabling\n");
895 err = -ENODEV;
896 goto free_resources;
899 free_resources:
900 iop_adma_free_chan_resources(dma_chan);
901 out:
902 kfree(src);
903 kfree(dest);
904 return err;
907 #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
908 static int __devinit
909 iop_adma_xor_zero_sum_self_test(struct iop_adma_device *device)
911 int i, src_idx;
912 struct page *dest;
913 struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
914 struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
915 dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
916 dma_addr_t dma_addr, dest_dma;
917 struct dma_async_tx_descriptor *tx;
918 struct dma_chan *dma_chan;
919 dma_cookie_t cookie;
920 u8 cmp_byte = 0;
921 u32 cmp_word;
922 u32 zero_sum_result;
923 int err = 0;
924 struct iop_adma_chan *iop_chan;
926 dev_dbg(device->common.dev, "%s\n", __func__);
928 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
929 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
930 if (!xor_srcs[src_idx]) {
931 while (src_idx--)
932 __free_page(xor_srcs[src_idx]);
933 return -ENOMEM;
937 dest = alloc_page(GFP_KERNEL);
938 if (!dest) {
939 while (src_idx--)
940 __free_page(xor_srcs[src_idx]);
941 return -ENOMEM;
944 /* Fill in src buffers */
945 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
946 u8 *ptr = page_address(xor_srcs[src_idx]);
947 for (i = 0; i < PAGE_SIZE; i++)
948 ptr[i] = (1 << src_idx);
951 for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
952 cmp_byte ^= (u8) (1 << src_idx);
954 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
955 (cmp_byte << 8) | cmp_byte;
957 memset(page_address(dest), 0, PAGE_SIZE);
959 dma_chan = container_of(device->common.channels.next,
960 struct dma_chan,
961 device_node);
962 if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
963 err = -ENODEV;
964 goto out;
967 /* test xor */
968 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
969 PAGE_SIZE, DMA_FROM_DEVICE);
970 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
971 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
972 0, PAGE_SIZE, DMA_TO_DEVICE);
973 tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
974 IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
975 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
977 cookie = iop_adma_tx_submit(tx);
978 iop_adma_issue_pending(dma_chan);
979 msleep(8);
981 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
982 DMA_SUCCESS) {
983 dev_printk(KERN_ERR, dma_chan->device->dev,
984 "Self-test xor timed out, disabling\n");
985 err = -ENODEV;
986 goto free_resources;
989 iop_chan = to_iop_adma_chan(dma_chan);
990 dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
991 PAGE_SIZE, DMA_FROM_DEVICE);
992 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
993 u32 *ptr = page_address(dest);
994 if (ptr[i] != cmp_word) {
995 dev_printk(KERN_ERR, dma_chan->device->dev,
996 "Self-test xor failed compare, disabling\n");
997 err = -ENODEV;
998 goto free_resources;
1001 dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
1002 PAGE_SIZE, DMA_TO_DEVICE);
1004 /* skip zero sum if the capability is not present */
1005 if (!dma_has_cap(DMA_ZERO_SUM, dma_chan->device->cap_mask))
1006 goto free_resources;
1008 /* zero sum the sources with the destintation page */
1009 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
1010 zero_sum_srcs[i] = xor_srcs[i];
1011 zero_sum_srcs[i] = dest;
1013 zero_sum_result = 1;
1015 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1016 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1017 zero_sum_srcs[i], 0, PAGE_SIZE,
1018 DMA_TO_DEVICE);
1019 tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs,
1020 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1021 &zero_sum_result,
1022 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1024 cookie = iop_adma_tx_submit(tx);
1025 iop_adma_issue_pending(dma_chan);
1026 msleep(8);
1028 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1029 dev_printk(KERN_ERR, dma_chan->device->dev,
1030 "Self-test zero sum timed out, disabling\n");
1031 err = -ENODEV;
1032 goto free_resources;
1035 if (zero_sum_result != 0) {
1036 dev_printk(KERN_ERR, dma_chan->device->dev,
1037 "Self-test zero sum failed compare, disabling\n");
1038 err = -ENODEV;
1039 goto free_resources;
1042 /* test memset */
1043 dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
1044 PAGE_SIZE, DMA_FROM_DEVICE);
1045 tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1046 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1048 cookie = iop_adma_tx_submit(tx);
1049 iop_adma_issue_pending(dma_chan);
1050 msleep(8);
1052 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1053 dev_printk(KERN_ERR, dma_chan->device->dev,
1054 "Self-test memset timed out, disabling\n");
1055 err = -ENODEV;
1056 goto free_resources;
1059 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1060 u32 *ptr = page_address(dest);
1061 if (ptr[i]) {
1062 dev_printk(KERN_ERR, dma_chan->device->dev,
1063 "Self-test memset failed compare, disabling\n");
1064 err = -ENODEV;
1065 goto free_resources;
1069 /* test for non-zero parity sum */
1070 zero_sum_result = 0;
1071 for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
1072 dma_srcs[i] = dma_map_page(dma_chan->device->dev,
1073 zero_sum_srcs[i], 0, PAGE_SIZE,
1074 DMA_TO_DEVICE);
1075 tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs,
1076 IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
1077 &zero_sum_result,
1078 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080 cookie = iop_adma_tx_submit(tx);
1081 iop_adma_issue_pending(dma_chan);
1082 msleep(8);
1084 if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1085 dev_printk(KERN_ERR, dma_chan->device->dev,
1086 "Self-test non-zero sum timed out, disabling\n");
1087 err = -ENODEV;
1088 goto free_resources;
1091 if (zero_sum_result != 1) {
1092 dev_printk(KERN_ERR, dma_chan->device->dev,
1093 "Self-test non-zero sum failed compare, disabling\n");
1094 err = -ENODEV;
1095 goto free_resources;
1098 free_resources:
1099 iop_adma_free_chan_resources(dma_chan);
1100 out:
1101 src_idx = IOP_ADMA_NUM_SRC_TEST;
1102 while (src_idx--)
1103 __free_page(xor_srcs[src_idx]);
1104 __free_page(dest);
1105 return err;
1108 static int __devexit iop_adma_remove(struct platform_device *dev)
1110 struct iop_adma_device *device = platform_get_drvdata(dev);
1111 struct dma_chan *chan, *_chan;
1112 struct iop_adma_chan *iop_chan;
1113 struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
1115 dma_async_device_unregister(&device->common);
1117 dma_free_coherent(&dev->dev, plat_data->pool_size,
1118 device->dma_desc_pool_virt, device->dma_desc_pool);
1120 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1121 device_node) {
1122 iop_chan = to_iop_adma_chan(chan);
1123 list_del(&chan->device_node);
1124 kfree(iop_chan);
1126 kfree(device);
1128 return 0;
1131 static int __devinit iop_adma_probe(struct platform_device *pdev)
1133 struct resource *res;
1134 int ret = 0, i;
1135 struct iop_adma_device *adev;
1136 struct iop_adma_chan *iop_chan;
1137 struct dma_device *dma_dev;
1138 struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
1140 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1141 if (!res)
1142 return -ENODEV;
1144 if (!devm_request_mem_region(&pdev->dev, res->start,
1145 res->end - res->start, pdev->name))
1146 return -EBUSY;
1148 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
1149 if (!adev)
1150 return -ENOMEM;
1151 dma_dev = &adev->common;
1153 /* allocate coherent memory for hardware descriptors
1154 * note: writecombine gives slightly better performance, but
1155 * requires that we explicitly flush the writes
1157 if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1158 plat_data->pool_size,
1159 &adev->dma_desc_pool,
1160 GFP_KERNEL)) == NULL) {
1161 ret = -ENOMEM;
1162 goto err_free_adev;
1165 dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
1166 __func__, adev->dma_desc_pool_virt,
1167 (void *) adev->dma_desc_pool);
1169 adev->id = plat_data->hw_id;
1171 /* discover transaction capabilites from the platform data */
1172 dma_dev->cap_mask = plat_data->cap_mask;
1174 adev->pdev = pdev;
1175 platform_set_drvdata(pdev, adev);
1177 INIT_LIST_HEAD(&dma_dev->channels);
1179 /* set base routines */
1180 dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
1181 dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
1182 dma_dev->device_is_tx_complete = iop_adma_is_complete;
1183 dma_dev->device_issue_pending = iop_adma_issue_pending;
1184 dma_dev->dev = &pdev->dev;
1186 /* set prep routines based on capability */
1187 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1188 dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
1189 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1190 dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
1191 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1192 dma_dev->max_xor = iop_adma_get_max_xor();
1193 dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
1195 if (dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask))
1196 dma_dev->device_prep_dma_zero_sum =
1197 iop_adma_prep_dma_zero_sum;
1198 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1199 dma_dev->device_prep_dma_interrupt =
1200 iop_adma_prep_dma_interrupt;
1202 iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
1203 if (!iop_chan) {
1204 ret = -ENOMEM;
1205 goto err_free_dma;
1207 iop_chan->device = adev;
1209 iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
1210 res->end - res->start);
1211 if (!iop_chan->mmr_base) {
1212 ret = -ENOMEM;
1213 goto err_free_iop_chan;
1215 tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
1216 iop_chan);
1218 /* clear errors before enabling interrupts */
1219 iop_adma_device_clear_err_status(iop_chan);
1221 for (i = 0; i < 3; i++) {
1222 irq_handler_t handler[] = { iop_adma_eot_handler,
1223 iop_adma_eoc_handler,
1224 iop_adma_err_handler };
1225 int irq = platform_get_irq(pdev, i);
1226 if (irq < 0) {
1227 ret = -ENXIO;
1228 goto err_free_iop_chan;
1229 } else {
1230 ret = devm_request_irq(&pdev->dev, irq,
1231 handler[i], 0, pdev->name, iop_chan);
1232 if (ret)
1233 goto err_free_iop_chan;
1237 spin_lock_init(&iop_chan->lock);
1238 INIT_LIST_HEAD(&iop_chan->chain);
1239 INIT_LIST_HEAD(&iop_chan->all_slots);
1240 iop_chan->common.device = dma_dev;
1241 list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
1243 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1244 ret = iop_adma_memcpy_self_test(adev);
1245 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1246 if (ret)
1247 goto err_free_iop_chan;
1250 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
1251 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
1252 ret = iop_adma_xor_zero_sum_self_test(adev);
1253 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1254 if (ret)
1255 goto err_free_iop_chan;
1258 dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
1259 "( %s%s%s%s%s%s%s%s%s%s)\n",
1260 dma_has_cap(DMA_PQ_XOR, dma_dev->cap_mask) ? "pq_xor " : "",
1261 dma_has_cap(DMA_PQ_UPDATE, dma_dev->cap_mask) ? "pq_update " : "",
1262 dma_has_cap(DMA_PQ_ZERO_SUM, dma_dev->cap_mask) ? "pq_zero_sum " : "",
1263 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1264 dma_has_cap(DMA_DUAL_XOR, dma_dev->cap_mask) ? "dual_xor " : "",
1265 dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask) ? "xor_zero_sum " : "",
1266 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
1267 dma_has_cap(DMA_MEMCPY_CRC32C, dma_dev->cap_mask) ? "cpy+crc " : "",
1268 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1269 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1271 dma_async_device_register(dma_dev);
1272 goto out;
1274 err_free_iop_chan:
1275 kfree(iop_chan);
1276 err_free_dma:
1277 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1278 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1279 err_free_adev:
1280 kfree(adev);
1281 out:
1282 return ret;
1285 static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
1287 struct iop_adma_desc_slot *sw_desc, *grp_start;
1288 dma_cookie_t cookie;
1289 int slot_cnt, slots_per_op;
1291 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1293 spin_lock_bh(&iop_chan->lock);
1294 slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
1295 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1296 if (sw_desc) {
1297 grp_start = sw_desc->group_head;
1299 list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
1300 async_tx_ack(&sw_desc->async_tx);
1301 iop_desc_init_memcpy(grp_start, 0);
1302 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1303 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1304 iop_desc_set_memcpy_src_addr(grp_start, 0);
1306 cookie = iop_chan->common.cookie;
1307 cookie++;
1308 if (cookie <= 1)
1309 cookie = 2;
1311 /* initialize the completed cookie to be less than
1312 * the most recently used cookie
1314 iop_chan->completed_cookie = cookie - 1;
1315 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
1317 /* channel should not be busy */
1318 BUG_ON(iop_chan_is_busy(iop_chan));
1320 /* clear any prior error-status bits */
1321 iop_adma_device_clear_err_status(iop_chan);
1323 /* disable operation */
1324 iop_chan_disable(iop_chan);
1326 /* set the descriptor address */
1327 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1329 /* 1/ don't add pre-chained descriptors
1330 * 2/ dummy read to flush next_desc write
1332 BUG_ON(iop_desc_get_next_desc(sw_desc));
1334 /* run the descriptor */
1335 iop_chan_enable(iop_chan);
1336 } else
1337 dev_printk(KERN_ERR, iop_chan->device->common.dev,
1338 "failed to allocate null descriptor\n");
1339 spin_unlock_bh(&iop_chan->lock);
1342 static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
1344 struct iop_adma_desc_slot *sw_desc, *grp_start;
1345 dma_cookie_t cookie;
1346 int slot_cnt, slots_per_op;
1348 dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
1350 spin_lock_bh(&iop_chan->lock);
1351 slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
1352 sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
1353 if (sw_desc) {
1354 grp_start = sw_desc->group_head;
1355 list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
1356 async_tx_ack(&sw_desc->async_tx);
1357 iop_desc_init_null_xor(grp_start, 2, 0);
1358 iop_desc_set_byte_count(grp_start, iop_chan, 0);
1359 iop_desc_set_dest_addr(grp_start, iop_chan, 0);
1360 iop_desc_set_xor_src_addr(grp_start, 0, 0);
1361 iop_desc_set_xor_src_addr(grp_start, 1, 0);
1363 cookie = iop_chan->common.cookie;
1364 cookie++;
1365 if (cookie <= 1)
1366 cookie = 2;
1368 /* initialize the completed cookie to be less than
1369 * the most recently used cookie
1371 iop_chan->completed_cookie = cookie - 1;
1372 iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
1374 /* channel should not be busy */
1375 BUG_ON(iop_chan_is_busy(iop_chan));
1377 /* clear any prior error-status bits */
1378 iop_adma_device_clear_err_status(iop_chan);
1380 /* disable operation */
1381 iop_chan_disable(iop_chan);
1383 /* set the descriptor address */
1384 iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
1386 /* 1/ don't add pre-chained descriptors
1387 * 2/ dummy read to flush next_desc write
1389 BUG_ON(iop_desc_get_next_desc(sw_desc));
1391 /* run the descriptor */
1392 iop_chan_enable(iop_chan);
1393 } else
1394 dev_printk(KERN_ERR, iop_chan->device->common.dev,
1395 "failed to allocate null descriptor\n");
1396 spin_unlock_bh(&iop_chan->lock);
1399 MODULE_ALIAS("platform:iop-adma");
1401 static struct platform_driver iop_adma_driver = {
1402 .probe = iop_adma_probe,
1403 .remove = __devexit_p(iop_adma_remove),
1404 .driver = {
1405 .owner = THIS_MODULE,
1406 .name = "iop-adma",
1410 static int __init iop_adma_init (void)
1412 return platform_driver_register(&iop_adma_driver);
1415 static void __exit iop_adma_exit (void)
1417 platform_driver_unregister(&iop_adma_driver);
1418 return;
1420 module_exit(iop_adma_exit);
1421 module_init(iop_adma_init);
1423 MODULE_AUTHOR("Intel Corporation");
1424 MODULE_DESCRIPTION("IOP ADMA Engine Driver");
1425 MODULE_LICENSE("GPL");