1 #include "amd64_edac.h"
4 static struct edac_pci_ctl_info
*amd64_ctl_pci
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 /* Lookup table for all possible MC control instances */
18 static struct mem_ctl_info
*mci_lookup
[MAX_NUMNODES
];
19 static struct amd64_pvt
*pvt_lookup
[MAX_NUMNODES
];
22 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23 * for DDR2 DRAM mapping.
25 u32 revf_quad_ddr2_shift
[] = {
26 0, /* 0000b NULL DIMM (128mb) */
45 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
49 *FIXME: Produce a better mapping/linearisation.
52 struct scrubrate scrubrates
[] = {
53 { 0x01, 1600000000UL},
75 { 0x00, 0UL}, /* scrubbing off */
79 * Memory scrubber control interface. For K8, memory scrubbing is handled by
80 * hardware and can involve L2 cache, dcache as well as the main memory. With
81 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
84 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86 * bytes/sec for the setting.
88 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89 * other archs, we might not have access to the caches directly.
93 * scan the scrub rate mapping table for a close or matching bandwidth value to
94 * issue. If requested is too big, then use last maximum value found.
96 static int amd64_search_set_scrub_rate(struct pci_dev
*ctl
, u32 new_bw
,
103 * map the configured rate (new_bw) to a value specific to the AMD64
104 * memory controller and apply to register. Search for the first
105 * bandwidth entry that is greater or equal than the setting requested
106 * and program that. If at last entry, turn off DRAM scrubbing.
108 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
110 * skip scrub rates which aren't recommended
111 * (see F10 BKDG, F3x58)
113 if (scrubrates
[i
].scrubval
< min_scrubrate
)
116 if (scrubrates
[i
].bandwidth
<= new_bw
)
120 * if no suitable bandwidth found, turn off DRAM scrubbing
121 * entirely by falling back to the last element in the
126 scrubval
= scrubrates
[i
].scrubval
;
128 edac_printk(KERN_DEBUG
, EDAC_MC
,
129 "Setting scrub rate bandwidth: %u\n",
130 scrubrates
[i
].bandwidth
);
132 edac_printk(KERN_DEBUG
, EDAC_MC
, "Turning scrubbing off.\n");
134 pci_write_bits32(ctl
, K8_SCRCTRL
, scrubval
, 0x001F);
139 static int amd64_set_scrub_rate(struct mem_ctl_info
*mci
, u32
*bandwidth
)
141 struct amd64_pvt
*pvt
= mci
->pvt_info
;
142 u32 min_scrubrate
= 0x0;
144 switch (boot_cpu_data
.x86
) {
146 min_scrubrate
= K8_MIN_SCRUB_RATE_BITS
;
149 min_scrubrate
= F10_MIN_SCRUB_RATE_BITS
;
152 min_scrubrate
= F11_MIN_SCRUB_RATE_BITS
;
156 amd64_printk(KERN_ERR
, "Unsupported family!\n");
159 return amd64_search_set_scrub_rate(pvt
->misc_f3_ctl
, *bandwidth
,
163 static int amd64_get_scrub_rate(struct mem_ctl_info
*mci
, u32
*bw
)
165 struct amd64_pvt
*pvt
= mci
->pvt_info
;
167 int status
= -1, i
, ret
= 0;
169 ret
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_SCRCTRL
, &scrubval
);
171 debugf0("Reading K8_SCRCTRL failed\n");
173 scrubval
= scrubval
& 0x001F;
175 edac_printk(KERN_DEBUG
, EDAC_MC
,
176 "pci-read, sdram scrub control value: %d \n", scrubval
);
178 for (i
= 0; ARRAY_SIZE(scrubrates
); i
++) {
179 if (scrubrates
[i
].scrubval
== scrubval
) {
180 *bw
= scrubrates
[i
].bandwidth
;
189 /* Map from a CSROW entry to the mask entry that operates on it */
190 static inline u32
amd64_map_to_dcs_mask(struct amd64_pvt
*pvt
, int csrow
)
192 return csrow
>> (pvt
->num_dcsm
>> 3);
195 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
196 static u32
amd64_get_dct_base(struct amd64_pvt
*pvt
, int dct
, int csrow
)
199 return pvt
->dcsb0
[csrow
];
201 return pvt
->dcsb1
[csrow
];
205 * Return the 'mask' address the i'th CS entry. This function is needed because
206 * there number of DCSM registers on Rev E and prior vs Rev F and later is
209 static u32
amd64_get_dct_mask(struct amd64_pvt
*pvt
, int dct
, int csrow
)
212 return pvt
->dcsm0
[amd64_map_to_dcs_mask(pvt
, csrow
)];
214 return pvt
->dcsm1
[amd64_map_to_dcs_mask(pvt
, csrow
)];
219 * In *base and *limit, pass back the full 40-bit base and limit physical
220 * addresses for the node given by node_id. This information is obtained from
221 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
222 * base and limit addresses are of type SysAddr, as defined at the start of
223 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
224 * in the address range they represent.
226 static void amd64_get_base_and_limit(struct amd64_pvt
*pvt
, int node_id
,
227 u64
*base
, u64
*limit
)
229 *base
= pvt
->dram_base
[node_id
];
230 *limit
= pvt
->dram_limit
[node_id
];
234 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
237 static int amd64_base_limit_match(struct amd64_pvt
*pvt
,
238 u64 sys_addr
, int node_id
)
240 u64 base
, limit
, addr
;
242 amd64_get_base_and_limit(pvt
, node_id
, &base
, &limit
);
244 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
245 * all ones if the most significant implemented address bit is 1.
246 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
247 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
248 * Application Programming.
250 addr
= sys_addr
& 0x000000ffffffffffull
;
252 return (addr
>= base
) && (addr
<= limit
);
256 * Attempt to map a SysAddr to a node. On success, return a pointer to the
257 * mem_ctl_info structure for the node that the SysAddr maps to.
259 * On failure, return NULL.
261 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
264 struct amd64_pvt
*pvt
;
269 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
270 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 * The value of this field should be the same for all DRAM Base
276 * registers. Therefore we arbitrarily choose to read it from the
277 * register for node 0.
279 intlv_en
= pvt
->dram_IntlvEn
[0];
282 for (node_id
= 0; ; ) {
283 if (amd64_base_limit_match(pvt
, sys_addr
, node_id
))
286 if (++node_id
>= DRAM_REG_COUNT
)
292 if (unlikely((intlv_en
!= (0x01 << 8)) &&
293 (intlv_en
!= (0x03 << 8)) &&
294 (intlv_en
!= (0x07 << 8)))) {
295 amd64_printk(KERN_WARNING
, "junk value of 0x%x extracted from "
296 "IntlvEn field of DRAM Base Register for node 0: "
297 "This probably indicates a BIOS bug.\n", intlv_en
);
301 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
303 for (node_id
= 0; ; ) {
304 if ((pvt
->dram_limit
[node_id
] & intlv_en
) == bits
)
305 break; /* intlv_sel field matches */
307 if (++node_id
>= DRAM_REG_COUNT
)
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt
, sys_addr
, node_id
))) {
313 amd64_printk(KERN_WARNING
,
314 "%s(): sys_addr 0x%lx falls outside base/limit "
315 "address range for node %d with node interleaving "
316 "enabled.\n", __func__
, (unsigned long)sys_addr
,
322 return edac_mc_find(node_id
);
325 debugf2("sys_addr 0x%lx doesn't match any node\n",
326 (unsigned long)sys_addr
);
332 * Extract the DRAM CS base address from selected csrow register.
334 static u64
base_from_dct_base(struct amd64_pvt
*pvt
, int csrow
)
336 return ((u64
) (amd64_get_dct_base(pvt
, 0, csrow
) & pvt
->dcsb_base
)) <<
341 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
343 static u64
mask_from_dct_mask(struct amd64_pvt
*pvt
, int csrow
)
345 u64 dcsm_bits
, other_bits
;
348 /* Extract bits from DRAM CS Mask. */
349 dcsm_bits
= amd64_get_dct_mask(pvt
, 0, csrow
) & pvt
->dcsm_mask
;
351 other_bits
= pvt
->dcsm_mask
;
352 other_bits
= ~(other_bits
<< pvt
->dcs_shift
);
355 * The extracted bits from DCSM belong in the spaces represented by
356 * the cleared bits in other_bits.
358 mask
= (dcsm_bits
<< pvt
->dcs_shift
) | other_bits
;
364 * @input_addr is an InputAddr associated with the node given by mci. Return the
365 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
367 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
369 struct amd64_pvt
*pvt
;
376 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
377 * base/mask register pair, test the condition shown near the start of
378 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
380 for (csrow
= 0; csrow
< CHIPSELECT_COUNT
; csrow
++) {
382 /* This DRAM chip select is disabled on this node */
383 if ((pvt
->dcsb0
[csrow
] & K8_DCSB_CS_ENABLE
) == 0)
386 base
= base_from_dct_base(pvt
, csrow
);
387 mask
= ~mask_from_dct_mask(pvt
, csrow
);
389 if ((input_addr
& mask
) == (base
& mask
)) {
390 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
391 (unsigned long)input_addr
, csrow
,
398 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
399 (unsigned long)input_addr
, pvt
->mc_node_id
);
405 * Return the base value defined by the DRAM Base register for the node
406 * represented by mci. This function returns the full 40-bit value despite the
407 * fact that the register only stores bits 39-24 of the value. See section
408 * 3.4.4.1 (BKDG #26094, K8, revA-E)
410 static inline u64
get_dram_base(struct mem_ctl_info
*mci
)
412 struct amd64_pvt
*pvt
= mci
->pvt_info
;
414 return pvt
->dram_base
[pvt
->mc_node_id
];
418 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
419 * for the node represented by mci. Info is passed back in *hole_base,
420 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
421 * info is invalid. Info may be invalid for either of the following reasons:
423 * - The revision of the node is not E or greater. In this case, the DRAM Hole
424 * Address Register does not exist.
426 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
427 * indicating that its contents are not valid.
429 * The values passed back in *hole_base, *hole_offset, and *hole_size are
430 * complete 32-bit values despite the fact that the bitfields in the DHAR
431 * only represent bits 31-24 of the base and offset values.
433 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
434 u64
*hole_offset
, u64
*hole_size
)
436 struct amd64_pvt
*pvt
= mci
->pvt_info
;
439 /* only revE and later have the DRAM Hole Address Register */
440 if (boot_cpu_data
.x86
== 0xf && pvt
->ext_model
< OPTERON_CPU_REV_E
) {
441 debugf1(" revision %d for node %d does not support DHAR\n",
442 pvt
->ext_model
, pvt
->mc_node_id
);
446 /* only valid for Fam10h */
447 if (boot_cpu_data
.x86
== 0x10 &&
448 (pvt
->dhar
& F10_DRAM_MEM_HOIST_VALID
) == 0) {
449 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
453 if ((pvt
->dhar
& DHAR_VALID
) == 0) {
454 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
459 /* This node has Memory Hoisting */
461 /* +------------------+--------------------+--------------------+-----
462 * | memory | DRAM hole | relocated |
463 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
465 * | | | [0x100000000, |
466 * | | | (0x100000000+ |
467 * | | | (0xffffffff-x))] |
468 * +------------------+--------------------+--------------------+-----
470 * Above is a diagram of physical memory showing the DRAM hole and the
471 * relocated addresses from the DRAM hole. As shown, the DRAM hole
472 * starts at address x (the base address) and extends through address
473 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
474 * addresses in the hole so that they start at 0x100000000.
477 base
= dhar_base(pvt
->dhar
);
480 *hole_size
= (0x1ull
<< 32) - base
;
482 if (boot_cpu_data
.x86
> 0xf)
483 *hole_offset
= f10_dhar_offset(pvt
->dhar
);
485 *hole_offset
= k8_dhar_offset(pvt
->dhar
);
487 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
488 pvt
->mc_node_id
, (unsigned long)*hole_base
,
489 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
493 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
496 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
497 * assumed that sys_addr maps to the node given by mci.
499 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
500 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
501 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
502 * then it is also involved in translating a SysAddr to a DramAddr. Sections
503 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
504 * These parts of the documentation are unclear. I interpret them as follows:
506 * When node n receives a SysAddr, it processes the SysAddr as follows:
508 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
509 * Limit registers for node n. If the SysAddr is not within the range
510 * specified by the base and limit values, then node n ignores the Sysaddr
511 * (since it does not map to node n). Otherwise continue to step 2 below.
513 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
514 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
515 * the range of relocated addresses (starting at 0x100000000) from the DRAM
516 * hole. If not, skip to step 3 below. Else get the value of the
517 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
518 * offset defined by this value from the SysAddr.
520 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
521 * Base register for node n. To obtain the DramAddr, subtract the base
522 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
524 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
526 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
529 dram_base
= get_dram_base(mci
);
531 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
534 if ((sys_addr
>= (1ull << 32)) &&
535 (sys_addr
< ((1ull << 32) + hole_size
))) {
536 /* use DHAR to translate SysAddr to DramAddr */
537 dram_addr
= sys_addr
- hole_offset
;
539 debugf2("using DHAR to translate SysAddr 0x%lx to "
541 (unsigned long)sys_addr
,
542 (unsigned long)dram_addr
);
549 * Translate the SysAddr to a DramAddr as shown near the start of
550 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
551 * only deals with 40-bit values. Therefore we discard bits 63-40 of
552 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
553 * discard are all 1s. Otherwise the bits we discard are all 0s. See
554 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
555 * Programmer's Manual Volume 1 Application Programming.
557 dram_addr
= (sys_addr
& 0xffffffffffull
) - dram_base
;
559 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n", (unsigned long)sys_addr
,
561 (unsigned long)dram_addr
);
566 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
567 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
568 * for node interleaving.
570 static int num_node_interleave_bits(unsigned intlv_en
)
572 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 BUG_ON(intlv_en
> 7);
576 n
= intlv_shift_table
[intlv_en
];
580 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
581 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
583 struct amd64_pvt
*pvt
;
590 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
591 * concerning translating a DramAddr to an InputAddr.
593 intlv_shift
= num_node_interleave_bits(pvt
->dram_IntlvEn
[0]);
594 input_addr
= ((dram_addr
>> intlv_shift
) & 0xffffff000ull
) +
597 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
598 intlv_shift
, (unsigned long)dram_addr
,
599 (unsigned long)input_addr
);
605 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
606 * assumed that @sys_addr maps to the node given by mci.
608 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
613 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
615 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
616 (unsigned long)sys_addr
, (unsigned long)input_addr
);
623 * @input_addr is an InputAddr associated with the node represented by mci.
624 * Translate @input_addr to a DramAddr and return the result.
626 static u64
input_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 input_addr
)
628 struct amd64_pvt
*pvt
;
629 int node_id
, intlv_shift
;
634 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
635 * shows how to translate a DramAddr to an InputAddr. Here we reverse
636 * this procedure. When translating from a DramAddr to an InputAddr, the
637 * bits used for node interleaving are discarded. Here we recover these
638 * bits from the IntlvSel field of the DRAM Limit register (section
639 * 3.4.4.2) for the node that input_addr is associated with.
642 node_id
= pvt
->mc_node_id
;
643 BUG_ON((node_id
< 0) || (node_id
> 7));
645 intlv_shift
= num_node_interleave_bits(pvt
->dram_IntlvEn
[0]);
647 if (intlv_shift
== 0) {
648 debugf1(" InputAddr 0x%lx translates to DramAddr of "
649 "same value\n", (unsigned long)input_addr
);
654 bits
= ((input_addr
& 0xffffff000ull
) << intlv_shift
) +
655 (input_addr
& 0xfff);
657 intlv_sel
= pvt
->dram_IntlvSel
[node_id
] & ((1 << intlv_shift
) - 1);
658 dram_addr
= bits
+ (intlv_sel
<< 12);
660 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
661 "(%d node interleave bits)\n", (unsigned long)input_addr
,
662 (unsigned long)dram_addr
, intlv_shift
);
668 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
669 * @dram_addr to a SysAddr.
671 static u64
dram_addr_to_sys_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
673 struct amd64_pvt
*pvt
= mci
->pvt_info
;
674 u64 hole_base
, hole_offset
, hole_size
, base
, limit
, sys_addr
;
677 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
680 if ((dram_addr
>= hole_base
) &&
681 (dram_addr
< (hole_base
+ hole_size
))) {
682 sys_addr
= dram_addr
+ hole_offset
;
684 debugf1("using DHAR to translate DramAddr 0x%lx to "
685 "SysAddr 0x%lx\n", (unsigned long)dram_addr
,
686 (unsigned long)sys_addr
);
692 amd64_get_base_and_limit(pvt
, pvt
->mc_node_id
, &base
, &limit
);
693 sys_addr
= dram_addr
+ base
;
696 * The sys_addr we have computed up to this point is a 40-bit value
697 * because the k8 deals with 40-bit values. However, the value we are
698 * supposed to return is a full 64-bit physical address. The AMD
699 * x86-64 architecture specifies that the most significant implemented
700 * address bit through bit 63 of a physical address must be either all
701 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
702 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
703 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 sys_addr
|= ~((sys_addr
& (1ull << 39)) - 1);
708 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
709 pvt
->mc_node_id
, (unsigned long)dram_addr
,
710 (unsigned long)sys_addr
);
716 * @input_addr is an InputAddr associated with the node given by mci. Translate
717 * @input_addr to a SysAddr.
719 static inline u64
input_addr_to_sys_addr(struct mem_ctl_info
*mci
,
722 return dram_addr_to_sys_addr(mci
,
723 input_addr_to_dram_addr(mci
, input_addr
));
727 * Find the minimum and maximum InputAddr values that map to the given @csrow.
728 * Pass back these values in *input_addr_min and *input_addr_max.
730 static void find_csrow_limits(struct mem_ctl_info
*mci
, int csrow
,
731 u64
*input_addr_min
, u64
*input_addr_max
)
733 struct amd64_pvt
*pvt
;
737 BUG_ON((csrow
< 0) || (csrow
>= CHIPSELECT_COUNT
));
739 base
= base_from_dct_base(pvt
, csrow
);
740 mask
= mask_from_dct_mask(pvt
, csrow
);
742 *input_addr_min
= base
& ~mask
;
743 *input_addr_max
= base
| mask
| pvt
->dcs_mask_notused
;
747 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
748 * Address High (section 3.6.4.6) register values and return the result. Address
749 * is located in the info structure (nbeah and nbeal), the encoding is device
752 static u64
extract_error_address(struct mem_ctl_info
*mci
,
753 struct err_regs
*info
)
755 struct amd64_pvt
*pvt
= mci
->pvt_info
;
757 return pvt
->ops
->get_error_address(mci
, info
);
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address
,
763 u32
*page
, u32
*offset
)
765 *page
= (u32
) (error_address
>> PAGE_SHIFT
);
766 *offset
= ((u32
) error_address
) & ~PAGE_MASK
;
770 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772 * of a node that detected an ECC memory error. mci represents the node that
773 * the error address maps to (possibly different from the node that detected
774 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
777 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
781 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
784 amd64_mc_printk(mci
, KERN_ERR
,
785 "Failed to translate InputAddr to csrow for "
786 "address 0x%lx\n", (unsigned long)sys_addr
);
790 static int get_channel_from_ecc_syndrome(unsigned short syndrome
);
792 static void amd64_cpu_display_info(struct amd64_pvt
*pvt
)
794 if (boot_cpu_data
.x86
== 0x11)
795 edac_printk(KERN_DEBUG
, EDAC_MC
, "F11h CPU detected\n");
796 else if (boot_cpu_data
.x86
== 0x10)
797 edac_printk(KERN_DEBUG
, EDAC_MC
, "F10h CPU detected\n");
798 else if (boot_cpu_data
.x86
== 0xf)
799 edac_printk(KERN_DEBUG
, EDAC_MC
, "%s detected\n",
800 (pvt
->ext_model
>= OPTERON_CPU_REV_F
) ?
801 "Rev F or later" : "Rev E or earlier");
803 /* we'll hardly ever ever get here */
804 edac_printk(KERN_ERR
, EDAC_MC
, "Unknown cpu!\n");
808 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
811 static enum edac_type
amd64_determine_edac_cap(struct amd64_pvt
*pvt
)
814 enum dev_type edac_cap
= EDAC_FLAG_NONE
;
816 bit
= (boot_cpu_data
.x86
> 0xf || pvt
->ext_model
>= OPTERON_CPU_REV_F
)
820 if (pvt
->dclr0
& BIT(bit
))
821 edac_cap
= EDAC_FLAG_SECDED
;
827 static void f10_debug_display_dimm_sizes(int ctrl
, struct amd64_pvt
*pvt
,
830 /* Display and decode various NB registers for debug purposes. */
831 static void amd64_dump_misc_regs(struct amd64_pvt
*pvt
)
835 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
837 (pvt
->nbcap
& K8_NBCAP_DCT_DUAL
) ? "True" : "False",
838 (pvt
->nbcap
& K8_NBCAP_DUAL_NODE
) ? "True" : "False",
839 (pvt
->nbcap
& K8_NBCAP_8_NODE
) ? "True" : "False");
840 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
841 (pvt
->nbcap
& K8_NBCAP_SECDED
) ? "True" : "False",
842 (pvt
->nbcap
& K8_NBCAP_CHIPKILL
) ? "True" : "False");
843 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
845 (pvt
->dclr0
& BIT(19)) ? "Enabled" : "Disabled",
846 (pvt
->dclr0
& BIT(8)) ? "Enabled" : "Disabled",
847 (pvt
->dclr0
& BIT(11)) ? "128b" : "64b");
848 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
849 (pvt
->dclr0
& BIT(12)) ? "Y" : "N",
850 (pvt
->dclr0
& BIT(13)) ? "Y" : "N",
851 (pvt
->dclr0
& BIT(14)) ? "Y" : "N",
852 (pvt
->dclr0
& BIT(15)) ? "Y" : "N",
853 (pvt
->dclr0
& BIT(16)) ? "UN-Buffered" : "Buffered");
856 debugf1(" online-spare: 0x%8.08x\n", pvt
->online_spare
);
858 if (boot_cpu_data
.x86
== 0xf) {
859 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
860 pvt
->dhar
, dhar_base(pvt
->dhar
),
861 k8_dhar_offset(pvt
->dhar
));
862 debugf1(" DramHoleValid=%s\n",
863 (pvt
->dhar
& DHAR_VALID
) ? "True" : "False");
865 debugf1(" dbam-dkt: 0x%8.08x\n", pvt
->dbam0
);
867 /* everything below this point is Fam10h and above */
871 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
872 pvt
->dhar
, dhar_base(pvt
->dhar
),
873 f10_dhar_offset(pvt
->dhar
));
874 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
875 (pvt
->dhar
& F10_DRAM_MEM_HOIST_VALID
) ?
877 (pvt
->dhar
& DHAR_VALID
) ?
881 /* Only if NOT ganged does dcl1 have valid info */
882 if (!dct_ganging_enabled(pvt
)) {
883 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
884 "Width=%s\n", pvt
->dclr1
,
885 (pvt
->dclr1
& BIT(19)) ? "Enabled" : "Disabled",
886 (pvt
->dclr1
& BIT(8)) ? "Enabled" : "Disabled",
887 (pvt
->dclr1
& BIT(11)) ? "128b" : "64b");
888 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
890 (pvt
->dclr1
& BIT(12)) ? "Y" : "N",
891 (pvt
->dclr1
& BIT(13)) ? "Y" : "N",
892 (pvt
->dclr1
& BIT(14)) ? "Y" : "N",
893 (pvt
->dclr1
& BIT(15)) ? "Y" : "N",
894 (pvt
->dclr1
& BIT(16)) ? "UN-Buffered" : "Buffered");
898 * Determine if ganged and then dump memory sizes for first controller,
899 * and if NOT ganged dump info for 2nd controller.
901 ganged
= dct_ganging_enabled(pvt
);
903 f10_debug_display_dimm_sizes(0, pvt
, ganged
);
906 f10_debug_display_dimm_sizes(1, pvt
, ganged
);
909 /* Read in both of DBAM registers */
910 static void amd64_read_dbam_reg(struct amd64_pvt
*pvt
)
916 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
, &pvt
->dbam0
);
920 if (boot_cpu_data
.x86
>= 0x10) {
922 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
, &pvt
->dbam1
);
931 debugf0("Error reading F2x%03x.\n", reg
);
935 * NOTE: CPU Revision Dependent code: Rev E and Rev F
937 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
938 * set the shift factor for the DCSB and DCSM values.
940 * ->dcs_mask_notused, RevE:
942 * To find the max InputAddr for the csrow, start with the base address and set
943 * all bits that are "don't care" bits in the test at the start of section
946 * The "don't care" bits are all set bits in the mask and all bits in the gaps
947 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
948 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
951 * ->dcs_mask_notused, RevF and later:
953 * To find the max InputAddr for the csrow, start with the base address and set
954 * all bits that are "don't care" bits in the test at the start of NPT section
957 * The "don't care" bits are all set bits in the mask and all bits in the gaps
958 * between bit ranges [36:27] and [21:13].
960 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
961 * which are all bits in the above-mentioned gaps.
963 static void amd64_set_dct_base_and_mask(struct amd64_pvt
*pvt
)
965 if (pvt
->ext_model
>= OPTERON_CPU_REV_F
) {
966 pvt
->dcsb_base
= REV_F_F1Xh_DCSB_BASE_BITS
;
967 pvt
->dcsm_mask
= REV_F_F1Xh_DCSM_MASK_BITS
;
968 pvt
->dcs_mask_notused
= REV_F_F1Xh_DCS_NOTUSED_BITS
;
969 pvt
->dcs_shift
= REV_F_F1Xh_DCS_SHIFT
;
971 switch (boot_cpu_data
.x86
) {
973 pvt
->num_dcsm
= REV_F_DCSM_COUNT
;
977 pvt
->num_dcsm
= F10_DCSM_COUNT
;
981 pvt
->num_dcsm
= F11_DCSM_COUNT
;
985 amd64_printk(KERN_ERR
, "Unsupported family!\n");
989 pvt
->dcsb_base
= REV_E_DCSB_BASE_BITS
;
990 pvt
->dcsm_mask
= REV_E_DCSM_MASK_BITS
;
991 pvt
->dcs_mask_notused
= REV_E_DCS_NOTUSED_BITS
;
992 pvt
->dcs_shift
= REV_E_DCS_SHIFT
;
993 pvt
->num_dcsm
= REV_E_DCSM_COUNT
;
998 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
1000 static void amd64_read_dct_base_mask(struct amd64_pvt
*pvt
)
1002 int cs
, reg
, err
= 0;
1004 amd64_set_dct_base_and_mask(pvt
);
1006 for (cs
= 0; cs
< CHIPSELECT_COUNT
; cs
++) {
1007 reg
= K8_DCSB0
+ (cs
* 4);
1008 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
,
1011 debugf0("Reading K8_DCSB0[%d] failed\n", cs
);
1013 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
1014 cs
, pvt
->dcsb0
[cs
], reg
);
1016 /* If DCT are NOT ganged, then read in DCT1's base */
1017 if (boot_cpu_data
.x86
>= 0x10 && !dct_ganging_enabled(pvt
)) {
1018 reg
= F10_DCSB1
+ (cs
* 4);
1019 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
,
1022 debugf0("Reading F10_DCSB1[%d] failed\n", cs
);
1024 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1025 cs
, pvt
->dcsb1
[cs
], reg
);
1031 for (cs
= 0; cs
< pvt
->num_dcsm
; cs
++) {
1032 reg
= K8_DCSM0
+ (cs
* 4);
1033 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
,
1036 debugf0("Reading K8_DCSM0 failed\n");
1038 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1039 cs
, pvt
->dcsm0
[cs
], reg
);
1041 /* If DCT are NOT ganged, then read in DCT1's mask */
1042 if (boot_cpu_data
.x86
>= 0x10 && !dct_ganging_enabled(pvt
)) {
1043 reg
= F10_DCSM1
+ (cs
* 4);
1044 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, reg
,
1047 debugf0("Reading F10_DCSM1[%d] failed\n", cs
);
1049 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1050 cs
, pvt
->dcsm1
[cs
], reg
);
1056 static enum mem_type
amd64_determine_memory_type(struct amd64_pvt
*pvt
)
1060 if (boot_cpu_data
.x86
>= 0x10 || pvt
->ext_model
>= OPTERON_CPU_REV_F
) {
1061 /* Rev F and later */
1062 type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
1064 /* Rev E and earlier */
1065 type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
1068 debugf1(" Memory type is: %s\n",
1069 (type
== MEM_DDR2
) ? "MEM_DDR2" :
1070 (type
== MEM_RDDR2
) ? "MEM_RDDR2" :
1071 (type
== MEM_DDR
) ? "MEM_DDR" : "MEM_RDDR");
1077 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1078 * and the later RevF memory controllers (DDR vs DDR2)
1081 * number of memory channels in operation
1083 * contents of the DCL0_LOW register
1085 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
1089 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCLR_0
, &pvt
->dclr0
);
1093 if ((boot_cpu_data
.x86_model
>> 4) >= OPTERON_CPU_REV_F
) {
1094 /* RevF (NPT) and later */
1095 flag
= pvt
->dclr0
& F10_WIDTH_128
;
1097 /* RevE and earlier */
1098 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
1104 return (flag
) ? 2 : 1;
1107 /* extract the ERROR ADDRESS for the K8 CPUs */
1108 static u64
k8_get_error_address(struct mem_ctl_info
*mci
,
1109 struct err_regs
*info
)
1111 return (((u64
) (info
->nbeah
& 0xff)) << 32) +
1112 (info
->nbeal
& ~0x03);
1116 * Read the Base and Limit registers for K8 based Memory controllers; extract
1117 * fields from the 'raw' reg into separate data fields
1119 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1121 static void k8_read_dram_base_limit(struct amd64_pvt
*pvt
, int dram
)
1124 u32 off
= dram
<< 3; /* 8 bytes between DRAM entries */
1127 err
= pci_read_config_dword(pvt
->addr_f1_ctl
,
1128 K8_DRAM_BASE_LOW
+ off
, &low
);
1130 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1132 /* Extract parts into separate data entries */
1133 pvt
->dram_base
[dram
] = ((u64
) low
& 0xFFFF0000) << 8;
1134 pvt
->dram_IntlvEn
[dram
] = (low
>> 8) & 0x7;
1135 pvt
->dram_rw_en
[dram
] = (low
& 0x3);
1137 err
= pci_read_config_dword(pvt
->addr_f1_ctl
,
1138 K8_DRAM_LIMIT_LOW
+ off
, &low
);
1140 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1143 * Extract parts into separate data entries. Limit is the HIGHEST memory
1144 * location of the region, so lower 24 bits need to be all ones
1146 pvt
->dram_limit
[dram
] = (((u64
) low
& 0xFFFF0000) << 8) | 0x00FFFFFF;
1147 pvt
->dram_IntlvSel
[dram
] = (low
>> 8) & 0x7;
1148 pvt
->dram_DstNode
[dram
] = (low
& 0x7);
1151 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
,
1152 struct err_regs
*info
,
1155 struct mem_ctl_info
*src_mci
;
1156 unsigned short syndrome
;
1160 /* Extract the syndrome parts and form a 16-bit syndrome */
1161 syndrome
= HIGH_SYNDROME(info
->nbsl
) << 8;
1162 syndrome
|= LOW_SYNDROME(info
->nbsh
);
1164 /* CHIPKILL enabled */
1165 if (info
->nbcfg
& K8_NBCFG_CHIPKILL
) {
1166 channel
= get_channel_from_ecc_syndrome(syndrome
);
1169 * Syndrome didn't map, so we don't know which of the
1170 * 2 DIMMs is in error. So we need to ID 'both' of them
1173 amd64_mc_printk(mci
, KERN_WARNING
,
1174 "unknown syndrome 0x%x - possible error "
1175 "reporting race\n", syndrome
);
1176 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1181 * non-chipkill ecc mode
1183 * The k8 documentation is unclear about how to determine the
1184 * channel number when using non-chipkill memory. This method
1185 * was obtained from email communication with someone at AMD.
1186 * (Wish the email was placed in this comment - norsk)
1188 channel
= ((SystemAddress
& BIT(3)) != 0);
1192 * Find out which node the error address belongs to. This may be
1193 * different from the node that detected the error.
1195 src_mci
= find_mc_by_sys_addr(mci
, SystemAddress
);
1197 amd64_mc_printk(mci
, KERN_ERR
,
1198 "failed to map error address 0x%lx to a node\n",
1199 (unsigned long)SystemAddress
);
1200 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1204 /* Now map the SystemAddress to a CSROW */
1205 csrow
= sys_addr_to_csrow(src_mci
, SystemAddress
);
1207 edac_mc_handle_ce_no_info(src_mci
, EDAC_MOD_STR
);
1209 error_address_to_page_and_offset(SystemAddress
, &page
, &offset
);
1211 edac_mc_handle_ce(src_mci
, page
, offset
, syndrome
, csrow
,
1212 channel
, EDAC_MOD_STR
);
1217 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1220 * First step is to calc the number of bits to shift a value of 1 left to
1221 * indicate show many pages. Start with the DBAM value as the starting bits,
1222 * then proceed to adjust those shift bits, based on CPU rev and the table.
1223 * See BKDG on the DBAM
1225 static int k8_dbam_map_to_pages(struct amd64_pvt
*pvt
, int dram_map
)
1229 if (pvt
->ext_model
>= OPTERON_CPU_REV_F
) {
1230 nr_pages
= 1 << (revf_quad_ddr2_shift
[dram_map
] - PAGE_SHIFT
);
1233 * RevE and less section; this line is tricky. It collapses the
1234 * table used by RevD and later to one that matches revisions CG
1237 dram_map
-= (pvt
->ext_model
>= OPTERON_CPU_REV_D
) ?
1238 (dram_map
> 8 ? 4 : (dram_map
> 5 ?
1239 3 : (dram_map
> 2 ? 1 : 0))) : 0;
1241 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1242 nr_pages
= 1 << (dram_map
+ 25 - PAGE_SHIFT
);
1249 * Get the number of DCT channels in use.
1252 * number of Memory Channels in operation
1254 * contents of the DCL0_LOW register
1256 static int f10_early_channel_count(struct amd64_pvt
*pvt
)
1258 int err
= 0, channels
= 0;
1261 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCLR_0
, &pvt
->dclr0
);
1265 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCLR_1
, &pvt
->dclr1
);
1269 /* If we are in 128 bit mode, then we are using 2 channels */
1270 if (pvt
->dclr0
& F10_WIDTH_128
) {
1271 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1277 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1278 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1281 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1282 * their CSEnable bit on. If so, then SINGLE DIMM case.
1284 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1287 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1288 * is more than just one DIMM present in unganged mode. Need to check
1289 * both controllers since DIMMs can be placed in either one.
1292 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, DBAM0
, &dbam
);
1296 if (DBAM_DIMM(0, dbam
) > 0)
1298 if (DBAM_DIMM(1, dbam
) > 0)
1300 if (DBAM_DIMM(2, dbam
) > 0)
1302 if (DBAM_DIMM(3, dbam
) > 0)
1305 /* If more than 2 DIMMs are present, then we have 2 channels */
1308 else if (channels
== 0) {
1309 /* No DIMMs on DCT0, so look at DCT1 */
1310 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, DBAM1
, &dbam
);
1314 if (DBAM_DIMM(0, dbam
) > 0)
1316 if (DBAM_DIMM(1, dbam
) > 0)
1318 if (DBAM_DIMM(2, dbam
) > 0)
1320 if (DBAM_DIMM(3, dbam
) > 0)
1327 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1331 debugf0("MCT channel count: %d\n", channels
);
1340 static int f10_dbam_map_to_pages(struct amd64_pvt
*pvt
, int dram_map
)
1342 return 1 << (revf_quad_ddr2_shift
[dram_map
] - PAGE_SHIFT
);
1345 /* Enable extended configuration access via 0xCF8 feature */
1346 static void amd64_setup(struct amd64_pvt
*pvt
)
1350 pci_read_config_dword(pvt
->misc_f3_ctl
, F10_NB_CFG_HIGH
, ®
);
1352 pvt
->flags
.cf8_extcfg
= !!(reg
& F10_NB_CFG_LOW_ENABLE_EXT_CFG
);
1353 reg
|= F10_NB_CFG_LOW_ENABLE_EXT_CFG
;
1354 pci_write_config_dword(pvt
->misc_f3_ctl
, F10_NB_CFG_HIGH
, reg
);
1357 /* Restore the extended configuration access via 0xCF8 feature */
1358 static void amd64_teardown(struct amd64_pvt
*pvt
)
1362 pci_read_config_dword(pvt
->misc_f3_ctl
, F10_NB_CFG_HIGH
, ®
);
1364 reg
&= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG
;
1365 if (pvt
->flags
.cf8_extcfg
)
1366 reg
|= F10_NB_CFG_LOW_ENABLE_EXT_CFG
;
1367 pci_write_config_dword(pvt
->misc_f3_ctl
, F10_NB_CFG_HIGH
, reg
);
1370 static u64
f10_get_error_address(struct mem_ctl_info
*mci
,
1371 struct err_regs
*info
)
1373 return (((u64
) (info
->nbeah
& 0xffff)) << 32) +
1374 (info
->nbeal
& ~0x01);
1378 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1379 * fields from the 'raw' reg into separate data fields.
1381 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1383 static void f10_read_dram_base_limit(struct amd64_pvt
*pvt
, int dram
)
1385 u32 high_offset
, low_offset
, high_base
, low_base
, high_limit
, low_limit
;
1387 low_offset
= K8_DRAM_BASE_LOW
+ (dram
<< 3);
1388 high_offset
= F10_DRAM_BASE_HIGH
+ (dram
<< 3);
1390 /* read the 'raw' DRAM BASE Address register */
1391 pci_read_config_dword(pvt
->addr_f1_ctl
, low_offset
, &low_base
);
1393 /* Read from the ECS data register */
1394 pci_read_config_dword(pvt
->addr_f1_ctl
, high_offset
, &high_base
);
1396 /* Extract parts into separate data entries */
1397 pvt
->dram_rw_en
[dram
] = (low_base
& 0x3);
1399 if (pvt
->dram_rw_en
[dram
] == 0)
1402 pvt
->dram_IntlvEn
[dram
] = (low_base
>> 8) & 0x7;
1404 pvt
->dram_base
[dram
] = (((((u64
) high_base
& 0x000000FF) << 32) |
1405 ((u64
) low_base
& 0xFFFF0000))) << 8;
1407 low_offset
= K8_DRAM_LIMIT_LOW
+ (dram
<< 3);
1408 high_offset
= F10_DRAM_LIMIT_HIGH
+ (dram
<< 3);
1410 /* read the 'raw' LIMIT registers */
1411 pci_read_config_dword(pvt
->addr_f1_ctl
, low_offset
, &low_limit
);
1413 /* Read from the ECS data register for the HIGH portion */
1414 pci_read_config_dword(pvt
->addr_f1_ctl
, high_offset
, &high_limit
);
1416 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1417 high_base
, low_base
, high_limit
, low_limit
);
1419 pvt
->dram_DstNode
[dram
] = (low_limit
& 0x7);
1420 pvt
->dram_IntlvSel
[dram
] = (low_limit
>> 8) & 0x7;
1423 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1424 * memory location of the region, so low 24 bits need to be all ones.
1426 low_limit
|= 0x0000FFFF;
1427 pvt
->dram_limit
[dram
] =
1428 ((((u64
) high_limit
<< 32) + (u64
) low_limit
) << 8) | (0xFF);
1431 static void f10_read_dram_ctl_register(struct amd64_pvt
*pvt
)
1435 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCTL_SEL_LOW
,
1436 &pvt
->dram_ctl_select_low
);
1438 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1440 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1441 pvt
->dram_ctl_select_low
, dct_sel_baseaddr(pvt
));
1443 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1444 "sel-hi-range=%s\n",
1445 (dct_ganging_enabled(pvt
) ? "GANGED" : "NOT GANGED"),
1446 (dct_dram_enabled(pvt
) ? "Enabled" : "Disabled"),
1447 (dct_high_range_enabled(pvt
) ? "Enabled" : "Disabled"));
1449 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1450 (dct_data_intlv_enabled(pvt
) ? "Enabled" : "Disabled"),
1451 (dct_memory_cleared(pvt
) ? "True " : "False "),
1452 dct_sel_interleave_addr(pvt
));
1455 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCTL_SEL_HIGH
,
1456 &pvt
->dram_ctl_select_high
);
1458 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1462 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1463 * Interleaving Modes.
1465 static u32
f10_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1466 int hi_range_sel
, u32 intlv_en
)
1468 u32 cs
, temp
, dct_sel_high
= (pvt
->dram_ctl_select_low
>> 1) & 1;
1470 if (dct_ganging_enabled(pvt
))
1472 else if (hi_range_sel
)
1474 else if (dct_interleave_enabled(pvt
)) {
1476 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1478 if (dct_sel_interleave_addr(pvt
) == 0)
1479 cs
= sys_addr
>> 6 & 1;
1480 else if ((dct_sel_interleave_addr(pvt
) >> 1) & 1) {
1481 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) % 2;
1483 if (dct_sel_interleave_addr(pvt
) & 1)
1484 cs
= (sys_addr
>> 9 & 1) ^ temp
;
1486 cs
= (sys_addr
>> 6 & 1) ^ temp
;
1487 } else if (intlv_en
& 4)
1488 cs
= sys_addr
>> 15 & 1;
1489 else if (intlv_en
& 2)
1490 cs
= sys_addr
>> 14 & 1;
1491 else if (intlv_en
& 1)
1492 cs
= sys_addr
>> 13 & 1;
1494 cs
= sys_addr
>> 12 & 1;
1495 } else if (dct_high_range_enabled(pvt
) && !dct_ganging_enabled(pvt
))
1496 cs
= ~dct_sel_high
& 1;
1503 static inline u32
f10_map_intlv_en_to_shift(u32 intlv_en
)
1507 else if (intlv_en
== 3)
1509 else if (intlv_en
== 7)
1515 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1516 static inline u64
f10_get_base_addr_offset(u64 sys_addr
, int hi_range_sel
,
1517 u32 dct_sel_base_addr
,
1518 u64 dct_sel_base_off
,
1519 u32 hole_valid
, u32 hole_off
,
1525 if (!(dct_sel_base_addr
& 0xFFFFF800) &&
1526 hole_valid
&& (sys_addr
>= 0x100000000ULL
))
1527 chan_off
= hole_off
<< 16;
1529 chan_off
= dct_sel_base_off
;
1531 if (hole_valid
&& (sys_addr
>= 0x100000000ULL
))
1532 chan_off
= hole_off
<< 16;
1534 chan_off
= dram_base
& 0xFFFFF8000000ULL
;
1537 return (sys_addr
& 0x0000FFFFFFFFFFC0ULL
) -
1538 (chan_off
& 0x0000FFFFFF800000ULL
);
1541 /* Hack for the time being - Can we get this from BIOS?? */
1542 #define CH0SPARE_RANK 0
1543 #define CH1SPARE_RANK 1
1546 * checks if the csrow passed in is marked as SPARED, if so returns the new
1549 static inline int f10_process_possible_spare(int csrow
,
1550 u32 cs
, struct amd64_pvt
*pvt
)
1555 /* Depending on channel, isolate respective SPARING info */
1557 swap_done
= F10_ONLINE_SPARE_SWAPDONE1(pvt
->online_spare
);
1558 bad_dram_cs
= F10_ONLINE_SPARE_BADDRAM_CS1(pvt
->online_spare
);
1559 if (swap_done
&& (csrow
== bad_dram_cs
))
1560 csrow
= CH1SPARE_RANK
;
1562 swap_done
= F10_ONLINE_SPARE_SWAPDONE0(pvt
->online_spare
);
1563 bad_dram_cs
= F10_ONLINE_SPARE_BADDRAM_CS0(pvt
->online_spare
);
1564 if (swap_done
&& (csrow
== bad_dram_cs
))
1565 csrow
= CH0SPARE_RANK
;
1571 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1572 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1575 * -EINVAL: NOT FOUND
1576 * 0..csrow = Chip-Select Row
1578 static int f10_lookup_addr_in_dct(u32 in_addr
, u32 nid
, u32 cs
)
1580 struct mem_ctl_info
*mci
;
1581 struct amd64_pvt
*pvt
;
1582 u32 cs_base
, cs_mask
;
1583 int cs_found
= -EINVAL
;
1586 mci
= mci_lookup
[nid
];
1590 pvt
= mci
->pvt_info
;
1592 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr
, cs
);
1594 for (csrow
= 0; csrow
< CHIPSELECT_COUNT
; csrow
++) {
1596 cs_base
= amd64_get_dct_base(pvt
, cs
, csrow
);
1597 if (!(cs_base
& K8_DCSB_CS_ENABLE
))
1601 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1602 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1603 * of the actual address.
1605 cs_base
&= REV_F_F1Xh_DCSB_BASE_BITS
;
1608 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1609 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1611 cs_mask
= amd64_get_dct_mask(pvt
, cs
, csrow
);
1613 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1614 csrow
, cs_base
, cs_mask
);
1616 cs_mask
= (cs_mask
| 0x0007C01F) & 0x1FFFFFFF;
1618 debugf1(" Final CSMask=0x%x\n", cs_mask
);
1619 debugf1(" (InputAddr & ~CSMask)=0x%x "
1620 "(CSBase & ~CSMask)=0x%x\n",
1621 (in_addr
& ~cs_mask
), (cs_base
& ~cs_mask
));
1623 if ((in_addr
& ~cs_mask
) == (cs_base
& ~cs_mask
)) {
1624 cs_found
= f10_process_possible_spare(csrow
, cs
, pvt
);
1626 debugf1(" MATCH csrow=%d\n", cs_found
);
1633 /* For a given @dram_range, check if @sys_addr falls within it. */
1634 static int f10_match_to_this_node(struct amd64_pvt
*pvt
, int dram_range
,
1635 u64 sys_addr
, int *nid
, int *chan_sel
)
1637 int node_id
, cs_found
= -EINVAL
, high_range
= 0;
1638 u32 intlv_en
, intlv_sel
, intlv_shift
, hole_off
;
1639 u32 hole_valid
, tmp
, dct_sel_base
, channel
;
1640 u64 dram_base
, chan_addr
, dct_sel_base_off
;
1642 dram_base
= pvt
->dram_base
[dram_range
];
1643 intlv_en
= pvt
->dram_IntlvEn
[dram_range
];
1645 node_id
= pvt
->dram_DstNode
[dram_range
];
1646 intlv_sel
= pvt
->dram_IntlvSel
[dram_range
];
1648 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1649 dram_range
, dram_base
, sys_addr
, pvt
->dram_limit
[dram_range
]);
1652 * This assumes that one node's DHAR is the same as all the other
1655 hole_off
= (pvt
->dhar
& 0x0000FF80);
1656 hole_valid
= (pvt
->dhar
& 0x1);
1657 dct_sel_base_off
= (pvt
->dram_ctl_select_high
& 0xFFFFFC00) << 16;
1659 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1660 hole_off
, hole_valid
, intlv_sel
);
1663 (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1666 dct_sel_base
= dct_sel_baseaddr(pvt
);
1669 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1670 * select between DCT0 and DCT1.
1672 if (dct_high_range_enabled(pvt
) &&
1673 !dct_ganging_enabled(pvt
) &&
1674 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1677 channel
= f10_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1679 chan_addr
= f10_get_base_addr_offset(sys_addr
, high_range
, dct_sel_base
,
1680 dct_sel_base_off
, hole_valid
,
1681 hole_off
, dram_base
);
1683 intlv_shift
= f10_map_intlv_en_to_shift(intlv_en
);
1685 /* remove Node ID (in case of memory interleaving) */
1686 tmp
= chan_addr
& 0xFC0;
1688 chan_addr
= ((chan_addr
>> intlv_shift
) & 0xFFFFFFFFF000ULL
) | tmp
;
1690 /* remove channel interleave and hash */
1691 if (dct_interleave_enabled(pvt
) &&
1692 !dct_high_range_enabled(pvt
) &&
1693 !dct_ganging_enabled(pvt
)) {
1694 if (dct_sel_interleave_addr(pvt
) != 1)
1695 chan_addr
= (chan_addr
>> 1) & 0xFFFFFFFFFFFFFFC0ULL
;
1697 tmp
= chan_addr
& 0xFC0;
1698 chan_addr
= ((chan_addr
& 0xFFFFFFFFFFFFC000ULL
) >> 1)
1703 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1704 chan_addr
, (u32
)(chan_addr
>> 8));
1706 cs_found
= f10_lookup_addr_in_dct(chan_addr
>> 8, node_id
, channel
);
1708 if (cs_found
>= 0) {
1710 *chan_sel
= channel
;
1715 static int f10_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
, u64 sys_addr
,
1716 int *node
, int *chan_sel
)
1718 int dram_range
, cs_found
= -EINVAL
;
1719 u64 dram_base
, dram_limit
;
1721 for (dram_range
= 0; dram_range
< DRAM_REG_COUNT
; dram_range
++) {
1723 if (!pvt
->dram_rw_en
[dram_range
])
1726 dram_base
= pvt
->dram_base
[dram_range
];
1727 dram_limit
= pvt
->dram_limit
[dram_range
];
1729 if ((dram_base
<= sys_addr
) && (sys_addr
<= dram_limit
)) {
1731 cs_found
= f10_match_to_this_node(pvt
, dram_range
,
1742 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1745 * The @sys_addr is usually an error address received from the hardware.
1747 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
,
1748 struct err_regs
*info
,
1751 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1753 unsigned short syndrome
;
1754 int nid
, csrow
, chan
= 0;
1756 csrow
= f10_translate_sysaddr_to_cs(pvt
, sys_addr
, &nid
, &chan
);
1759 error_address_to_page_and_offset(sys_addr
, &page
, &offset
);
1761 syndrome
= HIGH_SYNDROME(info
->nbsl
) << 8;
1762 syndrome
|= LOW_SYNDROME(info
->nbsh
);
1765 * Is CHIPKILL on? If so, then we can attempt to use the
1766 * syndrome to isolate which channel the error was on.
1768 if (pvt
->nbcfg
& K8_NBCFG_CHIPKILL
)
1769 chan
= get_channel_from_ecc_syndrome(syndrome
);
1772 edac_mc_handle_ce(mci
, page
, offset
, syndrome
,
1773 csrow
, chan
, EDAC_MOD_STR
);
1776 * Channel unknown, report all channels on this
1779 for (chan
= 0; chan
< mci
->csrows
[csrow
].nr_channels
;
1781 edac_mc_handle_ce(mci
, page
, offset
,
1789 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
1794 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1795 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1796 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1798 * Normalize to 128MB by subracting 27 bit shift.
1800 static int map_dbam_to_csrow_size(int index
)
1804 if (index
> 0 && index
<= DBAM_MAX_VALUE
)
1805 mega_bytes
= ((128 << (revf_quad_ddr2_shift
[index
]-27)));
1811 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1814 static void f10_debug_display_dimm_sizes(int ctrl
, struct amd64_pvt
*pvt
,
1817 int dimm
, size0
, size1
;
1821 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl
,
1822 ctrl
? pvt
->dbam1
: pvt
->dbam0
,
1823 ganged
? "GANGED - dbam1 not used" : "NON-GANGED");
1825 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
1826 dcsb
= ctrl
? pvt
->dcsb1
: pvt
->dcsb0
;
1828 /* Dump memory sizes for DIMM and its CSROWs */
1829 for (dimm
= 0; dimm
< 4; dimm
++) {
1832 if (dcsb
[dimm
*2] & K8_DCSB_CS_ENABLE
)
1833 size0
= map_dbam_to_csrow_size(DBAM_DIMM(dimm
, dbam
));
1836 if (dcsb
[dimm
*2 + 1] & K8_DCSB_CS_ENABLE
)
1837 size1
= map_dbam_to_csrow_size(DBAM_DIMM(dimm
, dbam
));
1839 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1852 * Very early hardware probe on pci_probe thread to determine if this module
1853 * supports the hardware.
1859 static int f10_probe_valid_hardware(struct amd64_pvt
*pvt
)
1864 * If we are on a DDR3 machine, we don't know yet if
1865 * we support that properly at this time
1867 if ((pvt
->dchr0
& F10_DCHR_Ddr3Mode
) ||
1868 (pvt
->dchr1
& F10_DCHR_Ddr3Mode
)) {
1870 amd64_printk(KERN_WARNING
,
1871 "%s() This machine is running with DDR3 memory. "
1872 "This is not currently supported. "
1873 "DCHR0=0x%x DCHR1=0x%x\n",
1874 __func__
, pvt
->dchr0
, pvt
->dchr1
);
1876 amd64_printk(KERN_WARNING
,
1877 " Contact '%s' module MAINTAINER to help add"
1888 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1889 * (as per PCI DEVICE_IDs):
1891 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1892 * DEVICE ID, even though there is differences between the different Revisions
1895 * Family F10h and F11h.
1898 static struct amd64_family_type amd64_family_types
[] = {
1901 .addr_f1_ctl
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
1902 .misc_f3_ctl
= PCI_DEVICE_ID_AMD_K8_NB_MISC
,
1904 .early_channel_count
= k8_early_channel_count
,
1905 .get_error_address
= k8_get_error_address
,
1906 .read_dram_base_limit
= k8_read_dram_base_limit
,
1907 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
1908 .dbam_map_to_pages
= k8_dbam_map_to_pages
,
1912 .ctl_name
= "Family 10h",
1913 .addr_f1_ctl
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
1914 .misc_f3_ctl
= PCI_DEVICE_ID_AMD_10H_NB_MISC
,
1916 .probe_valid_hardware
= f10_probe_valid_hardware
,
1917 .early_channel_count
= f10_early_channel_count
,
1918 .get_error_address
= f10_get_error_address
,
1919 .read_dram_base_limit
= f10_read_dram_base_limit
,
1920 .read_dram_ctl_register
= f10_read_dram_ctl_register
,
1921 .map_sysaddr_to_csrow
= f10_map_sysaddr_to_csrow
,
1922 .dbam_map_to_pages
= f10_dbam_map_to_pages
,
1926 .ctl_name
= "Family 11h",
1927 .addr_f1_ctl
= PCI_DEVICE_ID_AMD_11H_NB_MAP
,
1928 .misc_f3_ctl
= PCI_DEVICE_ID_AMD_11H_NB_MISC
,
1930 .probe_valid_hardware
= f10_probe_valid_hardware
,
1931 .early_channel_count
= f10_early_channel_count
,
1932 .get_error_address
= f10_get_error_address
,
1933 .read_dram_base_limit
= f10_read_dram_base_limit
,
1934 .read_dram_ctl_register
= f10_read_dram_ctl_register
,
1935 .map_sysaddr_to_csrow
= f10_map_sysaddr_to_csrow
,
1936 .dbam_map_to_pages
= f10_dbam_map_to_pages
,
1941 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
1942 unsigned int device
,
1943 struct pci_dev
*related
)
1945 struct pci_dev
*dev
= NULL
;
1947 dev
= pci_get_device(vendor
, device
, dev
);
1949 if ((dev
->bus
->number
== related
->bus
->number
) &&
1950 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
1952 dev
= pci_get_device(vendor
, device
, dev
);
1959 * syndrome mapping table for ECC ChipKill devices
1961 * The comment in each row is the token (nibble) number that is in error.
1962 * The least significant nibble of the syndrome is the mask for the bits
1963 * that are in error (need to be toggled) for the particular nibble.
1965 * Each row contains 16 entries.
1966 * The first entry (0th) is the channel number for that row of syndromes.
1967 * The remaining 15 entries are the syndromes for the respective Error
1970 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1972 * The 2nd index entry is 0x0010 that the second bit is damaged.
1973 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1975 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1976 * indicating that all 4 bits are damaged.
1978 * A search is performed on this table looking for a given syndrome.
1980 * See the AMD documentation for ECC syndromes. This ECC table is valid
1981 * across all the versions of the AMD64 processors.
1983 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1984 * COLUMN index, then search all ROWS of that column, looking for a match
1985 * with the input syndrome. The ROW value will be the token number.
1987 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1990 #define NUMBER_ECC_ROWS 36
1991 static const unsigned short ecc_chipkill_syndromes
[NUMBER_ECC_ROWS
][16] = {
1992 /* Channel 0 syndromes */
1993 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1994 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1995 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1996 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1997 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1998 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1999 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
2000 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
2001 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
2002 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
2003 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
2004 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
2005 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
2006 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
2007 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
2008 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
2009 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
2010 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
2011 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
2012 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
2013 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
2014 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
2015 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
2016 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
2017 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
2018 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
2019 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
2020 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
2021 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
2022 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
2023 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
2024 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
2026 /* Channel 1 syndromes */
2027 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
2028 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
2029 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
2030 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
2031 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
2032 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2033 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2034 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2035 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2036 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2037 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2038 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2039 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2040 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2041 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2042 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2043 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2044 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2045 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2046 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2047 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2048 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2049 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2050 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2051 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2052 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2053 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2054 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2055 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2056 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2057 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2058 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2060 /* ECC bits are also in the set of tokens and they too can go bad
2061 * first 2 cover channel 0, while the second 2 cover channel 1
2063 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2064 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2065 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2066 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2067 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2068 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2069 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2070 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2074 * Given the syndrome argument, scan each of the channel tables for a syndrome
2075 * match. Depending on which table it is found, return the channel number.
2077 static int get_channel_from_ecc_syndrome(unsigned short syndrome
)
2082 /* Determine column to scan */
2083 column
= syndrome
& 0xF;
2085 /* Scan all rows, looking for syndrome, or end of table */
2086 for (row
= 0; row
< NUMBER_ECC_ROWS
; row
++) {
2087 if (ecc_chipkill_syndromes
[row
][column
] == syndrome
)
2088 return ecc_chipkill_syndromes
[row
][0];
2091 debugf0("syndrome(%x) not found\n", syndrome
);
2096 * Check for valid error in the NB Status High register. If so, proceed to read
2097 * NB Status Low, NB Address Low and NB Address High registers and store data
2098 * into error structure.
2101 * - 1: if hardware regs contains valid error info
2102 * - 0: if no valid error is indicated
2104 static int amd64_get_error_info_regs(struct mem_ctl_info
*mci
,
2105 struct err_regs
*regs
)
2107 struct amd64_pvt
*pvt
;
2108 struct pci_dev
*misc_f3_ctl
;
2111 pvt
= mci
->pvt_info
;
2112 misc_f3_ctl
= pvt
->misc_f3_ctl
;
2114 err
= pci_read_config_dword(misc_f3_ctl
, K8_NBSH
, ®s
->nbsh
);
2118 if (!(regs
->nbsh
& K8_NBSH_VALID_BIT
))
2121 /* valid error, read remaining error information registers */
2122 err
= pci_read_config_dword(misc_f3_ctl
, K8_NBSL
, ®s
->nbsl
);
2126 err
= pci_read_config_dword(misc_f3_ctl
, K8_NBEAL
, ®s
->nbeal
);
2130 err
= pci_read_config_dword(misc_f3_ctl
, K8_NBEAH
, ®s
->nbeah
);
2134 err
= pci_read_config_dword(misc_f3_ctl
, K8_NBCFG
, ®s
->nbcfg
);
2141 debugf0("Reading error info register failed\n");
2146 * This function is called to retrieve the error data from hardware and store it
2147 * in the info structure.
2150 * - 1: if a valid error is found
2151 * - 0: if no error is found
2153 static int amd64_get_error_info(struct mem_ctl_info
*mci
,
2154 struct err_regs
*info
)
2156 struct amd64_pvt
*pvt
;
2157 struct err_regs regs
;
2159 pvt
= mci
->pvt_info
;
2161 if (!amd64_get_error_info_regs(mci
, info
))
2165 * Here's the problem with the K8's EDAC reporting: There are four
2166 * registers which report pieces of error information. They are shared
2167 * between CEs and UEs. Furthermore, contrary to what is stated in the
2168 * BKDG, the overflow bit is never used! Every error always updates the
2169 * reporting registers.
2171 * Can you see the race condition? All four error reporting registers
2172 * must be read before a new error updates them! There is no way to read
2173 * all four registers atomically. The best than can be done is to detect
2174 * that a race has occured and then report the error without any kind of
2177 * What is still positive is that errors are still reported and thus
2178 * problems can still be detected - just not localized because the
2179 * syndrome and address are spread out across registers.
2181 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2182 * UEs and CEs should have separate register sets with proper overflow
2183 * bits that are used! At very least the problem can be fixed by
2184 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2185 * set the overflow bit - unless the current error is CE and the new
2186 * error is UE which would be the only situation for overwriting the
2192 /* Use info from the second read - most current */
2193 if (unlikely(!amd64_get_error_info_regs(mci
, info
)))
2196 /* clear the error bits in hardware */
2197 pci_write_bits32(pvt
->misc_f3_ctl
, K8_NBSH
, 0, K8_NBSH_VALID_BIT
);
2199 /* Check for the possible race condition */
2200 if ((regs
.nbsh
!= info
->nbsh
) ||
2201 (regs
.nbsl
!= info
->nbsl
) ||
2202 (regs
.nbeah
!= info
->nbeah
) ||
2203 (regs
.nbeal
!= info
->nbeal
)) {
2204 amd64_mc_printk(mci
, KERN_WARNING
,
2205 "hardware STATUS read access race condition "
2213 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2214 * ADDRESS and process.
2216 static void amd64_handle_ce(struct mem_ctl_info
*mci
,
2217 struct err_regs
*info
)
2219 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2222 /* Ensure that the Error Address is VALID */
2223 if ((info
->nbsh
& K8_NBSH_VALID_ERROR_ADDR
) == 0) {
2224 amd64_mc_printk(mci
, KERN_ERR
,
2225 "HW has no ERROR_ADDRESS available\n");
2226 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
);
2230 SystemAddress
= extract_error_address(mci
, info
);
2232 amd64_mc_printk(mci
, KERN_ERR
,
2233 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress
);
2235 pvt
->ops
->map_sysaddr_to_csrow(mci
, info
, SystemAddress
);
2238 /* Handle any Un-correctable Errors (UEs) */
2239 static void amd64_handle_ue(struct mem_ctl_info
*mci
,
2240 struct err_regs
*info
)
2245 struct mem_ctl_info
*log_mci
, *src_mci
= NULL
;
2249 if ((info
->nbsh
& K8_NBSH_VALID_ERROR_ADDR
) == 0) {
2250 amd64_mc_printk(mci
, KERN_CRIT
,
2251 "HW has no ERROR_ADDRESS available\n");
2252 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
2256 SystemAddress
= extract_error_address(mci
, info
);
2259 * Find out which node the error address belongs to. This may be
2260 * different from the node that detected the error.
2262 src_mci
= find_mc_by_sys_addr(mci
, SystemAddress
);
2264 amd64_mc_printk(mci
, KERN_CRIT
,
2265 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2266 (unsigned long)SystemAddress
);
2267 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
2273 csrow
= sys_addr_to_csrow(log_mci
, SystemAddress
);
2275 amd64_mc_printk(mci
, KERN_CRIT
,
2276 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2277 (unsigned long)SystemAddress
);
2278 edac_mc_handle_ue_no_info(log_mci
, EDAC_MOD_STR
);
2280 error_address_to_page_and_offset(SystemAddress
, &page
, &offset
);
2281 edac_mc_handle_ue(log_mci
, page
, offset
, csrow
, EDAC_MOD_STR
);
2285 static inline void __amd64_decode_bus_error(struct mem_ctl_info
*mci
,
2286 struct err_regs
*info
)
2288 u32 ec
= ERROR_CODE(info
->nbsl
);
2289 u32 xec
= EXT_ERROR_CODE(info
->nbsl
);
2290 int ecc_type
= info
->nbsh
& (0x3 << 13);
2292 /* Bail early out if this was an 'observed' error */
2293 if (PP(ec
) == K8_NBSL_PP_OBS
)
2296 /* Do only ECC errors */
2297 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2301 amd64_handle_ce(mci
, info
);
2302 else if (ecc_type
== 1)
2303 amd64_handle_ue(mci
, info
);
2306 * If main error is CE then overflow must be CE. If main error is UE
2307 * then overflow is unknown. We'll call the overflow a CE - if
2308 * panic_on_ue is set then we're already panic'ed and won't arrive
2309 * here. Else, then apparently someone doesn't think that UE's are
2312 if (info
->nbsh
& K8_NBSH_OVERFLOW
)
2313 edac_mc_handle_ce_no_info(mci
, EDAC_MOD_STR
"Error Overflow");
2316 void amd64_decode_bus_error(int node_id
, struct err_regs
*regs
)
2318 struct mem_ctl_info
*mci
= mci_lookup
[node_id
];
2320 __amd64_decode_bus_error(mci
, regs
);
2323 * Check the UE bit of the NB status high register, if set generate some
2324 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2325 * If it was a GART error, skip that process.
2327 * FIXME: this should go somewhere else, if at all.
2329 if (regs
->nbsh
& K8_NBSH_UC_ERR
&& !report_gart_errors
)
2330 edac_mc_handle_ue_no_info(mci
, "UE bit is set");
2335 * The main polling 'check' function, called FROM the edac core to perform the
2336 * error checking and if an error is encountered, error processing.
2338 static void amd64_check(struct mem_ctl_info
*mci
)
2340 struct err_regs regs
;
2342 if (amd64_get_error_info(mci
, ®s
)) {
2343 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2344 amd_decode_nb_mce(pvt
->mc_node_id
, ®s
, 1);
2350 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2351 * 2) AMD Family index value
2354 * Upon return of 0, the following filled in:
2356 * struct pvt->addr_f1_ctl
2357 * struct pvt->misc_f3_ctl
2359 * Filled in with related device funcitions of 'dram_f2_ctl'
2360 * These devices are "reserved" via the pci_get_device()
2362 * Upon return of 1 (error status):
2366 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt
*pvt
, int mc_idx
)
2368 const struct amd64_family_type
*amd64_dev
= &amd64_family_types
[mc_idx
];
2370 /* Reserve the ADDRESS MAP Device */
2371 pvt
->addr_f1_ctl
= pci_get_related_function(pvt
->dram_f2_ctl
->vendor
,
2372 amd64_dev
->addr_f1_ctl
,
2375 if (!pvt
->addr_f1_ctl
) {
2376 amd64_printk(KERN_ERR
, "error address map device not found: "
2377 "vendor %x device 0x%x (broken BIOS?)\n",
2378 PCI_VENDOR_ID_AMD
, amd64_dev
->addr_f1_ctl
);
2382 /* Reserve the MISC Device */
2383 pvt
->misc_f3_ctl
= pci_get_related_function(pvt
->dram_f2_ctl
->vendor
,
2384 amd64_dev
->misc_f3_ctl
,
2387 if (!pvt
->misc_f3_ctl
) {
2388 pci_dev_put(pvt
->addr_f1_ctl
);
2389 pvt
->addr_f1_ctl
= NULL
;
2391 amd64_printk(KERN_ERR
, "error miscellaneous device not found: "
2392 "vendor %x device 0x%x (broken BIOS?)\n",
2393 PCI_VENDOR_ID_AMD
, amd64_dev
->misc_f3_ctl
);
2397 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2398 pci_name(pvt
->addr_f1_ctl
));
2399 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2400 pci_name(pvt
->dram_f2_ctl
));
2401 debugf1(" Misc device PCI Bus ID:\t%s\n",
2402 pci_name(pvt
->misc_f3_ctl
));
2407 static void amd64_free_mc_sibling_devices(struct amd64_pvt
*pvt
)
2409 pci_dev_put(pvt
->addr_f1_ctl
);
2410 pci_dev_put(pvt
->misc_f3_ctl
);
2414 * Retrieve the hardware registers of the memory controller (this includes the
2415 * 'Address Map' and 'Misc' device regs)
2417 static void amd64_read_mc_registers(struct amd64_pvt
*pvt
)
2423 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2424 * those are Read-As-Zero
2426 rdmsrl(MSR_K8_TOP_MEM1
, msr_val
);
2427 pvt
->top_mem
= msr_val
>> 23;
2428 debugf0(" TOP_MEM=0x%08llx\n", pvt
->top_mem
);
2430 /* check first whether TOP_MEM2 is enabled */
2431 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2432 if (msr_val
& (1U << 21)) {
2433 rdmsrl(MSR_K8_TOP_MEM2
, msr_val
);
2434 pvt
->top_mem2
= msr_val
>> 23;
2435 debugf0(" TOP_MEM2=0x%08llx\n", pvt
->top_mem2
);
2437 debugf0(" TOP_MEM2 disabled.\n");
2439 amd64_cpu_display_info(pvt
);
2441 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCAP
, &pvt
->nbcap
);
2445 if (pvt
->ops
->read_dram_ctl_register
)
2446 pvt
->ops
->read_dram_ctl_register(pvt
);
2448 for (dram
= 0; dram
< DRAM_REG_COUNT
; dram
++) {
2450 * Call CPU specific READ function to get the DRAM Base and
2451 * Limit values from the DCT.
2453 pvt
->ops
->read_dram_base_limit(pvt
, dram
);
2456 * Only print out debug info on rows with both R and W Enabled.
2457 * Normal processing, compiler should optimize this whole 'if'
2458 * debug output block away.
2460 if (pvt
->dram_rw_en
[dram
] != 0) {
2461 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2462 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2464 (u32
)(pvt
->dram_base
[dram
] >> 32),
2465 (u32
)(pvt
->dram_base
[dram
] & 0xFFFFFFFF),
2466 (u32
)(pvt
->dram_limit
[dram
] >> 32),
2467 (u32
)(pvt
->dram_limit
[dram
] & 0xFFFFFFFF));
2468 debugf1(" IntlvEn=%s %s %s "
2469 "IntlvSel=%d DstNode=%d\n",
2470 pvt
->dram_IntlvEn
[dram
] ?
2471 "Enabled" : "Disabled",
2472 (pvt
->dram_rw_en
[dram
] & 0x2) ? "W" : "!W",
2473 (pvt
->dram_rw_en
[dram
] & 0x1) ? "R" : "!R",
2474 pvt
->dram_IntlvSel
[dram
],
2475 pvt
->dram_DstNode
[dram
]);
2479 amd64_read_dct_base_mask(pvt
);
2481 err
= pci_read_config_dword(pvt
->addr_f1_ctl
, K8_DHAR
, &pvt
->dhar
);
2485 amd64_read_dbam_reg(pvt
);
2487 err
= pci_read_config_dword(pvt
->misc_f3_ctl
,
2488 F10_ONLINE_SPARE
, &pvt
->online_spare
);
2492 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCLR_0
, &pvt
->dclr0
);
2496 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCHR_0
, &pvt
->dchr0
);
2500 if (!dct_ganging_enabled(pvt
)) {
2501 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCLR_1
,
2506 err
= pci_read_config_dword(pvt
->dram_f2_ctl
, F10_DCHR_1
,
2512 amd64_dump_misc_regs(pvt
);
2517 debugf0("Reading an MC register failed\n");
2522 * NOTE: CPU Revision Dependent code
2525 * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
2526 * k8 private pointer to -->
2527 * DRAM Bank Address mapping register
2529 * DCL register where dual_channel_active is
2531 * The DBAM register consists of 4 sets of 4 bits each definitions:
2534 * 0-3 CSROWs 0 and 1
2535 * 4-7 CSROWs 2 and 3
2536 * 8-11 CSROWs 4 and 5
2537 * 12-15 CSROWs 6 and 7
2539 * Values range from: 0 to 15
2540 * The meaning of the values depends on CPU revision and dual-channel state,
2541 * see relevant BKDG more info.
2543 * The memory controller provides for total of only 8 CSROWs in its current
2544 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2545 * single channel or two (2) DIMMs in dual channel mode.
2547 * The following code logic collapses the various tables for CSROW based on CPU
2551 * The number of PAGE_SIZE pages on the specified CSROW number it
2555 static u32
amd64_csrow_nr_pages(int csrow_nr
, struct amd64_pvt
*pvt
)
2557 u32 dram_map
, nr_pages
;
2560 * The math on this doesn't look right on the surface because x/2*4 can
2561 * be simplified to x*2 but this expression makes use of the fact that
2562 * it is integral math where 1/2=0. This intermediate value becomes the
2563 * number of bits to shift the DBAM register to extract the proper CSROW
2566 dram_map
= (pvt
->dbam0
>> ((csrow_nr
/ 2) * 4)) & 0xF;
2568 nr_pages
= pvt
->ops
->dbam_map_to_pages(pvt
, dram_map
);
2571 * If dual channel then double the memory size of single channel.
2572 * Channel count is 1 or 2
2574 nr_pages
<<= (pvt
->channel_count
- 1);
2576 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr
, dram_map
);
2577 debugf0(" nr_pages= %u channel-count = %d\n",
2578 nr_pages
, pvt
->channel_count
);
2584 * Initialize the array of csrow attribute instances, based on the values
2585 * from pci config hardware registers.
2587 static int amd64_init_csrows(struct mem_ctl_info
*mci
)
2589 struct csrow_info
*csrow
;
2590 struct amd64_pvt
*pvt
;
2591 u64 input_addr_min
, input_addr_max
, sys_addr
;
2592 int i
, err
= 0, empty
= 1;
2594 pvt
= mci
->pvt_info
;
2596 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCFG
, &pvt
->nbcfg
);
2598 debugf0("Reading K8_NBCFG failed\n");
2600 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt
->nbcfg
,
2601 (pvt
->nbcfg
& K8_NBCFG_CHIPKILL
) ? "Enabled" : "Disabled",
2602 (pvt
->nbcfg
& K8_NBCFG_ECC_ENABLE
) ? "Enabled" : "Disabled"
2605 for (i
= 0; i
< CHIPSELECT_COUNT
; i
++) {
2606 csrow
= &mci
->csrows
[i
];
2608 if ((pvt
->dcsb0
[i
] & K8_DCSB_CS_ENABLE
) == 0) {
2609 debugf1("----CSROW %d EMPTY for node %d\n", i
,
2614 debugf1("----CSROW %d VALID for MC node %d\n",
2615 i
, pvt
->mc_node_id
);
2618 csrow
->nr_pages
= amd64_csrow_nr_pages(i
, pvt
);
2619 find_csrow_limits(mci
, i
, &input_addr_min
, &input_addr_max
);
2620 sys_addr
= input_addr_to_sys_addr(mci
, input_addr_min
);
2621 csrow
->first_page
= (u32
) (sys_addr
>> PAGE_SHIFT
);
2622 sys_addr
= input_addr_to_sys_addr(mci
, input_addr_max
);
2623 csrow
->last_page
= (u32
) (sys_addr
>> PAGE_SHIFT
);
2624 csrow
->page_mask
= ~mask_from_dct_mask(pvt
, i
);
2625 /* 8 bytes of resolution */
2627 csrow
->mtype
= amd64_determine_memory_type(pvt
);
2629 debugf1(" for MC node %d csrow %d:\n", pvt
->mc_node_id
, i
);
2630 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2631 (unsigned long)input_addr_min
,
2632 (unsigned long)input_addr_max
);
2633 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2634 (unsigned long)sys_addr
, csrow
->page_mask
);
2635 debugf1(" nr_pages: %u first_page: 0x%lx "
2636 "last_page: 0x%lx\n",
2637 (unsigned)csrow
->nr_pages
,
2638 csrow
->first_page
, csrow
->last_page
);
2641 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2643 if (pvt
->nbcfg
& K8_NBCFG_ECC_ENABLE
)
2645 (pvt
->nbcfg
& K8_NBCFG_CHIPKILL
) ?
2646 EDAC_S4ECD4ED
: EDAC_SECDED
;
2648 csrow
->edac_mode
= EDAC_NONE
;
2655 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2658 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info
*mci
)
2660 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2661 const cpumask_t
*cpumask
= cpumask_of_node(pvt
->mc_node_id
);
2662 int cpu
, idx
= 0, err
= 0;
2663 struct msr msrs
[cpumask_weight(cpumask
)];
2665 u32 mask
= K8_NBCTL_CECCEn
| K8_NBCTL_UECCEn
;
2667 if (!ecc_enable_override
)
2670 memset(msrs
, 0, sizeof(msrs
));
2672 amd64_printk(KERN_WARNING
,
2673 "'ecc_enable_override' parameter is active, "
2674 "Enabling AMD ECC hardware now: CAUTION\n");
2676 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCTL
, &value
);
2678 debugf0("Reading K8_NBCTL failed\n");
2680 /* turn on UECCn and CECCEn bits */
2681 pvt
->old_nbctl
= value
& mask
;
2682 pvt
->nbctl_mcgctl_saved
= 1;
2685 pci_write_config_dword(pvt
->misc_f3_ctl
, K8_NBCTL
, value
);
2687 rdmsr_on_cpus(cpumask
, K8_MSR_MCGCTL
, msrs
);
2689 for_each_cpu(cpu
, cpumask
) {
2690 if (msrs
[idx
].l
& K8_MSR_MCGCTL_NBE
)
2691 set_bit(idx
, &pvt
->old_mcgctl
);
2693 msrs
[idx
].l
|= K8_MSR_MCGCTL_NBE
;
2696 wrmsr_on_cpus(cpumask
, K8_MSR_MCGCTL
, msrs
);
2698 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCFG
, &value
);
2700 debugf0("Reading K8_NBCFG failed\n");
2702 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value
,
2703 (value
& K8_NBCFG_CHIPKILL
) ? "Enabled" : "Disabled",
2704 (value
& K8_NBCFG_ECC_ENABLE
) ? "Enabled" : "Disabled");
2706 if (!(value
& K8_NBCFG_ECC_ENABLE
)) {
2707 amd64_printk(KERN_WARNING
,
2708 "This node reports that DRAM ECC is "
2709 "currently Disabled; ENABLING now\n");
2711 /* Attempt to turn on DRAM ECC Enable */
2712 value
|= K8_NBCFG_ECC_ENABLE
;
2713 pci_write_config_dword(pvt
->misc_f3_ctl
, K8_NBCFG
, value
);
2715 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCFG
, &value
);
2717 debugf0("Reading K8_NBCFG failed\n");
2719 if (!(value
& K8_NBCFG_ECC_ENABLE
)) {
2720 amd64_printk(KERN_WARNING
,
2721 "Hardware rejects Enabling DRAM ECC checking\n"
2722 "Check memory DIMM configuration\n");
2724 amd64_printk(KERN_DEBUG
,
2725 "Hardware accepted DRAM ECC Enable\n");
2728 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value
,
2729 (value
& K8_NBCFG_CHIPKILL
) ? "Enabled" : "Disabled",
2730 (value
& K8_NBCFG_ECC_ENABLE
) ? "Enabled" : "Disabled");
2732 pvt
->ctl_error_info
.nbcfg
= value
;
2735 static void amd64_restore_ecc_error_reporting(struct amd64_pvt
*pvt
)
2737 const cpumask_t
*cpumask
= cpumask_of_node(pvt
->mc_node_id
);
2738 int cpu
, idx
= 0, err
= 0;
2739 struct msr msrs
[cpumask_weight(cpumask
)];
2741 u32 mask
= K8_NBCTL_CECCEn
| K8_NBCTL_UECCEn
;
2743 if (!pvt
->nbctl_mcgctl_saved
)
2746 memset(msrs
, 0, sizeof(msrs
));
2748 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCTL
, &value
);
2750 debugf0("Reading K8_NBCTL failed\n");
2752 value
|= pvt
->old_nbctl
;
2754 /* restore the NB Enable MCGCTL bit */
2755 pci_write_config_dword(pvt
->misc_f3_ctl
, K8_NBCTL
, value
);
2757 rdmsr_on_cpus(cpumask
, K8_MSR_MCGCTL
, msrs
);
2759 for_each_cpu(cpu
, cpumask
) {
2760 msrs
[idx
].l
&= ~K8_MSR_MCGCTL_NBE
;
2762 test_bit(idx
, &pvt
->old_mcgctl
) << K8_MSR_MCGCTL_NBE
;
2766 wrmsr_on_cpus(cpumask
, K8_MSR_MCGCTL
, msrs
);
2769 static void check_mcg_ctl(void *ret
)
2774 rdmsrl(MSR_IA32_MCG_CTL
, msr_val
);
2775 nbe
= msr_val
& K8_MSR_MCGCTL_NBE
;
2777 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2778 raw_smp_processor_id(), msr_val
,
2779 (nbe
? "enabled" : "disabled"));
2785 /* check MCG_CTL on all the cpus on this node */
2786 static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t
*mask
)
2790 smp_call_function_many(mask
, check_mcg_ctl
, &ret
, 1);
2797 * EDAC requires that the BIOS have ECC enabled before taking over the
2798 * processing of ECC errors. This is because the BIOS can properly initialize
2799 * the memory system completely. A command line option allows to force-enable
2800 * hardware ECC later in amd64_enable_ecc_error_reporting().
2802 static int amd64_check_ecc_enabled(struct amd64_pvt
*pvt
)
2805 int err
= 0, ret
= 0;
2808 err
= pci_read_config_dword(pvt
->misc_f3_ctl
, K8_NBCFG
, &value
);
2810 debugf0("Reading K8_NBCTL failed\n");
2812 ecc_enabled
= !!(value
& K8_NBCFG_ECC_ENABLE
);
2814 ret
= amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt
->mc_node_id
));
2816 debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value
,
2817 (value
& K8_NBCFG_ECC_ENABLE
? "enabled" : "disabled"));
2819 if (!ecc_enabled
|| !ret
) {
2821 amd64_printk(KERN_WARNING
, "This node reports that "
2822 "Memory ECC is currently "
2825 amd64_printk(KERN_WARNING
, "bit 0x%lx in register "
2826 "F3x%x of the MISC_CONTROL device (%s) "
2827 "should be enabled\n", K8_NBCFG_ECC_ENABLE
,
2828 K8_NBCFG
, pci_name(pvt
->misc_f3_ctl
));
2831 amd64_printk(KERN_WARNING
, "bit 0x%016lx in MSR 0x%08x "
2832 "of node %d should be enabled\n",
2833 K8_MSR_MCGCTL_NBE
, MSR_IA32_MCG_CTL
,
2836 if (!ecc_enable_override
) {
2837 amd64_printk(KERN_WARNING
, "WARNING: ECC is NOT "
2838 "currently enabled by the BIOS. Module "
2839 "will NOT be loaded.\n"
2840 " Either Enable ECC in the BIOS, "
2841 "or use the 'ecc_enable_override' "
2843 " Might be a BIOS bug, if BIOS says "
2845 " Use of the override can cause "
2846 "unknown side effects.\n");
2850 * enable further driver loading if ECC enable is
2855 amd64_printk(KERN_INFO
,
2856 "ECC is enabled by BIOS, Proceeding "
2857 "with EDAC module initialization\n");
2859 /* Signal good ECC status */
2862 /* CLEAR the override, since BIOS controlled it */
2863 ecc_enable_override
= 0;
2869 struct mcidev_sysfs_attribute sysfs_attrs
[ARRAY_SIZE(amd64_dbg_attrs
) +
2870 ARRAY_SIZE(amd64_inj_attrs
) +
2873 struct mcidev_sysfs_attribute terminator
= { .attr
= { .name
= NULL
} };
2875 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info
*mci
)
2877 unsigned int i
= 0, j
= 0;
2879 for (; i
< ARRAY_SIZE(amd64_dbg_attrs
); i
++)
2880 sysfs_attrs
[i
] = amd64_dbg_attrs
[i
];
2882 for (j
= 0; j
< ARRAY_SIZE(amd64_inj_attrs
); j
++, i
++)
2883 sysfs_attrs
[i
] = amd64_inj_attrs
[j
];
2885 sysfs_attrs
[i
] = terminator
;
2887 mci
->mc_driver_sysfs_attributes
= sysfs_attrs
;
2890 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info
*mci
)
2892 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2894 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
2895 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
2897 if (pvt
->nbcap
& K8_NBCAP_SECDED
)
2898 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
2900 if (pvt
->nbcap
& K8_NBCAP_CHIPKILL
)
2901 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
2903 mci
->edac_cap
= amd64_determine_edac_cap(pvt
);
2904 mci
->mod_name
= EDAC_MOD_STR
;
2905 mci
->mod_ver
= EDAC_AMD64_VERSION
;
2906 mci
->ctl_name
= get_amd_family_name(pvt
->mc_type_index
);
2907 mci
->dev_name
= pci_name(pvt
->dram_f2_ctl
);
2908 mci
->ctl_page_to_phys
= NULL
;
2910 /* IMPORTANT: Set the polling 'check' function in this module */
2911 mci
->edac_check
= amd64_check
;
2913 /* memory scrubber interface */
2914 mci
->set_sdram_scrub_rate
= amd64_set_scrub_rate
;
2915 mci
->get_sdram_scrub_rate
= amd64_get_scrub_rate
;
2919 * Init stuff for this DRAM Controller device.
2921 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2922 * Space feature MUST be enabled on ALL Processors prior to actually reading
2923 * from the ECS registers. Since the loading of the module can occur on any
2924 * 'core', and cores don't 'see' all the other processors ECS data when the
2925 * others are NOT enabled. Our solution is to first enable ECS access in this
2926 * routine on all processors, gather some data in a amd64_pvt structure and
2927 * later come back in a finish-setup function to perform that final
2928 * initialization. See also amd64_init_2nd_stage() for that.
2930 static int amd64_probe_one_instance(struct pci_dev
*dram_f2_ctl
,
2933 struct amd64_pvt
*pvt
= NULL
;
2937 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
2941 pvt
->mc_node_id
= get_node_id(dram_f2_ctl
);
2943 pvt
->dram_f2_ctl
= dram_f2_ctl
;
2944 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
2945 pvt
->mc_type_index
= mc_type_index
;
2946 pvt
->ops
= family_ops(mc_type_index
);
2947 pvt
->old_mcgctl
= 0;
2950 * We have the dram_f2_ctl device as an argument, now go reserve its
2951 * sibling devices from the PCI system.
2954 err
= amd64_reserve_mc_sibling_devices(pvt
, mc_type_index
);
2959 err
= amd64_check_ecc_enabled(pvt
);
2964 * Key operation here: setup of HW prior to performing ops on it. Some
2965 * setup is required to access ECS data. After this is performed, the
2966 * 'teardown' function must be called upon error and normal exit paths.
2968 if (boot_cpu_data
.x86
>= 0x10)
2972 * Save the pointer to the private data for use in 2nd initialization
2975 pvt_lookup
[pvt
->mc_node_id
] = pvt
;
2980 amd64_free_mc_sibling_devices(pvt
);
2990 * This is the finishing stage of the init code. Needs to be performed after all
2991 * MCs' hardware have been prepped for accessing extended config space.
2993 static int amd64_init_2nd_stage(struct amd64_pvt
*pvt
)
2995 int node_id
= pvt
->mc_node_id
;
2996 struct mem_ctl_info
*mci
;
2999 amd64_read_mc_registers(pvt
);
3002 if (pvt
->ops
->probe_valid_hardware
) {
3003 err
= pvt
->ops
->probe_valid_hardware(pvt
);
3009 * We need to determine how many memory channels there are. Then use
3010 * that information for calculating the size of the dynamic instance
3011 * tables in the 'mci' structure
3013 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
3014 if (pvt
->channel_count
< 0)
3018 mci
= edac_mc_alloc(0, CHIPSELECT_COUNT
, pvt
->channel_count
, node_id
);
3022 mci
->pvt_info
= pvt
;
3024 mci
->dev
= &pvt
->dram_f2_ctl
->dev
;
3025 amd64_setup_mci_misc_attributes(mci
);
3027 if (amd64_init_csrows(mci
))
3028 mci
->edac_cap
= EDAC_FLAG_NONE
;
3030 amd64_enable_ecc_error_reporting(mci
);
3031 amd64_set_mc_sysfs_attributes(mci
);
3034 if (edac_mc_add_mc(mci
)) {
3035 debugf1("failed edac_mc_add_mc()\n");
3039 mci_lookup
[node_id
] = mci
;
3040 pvt_lookup
[node_id
] = NULL
;
3042 /* register stuff with EDAC MCE */
3043 if (report_gart_errors
)
3044 amd_report_gart_errors(true);
3046 amd_register_ecc_decoder(amd64_decode_bus_error
);
3054 debugf0("failure to init 2nd stage: ret=%d\n", ret
);
3056 amd64_restore_ecc_error_reporting(pvt
);
3058 if (boot_cpu_data
.x86
> 0xf)
3059 amd64_teardown(pvt
);
3061 amd64_free_mc_sibling_devices(pvt
);
3063 kfree(pvt_lookup
[pvt
->mc_node_id
]);
3064 pvt_lookup
[node_id
] = NULL
;
3070 static int __devinit
amd64_init_one_instance(struct pci_dev
*pdev
,
3071 const struct pci_device_id
*mc_type
)
3075 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev
),
3076 get_amd_family_name(mc_type
->driver_data
));
3078 ret
= pci_enable_device(pdev
);
3082 ret
= amd64_probe_one_instance(pdev
, mc_type
->driver_data
);
3085 debugf0("ret=%d\n", ret
);
3090 static void __devexit
amd64_remove_one_instance(struct pci_dev
*pdev
)
3092 struct mem_ctl_info
*mci
;
3093 struct amd64_pvt
*pvt
;
3095 /* Remove from EDAC CORE tracking list */
3096 mci
= edac_mc_del_mc(&pdev
->dev
);
3100 pvt
= mci
->pvt_info
;
3102 amd64_restore_ecc_error_reporting(pvt
);
3104 if (boot_cpu_data
.x86
> 0xf)
3105 amd64_teardown(pvt
);
3107 amd64_free_mc_sibling_devices(pvt
);
3110 mci
->pvt_info
= NULL
;
3112 mci_lookup
[pvt
->mc_node_id
] = NULL
;
3114 /* unregister from EDAC MCE */
3115 amd_report_gart_errors(false);
3116 amd_unregister_ecc_decoder(amd64_decode_bus_error
);
3118 /* Free the EDAC CORE resources */
3123 * This table is part of the interface for loading drivers for PCI devices. The
3124 * PCI core identifies what devices are on a system during boot, and then
3125 * inquiry this table to see if this driver is for a given device found.
3127 static const struct pci_device_id amd64_pci_table
[] __devinitdata
= {
3129 .vendor
= PCI_VENDOR_ID_AMD
,
3130 .device
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
3131 .subvendor
= PCI_ANY_ID
,
3132 .subdevice
= PCI_ANY_ID
,
3135 .driver_data
= K8_CPUS
3138 .vendor
= PCI_VENDOR_ID_AMD
,
3139 .device
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
3140 .subvendor
= PCI_ANY_ID
,
3141 .subdevice
= PCI_ANY_ID
,
3144 .driver_data
= F10_CPUS
3147 .vendor
= PCI_VENDOR_ID_AMD
,
3148 .device
= PCI_DEVICE_ID_AMD_11H_NB_DRAM
,
3149 .subvendor
= PCI_ANY_ID
,
3150 .subdevice
= PCI_ANY_ID
,
3153 .driver_data
= F11_CPUS
3157 MODULE_DEVICE_TABLE(pci
, amd64_pci_table
);
3159 static struct pci_driver amd64_pci_driver
= {
3160 .name
= EDAC_MOD_STR
,
3161 .probe
= amd64_init_one_instance
,
3162 .remove
= __devexit_p(amd64_remove_one_instance
),
3163 .id_table
= amd64_pci_table
,
3166 static void amd64_setup_pci_device(void)
3168 struct mem_ctl_info
*mci
;
3169 struct amd64_pvt
*pvt
;
3174 mci
= mci_lookup
[0];
3177 pvt
= mci
->pvt_info
;
3179 edac_pci_create_generic_ctl(&pvt
->dram_f2_ctl
->dev
,
3182 if (!amd64_ctl_pci
) {
3183 pr_warning("%s(): Unable to create PCI control\n",
3186 pr_warning("%s(): PCI error report via EDAC not set\n",
3192 static int __init
amd64_edac_init(void)
3194 int nb
, err
= -ENODEV
;
3196 edac_printk(KERN_INFO
, EDAC_MOD_STR
, EDAC_AMD64_VERSION
"\n");
3200 if (cache_k8_northbridges() < 0)
3203 err
= pci_register_driver(&amd64_pci_driver
);
3208 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3209 * amd64_pvt structs. These will be used in the 2nd stage init function
3210 * to finish initialization of the MC instances.
3212 for (nb
= 0; nb
< num_k8_northbridges
; nb
++) {
3213 if (!pvt_lookup
[nb
])
3216 err
= amd64_init_2nd_stage(pvt_lookup
[nb
]);
3221 amd64_setup_pci_device();
3226 debugf0("2nd stage failed\n");
3229 pci_unregister_driver(&amd64_pci_driver
);
3234 static void __exit
amd64_edac_exit(void)
3237 edac_pci_release_generic_ctl(amd64_ctl_pci
);
3239 pci_unregister_driver(&amd64_pci_driver
);
3242 module_init(amd64_edac_init
);
3243 module_exit(amd64_edac_exit
);
3245 MODULE_LICENSE("GPL");
3246 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3247 "Dave Peterson, Thayne Harbaugh");
3248 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3249 EDAC_AMD64_VERSION
);
3251 module_param(edac_op_state
, int, 0444);
3252 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");