Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / drivers / media / video / cx18 / cx18-av-core.c
blob536dedb23ba36cb3080a53c0e958c6049d20300c
1 /*
2 * cx18 ADEC audio functions
4 * Derived from cx25840-core.c
6 * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
7 * Copyright (C) 2008 Andy Walls <awalls@radix.net>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22 * 02110-1301, USA.
25 #include <media/v4l2-chip-ident.h>
26 #include "cx18-driver.h"
27 #include "cx18-io.h"
28 #include "cx18-cards.h"
30 int cx18_av_write(struct cx18 *cx, u16 addr, u8 value)
32 u32 reg = 0xc40000 + (addr & ~3);
33 u32 mask = 0xff;
34 int shift = (addr & 3) * 8;
35 u32 x = cx18_read_reg(cx, reg);
37 x = (x & ~(mask << shift)) | ((u32)value << shift);
38 cx18_write_reg(cx, x, reg);
39 return 0;
42 int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask)
44 u32 reg = 0xc40000 + (addr & ~3);
45 int shift = (addr & 3) * 8;
46 u32 x = cx18_read_reg(cx, reg);
48 x = (x & ~((u32)0xff << shift)) | ((u32)value << shift);
49 cx18_write_reg_expect(cx, x, reg,
50 ((u32)eval << shift), ((u32)mask << shift));
51 return 0;
54 int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value)
56 cx18_write_reg(cx, value, 0xc40000 + addr);
57 return 0;
60 int
61 cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask)
63 cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask);
64 return 0;
67 int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value)
69 cx18_write_reg_noretry(cx, value, 0xc40000 + addr);
70 return 0;
73 u8 cx18_av_read(struct cx18 *cx, u16 addr)
75 u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3));
76 int shift = (addr & 3) * 8;
78 return (x >> shift) & 0xff;
81 u32 cx18_av_read4(struct cx18 *cx, u16 addr)
83 return cx18_read_reg(cx, 0xc40000 + addr);
86 int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask,
87 u8 or_value)
89 return cx18_av_write(cx, addr,
90 (cx18_av_read(cx, addr) & and_mask) |
91 or_value);
94 int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask,
95 u32 or_value)
97 return cx18_av_write4(cx, addr,
98 (cx18_av_read4(cx, addr) & and_mask) |
99 or_value);
102 static int cx18_av_init(struct v4l2_subdev *sd, u32 val)
104 struct cx18 *cx = v4l2_get_subdevdata(sd);
107 * The crystal freq used in calculations in this driver will be
108 * 28.636360 MHz.
109 * Aim to run the PLLs' VCOs near 400 MHz to minimze errors.
113 * VDCLK Integer = 0x0f, Post Divider = 0x04
114 * AIMCLK Integer = 0x0e, Post Divider = 0x16
116 cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f);
118 /* VDCLK Fraction = 0x2be2fe */
119 /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */
120 cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe);
122 /* AIMCLK Fraction = 0x05227ad */
123 /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/
124 cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad);
126 /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
127 cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56);
128 return 0;
131 static void cx18_av_initialize(struct v4l2_subdev *sd)
133 struct cx18_av_state *state = to_cx18_av_state(sd);
134 struct cx18 *cx = v4l2_get_subdevdata(sd);
135 u32 v;
137 cx18_av_loadfw(cx);
138 /* Stop 8051 code execution */
139 cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000,
140 0x03000000, 0x13000000);
142 /* initallize the PLL by toggling sleep bit */
143 v = cx18_av_read4(cx, CXADEC_HOST_REG1);
144 /* enable sleep mode - register appears to be read only... */
145 cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe);
146 /* disable sleep mode */
147 cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe,
148 v & 0xfffe, 0xffff);
150 /* initialize DLLs */
151 v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF;
152 /* disable FLD */
153 cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v);
154 /* enable FLD */
155 cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100);
157 v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF;
158 /* disable FLD */
159 cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v);
160 /* enable FLD */
161 cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100);
163 /* set analog bias currents. Set Vreg to 1.20V. */
164 cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802);
166 v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1;
167 /* enable TUNE_FIL_RST */
168 cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F);
169 /* disable TUNE_FIL_RST */
170 cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3,
171 v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F);
173 /* enable 656 output */
174 cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00);
176 /* video output drive strength */
177 cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2);
179 /* reset video */
180 cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000);
181 cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0);
184 * Disable Video Auto-config of the Analog Front End and Video PLL.
186 * Since we only use BT.656 pixel mode, which works for both 525 and 625
187 * line systems, it's just easier for us to set registers
188 * 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL),
189 * 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC)
190 * ourselves, than to run around cleaning up after the auto-config.
192 * (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit
193 * get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL
194 * autoconfig either.)
196 * As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3.
198 cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000);
200 /* Setup the Video and and Aux/Audio PLLs */
201 cx18_av_init(sd, 0);
203 /* set video to auto-detect */
204 /* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */
205 /* set the comb notch = 1 */
206 cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800);
208 /* Enable wtw_en in CRUSH_CTRL (Set bit 22) */
209 /* Enable maj_sel in CRUSH_CTRL (Set bit 20) */
210 cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000);
212 /* Set VGA_TRACK_RANGE to 0x20 */
213 cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000);
216 * Initial VBI setup
217 * VIP-1.1, 10 bit mode, enable Raw, disable sliced,
218 * don't clamp raw samples when codes are in use, 1 byte user D-words,
219 * IDID0 has line #, RP code V bit transition on VBLANK, data during
220 * blanking intervals
222 cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e);
224 /* Set the video input.
225 The setting in MODE_CTRL gets lost when we do the above setup */
226 /* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */
227 /* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */
230 * Analog Front End (AFE)
231 * Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2
232 * bypass_ch[1-3] use filter
233 * droop_comp_ch[1-3] disable
234 * clamp_en_ch[1-3] disable
235 * aud_in_sel ADC2
236 * luma_in_sel ADC1
237 * chroma_in_sel ADC2
238 * clamp_sel_ch[2-3] midcode
239 * clamp_sel_ch1 video decoder
240 * vga_sel_ch3 audio decoder
241 * vga_sel_ch[1-2] video decoder
242 * half_bw_ch[1-3] disable
243 * +12db_ch[1-3] disable
245 cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00);
247 /* if(dwEnable && dw3DCombAvailable) { */
248 /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */
249 /* } else { */
250 /* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */
251 /* } */
252 cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F);
253 state->default_volume = 228 - cx18_av_read(cx, 0x8d4);
254 state->default_volume = ((state->default_volume / 2) + 23) << 9;
257 static int cx18_av_reset(struct v4l2_subdev *sd, u32 val)
259 cx18_av_initialize(sd);
260 return 0;
263 static int cx18_av_load_fw(struct v4l2_subdev *sd)
265 struct cx18_av_state *state = to_cx18_av_state(sd);
267 if (!state->is_initialized) {
268 /* initialize on first use */
269 state->is_initialized = 1;
270 cx18_av_initialize(sd);
272 return 0;
275 void cx18_av_std_setup(struct cx18 *cx)
277 struct cx18_av_state *state = &cx->av_state;
278 struct v4l2_subdev *sd = &state->sd;
279 v4l2_std_id std = state->std;
282 * Video ADC crystal clock to pixel clock SRC decimation ratio
283 * 28.636360 MHz/13.5 Mpps * 256 = 0x21f.07b
285 const int src_decimation = 0x21f;
287 int hblank, hactive, burst, vblank, vactive, sc;
288 int vblank656;
289 int luma_lpf, uv_lpf, comb;
290 u32 pll_int, pll_frac, pll_post;
292 /* datasheet startup, step 8d */
293 if (std & ~V4L2_STD_NTSC)
294 cx18_av_write(cx, 0x49f, 0x11);
295 else
296 cx18_av_write(cx, 0x49f, 0x14);
299 * Note: At the end of a field, there are 3 sets of half line duration
300 * (double horizontal rate) pulses:
302 * 5 (625) or 6 (525) half-lines to blank for the vertical retrace
303 * 5 (625) or 6 (525) vertical sync pulses of half line duration
304 * 5 (625) or 6 (525) half-lines of equalization pulses
306 if (std & V4L2_STD_625_50) {
308 * The following relationships of half line counts should hold:
309 * 625 = vblank656 + vactive
310 * 10 = vblank656 - vblank = vsync pulses + equalization pulses
312 * vblank656: half lines after line 625/mid-313 of blanked video
313 * vblank: half lines, after line 5/317, of blanked video
314 * vactive: half lines of active video +
315 * 5 half lines after the end of active video
317 * As far as I can tell:
318 * vblank656 starts counting from the falling edge of the first
319 * vsync pulse (start of line 1 or mid-313)
320 * vblank starts counting from the after the 5 vsync pulses and
321 * 5 or 4 equalization pulses (start of line 6 or 318)
323 * For 625 line systems the driver will extract VBI information
324 * from lines 6-23 and lines 318-335 (but the slicer can only
325 * handle 17 lines, not the 18 in the vblank region).
326 * In addition, we need vblank656 and vblank to be one whole
327 * line longer, to cover line 24 and 336, so the SAV/EAV RP
328 * codes get generated such that the encoder can actually
329 * extract line 23 & 335 (WSS). We'll lose 1 line in each field
330 * at the top of the screen.
332 * It appears the 5 half lines that happen after active
333 * video must be included in vactive (579 instead of 574),
334 * otherwise the colors get badly displayed in various regions
335 * of the screen. I guess the chroma comb filter gets confused
336 * without them (at least when a PVR-350 is the PAL source).
338 vblank656 = 48; /* lines 1 - 24 & 313 - 336 */
339 vblank = 38; /* lines 6 - 24 & 318 - 336 */
340 vactive = 579; /* lines 24 - 313 & 337 - 626 */
343 * For a 13.5 Mpps clock and 15,625 Hz line rate, a line is
344 * is 864 pixels = 720 active + 144 blanking. ITU-R BT.601
345 * specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after
346 * the end of active video to start a horizontal line, so that
347 * leaves 132 pixels of hblank to ignore.
349 hblank = 132;
350 hactive = 720;
353 * Burst gate delay (for 625 line systems)
354 * Hsync leading edge to color burst rise = 5.6 us
355 * Color burst width = 2.25 us
356 * Gate width = 4 pixel clocks
357 * (5.6 us + 2.25/2 us) * 13.5 Mpps + 4/2 clocks = 92.79 clocks
359 burst = 93;
360 luma_lpf = 2;
361 if (std & V4L2_STD_PAL) {
362 uv_lpf = 1;
363 comb = 0x20;
364 /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
365 sc = 688700;
366 } else if (std == V4L2_STD_PAL_Nc) {
367 uv_lpf = 1;
368 comb = 0x20;
369 /* sc = 3582056.25 * src_decimation/28636360 * 2^13 */
370 sc = 556422;
371 } else { /* SECAM */
372 uv_lpf = 0;
373 comb = 0;
374 /* (fr + fb)/2 = (4406260 + 4250000)/2 = 4328130 */
375 /* sc = 4328130 * src_decimation/28636360 * 2^13 */
376 sc = 672314;
378 } else {
380 * The following relationships of half line counts should hold:
381 * 525 = prevsync + vblank656 + vactive
382 * 12 = vblank656 - vblank = vsync pulses + equalization pulses
384 * prevsync: 6 half-lines before the vsync pulses
385 * vblank656: half lines, after line 3/mid-266, of blanked video
386 * vblank: half lines, after line 9/272, of blanked video
387 * vactive: half lines of active video
389 * As far as I can tell:
390 * vblank656 starts counting from the falling edge of the first
391 * vsync pulse (start of line 4 or mid-266)
392 * vblank starts counting from the after the 6 vsync pulses and
393 * 6 or 5 equalization pulses (start of line 10 or 272)
395 * For 525 line systems the driver will extract VBI information
396 * from lines 10-21 and lines 273-284.
398 vblank656 = 38; /* lines 4 - 22 & 266 - 284 */
399 vblank = 26; /* lines 10 - 22 & 272 - 284 */
400 vactive = 481; /* lines 23 - 263 & 285 - 525 */
403 * For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is
404 * is 858 pixels = 720 active + 138 blanking. The Hsync leading
405 * edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the
406 * end of active video, leaving 122 pixels of hblank to ignore
407 * before active video starts.
409 hactive = 720;
410 hblank = 122;
411 luma_lpf = 1;
412 uv_lpf = 1;
415 * Burst gate delay (for 525 line systems)
416 * Hsync leading edge to color burst rise = 5.3 us
417 * Color burst width = 2.5 us
418 * Gate width = 4 pixel clocks
419 * (5.3 us + 2.5/2 us) * 13.5 Mpps + 4/2 clocks = 90.425 clocks
421 if (std == V4L2_STD_PAL_60) {
422 burst = 90;
423 luma_lpf = 2;
424 comb = 0x20;
425 /* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
426 sc = 688700;
427 } else if (std == V4L2_STD_PAL_M) {
428 /* The 97 needs to be verified against PAL-M timings */
429 burst = 97;
430 comb = 0x20;
431 /* sc = 3575611.49 * src_decimation/28636360 * 2^13 */
432 sc = 555421;
433 } else {
434 burst = 90;
435 comb = 0x66;
436 /* sc = 3579545.45.. * src_decimation/28636360 * 2^13 */
437 sc = 556032;
441 /* DEBUG: Displays configured PLL frequency */
442 pll_int = cx18_av_read(cx, 0x108);
443 pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff;
444 pll_post = cx18_av_read(cx, 0x109);
445 CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n",
446 pll_int, pll_frac, pll_post);
448 if (pll_post) {
449 int fsc, pll;
450 u64 tmp;
452 pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25;
453 pll /= pll_post;
454 CX18_DEBUG_INFO_DEV(sd, "Video PLL = %d.%06d MHz\n",
455 pll / 1000000, pll % 1000000);
456 CX18_DEBUG_INFO_DEV(sd, "Pixel rate = %d.%06d Mpixel/sec\n",
457 pll / 8000000, (pll / 8) % 1000000);
459 CX18_DEBUG_INFO_DEV(sd, "ADC XTAL/pixel clock decimation ratio "
460 "= %d.%03d\n", src_decimation / 256,
461 ((src_decimation % 256) * 1000) / 256);
463 tmp = 28636360 * (u64) sc;
464 do_div(tmp, src_decimation);
465 fsc = tmp >> 13;
466 CX18_DEBUG_INFO_DEV(sd,
467 "Chroma sub-carrier initial freq = %d.%06d "
468 "MHz\n", fsc / 1000000, fsc % 1000000);
470 CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, "
471 "vactive %i, vblank656 %i, src_dec %i, "
472 "burst 0x%02x, luma_lpf %i, uv_lpf %i, "
473 "comb 0x%02x, sc 0x%06x\n",
474 hblank, hactive, vblank, vactive, vblank656,
475 src_decimation, burst, luma_lpf, uv_lpf,
476 comb, sc);
479 /* Sets horizontal blanking delay and active lines */
480 cx18_av_write(cx, 0x470, hblank);
481 cx18_av_write(cx, 0x471, 0xff & (((hblank >> 8) & 0x3) |
482 (hactive << 4)));
483 cx18_av_write(cx, 0x472, hactive >> 4);
485 /* Sets burst gate delay */
486 cx18_av_write(cx, 0x473, burst);
488 /* Sets vertical blanking delay and active duration */
489 cx18_av_write(cx, 0x474, vblank);
490 cx18_av_write(cx, 0x475, 0xff & (((vblank >> 8) & 0x3) |
491 (vactive << 4)));
492 cx18_av_write(cx, 0x476, vactive >> 4);
493 cx18_av_write(cx, 0x477, vblank656);
495 /* Sets src decimation rate */
496 cx18_av_write(cx, 0x478, 0xff & src_decimation);
497 cx18_av_write(cx, 0x479, 0xff & (src_decimation >> 8));
499 /* Sets Luma and UV Low pass filters */
500 cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30));
502 /* Enables comb filters */
503 cx18_av_write(cx, 0x47b, comb);
505 /* Sets SC Step*/
506 cx18_av_write(cx, 0x47c, sc);
507 cx18_av_write(cx, 0x47d, 0xff & sc >> 8);
508 cx18_av_write(cx, 0x47e, 0xff & sc >> 16);
510 if (std & V4L2_STD_625_50) {
511 state->slicer_line_delay = 1;
512 state->slicer_line_offset = (6 + state->slicer_line_delay - 2);
513 } else {
514 state->slicer_line_delay = 0;
515 state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
517 cx18_av_write(cx, 0x47f, state->slicer_line_delay);
520 static void input_change(struct cx18 *cx)
522 struct cx18_av_state *state = &cx->av_state;
523 v4l2_std_id std = state->std;
524 u8 v;
526 /* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */
527 cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11);
528 cx18_av_and_or(cx, 0x401, ~0x60, 0);
529 cx18_av_and_or(cx, 0x401, ~0x60, 0x60);
531 if (std & V4L2_STD_525_60) {
532 if (std == V4L2_STD_NTSC_M_JP) {
533 /* Japan uses EIAJ audio standard */
534 cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff);
535 cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f);
536 } else if (std == V4L2_STD_NTSC_M_KR) {
537 /* South Korea uses A2 audio standard */
538 cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff);
539 cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
540 } else {
541 /* Others use the BTSC audio standard */
542 cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff);
543 cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f);
545 } else if (std & V4L2_STD_PAL) {
546 /* Follow tuner change procedure for PAL */
547 cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
548 cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
549 } else if (std & V4L2_STD_SECAM) {
550 /* Select autodetect for SECAM */
551 cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
552 cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
555 v = cx18_av_read(cx, 0x803);
556 if (v & 0x10) {
557 /* restart audio decoder microcontroller */
558 v &= ~0x10;
559 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
560 v |= 0x10;
561 cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
565 static int cx18_av_s_frequency(struct v4l2_subdev *sd,
566 struct v4l2_frequency *freq)
568 struct cx18 *cx = v4l2_get_subdevdata(sd);
569 input_change(cx);
570 return 0;
573 static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input,
574 enum cx18_av_audio_input aud_input)
576 struct cx18_av_state *state = &cx->av_state;
577 struct v4l2_subdev *sd = &state->sd;
579 enum analog_signal_type {
580 NONE, CVBS, Y, C, SIF, Pb, Pr
581 } ch[3] = {NONE, NONE, NONE};
583 u8 afe_mux_cfg;
584 u8 adc2_cfg;
585 u32 afe_cfg;
586 int i;
588 CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n",
589 vid_input, aud_input);
591 if (vid_input >= CX18_AV_COMPOSITE1 &&
592 vid_input <= CX18_AV_COMPOSITE8) {
593 afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1);
594 ch[0] = CVBS;
595 } else {
596 int luma = vid_input & 0xf0;
597 int chroma = vid_input & 0xf00;
599 if ((vid_input & ~0xff0) ||
600 luma < CX18_AV_SVIDEO_LUMA1 ||
601 luma > CX18_AV_SVIDEO_LUMA8 ||
602 chroma < CX18_AV_SVIDEO_CHROMA4 ||
603 chroma > CX18_AV_SVIDEO_CHROMA8) {
604 CX18_ERR_DEV(sd, "0x%04x is not a valid video input!\n",
605 vid_input);
606 return -EINVAL;
608 afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4);
609 ch[0] = Y;
610 if (chroma >= CX18_AV_SVIDEO_CHROMA7) {
611 afe_mux_cfg &= 0x3f;
612 afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2;
613 ch[2] = C;
614 } else {
615 afe_mux_cfg &= 0xcf;
616 afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4;
617 ch[1] = C;
620 /* TODO: LeadTek WinFast DVR3100 H & WinFast PVR2100 can do Y/Pb/Pr */
622 switch (aud_input) {
623 case CX18_AV_AUDIO_SERIAL1:
624 case CX18_AV_AUDIO_SERIAL2:
625 /* do nothing, use serial audio input */
626 break;
627 case CX18_AV_AUDIO4:
628 afe_mux_cfg &= ~0x30;
629 ch[1] = SIF;
630 break;
631 case CX18_AV_AUDIO5:
632 afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10;
633 ch[1] = SIF;
634 break;
635 case CX18_AV_AUDIO6:
636 afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20;
637 ch[1] = SIF;
638 break;
639 case CX18_AV_AUDIO7:
640 afe_mux_cfg &= ~0xc0;
641 ch[2] = SIF;
642 break;
643 case CX18_AV_AUDIO8:
644 afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40;
645 ch[2] = SIF;
646 break;
648 default:
649 CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n",
650 aud_input);
651 return -EINVAL;
654 /* Set up analog front end multiplexers */
655 cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7);
656 /* Set INPUT_MODE to Composite (0) or S-Video (1) */
657 cx18_av_and_or(cx, 0x401, ~0x6, ch[0] == CVBS ? 0 : 0x02);
659 /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */
660 adc2_cfg = cx18_av_read(cx, 0x102);
661 if (ch[2] == NONE)
662 adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */
663 else
664 adc2_cfg |= 0x2; /* Signal on CH3, set ADC2 to CH3 for input */
666 /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */
667 if (ch[1] != NONE && ch[2] != NONE)
668 adc2_cfg |= 0x4; /* Set dual mode */
669 else
670 adc2_cfg &= ~0x4; /* Clear dual mode */
671 cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17);
673 /* Configure the analog front end */
674 afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL);
675 afe_cfg &= 0xff000000;
676 afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */
677 if (ch[1] != NONE && ch[2] != NONE)
678 afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */
680 for (i = 0; i < 3; i++) {
681 switch (ch[i]) {
682 default:
683 case NONE:
684 /* CLAMP_SEL = Fixed to midcode clamp level */
685 afe_cfg |= (0x00000200 << i);
686 break;
687 case CVBS:
688 case Y:
689 if (i > 0)
690 afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */
691 break;
692 case C:
693 case Pb:
694 case Pr:
695 /* CLAMP_SEL = Fixed to midcode clamp level */
696 afe_cfg |= (0x00000200 << i);
697 if (i == 0 && ch[i] == C)
698 afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */
699 break;
700 case SIF:
702 * VGA_GAIN_SEL = Audio Decoder
703 * CLAMP_SEL = Fixed to midcode clamp level
705 afe_cfg |= (0x00000240 << i);
706 if (i == 0)
707 afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */
708 break;
712 cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg);
714 state->vid_input = vid_input;
715 state->aud_input = aud_input;
716 cx18_av_audio_set_path(cx);
717 input_change(cx);
718 return 0;
721 static int cx18_av_s_video_routing(struct v4l2_subdev *sd,
722 u32 input, u32 output, u32 config)
724 struct cx18_av_state *state = to_cx18_av_state(sd);
725 struct cx18 *cx = v4l2_get_subdevdata(sd);
726 return set_input(cx, input, state->aud_input);
729 static int cx18_av_s_audio_routing(struct v4l2_subdev *sd,
730 u32 input, u32 output, u32 config)
732 struct cx18_av_state *state = to_cx18_av_state(sd);
733 struct cx18 *cx = v4l2_get_subdevdata(sd);
734 return set_input(cx, state->vid_input, input);
737 static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
739 struct cx18_av_state *state = to_cx18_av_state(sd);
740 struct cx18 *cx = v4l2_get_subdevdata(sd);
741 u8 vpres;
742 u8 mode;
743 int val = 0;
745 if (state->radio)
746 return 0;
748 vpres = cx18_av_read(cx, 0x40e) & 0x20;
749 vt->signal = vpres ? 0xffff : 0x0;
751 vt->capability |=
752 V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 |
753 V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP;
755 mode = cx18_av_read(cx, 0x804);
757 /* get rxsubchans and audmode */
758 if ((mode & 0xf) == 1)
759 val |= V4L2_TUNER_SUB_STEREO;
760 else
761 val |= V4L2_TUNER_SUB_MONO;
763 if (mode == 2 || mode == 4)
764 val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
766 if (mode & 0x10)
767 val |= V4L2_TUNER_SUB_SAP;
769 vt->rxsubchans = val;
770 vt->audmode = state->audmode;
771 return 0;
774 static int cx18_av_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
776 struct cx18_av_state *state = to_cx18_av_state(sd);
777 struct cx18 *cx = v4l2_get_subdevdata(sd);
778 u8 v;
780 if (state->radio)
781 return 0;
783 v = cx18_av_read(cx, 0x809);
784 v &= ~0xf;
786 switch (vt->audmode) {
787 case V4L2_TUNER_MODE_MONO:
788 /* mono -> mono
789 stereo -> mono
790 bilingual -> lang1 */
791 break;
792 case V4L2_TUNER_MODE_STEREO:
793 case V4L2_TUNER_MODE_LANG1:
794 /* mono -> mono
795 stereo -> stereo
796 bilingual -> lang1 */
797 v |= 0x4;
798 break;
799 case V4L2_TUNER_MODE_LANG1_LANG2:
800 /* mono -> mono
801 stereo -> stereo
802 bilingual -> lang1/lang2 */
803 v |= 0x7;
804 break;
805 case V4L2_TUNER_MODE_LANG2:
806 /* mono -> mono
807 stereo -> stereo
808 bilingual -> lang2 */
809 v |= 0x1;
810 break;
811 default:
812 return -EINVAL;
814 cx18_av_write_expect(cx, 0x809, v, v, 0xff);
815 state->audmode = vt->audmode;
816 return 0;
819 static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
821 struct cx18_av_state *state = to_cx18_av_state(sd);
822 struct cx18 *cx = v4l2_get_subdevdata(sd);
824 u8 fmt = 0; /* zero is autodetect */
825 u8 pal_m = 0;
827 if (state->radio == 0 && state->std == norm)
828 return 0;
830 state->radio = 0;
831 state->std = norm;
833 /* First tests should be against specific std */
834 if (state->std == V4L2_STD_NTSC_M_JP) {
835 fmt = 0x2;
836 } else if (state->std == V4L2_STD_NTSC_443) {
837 fmt = 0x3;
838 } else if (state->std == V4L2_STD_PAL_M) {
839 pal_m = 1;
840 fmt = 0x5;
841 } else if (state->std == V4L2_STD_PAL_N) {
842 fmt = 0x6;
843 } else if (state->std == V4L2_STD_PAL_Nc) {
844 fmt = 0x7;
845 } else if (state->std == V4L2_STD_PAL_60) {
846 fmt = 0x8;
847 } else {
848 /* Then, test against generic ones */
849 if (state->std & V4L2_STD_NTSC)
850 fmt = 0x1;
851 else if (state->std & V4L2_STD_PAL)
852 fmt = 0x4;
853 else if (state->std & V4L2_STD_SECAM)
854 fmt = 0xc;
857 CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt);
859 /* Follow step 9 of section 3.16 in the cx18_av datasheet.
860 Without this PAL may display a vertical ghosting effect.
861 This happens for example with the Yuan MPC622. */
862 if (fmt >= 4 && fmt < 8) {
863 /* Set format to NTSC-M */
864 cx18_av_and_or(cx, 0x400, ~0xf, 1);
865 /* Turn off LCOMB */
866 cx18_av_and_or(cx, 0x47b, ~6, 0);
868 cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20);
869 cx18_av_and_or(cx, 0x403, ~0x3, pal_m);
870 cx18_av_std_setup(cx);
871 input_change(cx);
872 return 0;
875 static int cx18_av_s_radio(struct v4l2_subdev *sd)
877 struct cx18_av_state *state = to_cx18_av_state(sd);
878 state->radio = 1;
879 return 0;
882 static int cx18_av_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
884 struct cx18 *cx = v4l2_get_subdevdata(sd);
886 switch (ctrl->id) {
887 case V4L2_CID_BRIGHTNESS:
888 if (ctrl->value < 0 || ctrl->value > 255) {
889 CX18_ERR_DEV(sd, "invalid brightness setting %d\n",
890 ctrl->value);
891 return -ERANGE;
894 cx18_av_write(cx, 0x414, ctrl->value - 128);
895 break;
897 case V4L2_CID_CONTRAST:
898 if (ctrl->value < 0 || ctrl->value > 127) {
899 CX18_ERR_DEV(sd, "invalid contrast setting %d\n",
900 ctrl->value);
901 return -ERANGE;
904 cx18_av_write(cx, 0x415, ctrl->value << 1);
905 break;
907 case V4L2_CID_SATURATION:
908 if (ctrl->value < 0 || ctrl->value > 127) {
909 CX18_ERR_DEV(sd, "invalid saturation setting %d\n",
910 ctrl->value);
911 return -ERANGE;
914 cx18_av_write(cx, 0x420, ctrl->value << 1);
915 cx18_av_write(cx, 0x421, ctrl->value << 1);
916 break;
918 case V4L2_CID_HUE:
919 if (ctrl->value < -128 || ctrl->value > 127) {
920 CX18_ERR_DEV(sd, "invalid hue setting %d\n",
921 ctrl->value);
922 return -ERANGE;
925 cx18_av_write(cx, 0x422, ctrl->value);
926 break;
928 case V4L2_CID_AUDIO_VOLUME:
929 case V4L2_CID_AUDIO_BASS:
930 case V4L2_CID_AUDIO_TREBLE:
931 case V4L2_CID_AUDIO_BALANCE:
932 case V4L2_CID_AUDIO_MUTE:
933 return cx18_av_audio_s_ctrl(cx, ctrl);
935 default:
936 return -EINVAL;
938 return 0;
941 static int cx18_av_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
943 struct cx18 *cx = v4l2_get_subdevdata(sd);
945 switch (ctrl->id) {
946 case V4L2_CID_BRIGHTNESS:
947 ctrl->value = (s8)cx18_av_read(cx, 0x414) + 128;
948 break;
949 case V4L2_CID_CONTRAST:
950 ctrl->value = cx18_av_read(cx, 0x415) >> 1;
951 break;
952 case V4L2_CID_SATURATION:
953 ctrl->value = cx18_av_read(cx, 0x420) >> 1;
954 break;
955 case V4L2_CID_HUE:
956 ctrl->value = (s8)cx18_av_read(cx, 0x422);
957 break;
958 case V4L2_CID_AUDIO_VOLUME:
959 case V4L2_CID_AUDIO_BASS:
960 case V4L2_CID_AUDIO_TREBLE:
961 case V4L2_CID_AUDIO_BALANCE:
962 case V4L2_CID_AUDIO_MUTE:
963 return cx18_av_audio_g_ctrl(cx, ctrl);
964 default:
965 return -EINVAL;
967 return 0;
970 static int cx18_av_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
972 struct cx18_av_state *state = to_cx18_av_state(sd);
974 switch (qc->id) {
975 case V4L2_CID_BRIGHTNESS:
976 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
977 case V4L2_CID_CONTRAST:
978 case V4L2_CID_SATURATION:
979 return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
980 case V4L2_CID_HUE:
981 return v4l2_ctrl_query_fill(qc, -128, 127, 1, 0);
982 default:
983 break;
986 switch (qc->id) {
987 case V4L2_CID_AUDIO_VOLUME:
988 return v4l2_ctrl_query_fill(qc, 0, 65535,
989 65535 / 100, state->default_volume);
990 case V4L2_CID_AUDIO_MUTE:
991 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
992 case V4L2_CID_AUDIO_BALANCE:
993 case V4L2_CID_AUDIO_BASS:
994 case V4L2_CID_AUDIO_TREBLE:
995 return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, 32768);
996 default:
997 return -EINVAL;
999 return -EINVAL;
1002 static int cx18_av_g_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
1004 struct cx18 *cx = v4l2_get_subdevdata(sd);
1006 return cx18_av_vbi_g_fmt(cx, fmt);
1009 static int cx18_av_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
1011 struct cx18_av_state *state = to_cx18_av_state(sd);
1012 struct cx18 *cx = v4l2_get_subdevdata(sd);
1014 struct v4l2_pix_format *pix;
1015 int HSC, VSC, Vsrc, Hsrc, filter, Vlines;
1016 int is_50Hz = !(state->std & V4L2_STD_525_60);
1018 switch (fmt->type) {
1019 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
1020 pix = &(fmt->fmt.pix);
1022 Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4;
1023 Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4;
1025 Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4;
1026 Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4;
1029 * This adjustment reflects the excess of vactive, set in
1030 * cx18_av_std_setup(), above standard values:
1032 * 480 + 1 for 60 Hz systems
1033 * 576 + 3 for 50 Hz systems
1035 Vlines = pix->height + (is_50Hz ? 3 : 1);
1038 * Invalid height and width scaling requests are:
1039 * 1. width less than 1/16 of the source width
1040 * 2. width greater than the source width
1041 * 3. height less than 1/8 of the source height
1042 * 4. height greater than the source height
1044 if ((pix->width * 16 < Hsrc) || (Hsrc < pix->width) ||
1045 (Vlines * 8 < Vsrc) || (Vsrc < Vlines)) {
1046 CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n",
1047 pix->width, pix->height);
1048 return -ERANGE;
1051 HSC = (Hsrc * (1 << 20)) / pix->width - (1 << 20);
1052 VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9));
1053 VSC &= 0x1fff;
1055 if (pix->width >= 385)
1056 filter = 0;
1057 else if (pix->width > 192)
1058 filter = 1;
1059 else if (pix->width > 96)
1060 filter = 2;
1061 else
1062 filter = 3;
1064 CX18_DEBUG_INFO_DEV(sd,
1065 "decoder set size %dx%d -> scale %ux%u\n",
1066 pix->width, pix->height, HSC, VSC);
1068 /* HSCALE=HSC */
1069 cx18_av_write(cx, 0x418, HSC & 0xff);
1070 cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff);
1071 cx18_av_write(cx, 0x41a, HSC >> 16);
1072 /* VSCALE=VSC */
1073 cx18_av_write(cx, 0x41c, VSC & 0xff);
1074 cx18_av_write(cx, 0x41d, VSC >> 8);
1075 /* VS_INTRLACE=1 VFILT=filter */
1076 cx18_av_write(cx, 0x41e, 0x8 | filter);
1077 break;
1079 case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
1080 return cx18_av_vbi_s_fmt(cx, fmt);
1082 case V4L2_BUF_TYPE_VBI_CAPTURE:
1083 return cx18_av_vbi_s_fmt(cx, fmt);
1085 default:
1086 return -EINVAL;
1088 return 0;
1091 static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable)
1093 struct cx18 *cx = v4l2_get_subdevdata(sd);
1095 CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable");
1096 if (enable) {
1097 cx18_av_write(cx, 0x115, 0x8c);
1098 cx18_av_write(cx, 0x116, 0x07);
1099 } else {
1100 cx18_av_write(cx, 0x115, 0x00);
1101 cx18_av_write(cx, 0x116, 0x00);
1103 return 0;
1106 static void log_video_status(struct cx18 *cx)
1108 static const char *const fmt_strs[] = {
1109 "0x0",
1110 "NTSC-M", "NTSC-J", "NTSC-4.43",
1111 "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60",
1112 "0x9", "0xA", "0xB",
1113 "SECAM",
1114 "0xD", "0xE", "0xF"
1117 struct cx18_av_state *state = &cx->av_state;
1118 struct v4l2_subdev *sd = &state->sd;
1119 u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf;
1120 u8 gen_stat1 = cx18_av_read(cx, 0x40d);
1121 u8 gen_stat2 = cx18_av_read(cx, 0x40e);
1122 int vid_input = state->vid_input;
1124 CX18_INFO_DEV(sd, "Video signal: %spresent\n",
1125 (gen_stat2 & 0x20) ? "" : "not ");
1126 CX18_INFO_DEV(sd, "Detected format: %s\n",
1127 fmt_strs[gen_stat1 & 0xf]);
1129 CX18_INFO_DEV(sd, "Specified standard: %s\n",
1130 vidfmt_sel ? fmt_strs[vidfmt_sel]
1131 : "automatic detection");
1133 if (vid_input >= CX18_AV_COMPOSITE1 &&
1134 vid_input <= CX18_AV_COMPOSITE8) {
1135 CX18_INFO_DEV(sd, "Specified video input: Composite %d\n",
1136 vid_input - CX18_AV_COMPOSITE1 + 1);
1137 } else {
1138 CX18_INFO_DEV(sd, "Specified video input: "
1139 "S-Video (Luma In%d, Chroma In%d)\n",
1140 (vid_input & 0xf0) >> 4,
1141 (vid_input & 0xf00) >> 8);
1144 CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n",
1145 state->audclk_freq);
1148 static void log_audio_status(struct cx18 *cx)
1150 struct cx18_av_state *state = &cx->av_state;
1151 struct v4l2_subdev *sd = &state->sd;
1152 u8 download_ctl = cx18_av_read(cx, 0x803);
1153 u8 mod_det_stat0 = cx18_av_read(cx, 0x804);
1154 u8 mod_det_stat1 = cx18_av_read(cx, 0x805);
1155 u8 audio_config = cx18_av_read(cx, 0x808);
1156 u8 pref_mode = cx18_av_read(cx, 0x809);
1157 u8 afc0 = cx18_av_read(cx, 0x80b);
1158 u8 mute_ctl = cx18_av_read(cx, 0x8d3);
1159 int aud_input = state->aud_input;
1160 char *p;
1162 switch (mod_det_stat0) {
1163 case 0x00: p = "mono"; break;
1164 case 0x01: p = "stereo"; break;
1165 case 0x02: p = "dual"; break;
1166 case 0x04: p = "tri"; break;
1167 case 0x10: p = "mono with SAP"; break;
1168 case 0x11: p = "stereo with SAP"; break;
1169 case 0x12: p = "dual with SAP"; break;
1170 case 0x14: p = "tri with SAP"; break;
1171 case 0xfe: p = "forced mode"; break;
1172 default: p = "not defined"; break;
1174 CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p);
1176 switch (mod_det_stat1) {
1177 case 0x00: p = "not defined"; break;
1178 case 0x01: p = "EIAJ"; break;
1179 case 0x02: p = "A2-M"; break;
1180 case 0x03: p = "A2-BG"; break;
1181 case 0x04: p = "A2-DK1"; break;
1182 case 0x05: p = "A2-DK2"; break;
1183 case 0x06: p = "A2-DK3"; break;
1184 case 0x07: p = "A1 (6.0 MHz FM Mono)"; break;
1185 case 0x08: p = "AM-L"; break;
1186 case 0x09: p = "NICAM-BG"; break;
1187 case 0x0a: p = "NICAM-DK"; break;
1188 case 0x0b: p = "NICAM-I"; break;
1189 case 0x0c: p = "NICAM-L"; break;
1190 case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break;
1191 case 0x0e: p = "IF FM Radio"; break;
1192 case 0x0f: p = "BTSC"; break;
1193 case 0x10: p = "detected chrominance"; break;
1194 case 0xfd: p = "unknown audio standard"; break;
1195 case 0xfe: p = "forced audio standard"; break;
1196 case 0xff: p = "no detected audio standard"; break;
1197 default: p = "not defined"; break;
1199 CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p);
1200 CX18_INFO_DEV(sd, "Audio muted: %s\n",
1201 (mute_ctl & 0x2) ? "yes" : "no");
1202 CX18_INFO_DEV(sd, "Audio microcontroller: %s\n",
1203 (download_ctl & 0x10) ? "running" : "stopped");
1205 switch (audio_config >> 4) {
1206 case 0x00: p = "undefined"; break;
1207 case 0x01: p = "BTSC"; break;
1208 case 0x02: p = "EIAJ"; break;
1209 case 0x03: p = "A2-M"; break;
1210 case 0x04: p = "A2-BG"; break;
1211 case 0x05: p = "A2-DK1"; break;
1212 case 0x06: p = "A2-DK2"; break;
1213 case 0x07: p = "A2-DK3"; break;
1214 case 0x08: p = "A1 (6.0 MHz FM Mono)"; break;
1215 case 0x09: p = "AM-L"; break;
1216 case 0x0a: p = "NICAM-BG"; break;
1217 case 0x0b: p = "NICAM-DK"; break;
1218 case 0x0c: p = "NICAM-I"; break;
1219 case 0x0d: p = "NICAM-L"; break;
1220 case 0x0e: p = "FM radio"; break;
1221 case 0x0f: p = "automatic detection"; break;
1222 default: p = "undefined"; break;
1224 CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p);
1226 if ((audio_config >> 4) < 0xF) {
1227 switch (audio_config & 0xF) {
1228 case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break;
1229 case 0x01: p = "MONO2 (LANGUAGE B)"; break;
1230 case 0x02: p = "MONO3 (STEREO forced MONO)"; break;
1231 case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break;
1232 case 0x04: p = "STEREO"; break;
1233 case 0x05: p = "DUAL1 (AC)"; break;
1234 case 0x06: p = "DUAL2 (BC)"; break;
1235 case 0x07: p = "DUAL3 (AB)"; break;
1236 default: p = "undefined";
1238 CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p);
1239 } else {
1240 switch (audio_config & 0xF) {
1241 case 0x00: p = "BG"; break;
1242 case 0x01: p = "DK1"; break;
1243 case 0x02: p = "DK2"; break;
1244 case 0x03: p = "DK3"; break;
1245 case 0x04: p = "I"; break;
1246 case 0x05: p = "L"; break;
1247 case 0x06: p = "BTSC"; break;
1248 case 0x07: p = "EIAJ"; break;
1249 case 0x08: p = "A2-M"; break;
1250 case 0x09: p = "FM Radio (4.5 MHz)"; break;
1251 case 0x0a: p = "FM Radio (5.5 MHz)"; break;
1252 case 0x0b: p = "S-Video"; break;
1253 case 0x0f: p = "automatic standard and mode detection"; break;
1254 default: p = "undefined"; break;
1256 CX18_INFO_DEV(sd, "Configured audio system: %s\n", p);
1259 if (aud_input)
1260 CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n",
1261 aud_input);
1262 else
1263 CX18_INFO_DEV(sd, "Specified audio input: External\n");
1265 switch (pref_mode & 0xf) {
1266 case 0: p = "mono/language A"; break;
1267 case 1: p = "language B"; break;
1268 case 2: p = "language C"; break;
1269 case 3: p = "analog fallback"; break;
1270 case 4: p = "stereo"; break;
1271 case 5: p = "language AC"; break;
1272 case 6: p = "language BC"; break;
1273 case 7: p = "language AB"; break;
1274 default: p = "undefined"; break;
1276 CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p);
1278 if ((audio_config & 0xf) == 0xf) {
1279 switch ((afc0 >> 3) & 0x1) {
1280 case 0: p = "system DK"; break;
1281 case 1: p = "system L"; break;
1283 CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p);
1285 switch (afc0 & 0x7) {
1286 case 0: p = "Chroma"; break;
1287 case 1: p = "BTSC"; break;
1288 case 2: p = "EIAJ"; break;
1289 case 3: p = "A2-M"; break;
1290 case 4: p = "autodetect"; break;
1291 default: p = "undefined"; break;
1293 CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p);
1297 static int cx18_av_log_status(struct v4l2_subdev *sd)
1299 struct cx18 *cx = v4l2_get_subdevdata(sd);
1300 log_video_status(cx);
1301 log_audio_status(cx);
1302 return 0;
1305 static inline int cx18_av_dbg_match(const struct v4l2_dbg_match *match)
1307 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 1;
1310 static int cx18_av_g_chip_ident(struct v4l2_subdev *sd,
1311 struct v4l2_dbg_chip_ident *chip)
1313 struct cx18_av_state *state = to_cx18_av_state(sd);
1315 if (cx18_av_dbg_match(&chip->match)) {
1316 chip->ident = state->id;
1317 chip->revision = state->rev;
1319 return 0;
1322 #ifdef CONFIG_VIDEO_ADV_DEBUG
1323 static int cx18_av_g_register(struct v4l2_subdev *sd,
1324 struct v4l2_dbg_register *reg)
1326 struct cx18 *cx = v4l2_get_subdevdata(sd);
1328 if (!cx18_av_dbg_match(&reg->match))
1329 return -EINVAL;
1330 if ((reg->reg & 0x3) != 0)
1331 return -EINVAL;
1332 if (!capable(CAP_SYS_ADMIN))
1333 return -EPERM;
1334 reg->size = 4;
1335 reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc);
1336 return 0;
1339 static int cx18_av_s_register(struct v4l2_subdev *sd,
1340 struct v4l2_dbg_register *reg)
1342 struct cx18 *cx = v4l2_get_subdevdata(sd);
1344 if (!cx18_av_dbg_match(&reg->match))
1345 return -EINVAL;
1346 if ((reg->reg & 0x3) != 0)
1347 return -EINVAL;
1348 if (!capable(CAP_SYS_ADMIN))
1349 return -EPERM;
1350 cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val);
1351 return 0;
1353 #endif
1355 static const struct v4l2_subdev_core_ops cx18_av_general_ops = {
1356 .g_chip_ident = cx18_av_g_chip_ident,
1357 .log_status = cx18_av_log_status,
1358 .init = cx18_av_init,
1359 .load_fw = cx18_av_load_fw,
1360 .reset = cx18_av_reset,
1361 .queryctrl = cx18_av_queryctrl,
1362 .g_ctrl = cx18_av_g_ctrl,
1363 .s_ctrl = cx18_av_s_ctrl,
1364 .s_std = cx18_av_s_std,
1365 #ifdef CONFIG_VIDEO_ADV_DEBUG
1366 .g_register = cx18_av_g_register,
1367 .s_register = cx18_av_s_register,
1368 #endif
1371 static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = {
1372 .s_radio = cx18_av_s_radio,
1373 .s_frequency = cx18_av_s_frequency,
1374 .g_tuner = cx18_av_g_tuner,
1375 .s_tuner = cx18_av_s_tuner,
1378 static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = {
1379 .s_clock_freq = cx18_av_s_clock_freq,
1380 .s_routing = cx18_av_s_audio_routing,
1383 static const struct v4l2_subdev_video_ops cx18_av_video_ops = {
1384 .s_routing = cx18_av_s_video_routing,
1385 .decode_vbi_line = cx18_av_decode_vbi_line,
1386 .s_stream = cx18_av_s_stream,
1387 .g_fmt = cx18_av_g_fmt,
1388 .s_fmt = cx18_av_s_fmt,
1391 static const struct v4l2_subdev_ops cx18_av_ops = {
1392 .core = &cx18_av_general_ops,
1393 .tuner = &cx18_av_tuner_ops,
1394 .audio = &cx18_av_audio_ops,
1395 .video = &cx18_av_video_ops,
1398 int cx18_av_probe(struct cx18 *cx)
1400 struct cx18_av_state *state = &cx->av_state;
1401 struct v4l2_subdev *sd;
1403 state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff;
1404 state->id = ((state->rev >> 4) == CXADEC_CHIP_TYPE_MAKO)
1405 ? V4L2_IDENT_CX23418_843 : V4L2_IDENT_UNKNOWN;
1407 state->vid_input = CX18_AV_COMPOSITE7;
1408 state->aud_input = CX18_AV_AUDIO8;
1409 state->audclk_freq = 48000;
1410 state->audmode = V4L2_TUNER_MODE_LANG1;
1411 state->slicer_line_delay = 0;
1412 state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
1414 sd = &state->sd;
1415 v4l2_subdev_init(sd, &cx18_av_ops);
1416 v4l2_set_subdevdata(sd, cx);
1417 snprintf(sd->name, sizeof(sd->name),
1418 "%s %03x", cx->v4l2_dev.name, (state->rev >> 4));
1419 sd->grp_id = CX18_HW_418_AV;
1420 return v4l2_device_register_subdev(&cx->v4l2_dev, sd);