Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / drivers / net / bnx2x_init_ops.h
blob38b970a14fd79d19b83a3b24203feafb41091835
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2009 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
21 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
22 u32 len)
24 u32 i;
26 for (i = 0; i < len; i++)
27 REG_WR(bp, addr + i*4, data[i]);
30 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
31 u32 len)
33 u32 i;
35 for (i = 0; i < len; i++)
36 REG_WR_IND(bp, addr + i*4, data[i]);
39 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
41 if (bp->dmae_ready)
42 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
43 else
44 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
47 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
49 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
50 u32 buf_len32 = buf_len/4;
51 u32 i;
53 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
55 for (i = 0; i < len; i += buf_len32) {
56 u32 cur_len = min(buf_len32, len - i);
58 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
62 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
63 u32 len64)
65 u32 buf_len32 = FW_BUF_SIZE/4;
66 u32 len = len64*2;
67 u64 data64 = 0;
68 u32 i;
70 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
71 data64 = HILO_U64((*(data + 1)), (*data));
73 len64 = min((u32)(FW_BUF_SIZE/8), len64);
74 for (i = 0; i < len64; i++) {
75 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
77 *pdata = data64;
80 for (i = 0; i < len; i += buf_len32) {
81 u32 cur_len = min(buf_len32, len - i);
83 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
87 /*********************************************************
88 There are different blobs for each PRAM section.
89 In addition, each blob write operation is divided into a few operations
90 in order to decrease the amount of phys. contiguous buffer needed.
91 Thus, when we select a blob the address may be with some offset
92 from the beginning of PRAM section.
93 The same holds for the INT_TABLE sections.
94 **********************************************************/
95 #define IF_IS_INT_TABLE_ADDR(base, addr) \
96 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
98 #define IF_IS_PRAM_ADDR(base, addr) \
99 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
101 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
103 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
104 data = INIT_TSEM_INT_TABLE_DATA(bp);
105 else
106 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
107 data = INIT_CSEM_INT_TABLE_DATA(bp);
108 else
109 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
110 data = INIT_USEM_INT_TABLE_DATA(bp);
111 else
112 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
113 data = INIT_XSEM_INT_TABLE_DATA(bp);
114 else
115 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
116 data = INIT_TSEM_PRAM_DATA(bp);
117 else
118 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
119 data = INIT_CSEM_PRAM_DATA(bp);
120 else
121 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
122 data = INIT_USEM_PRAM_DATA(bp);
123 else
124 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
125 data = INIT_XSEM_PRAM_DATA(bp);
127 return data;
130 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
132 if (bp->dmae_ready)
133 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
134 else
135 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
138 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
139 u32 len)
141 data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
143 if (bp->dmae_ready)
144 VIRT_WR_DMAE_LEN(bp, data, addr, len);
145 else
146 bnx2x_init_ind_wr(bp, addr, data, len);
149 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
151 const u8 *data = NULL;
152 int rc;
153 u32 i;
155 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
157 rc = bnx2x_gunzip(bp, data, len);
158 if (rc)
159 return;
161 /* gunzip_outlen is in dwords */
162 len = GUNZIP_OUTLEN(bp);
163 for (i = 0; i < len; i++)
164 ((u32 *)GUNZIP_BUF(bp))[i] =
165 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
167 bnx2x_write_big_buf_wb(bp, addr, len);
170 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
172 u16 op_start =
173 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
174 u16 op_end =
175 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
176 union init_op *op;
177 int hw_wr;
178 u32 i, op_type, addr, len;
179 const u32 *data, *data_base;
181 /* If empty block */
182 if (op_start == op_end)
183 return;
185 if (CHIP_REV_IS_FPGA(bp))
186 hw_wr = OP_WR_FPGA;
187 else if (CHIP_REV_IS_EMUL(bp))
188 hw_wr = OP_WR_EMUL;
189 else
190 hw_wr = OP_WR_ASIC;
192 data_base = INIT_DATA(bp);
194 for (i = op_start; i < op_end; i++) {
196 op = (union init_op *)&(INIT_OPS(bp)[i]);
198 op_type = op->str_wr.op;
199 addr = op->str_wr.offset;
200 len = op->str_wr.data_len;
201 data = data_base + op->str_wr.data_off;
203 /* HW/EMUL specific */
204 if ((op_type > OP_WB) && (op_type == hw_wr))
205 op_type = OP_WR;
207 switch (op_type) {
208 case OP_RD:
209 REG_RD(bp, addr);
210 break;
211 case OP_WR:
212 REG_WR(bp, addr, op->write.val);
213 break;
214 case OP_SW:
215 bnx2x_init_str_wr(bp, addr, data, len);
216 break;
217 case OP_WB:
218 bnx2x_init_wr_wb(bp, addr, data, len);
219 break;
220 case OP_SI:
221 bnx2x_init_ind_wr(bp, addr, data, len);
222 break;
223 case OP_ZR:
224 bnx2x_init_fill(bp, addr, 0, op->zero.len);
225 break;
226 case OP_ZP:
227 bnx2x_init_wr_zp(bp, addr, len,
228 op->str_wr.data_off);
229 break;
230 case OP_WR_64:
231 bnx2x_init_wr_64(bp, addr, data, len);
232 break;
233 default:
234 /* happens whenever an op is of a diff HW */
235 break;
241 /****************************************************************************
242 * PXP Arbiter
243 ****************************************************************************/
245 * This code configures the PCI read/write arbiter
246 * which implements a weighted round robin
247 * between the virtual queues in the chip.
249 * The values were derived for each PCI max payload and max request size.
250 * since max payload and max request size are only known at run time,
251 * this is done as a separate init stage.
254 #define NUM_WR_Q 13
255 #define NUM_RD_Q 29
256 #define MAX_RD_ORD 3
257 #define MAX_WR_ORD 2
259 /* configuration for one arbiter queue */
260 struct arb_line {
261 int l;
262 int add;
263 int ubound;
266 /* derived configuration for each read queue for each max request size */
267 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
268 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
269 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
270 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
271 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
272 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
273 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
274 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
275 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
276 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
277 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
278 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
279 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
280 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
281 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
282 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
283 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
284 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
285 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
286 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
287 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
288 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
289 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
290 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
291 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
292 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
293 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
294 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
295 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
296 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
299 /* derived configuration for each write queue for each max request size */
300 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
301 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
302 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
303 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
304 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
305 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
306 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
307 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
308 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
309 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
310 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
311 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
312 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
313 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
316 /* register addresses for read queues */
317 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
318 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
319 PXP2_REG_RQ_BW_RD_UBOUND0},
320 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
321 PXP2_REG_PSWRQ_BW_UB1},
322 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
323 PXP2_REG_PSWRQ_BW_UB2},
324 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
325 PXP2_REG_PSWRQ_BW_UB3},
326 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
327 PXP2_REG_RQ_BW_RD_UBOUND4},
328 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
329 PXP2_REG_RQ_BW_RD_UBOUND5},
330 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
331 PXP2_REG_PSWRQ_BW_UB6},
332 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
333 PXP2_REG_PSWRQ_BW_UB7},
334 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
335 PXP2_REG_PSWRQ_BW_UB8},
336 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
337 PXP2_REG_PSWRQ_BW_UB9},
338 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
339 PXP2_REG_PSWRQ_BW_UB10},
340 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
341 PXP2_REG_PSWRQ_BW_UB11},
342 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
343 PXP2_REG_RQ_BW_RD_UBOUND12},
344 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
345 PXP2_REG_RQ_BW_RD_UBOUND13},
346 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
347 PXP2_REG_RQ_BW_RD_UBOUND14},
348 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
349 PXP2_REG_RQ_BW_RD_UBOUND15},
350 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
351 PXP2_REG_RQ_BW_RD_UBOUND16},
352 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
353 PXP2_REG_RQ_BW_RD_UBOUND17},
354 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
355 PXP2_REG_RQ_BW_RD_UBOUND18},
356 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
357 PXP2_REG_RQ_BW_RD_UBOUND19},
358 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
359 PXP2_REG_RQ_BW_RD_UBOUND20},
360 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
361 PXP2_REG_RQ_BW_RD_UBOUND22},
362 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
363 PXP2_REG_RQ_BW_RD_UBOUND23},
364 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
365 PXP2_REG_RQ_BW_RD_UBOUND24},
366 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
367 PXP2_REG_RQ_BW_RD_UBOUND25},
368 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
369 PXP2_REG_RQ_BW_RD_UBOUND26},
370 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
371 PXP2_REG_RQ_BW_RD_UBOUND27},
372 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
373 PXP2_REG_PSWRQ_BW_UB28}
376 /* register addresses for write queues */
377 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
378 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
379 PXP2_REG_PSWRQ_BW_UB1},
380 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
381 PXP2_REG_PSWRQ_BW_UB2},
382 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
383 PXP2_REG_PSWRQ_BW_UB3},
384 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
385 PXP2_REG_PSWRQ_BW_UB6},
386 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
387 PXP2_REG_PSWRQ_BW_UB7},
388 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
389 PXP2_REG_PSWRQ_BW_UB8},
390 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
391 PXP2_REG_PSWRQ_BW_UB9},
392 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
393 PXP2_REG_PSWRQ_BW_UB10},
394 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
395 PXP2_REG_PSWRQ_BW_UB11},
396 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
397 PXP2_REG_PSWRQ_BW_UB28},
398 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
399 PXP2_REG_RQ_BW_WR_UBOUND29},
400 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
401 PXP2_REG_RQ_BW_WR_UBOUND30}
404 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
406 u32 val, i;
408 if (r_order > MAX_RD_ORD) {
409 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
410 r_order, MAX_RD_ORD);
411 r_order = MAX_RD_ORD;
413 if (w_order > MAX_WR_ORD) {
414 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
415 w_order, MAX_WR_ORD);
416 w_order = MAX_WR_ORD;
418 if (CHIP_REV_IS_FPGA(bp)) {
419 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
420 w_order = 0;
422 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
424 for (i = 0; i < NUM_RD_Q-1; i++) {
425 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
426 REG_WR(bp, read_arb_addr[i].add,
427 read_arb_data[i][r_order].add);
428 REG_WR(bp, read_arb_addr[i].ubound,
429 read_arb_data[i][r_order].ubound);
432 for (i = 0; i < NUM_WR_Q-1; i++) {
433 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
434 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
436 REG_WR(bp, write_arb_addr[i].l,
437 write_arb_data[i][w_order].l);
439 REG_WR(bp, write_arb_addr[i].add,
440 write_arb_data[i][w_order].add);
442 REG_WR(bp, write_arb_addr[i].ubound,
443 write_arb_data[i][w_order].ubound);
444 } else {
446 val = REG_RD(bp, write_arb_addr[i].l);
447 REG_WR(bp, write_arb_addr[i].l,
448 val | (write_arb_data[i][w_order].l << 10));
450 val = REG_RD(bp, write_arb_addr[i].add);
451 REG_WR(bp, write_arb_addr[i].add,
452 val | (write_arb_data[i][w_order].add << 10));
454 val = REG_RD(bp, write_arb_addr[i].ubound);
455 REG_WR(bp, write_arb_addr[i].ubound,
456 val | (write_arb_data[i][w_order].ubound << 7));
460 val = write_arb_data[NUM_WR_Q-1][w_order].add;
461 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
462 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
463 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
465 val = read_arb_data[NUM_RD_Q-1][r_order].add;
466 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
467 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
468 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
470 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
471 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
472 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
473 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
475 if (r_order == MAX_RD_ORD)
476 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
478 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
480 if (CHIP_IS_E1H(bp)) {
481 /* MPS w_order optimal TH presently TH
482 * 128 0 0 2
483 * 256 1 1 3
484 * >=512 2 2 3
486 val = ((w_order == 0) ? 2 : 3);
487 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
488 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
489 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
490 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
491 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
492 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
493 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
494 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
495 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
496 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
497 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
501 #endif /* BNX2X_INIT_OPS_H */