1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 static const struct e1000_info
*e1000_info_tbl
[] = {
56 [board_82571
] = &e1000_82571_info
,
57 [board_82572
] = &e1000_82572_info
,
58 [board_82573
] = &e1000_82573_info
,
59 [board_82574
] = &e1000_82574_info
,
60 [board_82583
] = &e1000_82583_info
,
61 [board_80003es2lan
] = &e1000_es2_info
,
62 [board_ich8lan
] = &e1000_ich8_info
,
63 [board_ich9lan
] = &e1000_ich9_info
,
64 [board_ich10lan
] = &e1000_ich10_info
,
65 [board_pchlan
] = &e1000_pch_info
,
70 * e1000_get_hw_dev_name - return device name string
71 * used by hardware layer to print debugging information
73 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
75 return hw
->adapter
->netdev
->name
;
80 * e1000_desc_unused - calculate if we have unused descriptors
82 static int e1000_desc_unused(struct e1000_ring
*ring
)
84 if (ring
->next_to_clean
> ring
->next_to_use
)
85 return ring
->next_to_clean
- ring
->next_to_use
- 1;
87 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
91 * e1000_receive_skb - helper function to handle Rx indications
92 * @adapter: board private structure
93 * @status: descriptor status field as written by hardware
94 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
95 * @skb: pointer to sk_buff to be indicated to stack
97 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
98 struct net_device
*netdev
,
100 u8 status
, __le16 vlan
)
102 skb
->protocol
= eth_type_trans(skb
, netdev
);
104 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
105 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
106 le16_to_cpu(vlan
), skb
);
108 napi_gro_receive(&adapter
->napi
, skb
);
112 * e1000_rx_checksum - Receive Checksum Offload for 82543
113 * @adapter: board private structure
114 * @status_err: receive descriptor status and error fields
115 * @csum: receive descriptor csum field
116 * @sk_buff: socket buffer with received data
118 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
119 u32 csum
, struct sk_buff
*skb
)
121 u16 status
= (u16
)status_err
;
122 u8 errors
= (u8
)(status_err
>> 24);
123 skb
->ip_summed
= CHECKSUM_NONE
;
125 /* Ignore Checksum bit is set */
126 if (status
& E1000_RXD_STAT_IXSM
)
128 /* TCP/UDP checksum error bit is set */
129 if (errors
& E1000_RXD_ERR_TCPE
) {
130 /* let the stack verify checksum errors */
131 adapter
->hw_csum_err
++;
135 /* TCP/UDP Checksum has not been calculated */
136 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
139 /* It must be a TCP or UDP packet with a valid checksum */
140 if (status
& E1000_RXD_STAT_TCPCS
) {
141 /* TCP checksum is good */
142 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
145 * IP fragment with UDP payload
146 * Hardware complements the payload checksum, so we undo it
147 * and then put the value in host order for further stack use.
149 __sum16 sum
= (__force __sum16
)htons(csum
);
150 skb
->csum
= csum_unfold(~sum
);
151 skb
->ip_summed
= CHECKSUM_COMPLETE
;
153 adapter
->hw_csum_good
++;
157 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
158 * @adapter: address of board private structure
160 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
163 struct net_device
*netdev
= adapter
->netdev
;
164 struct pci_dev
*pdev
= adapter
->pdev
;
165 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
166 struct e1000_rx_desc
*rx_desc
;
167 struct e1000_buffer
*buffer_info
;
170 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
172 i
= rx_ring
->next_to_use
;
173 buffer_info
= &rx_ring
->buffer_info
[i
];
175 while (cleaned_count
--) {
176 skb
= buffer_info
->skb
;
182 skb
= netdev_alloc_skb(netdev
, bufsz
);
184 /* Better luck next round */
185 adapter
->alloc_rx_buff_failed
++;
190 * Make buffer alignment 2 beyond a 16 byte boundary
191 * this will result in a 16 byte aligned IP header after
192 * the 14 byte MAC header is removed
194 skb_reserve(skb
, NET_IP_ALIGN
);
196 buffer_info
->skb
= skb
;
198 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
199 adapter
->rx_buffer_len
,
201 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
202 dev_err(&pdev
->dev
, "RX DMA map failed\n");
203 adapter
->rx_dma_failed
++;
207 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
208 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
211 if (i
== rx_ring
->count
)
213 buffer_info
= &rx_ring
->buffer_info
[i
];
216 if (rx_ring
->next_to_use
!= i
) {
217 rx_ring
->next_to_use
= i
;
219 i
= (rx_ring
->count
- 1);
222 * Force memory writes to complete before letting h/w
223 * know there are new descriptors to fetch. (Only
224 * applicable for weak-ordered memory model archs,
228 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
233 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
234 * @adapter: address of board private structure
236 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
239 struct net_device
*netdev
= adapter
->netdev
;
240 struct pci_dev
*pdev
= adapter
->pdev
;
241 union e1000_rx_desc_packet_split
*rx_desc
;
242 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
243 struct e1000_buffer
*buffer_info
;
244 struct e1000_ps_page
*ps_page
;
248 i
= rx_ring
->next_to_use
;
249 buffer_info
= &rx_ring
->buffer_info
[i
];
251 while (cleaned_count
--) {
252 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
254 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
255 ps_page
= &buffer_info
->ps_pages
[j
];
256 if (j
>= adapter
->rx_ps_pages
) {
257 /* all unused desc entries get hw null ptr */
258 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
261 if (!ps_page
->page
) {
262 ps_page
->page
= alloc_page(GFP_ATOMIC
);
263 if (!ps_page
->page
) {
264 adapter
->alloc_rx_buff_failed
++;
267 ps_page
->dma
= pci_map_page(pdev
,
271 if (pci_dma_mapping_error(pdev
, ps_page
->dma
)) {
272 dev_err(&adapter
->pdev
->dev
,
273 "RX DMA page map failed\n");
274 adapter
->rx_dma_failed
++;
279 * Refresh the desc even if buffer_addrs
280 * didn't change because each write-back
283 rx_desc
->read
.buffer_addr
[j
+1] =
284 cpu_to_le64(ps_page
->dma
);
287 skb
= netdev_alloc_skb(netdev
,
288 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
291 adapter
->alloc_rx_buff_failed
++;
296 * Make buffer alignment 2 beyond a 16 byte boundary
297 * this will result in a 16 byte aligned IP header after
298 * the 14 byte MAC header is removed
300 skb_reserve(skb
, NET_IP_ALIGN
);
302 buffer_info
->skb
= skb
;
303 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
304 adapter
->rx_ps_bsize0
,
306 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
307 dev_err(&pdev
->dev
, "RX DMA map failed\n");
308 adapter
->rx_dma_failed
++;
310 dev_kfree_skb_any(skb
);
311 buffer_info
->skb
= NULL
;
315 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
318 if (i
== rx_ring
->count
)
320 buffer_info
= &rx_ring
->buffer_info
[i
];
324 if (rx_ring
->next_to_use
!= i
) {
325 rx_ring
->next_to_use
= i
;
328 i
= (rx_ring
->count
- 1);
331 * Force memory writes to complete before letting h/w
332 * know there are new descriptors to fetch. (Only
333 * applicable for weak-ordered memory model archs,
338 * Hardware increments by 16 bytes, but packet split
339 * descriptors are 32 bytes...so we increment tail
342 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
347 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
348 * @adapter: address of board private structure
349 * @cleaned_count: number of buffers to allocate this pass
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
355 struct net_device
*netdev
= adapter
->netdev
;
356 struct pci_dev
*pdev
= adapter
->pdev
;
357 struct e1000_rx_desc
*rx_desc
;
358 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
359 struct e1000_buffer
*buffer_info
;
362 unsigned int bufsz
= 256 -
363 16 /* for skb_reserve */ -
366 i
= rx_ring
->next_to_use
;
367 buffer_info
= &rx_ring
->buffer_info
[i
];
369 while (cleaned_count
--) {
370 skb
= buffer_info
->skb
;
376 skb
= netdev_alloc_skb(netdev
, bufsz
);
377 if (unlikely(!skb
)) {
378 /* Better luck next round */
379 adapter
->alloc_rx_buff_failed
++;
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
387 skb_reserve(skb
, NET_IP_ALIGN
);
389 buffer_info
->skb
= skb
;
391 /* allocate a new page if necessary */
392 if (!buffer_info
->page
) {
393 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
394 if (unlikely(!buffer_info
->page
)) {
395 adapter
->alloc_rx_buff_failed
++;
400 if (!buffer_info
->dma
)
401 buffer_info
->dma
= pci_map_page(pdev
,
402 buffer_info
->page
, 0,
406 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
407 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
409 if (unlikely(++i
== rx_ring
->count
))
411 buffer_info
= &rx_ring
->buffer_info
[i
];
414 if (likely(rx_ring
->next_to_use
!= i
)) {
415 rx_ring
->next_to_use
= i
;
416 if (unlikely(i
-- == 0))
417 i
= (rx_ring
->count
- 1);
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
424 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
435 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
436 int *work_done
, int work_to_do
)
438 struct net_device
*netdev
= adapter
->netdev
;
439 struct pci_dev
*pdev
= adapter
->pdev
;
440 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
441 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
442 struct e1000_buffer
*buffer_info
, *next_buffer
;
445 int cleaned_count
= 0;
447 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
449 i
= rx_ring
->next_to_clean
;
450 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
451 buffer_info
= &rx_ring
->buffer_info
[i
];
453 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
457 if (*work_done
>= work_to_do
)
461 status
= rx_desc
->status
;
462 skb
= buffer_info
->skb
;
463 buffer_info
->skb
= NULL
;
465 prefetch(skb
->data
- NET_IP_ALIGN
);
468 if (i
== rx_ring
->count
)
470 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
473 next_buffer
= &rx_ring
->buffer_info
[i
];
477 pci_unmap_single(pdev
,
479 adapter
->rx_buffer_len
,
481 buffer_info
->dma
= 0;
483 length
= le16_to_cpu(rx_desc
->length
);
485 /* !EOP means multiple descriptors were used to store a single
486 * packet, also make sure the frame isn't just CRC only */
487 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
488 /* All receives must fit into a single buffer */
489 e_dbg("%s: Receive packet consumed multiple buffers\n",
492 buffer_info
->skb
= skb
;
496 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
498 buffer_info
->skb
= skb
;
502 /* adjust length to remove Ethernet CRC */
503 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
506 total_rx_bytes
+= length
;
510 * code added for copybreak, this should improve
511 * performance for small packets with large amounts
512 * of reassembly being done in the stack
514 if (length
< copybreak
) {
515 struct sk_buff
*new_skb
=
516 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
518 skb_reserve(new_skb
, NET_IP_ALIGN
);
519 skb_copy_to_linear_data_offset(new_skb
,
525 /* save the skb in buffer_info as good */
526 buffer_info
->skb
= skb
;
529 /* else just continue with the old one */
531 /* end copybreak code */
532 skb_put(skb
, length
);
534 /* Receive Checksum Offload */
535 e1000_rx_checksum(adapter
,
537 ((u32
)(rx_desc
->errors
) << 24),
538 le16_to_cpu(rx_desc
->csum
), skb
);
540 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
545 /* return some buffers to hardware, one at a time is too slow */
546 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
547 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
551 /* use prefetched values */
553 buffer_info
= next_buffer
;
555 rx_ring
->next_to_clean
= i
;
557 cleaned_count
= e1000_desc_unused(rx_ring
);
559 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
561 adapter
->total_rx_bytes
+= total_rx_bytes
;
562 adapter
->total_rx_packets
+= total_rx_packets
;
563 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
564 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
568 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
569 struct e1000_buffer
*buffer_info
)
571 buffer_info
->dma
= 0;
572 if (buffer_info
->skb
) {
573 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
575 dev_kfree_skb_any(buffer_info
->skb
);
576 buffer_info
->skb
= NULL
;
578 buffer_info
->time_stamp
= 0;
581 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
583 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
584 unsigned int i
= tx_ring
->next_to_clean
;
585 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
586 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
588 /* detected Tx unit hang */
589 e_err("Detected Tx Unit Hang:\n"
592 " next_to_use <%x>\n"
593 " next_to_clean <%x>\n"
594 "buffer_info[next_to_clean]:\n"
595 " time_stamp <%lx>\n"
596 " next_to_watch <%x>\n"
598 " next_to_watch.status <%x>\n",
599 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
600 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
601 tx_ring
->next_to_use
,
602 tx_ring
->next_to_clean
,
603 tx_ring
->buffer_info
[eop
].time_stamp
,
606 eop_desc
->upper
.fields
.status
);
610 * e1000_clean_tx_irq - Reclaim resources after transmit completes
611 * @adapter: board private structure
613 * the return value indicates whether actual cleaning was done, there
614 * is no guarantee that everything was cleaned
616 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
618 struct net_device
*netdev
= adapter
->netdev
;
619 struct e1000_hw
*hw
= &adapter
->hw
;
620 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
621 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
622 struct e1000_buffer
*buffer_info
;
624 unsigned int count
= 0;
625 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
627 i
= tx_ring
->next_to_clean
;
628 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
629 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
631 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
632 (count
< tx_ring
->count
)) {
633 bool cleaned
= false;
634 for (; !cleaned
; count
++) {
635 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
636 buffer_info
= &tx_ring
->buffer_info
[i
];
637 cleaned
= (i
== eop
);
640 struct sk_buff
*skb
= buffer_info
->skb
;
641 unsigned int segs
, bytecount
;
642 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
643 /* multiply data chunks by size of headers */
644 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
646 total_tx_packets
+= segs
;
647 total_tx_bytes
+= bytecount
;
650 e1000_put_txbuf(adapter
, buffer_info
);
651 tx_desc
->upper
.data
= 0;
654 if (i
== tx_ring
->count
)
658 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
659 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
662 tx_ring
->next_to_clean
= i
;
664 #define TX_WAKE_THRESHOLD 32
665 if (count
&& netif_carrier_ok(netdev
) &&
666 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
667 /* Make sure that anybody stopping the queue after this
668 * sees the new next_to_clean.
672 if (netif_queue_stopped(netdev
) &&
673 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
674 netif_wake_queue(netdev
);
675 ++adapter
->restart_queue
;
679 if (adapter
->detect_tx_hung
) {
680 /* Detect a transmit hang in hardware, this serializes the
681 * check with the clearing of time_stamp and movement of i */
682 adapter
->detect_tx_hung
= 0;
683 if (tx_ring
->buffer_info
[i
].time_stamp
&&
684 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
685 + (adapter
->tx_timeout_factor
* HZ
))
686 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
687 e1000_print_tx_hang(adapter
);
688 netif_stop_queue(netdev
);
691 adapter
->total_tx_bytes
+= total_tx_bytes
;
692 adapter
->total_tx_packets
+= total_tx_packets
;
693 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
694 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
695 return (count
< tx_ring
->count
);
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
706 int *work_done
, int work_to_do
)
708 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
709 struct net_device
*netdev
= adapter
->netdev
;
710 struct pci_dev
*pdev
= adapter
->pdev
;
711 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
712 struct e1000_buffer
*buffer_info
, *next_buffer
;
713 struct e1000_ps_page
*ps_page
;
717 int cleaned_count
= 0;
719 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
721 i
= rx_ring
->next_to_clean
;
722 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
723 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
724 buffer_info
= &rx_ring
->buffer_info
[i
];
726 while (staterr
& E1000_RXD_STAT_DD
) {
727 if (*work_done
>= work_to_do
)
730 skb
= buffer_info
->skb
;
732 /* in the packet split case this is header only */
733 prefetch(skb
->data
- NET_IP_ALIGN
);
736 if (i
== rx_ring
->count
)
738 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
741 next_buffer
= &rx_ring
->buffer_info
[i
];
745 pci_unmap_single(pdev
, buffer_info
->dma
,
746 adapter
->rx_ps_bsize0
,
748 buffer_info
->dma
= 0;
750 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev
->name
);
753 dev_kfree_skb_irq(skb
);
757 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
758 dev_kfree_skb_irq(skb
);
762 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev
->name
);
767 dev_kfree_skb_irq(skb
);
772 skb_put(skb
, length
);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1
&& (l1
<= copybreak
) &&
787 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
790 ps_page
= &buffer_info
->ps_pages
[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
797 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
798 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
799 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
800 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
801 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
802 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
803 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
806 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
814 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
815 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
819 ps_page
= &buffer_info
->ps_pages
[j
];
820 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
823 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
824 ps_page
->page
= NULL
;
826 skb
->data_len
+= length
;
827 skb
->truesize
+= length
;
830 /* strip the ethernet crc, problem is we're using pages now so
831 * this whole operation can get a little cpu intensive
833 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
834 pskb_trim(skb
, skb
->len
- 4);
837 total_rx_bytes
+= skb
->len
;
840 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
841 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
843 if (rx_desc
->wb
.upper
.header_status
&
844 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
845 adapter
->rx_hdr_split
++;
847 e1000_receive_skb(adapter
, netdev
, skb
,
848 staterr
, rx_desc
->wb
.middle
.vlan
);
851 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
852 buffer_info
->skb
= NULL
;
854 /* return some buffers to hardware, one at a time is too slow */
855 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
856 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
860 /* use prefetched values */
862 buffer_info
= next_buffer
;
864 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
866 rx_ring
->next_to_clean
= i
;
868 cleaned_count
= e1000_desc_unused(rx_ring
);
870 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
872 adapter
->total_rx_bytes
+= total_rx_bytes
;
873 adapter
->total_rx_packets
+= total_rx_packets
;
874 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
875 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
880 * e1000_consume_page - helper function
882 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
887 skb
->data_len
+= length
;
888 skb
->truesize
+= length
;
892 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
893 * @adapter: board private structure
895 * the return value indicates whether actual cleaning was done, there
896 * is no guarantee that everything was cleaned
899 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
900 int *work_done
, int work_to_do
)
902 struct net_device
*netdev
= adapter
->netdev
;
903 struct pci_dev
*pdev
= adapter
->pdev
;
904 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
905 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
906 struct e1000_buffer
*buffer_info
, *next_buffer
;
909 int cleaned_count
= 0;
910 bool cleaned
= false;
911 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
913 i
= rx_ring
->next_to_clean
;
914 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
915 buffer_info
= &rx_ring
->buffer_info
[i
];
917 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
921 if (*work_done
>= work_to_do
)
925 status
= rx_desc
->status
;
926 skb
= buffer_info
->skb
;
927 buffer_info
->skb
= NULL
;
930 if (i
== rx_ring
->count
)
932 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
935 next_buffer
= &rx_ring
->buffer_info
[i
];
939 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
941 buffer_info
->dma
= 0;
943 length
= le16_to_cpu(rx_desc
->length
);
945 /* errors is only valid for DD + EOP descriptors */
946 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
947 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
948 /* recycle both page and skb */
949 buffer_info
->skb
= skb
;
950 /* an error means any chain goes out the window
952 if (rx_ring
->rx_skb_top
)
953 dev_kfree_skb(rx_ring
->rx_skb_top
);
954 rx_ring
->rx_skb_top
= NULL
;
958 #define rxtop rx_ring->rx_skb_top
959 if (!(status
& E1000_RXD_STAT_EOP
)) {
960 /* this descriptor is only the beginning (or middle) */
962 /* this is the beginning of a chain */
964 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
967 /* this is the middle of a chain */
968 skb_fill_page_desc(rxtop
,
969 skb_shinfo(rxtop
)->nr_frags
,
970 buffer_info
->page
, 0, length
);
971 /* re-use the skb, only consumed the page */
972 buffer_info
->skb
= skb
;
974 e1000_consume_page(buffer_info
, rxtop
, length
);
978 /* end of the chain */
979 skb_fill_page_desc(rxtop
,
980 skb_shinfo(rxtop
)->nr_frags
,
981 buffer_info
->page
, 0, length
);
982 /* re-use the current skb, we only consumed the
984 buffer_info
->skb
= skb
;
987 e1000_consume_page(buffer_info
, skb
, length
);
989 /* no chain, got EOP, this buf is the packet
990 * copybreak to save the put_page/alloc_page */
991 if (length
<= copybreak
&&
992 skb_tailroom(skb
) >= length
) {
994 vaddr
= kmap_atomic(buffer_info
->page
,
995 KM_SKB_DATA_SOFTIRQ
);
996 memcpy(skb_tail_pointer(skb
), vaddr
,
999 KM_SKB_DATA_SOFTIRQ
);
1000 /* re-use the page, so don't erase
1001 * buffer_info->page */
1002 skb_put(skb
, length
);
1004 skb_fill_page_desc(skb
, 0,
1005 buffer_info
->page
, 0,
1007 e1000_consume_page(buffer_info
, skb
,
1013 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1014 e1000_rx_checksum(adapter
,
1016 ((u32
)(rx_desc
->errors
) << 24),
1017 le16_to_cpu(rx_desc
->csum
), skb
);
1019 /* probably a little skewed due to removing CRC */
1020 total_rx_bytes
+= skb
->len
;
1023 /* eth type trans needs skb->data to point to something */
1024 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1025 e_err("pskb_may_pull failed.\n");
1030 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1034 rx_desc
->status
= 0;
1036 /* return some buffers to hardware, one at a time is too slow */
1037 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1038 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1042 /* use prefetched values */
1044 buffer_info
= next_buffer
;
1046 rx_ring
->next_to_clean
= i
;
1048 cleaned_count
= e1000_desc_unused(rx_ring
);
1050 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1052 adapter
->total_rx_bytes
+= total_rx_bytes
;
1053 adapter
->total_rx_packets
+= total_rx_packets
;
1054 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
1055 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
1060 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1061 * @adapter: board private structure
1063 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1065 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1066 struct e1000_buffer
*buffer_info
;
1067 struct e1000_ps_page
*ps_page
;
1068 struct pci_dev
*pdev
= adapter
->pdev
;
1071 /* Free all the Rx ring sk_buffs */
1072 for (i
= 0; i
< rx_ring
->count
; i
++) {
1073 buffer_info
= &rx_ring
->buffer_info
[i
];
1074 if (buffer_info
->dma
) {
1075 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1076 pci_unmap_single(pdev
, buffer_info
->dma
,
1077 adapter
->rx_buffer_len
,
1078 PCI_DMA_FROMDEVICE
);
1079 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1080 pci_unmap_page(pdev
, buffer_info
->dma
,
1082 PCI_DMA_FROMDEVICE
);
1083 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1084 pci_unmap_single(pdev
, buffer_info
->dma
,
1085 adapter
->rx_ps_bsize0
,
1086 PCI_DMA_FROMDEVICE
);
1087 buffer_info
->dma
= 0;
1090 if (buffer_info
->page
) {
1091 put_page(buffer_info
->page
);
1092 buffer_info
->page
= NULL
;
1095 if (buffer_info
->skb
) {
1096 dev_kfree_skb(buffer_info
->skb
);
1097 buffer_info
->skb
= NULL
;
1100 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1101 ps_page
= &buffer_info
->ps_pages
[j
];
1104 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1105 PCI_DMA_FROMDEVICE
);
1107 put_page(ps_page
->page
);
1108 ps_page
->page
= NULL
;
1112 /* there also may be some cached data from a chained receive */
1113 if (rx_ring
->rx_skb_top
) {
1114 dev_kfree_skb(rx_ring
->rx_skb_top
);
1115 rx_ring
->rx_skb_top
= NULL
;
1118 /* Zero out the descriptor ring */
1119 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1121 rx_ring
->next_to_clean
= 0;
1122 rx_ring
->next_to_use
= 0;
1124 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1125 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1128 static void e1000e_downshift_workaround(struct work_struct
*work
)
1130 struct e1000_adapter
*adapter
= container_of(work
,
1131 struct e1000_adapter
, downshift_task
);
1133 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1137 * e1000_intr_msi - Interrupt Handler
1138 * @irq: interrupt number
1139 * @data: pointer to a network interface device structure
1141 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1143 struct net_device
*netdev
= data
;
1144 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1145 struct e1000_hw
*hw
= &adapter
->hw
;
1146 u32 icr
= er32(ICR
);
1149 * read ICR disables interrupts using IAM
1152 if (icr
& E1000_ICR_LSC
) {
1153 hw
->mac
.get_link_status
= 1;
1155 * ICH8 workaround-- Call gig speed drop workaround on cable
1156 * disconnect (LSC) before accessing any PHY registers
1158 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1159 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1160 schedule_work(&adapter
->downshift_task
);
1163 * 80003ES2LAN workaround-- For packet buffer work-around on
1164 * link down event; disable receives here in the ISR and reset
1165 * adapter in watchdog
1167 if (netif_carrier_ok(netdev
) &&
1168 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1169 /* disable receives */
1170 u32 rctl
= er32(RCTL
);
1171 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1172 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1174 /* guard against interrupt when we're going down */
1175 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1176 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1179 if (napi_schedule_prep(&adapter
->napi
)) {
1180 adapter
->total_tx_bytes
= 0;
1181 adapter
->total_tx_packets
= 0;
1182 adapter
->total_rx_bytes
= 0;
1183 adapter
->total_rx_packets
= 0;
1184 __napi_schedule(&adapter
->napi
);
1191 * e1000_intr - Interrupt Handler
1192 * @irq: interrupt number
1193 * @data: pointer to a network interface device structure
1195 static irqreturn_t
e1000_intr(int irq
, void *data
)
1197 struct net_device
*netdev
= data
;
1198 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1199 struct e1000_hw
*hw
= &adapter
->hw
;
1200 u32 rctl
, icr
= er32(ICR
);
1203 return IRQ_NONE
; /* Not our interrupt */
1206 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1207 * not set, then the adapter didn't send an interrupt
1209 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1213 * Interrupt Auto-Mask...upon reading ICR,
1214 * interrupts are masked. No need for the
1218 if (icr
& E1000_ICR_LSC
) {
1219 hw
->mac
.get_link_status
= 1;
1221 * ICH8 workaround-- Call gig speed drop workaround on cable
1222 * disconnect (LSC) before accessing any PHY registers
1224 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1225 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1226 schedule_work(&adapter
->downshift_task
);
1229 * 80003ES2LAN workaround--
1230 * For packet buffer work-around on link down event;
1231 * disable receives here in the ISR and
1232 * reset adapter in watchdog
1234 if (netif_carrier_ok(netdev
) &&
1235 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1236 /* disable receives */
1238 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1239 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1241 /* guard against interrupt when we're going down */
1242 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1243 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1246 if (napi_schedule_prep(&adapter
->napi
)) {
1247 adapter
->total_tx_bytes
= 0;
1248 adapter
->total_tx_packets
= 0;
1249 adapter
->total_rx_bytes
= 0;
1250 adapter
->total_rx_packets
= 0;
1251 __napi_schedule(&adapter
->napi
);
1257 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1259 struct net_device
*netdev
= data
;
1260 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1261 struct e1000_hw
*hw
= &adapter
->hw
;
1262 u32 icr
= er32(ICR
);
1264 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1265 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1266 ew32(IMS
, E1000_IMS_OTHER
);
1270 if (icr
& adapter
->eiac_mask
)
1271 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1273 if (icr
& E1000_ICR_OTHER
) {
1274 if (!(icr
& E1000_ICR_LSC
))
1275 goto no_link_interrupt
;
1276 hw
->mac
.get_link_status
= 1;
1277 /* guard against interrupt when we're going down */
1278 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1279 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1283 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1284 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1290 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1292 struct net_device
*netdev
= data
;
1293 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1294 struct e1000_hw
*hw
= &adapter
->hw
;
1295 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1298 adapter
->total_tx_bytes
= 0;
1299 adapter
->total_tx_packets
= 0;
1301 if (!e1000_clean_tx_irq(adapter
))
1302 /* Ring was not completely cleaned, so fire another interrupt */
1303 ew32(ICS
, tx_ring
->ims_val
);
1308 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1310 struct net_device
*netdev
= data
;
1311 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1313 /* Write the ITR value calculated at the end of the
1314 * previous interrupt.
1316 if (adapter
->rx_ring
->set_itr
) {
1317 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1318 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1319 adapter
->rx_ring
->set_itr
= 0;
1322 if (napi_schedule_prep(&adapter
->napi
)) {
1323 adapter
->total_rx_bytes
= 0;
1324 adapter
->total_rx_packets
= 0;
1325 __napi_schedule(&adapter
->napi
);
1331 * e1000_configure_msix - Configure MSI-X hardware
1333 * e1000_configure_msix sets up the hardware to properly
1334 * generate MSI-X interrupts.
1336 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1338 struct e1000_hw
*hw
= &adapter
->hw
;
1339 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1340 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1342 u32 ctrl_ext
, ivar
= 0;
1344 adapter
->eiac_mask
= 0;
1346 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1347 if (hw
->mac
.type
== e1000_82574
) {
1348 u32 rfctl
= er32(RFCTL
);
1349 rfctl
|= E1000_RFCTL_ACK_DIS
;
1353 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1354 /* Configure Rx vector */
1355 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1356 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1357 if (rx_ring
->itr_val
)
1358 writel(1000000000 / (rx_ring
->itr_val
* 256),
1359 hw
->hw_addr
+ rx_ring
->itr_register
);
1361 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1362 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1364 /* Configure Tx vector */
1365 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1367 if (tx_ring
->itr_val
)
1368 writel(1000000000 / (tx_ring
->itr_val
* 256),
1369 hw
->hw_addr
+ tx_ring
->itr_register
);
1371 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1372 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1373 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1375 /* set vector for Other Causes, e.g. link changes */
1377 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1378 if (rx_ring
->itr_val
)
1379 writel(1000000000 / (rx_ring
->itr_val
* 256),
1380 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1382 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1384 /* Cause Tx interrupts on every write back */
1389 /* enable MSI-X PBA support */
1390 ctrl_ext
= er32(CTRL_EXT
);
1391 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1393 /* Auto-Mask Other interrupts upon ICR read */
1394 #define E1000_EIAC_MASK_82574 0x01F00000
1395 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1396 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1397 ew32(CTRL_EXT
, ctrl_ext
);
1401 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1403 if (adapter
->msix_entries
) {
1404 pci_disable_msix(adapter
->pdev
);
1405 kfree(adapter
->msix_entries
);
1406 adapter
->msix_entries
= NULL
;
1407 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1408 pci_disable_msi(adapter
->pdev
);
1409 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1416 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1418 * Attempt to configure interrupts using the best available
1419 * capabilities of the hardware and kernel.
1421 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1427 switch (adapter
->int_mode
) {
1428 case E1000E_INT_MODE_MSIX
:
1429 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1430 numvecs
= 3; /* RxQ0, TxQ0 and other */
1431 adapter
->msix_entries
= kcalloc(numvecs
,
1432 sizeof(struct msix_entry
),
1434 if (adapter
->msix_entries
) {
1435 for (i
= 0; i
< numvecs
; i
++)
1436 adapter
->msix_entries
[i
].entry
= i
;
1438 err
= pci_enable_msix(adapter
->pdev
,
1439 adapter
->msix_entries
,
1444 /* MSI-X failed, so fall through and try MSI */
1445 e_err("Failed to initialize MSI-X interrupts. "
1446 "Falling back to MSI interrupts.\n");
1447 e1000e_reset_interrupt_capability(adapter
);
1449 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1451 case E1000E_INT_MODE_MSI
:
1452 if (!pci_enable_msi(adapter
->pdev
)) {
1453 adapter
->flags
|= FLAG_MSI_ENABLED
;
1455 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1456 e_err("Failed to initialize MSI interrupts. Falling "
1457 "back to legacy interrupts.\n");
1460 case E1000E_INT_MODE_LEGACY
:
1461 /* Don't do anything; this is the system default */
1469 * e1000_request_msix - Initialize MSI-X interrupts
1471 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1474 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1476 struct net_device
*netdev
= adapter
->netdev
;
1477 int err
= 0, vector
= 0;
1479 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1480 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1482 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1483 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1484 &e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1488 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1489 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1492 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1493 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1495 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1496 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1497 &e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1501 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1502 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1505 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1506 &e1000_msix_other
, 0, netdev
->name
, netdev
);
1510 e1000_configure_msix(adapter
);
1517 * e1000_request_irq - initialize interrupts
1519 * Attempts to configure interrupts using the best available
1520 * capabilities of the hardware and kernel.
1522 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1524 struct net_device
*netdev
= adapter
->netdev
;
1527 if (adapter
->msix_entries
) {
1528 err
= e1000_request_msix(adapter
);
1531 /* fall back to MSI */
1532 e1000e_reset_interrupt_capability(adapter
);
1533 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1534 e1000e_set_interrupt_capability(adapter
);
1536 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1537 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi
, 0,
1538 netdev
->name
, netdev
);
1542 /* fall back to legacy interrupt */
1543 e1000e_reset_interrupt_capability(adapter
);
1544 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1547 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, IRQF_SHARED
,
1548 netdev
->name
, netdev
);
1550 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1555 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1557 struct net_device
*netdev
= adapter
->netdev
;
1559 if (adapter
->msix_entries
) {
1562 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1565 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1568 /* Other Causes interrupt vector */
1569 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1573 free_irq(adapter
->pdev
->irq
, netdev
);
1577 * e1000_irq_disable - Mask off interrupt generation on the NIC
1579 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1581 struct e1000_hw
*hw
= &adapter
->hw
;
1584 if (adapter
->msix_entries
)
1585 ew32(EIAC_82574
, 0);
1587 synchronize_irq(adapter
->pdev
->irq
);
1591 * e1000_irq_enable - Enable default interrupt generation settings
1593 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1595 struct e1000_hw
*hw
= &adapter
->hw
;
1597 if (adapter
->msix_entries
) {
1598 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1599 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1601 ew32(IMS
, IMS_ENABLE_MASK
);
1607 * e1000_get_hw_control - get control of the h/w from f/w
1608 * @adapter: address of board private structure
1610 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1611 * For ASF and Pass Through versions of f/w this means that
1612 * the driver is loaded. For AMT version (only with 82573)
1613 * of the f/w this means that the network i/f is open.
1615 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1617 struct e1000_hw
*hw
= &adapter
->hw
;
1621 /* Let firmware know the driver has taken over */
1622 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1624 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1625 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1626 ctrl_ext
= er32(CTRL_EXT
);
1627 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1632 * e1000_release_hw_control - release control of the h/w to f/w
1633 * @adapter: address of board private structure
1635 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1636 * For ASF and Pass Through versions of f/w this means that the
1637 * driver is no longer loaded. For AMT version (only with 82573) i
1638 * of the f/w this means that the network i/f is closed.
1641 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1643 struct e1000_hw
*hw
= &adapter
->hw
;
1647 /* Let firmware taken over control of h/w */
1648 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1650 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1651 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1652 ctrl_ext
= er32(CTRL_EXT
);
1653 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1658 * @e1000_alloc_ring - allocate memory for a ring structure
1660 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1661 struct e1000_ring
*ring
)
1663 struct pci_dev
*pdev
= adapter
->pdev
;
1665 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1674 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1675 * @adapter: board private structure
1677 * Return 0 on success, negative on failure
1679 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1681 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1682 int err
= -ENOMEM
, size
;
1684 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1685 tx_ring
->buffer_info
= vmalloc(size
);
1686 if (!tx_ring
->buffer_info
)
1688 memset(tx_ring
->buffer_info
, 0, size
);
1690 /* round up to nearest 4K */
1691 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1692 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1694 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1698 tx_ring
->next_to_use
= 0;
1699 tx_ring
->next_to_clean
= 0;
1703 vfree(tx_ring
->buffer_info
);
1704 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1709 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1710 * @adapter: board private structure
1712 * Returns 0 on success, negative on failure
1714 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1716 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1717 struct e1000_buffer
*buffer_info
;
1718 int i
, size
, desc_len
, err
= -ENOMEM
;
1720 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1721 rx_ring
->buffer_info
= vmalloc(size
);
1722 if (!rx_ring
->buffer_info
)
1724 memset(rx_ring
->buffer_info
, 0, size
);
1726 for (i
= 0; i
< rx_ring
->count
; i
++) {
1727 buffer_info
= &rx_ring
->buffer_info
[i
];
1728 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1729 sizeof(struct e1000_ps_page
),
1731 if (!buffer_info
->ps_pages
)
1735 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1737 /* Round up to nearest 4K */
1738 rx_ring
->size
= rx_ring
->count
* desc_len
;
1739 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1741 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1745 rx_ring
->next_to_clean
= 0;
1746 rx_ring
->next_to_use
= 0;
1747 rx_ring
->rx_skb_top
= NULL
;
1752 for (i
= 0; i
< rx_ring
->count
; i
++) {
1753 buffer_info
= &rx_ring
->buffer_info
[i
];
1754 kfree(buffer_info
->ps_pages
);
1757 vfree(rx_ring
->buffer_info
);
1758 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1763 * e1000_clean_tx_ring - Free Tx Buffers
1764 * @adapter: board private structure
1766 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1768 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1769 struct e1000_buffer
*buffer_info
;
1773 for (i
= 0; i
< tx_ring
->count
; i
++) {
1774 buffer_info
= &tx_ring
->buffer_info
[i
];
1775 e1000_put_txbuf(adapter
, buffer_info
);
1778 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1779 memset(tx_ring
->buffer_info
, 0, size
);
1781 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1783 tx_ring
->next_to_use
= 0;
1784 tx_ring
->next_to_clean
= 0;
1786 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1787 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1791 * e1000e_free_tx_resources - Free Tx Resources per Queue
1792 * @adapter: board private structure
1794 * Free all transmit software resources
1796 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1798 struct pci_dev
*pdev
= adapter
->pdev
;
1799 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1801 e1000_clean_tx_ring(adapter
);
1803 vfree(tx_ring
->buffer_info
);
1804 tx_ring
->buffer_info
= NULL
;
1806 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1808 tx_ring
->desc
= NULL
;
1812 * e1000e_free_rx_resources - Free Rx Resources
1813 * @adapter: board private structure
1815 * Free all receive software resources
1818 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1820 struct pci_dev
*pdev
= adapter
->pdev
;
1821 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1824 e1000_clean_rx_ring(adapter
);
1826 for (i
= 0; i
< rx_ring
->count
; i
++) {
1827 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1830 vfree(rx_ring
->buffer_info
);
1831 rx_ring
->buffer_info
= NULL
;
1833 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1835 rx_ring
->desc
= NULL
;
1839 * e1000_update_itr - update the dynamic ITR value based on statistics
1840 * @adapter: pointer to adapter
1841 * @itr_setting: current adapter->itr
1842 * @packets: the number of packets during this measurement interval
1843 * @bytes: the number of bytes during this measurement interval
1845 * Stores a new ITR value based on packets and byte
1846 * counts during the last interrupt. The advantage of per interrupt
1847 * computation is faster updates and more accurate ITR for the current
1848 * traffic pattern. Constants in this function were computed
1849 * based on theoretical maximum wire speed and thresholds were set based
1850 * on testing data as well as attempting to minimize response time
1851 * while increasing bulk throughput. This functionality is controlled
1852 * by the InterruptThrottleRate module parameter.
1854 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1855 u16 itr_setting
, int packets
,
1858 unsigned int retval
= itr_setting
;
1861 goto update_itr_done
;
1863 switch (itr_setting
) {
1864 case lowest_latency
:
1865 /* handle TSO and jumbo frames */
1866 if (bytes
/packets
> 8000)
1867 retval
= bulk_latency
;
1868 else if ((packets
< 5) && (bytes
> 512)) {
1869 retval
= low_latency
;
1872 case low_latency
: /* 50 usec aka 20000 ints/s */
1873 if (bytes
> 10000) {
1874 /* this if handles the TSO accounting */
1875 if (bytes
/packets
> 8000) {
1876 retval
= bulk_latency
;
1877 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1878 retval
= bulk_latency
;
1879 } else if ((packets
> 35)) {
1880 retval
= lowest_latency
;
1882 } else if (bytes
/packets
> 2000) {
1883 retval
= bulk_latency
;
1884 } else if (packets
<= 2 && bytes
< 512) {
1885 retval
= lowest_latency
;
1888 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1889 if (bytes
> 25000) {
1891 retval
= low_latency
;
1893 } else if (bytes
< 6000) {
1894 retval
= low_latency
;
1903 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1905 struct e1000_hw
*hw
= &adapter
->hw
;
1907 u32 new_itr
= adapter
->itr
;
1909 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1910 if (adapter
->link_speed
!= SPEED_1000
) {
1916 adapter
->tx_itr
= e1000_update_itr(adapter
,
1918 adapter
->total_tx_packets
,
1919 adapter
->total_tx_bytes
);
1920 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1921 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1922 adapter
->tx_itr
= low_latency
;
1924 adapter
->rx_itr
= e1000_update_itr(adapter
,
1926 adapter
->total_rx_packets
,
1927 adapter
->total_rx_bytes
);
1928 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1929 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1930 adapter
->rx_itr
= low_latency
;
1932 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1934 switch (current_itr
) {
1935 /* counts and packets in update_itr are dependent on these numbers */
1936 case lowest_latency
:
1940 new_itr
= 20000; /* aka hwitr = ~200 */
1950 if (new_itr
!= adapter
->itr
) {
1952 * this attempts to bias the interrupt rate towards Bulk
1953 * by adding intermediate steps when interrupt rate is
1956 new_itr
= new_itr
> adapter
->itr
?
1957 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1959 adapter
->itr
= new_itr
;
1960 adapter
->rx_ring
->itr_val
= new_itr
;
1961 if (adapter
->msix_entries
)
1962 adapter
->rx_ring
->set_itr
= 1;
1964 ew32(ITR
, 1000000000 / (new_itr
* 256));
1969 * e1000_alloc_queues - Allocate memory for all rings
1970 * @adapter: board private structure to initialize
1972 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1974 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1975 if (!adapter
->tx_ring
)
1978 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1979 if (!adapter
->rx_ring
)
1984 e_err("Unable to allocate memory for queues\n");
1985 kfree(adapter
->rx_ring
);
1986 kfree(adapter
->tx_ring
);
1991 * e1000_clean - NAPI Rx polling callback
1992 * @napi: struct associated with this polling callback
1993 * @budget: amount of packets driver is allowed to process this poll
1995 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1997 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1998 struct e1000_hw
*hw
= &adapter
->hw
;
1999 struct net_device
*poll_dev
= adapter
->netdev
;
2000 int tx_cleaned
= 1, work_done
= 0;
2002 adapter
= netdev_priv(poll_dev
);
2004 if (adapter
->msix_entries
&&
2005 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2008 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2011 adapter
->clean_rx(adapter
, &work_done
, budget
);
2016 /* If budget not fully consumed, exit the polling mode */
2017 if (work_done
< budget
) {
2018 if (adapter
->itr_setting
& 3)
2019 e1000_set_itr(adapter
);
2020 napi_complete(napi
);
2021 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2022 if (adapter
->msix_entries
)
2023 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2025 e1000_irq_enable(adapter
);
2032 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2034 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2035 struct e1000_hw
*hw
= &adapter
->hw
;
2038 /* don't update vlan cookie if already programmed */
2039 if ((adapter
->hw
.mng_cookie
.status
&
2040 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2041 (vid
== adapter
->mng_vlan_id
))
2043 /* add VID to filter table */
2044 index
= (vid
>> 5) & 0x7F;
2045 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2046 vfta
|= (1 << (vid
& 0x1F));
2047 e1000e_write_vfta(hw
, index
, vfta
);
2050 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2052 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2053 struct e1000_hw
*hw
= &adapter
->hw
;
2056 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2057 e1000_irq_disable(adapter
);
2058 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2060 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2061 e1000_irq_enable(adapter
);
2063 if ((adapter
->hw
.mng_cookie
.status
&
2064 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2065 (vid
== adapter
->mng_vlan_id
)) {
2066 /* release control to f/w */
2067 e1000_release_hw_control(adapter
);
2071 /* remove VID from filter table */
2072 index
= (vid
>> 5) & 0x7F;
2073 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2074 vfta
&= ~(1 << (vid
& 0x1F));
2075 e1000e_write_vfta(hw
, index
, vfta
);
2078 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2080 struct net_device
*netdev
= adapter
->netdev
;
2081 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2082 u16 old_vid
= adapter
->mng_vlan_id
;
2084 if (!adapter
->vlgrp
)
2087 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2088 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2089 if (adapter
->hw
.mng_cookie
.status
&
2090 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2091 e1000_vlan_rx_add_vid(netdev
, vid
);
2092 adapter
->mng_vlan_id
= vid
;
2095 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2097 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2098 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2100 adapter
->mng_vlan_id
= vid
;
2105 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2106 struct vlan_group
*grp
)
2108 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2109 struct e1000_hw
*hw
= &adapter
->hw
;
2112 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2113 e1000_irq_disable(adapter
);
2114 adapter
->vlgrp
= grp
;
2117 /* enable VLAN tag insert/strip */
2119 ctrl
|= E1000_CTRL_VME
;
2122 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2123 /* enable VLAN receive filtering */
2125 rctl
&= ~E1000_RCTL_CFIEN
;
2127 e1000_update_mng_vlan(adapter
);
2130 /* disable VLAN tag insert/strip */
2132 ctrl
&= ~E1000_CTRL_VME
;
2135 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2136 if (adapter
->mng_vlan_id
!=
2137 (u16
)E1000_MNG_VLAN_NONE
) {
2138 e1000_vlan_rx_kill_vid(netdev
,
2139 adapter
->mng_vlan_id
);
2140 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2145 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2146 e1000_irq_enable(adapter
);
2149 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2153 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2155 if (!adapter
->vlgrp
)
2158 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
2159 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2161 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2165 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
2167 struct e1000_hw
*hw
= &adapter
->hw
;
2170 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2176 * enable receiving management packets to the host. this will probably
2177 * generate destination unreachable messages from the host OS, but
2178 * the packets will be handled on SMBUS
2180 manc
|= E1000_MANC_EN_MNG2HOST
;
2181 manc2h
= er32(MANC2H
);
2182 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2183 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2184 manc2h
|= E1000_MNG2HOST_PORT_623
;
2185 manc2h
|= E1000_MNG2HOST_PORT_664
;
2186 ew32(MANC2H
, manc2h
);
2191 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2192 * @adapter: board private structure
2194 * Configure the Tx unit of the MAC after a reset.
2196 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2198 struct e1000_hw
*hw
= &adapter
->hw
;
2199 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2201 u32 tdlen
, tctl
, tipg
, tarc
;
2204 /* Setup the HW Tx Head and Tail descriptor pointers */
2205 tdba
= tx_ring
->dma
;
2206 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2207 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2208 ew32(TDBAH
, (tdba
>> 32));
2212 tx_ring
->head
= E1000_TDH
;
2213 tx_ring
->tail
= E1000_TDT
;
2215 /* Set the default values for the Tx Inter Packet Gap timer */
2216 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2217 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2218 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2220 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2221 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2223 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2224 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2227 /* Set the Tx Interrupt Delay register */
2228 ew32(TIDV
, adapter
->tx_int_delay
);
2229 /* Tx irq moderation */
2230 ew32(TADV
, adapter
->tx_abs_int_delay
);
2232 /* Program the Transmit Control Register */
2234 tctl
&= ~E1000_TCTL_CT
;
2235 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2236 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2238 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2239 tarc
= er32(TARC(0));
2241 * set the speed mode bit, we'll clear it if we're not at
2242 * gigabit link later
2244 #define SPEED_MODE_BIT (1 << 21)
2245 tarc
|= SPEED_MODE_BIT
;
2246 ew32(TARC(0), tarc
);
2249 /* errata: program both queues to unweighted RR */
2250 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2251 tarc
= er32(TARC(0));
2253 ew32(TARC(0), tarc
);
2254 tarc
= er32(TARC(1));
2256 ew32(TARC(1), tarc
);
2259 /* Setup Transmit Descriptor Settings for eop descriptor */
2260 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2262 /* only set IDE if we are delaying interrupts using the timers */
2263 if (adapter
->tx_int_delay
)
2264 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2266 /* enable Report Status bit */
2267 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2271 e1000e_config_collision_dist(hw
);
2273 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
2277 * e1000_setup_rctl - configure the receive control registers
2278 * @adapter: Board private structure
2280 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2281 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2282 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2284 struct e1000_hw
*hw
= &adapter
->hw
;
2289 /* Program MC offset vector base */
2291 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2292 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2293 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2294 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2296 /* Do not Store bad packets */
2297 rctl
&= ~E1000_RCTL_SBP
;
2299 /* Enable Long Packet receive */
2300 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2301 rctl
&= ~E1000_RCTL_LPE
;
2303 rctl
|= E1000_RCTL_LPE
;
2305 /* Some systems expect that the CRC is included in SMBUS traffic. The
2306 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2307 * host memory when this is enabled
2309 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2310 rctl
|= E1000_RCTL_SECRC
;
2312 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2313 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2316 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2318 phy_data
|= (1 << 2);
2319 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2321 e1e_rphy(hw
, 22, &phy_data
);
2323 phy_data
|= (1 << 14);
2324 e1e_wphy(hw
, 0x10, 0x2823);
2325 e1e_wphy(hw
, 0x11, 0x0003);
2326 e1e_wphy(hw
, 22, phy_data
);
2329 /* Setup buffer sizes */
2330 rctl
&= ~E1000_RCTL_SZ_4096
;
2331 rctl
|= E1000_RCTL_BSEX
;
2332 switch (adapter
->rx_buffer_len
) {
2334 rctl
|= E1000_RCTL_SZ_256
;
2335 rctl
&= ~E1000_RCTL_BSEX
;
2338 rctl
|= E1000_RCTL_SZ_512
;
2339 rctl
&= ~E1000_RCTL_BSEX
;
2342 rctl
|= E1000_RCTL_SZ_1024
;
2343 rctl
&= ~E1000_RCTL_BSEX
;
2347 rctl
|= E1000_RCTL_SZ_2048
;
2348 rctl
&= ~E1000_RCTL_BSEX
;
2351 rctl
|= E1000_RCTL_SZ_4096
;
2354 rctl
|= E1000_RCTL_SZ_8192
;
2357 rctl
|= E1000_RCTL_SZ_16384
;
2362 * 82571 and greater support packet-split where the protocol
2363 * header is placed in skb->data and the packet data is
2364 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2365 * In the case of a non-split, skb->data is linearly filled,
2366 * followed by the page buffers. Therefore, skb->data is
2367 * sized to hold the largest protocol header.
2369 * allocations using alloc_page take too long for regular MTU
2370 * so only enable packet split for jumbo frames
2372 * Using pages when the page size is greater than 16k wastes
2373 * a lot of memory, since we allocate 3 pages at all times
2376 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2377 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2378 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2379 adapter
->rx_ps_pages
= pages
;
2381 adapter
->rx_ps_pages
= 0;
2383 if (adapter
->rx_ps_pages
) {
2384 /* Configure extra packet-split registers */
2385 rfctl
= er32(RFCTL
);
2386 rfctl
|= E1000_RFCTL_EXTEN
;
2388 * disable packet split support for IPv6 extension headers,
2389 * because some malformed IPv6 headers can hang the Rx
2391 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2392 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2396 /* Enable Packet split descriptors */
2397 rctl
|= E1000_RCTL_DTYP_PS
;
2399 psrctl
|= adapter
->rx_ps_bsize0
>>
2400 E1000_PSRCTL_BSIZE0_SHIFT
;
2402 switch (adapter
->rx_ps_pages
) {
2404 psrctl
|= PAGE_SIZE
<<
2405 E1000_PSRCTL_BSIZE3_SHIFT
;
2407 psrctl
|= PAGE_SIZE
<<
2408 E1000_PSRCTL_BSIZE2_SHIFT
;
2410 psrctl
|= PAGE_SIZE
>>
2411 E1000_PSRCTL_BSIZE1_SHIFT
;
2415 ew32(PSRCTL
, psrctl
);
2419 /* just started the receive unit, no need to restart */
2420 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2424 * e1000_configure_rx - Configure Receive Unit after Reset
2425 * @adapter: board private structure
2427 * Configure the Rx unit of the MAC after a reset.
2429 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2431 struct e1000_hw
*hw
= &adapter
->hw
;
2432 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2434 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2436 if (adapter
->rx_ps_pages
) {
2437 /* this is a 32 byte descriptor */
2438 rdlen
= rx_ring
->count
*
2439 sizeof(union e1000_rx_desc_packet_split
);
2440 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2441 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2442 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2443 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2444 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2445 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2447 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2448 adapter
->clean_rx
= e1000_clean_rx_irq
;
2449 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2452 /* disable receives while setting up the descriptors */
2454 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2458 /* set the Receive Delay Timer Register */
2459 ew32(RDTR
, adapter
->rx_int_delay
);
2461 /* irq moderation */
2462 ew32(RADV
, adapter
->rx_abs_int_delay
);
2463 if (adapter
->itr_setting
!= 0)
2464 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2466 ctrl_ext
= er32(CTRL_EXT
);
2467 /* Reset delay timers after every interrupt */
2468 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2469 /* Auto-Mask interrupts upon ICR access */
2470 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2471 ew32(IAM
, 0xffffffff);
2472 ew32(CTRL_EXT
, ctrl_ext
);
2476 * Setup the HW Rx Head and Tail Descriptor Pointers and
2477 * the Base and Length of the Rx Descriptor Ring
2479 rdba
= rx_ring
->dma
;
2480 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2481 ew32(RDBAH
, (rdba
>> 32));
2485 rx_ring
->head
= E1000_RDH
;
2486 rx_ring
->tail
= E1000_RDT
;
2488 /* Enable Receive Checksum Offload for TCP and UDP */
2489 rxcsum
= er32(RXCSUM
);
2490 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2491 rxcsum
|= E1000_RXCSUM_TUOFL
;
2494 * IPv4 payload checksum for UDP fragments must be
2495 * used in conjunction with packet-split.
2497 if (adapter
->rx_ps_pages
)
2498 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2500 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2501 /* no need to clear IPPCSE as it defaults to 0 */
2503 ew32(RXCSUM
, rxcsum
);
2506 * Enable early receives on supported devices, only takes effect when
2507 * packet size is equal or larger than the specified value (in 8 byte
2508 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2510 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2511 (adapter
->netdev
->mtu
> ETH_DATA_LEN
)) {
2512 u32 rxdctl
= er32(RXDCTL(0));
2513 ew32(RXDCTL(0), rxdctl
| 0x3);
2514 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2516 * With jumbo frames and early-receive enabled, excessive
2517 * C4->C2 latencies result in dropped transactions.
2519 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2520 e1000e_driver_name
, 55);
2522 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2524 PM_QOS_DEFAULT_VALUE
);
2527 /* Enable Receives */
2532 * e1000_update_mc_addr_list - Update Multicast addresses
2533 * @hw: pointer to the HW structure
2534 * @mc_addr_list: array of multicast addresses to program
2535 * @mc_addr_count: number of multicast addresses to program
2536 * @rar_used_count: the first RAR register free to program
2537 * @rar_count: total number of supported Receive Address Registers
2539 * Updates the Receive Address Registers and Multicast Table Array.
2540 * The caller must have a packed mc_addr_list of multicast addresses.
2541 * The parameter rar_count will usually be hw->mac.rar_entry_count
2542 * unless there are workarounds that change this. Currently no func pointer
2543 * exists and all implementations are handled in the generic version of this
2546 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2547 u32 mc_addr_count
, u32 rar_used_count
,
2550 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
,
2551 rar_used_count
, rar_count
);
2555 * e1000_set_multi - Multicast and Promiscuous mode set
2556 * @netdev: network interface device structure
2558 * The set_multi entry point is called whenever the multicast address
2559 * list or the network interface flags are updated. This routine is
2560 * responsible for configuring the hardware for proper multicast,
2561 * promiscuous mode, and all-multi behavior.
2563 static void e1000_set_multi(struct net_device
*netdev
)
2565 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2566 struct e1000_hw
*hw
= &adapter
->hw
;
2567 struct e1000_mac_info
*mac
= &hw
->mac
;
2568 struct dev_mc_list
*mc_ptr
;
2573 /* Check for Promiscuous and All Multicast modes */
2577 if (netdev
->flags
& IFF_PROMISC
) {
2578 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2579 rctl
&= ~E1000_RCTL_VFE
;
2581 if (netdev
->flags
& IFF_ALLMULTI
) {
2582 rctl
|= E1000_RCTL_MPE
;
2583 rctl
&= ~E1000_RCTL_UPE
;
2585 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2587 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2588 rctl
|= E1000_RCTL_VFE
;
2593 if (netdev
->mc_count
) {
2594 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2598 /* prepare a packed array of only addresses. */
2599 mc_ptr
= netdev
->mc_list
;
2601 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2604 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2606 mc_ptr
= mc_ptr
->next
;
2609 e1000_update_mc_addr_list(hw
, mta_list
, i
, 1,
2610 mac
->rar_entry_count
);
2614 * if we're called from probe, we might not have
2615 * anything to do here, so clear out the list
2617 e1000_update_mc_addr_list(hw
, NULL
, 0, 1, mac
->rar_entry_count
);
2622 * e1000_configure - configure the hardware for Rx and Tx
2623 * @adapter: private board structure
2625 static void e1000_configure(struct e1000_adapter
*adapter
)
2627 e1000_set_multi(adapter
->netdev
);
2629 e1000_restore_vlan(adapter
);
2630 e1000_init_manageability(adapter
);
2632 e1000_configure_tx(adapter
);
2633 e1000_setup_rctl(adapter
);
2634 e1000_configure_rx(adapter
);
2635 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2639 * e1000e_power_up_phy - restore link in case the phy was powered down
2640 * @adapter: address of board private structure
2642 * The phy may be powered down to save power and turn off link when the
2643 * driver is unloaded and wake on lan is not enabled (among others)
2644 * *** this routine MUST be followed by a call to e1000e_reset ***
2646 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2650 /* Just clear the power down bit to wake the phy back up */
2651 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
2653 * According to the manual, the phy will retain its
2654 * settings across a power-down/up cycle
2656 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
2657 mii_reg
&= ~MII_CR_POWER_DOWN
;
2658 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
2661 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2665 * e1000_power_down_phy - Power down the PHY
2667 * Power down the PHY so no link is implied when interface is down
2668 * The PHY cannot be powered down is management or WoL is active
2670 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2672 struct e1000_hw
*hw
= &adapter
->hw
;
2675 /* WoL is enabled */
2679 /* non-copper PHY? */
2680 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
2683 /* reset is blocked because of a SoL/IDER session */
2684 if (e1000e_check_mng_mode(hw
) || e1000_check_reset_block(hw
))
2687 /* manageability (AMT) is enabled */
2688 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2691 /* power down the PHY */
2692 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2693 mii_reg
|= MII_CR_POWER_DOWN
;
2694 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2699 * e1000e_reset - bring the hardware into a known good state
2701 * This function boots the hardware and enables some settings that
2702 * require a configuration cycle of the hardware - those cannot be
2703 * set/changed during runtime. After reset the device needs to be
2704 * properly configured for Rx, Tx etc.
2706 void e1000e_reset(struct e1000_adapter
*adapter
)
2708 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2709 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2710 struct e1000_hw
*hw
= &adapter
->hw
;
2711 u32 tx_space
, min_tx_space
, min_rx_space
;
2712 u32 pba
= adapter
->pba
;
2715 /* reset Packet Buffer Allocation to default */
2718 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2720 * To maintain wire speed transmits, the Tx FIFO should be
2721 * large enough to accommodate two full transmit packets,
2722 * rounded up to the next 1KB and expressed in KB. Likewise,
2723 * the Rx FIFO should be large enough to accommodate at least
2724 * one full receive packet and is similarly rounded up and
2728 /* upper 16 bits has Tx packet buffer allocation size in KB */
2729 tx_space
= pba
>> 16;
2730 /* lower 16 bits has Rx packet buffer allocation size in KB */
2733 * the Tx fifo also stores 16 bytes of information about the tx
2734 * but don't include ethernet FCS because hardware appends it
2736 min_tx_space
= (adapter
->max_frame_size
+
2737 sizeof(struct e1000_tx_desc
) -
2739 min_tx_space
= ALIGN(min_tx_space
, 1024);
2740 min_tx_space
>>= 10;
2741 /* software strips receive CRC, so leave room for it */
2742 min_rx_space
= adapter
->max_frame_size
;
2743 min_rx_space
= ALIGN(min_rx_space
, 1024);
2744 min_rx_space
>>= 10;
2747 * If current Tx allocation is less than the min Tx FIFO size,
2748 * and the min Tx FIFO size is less than the current Rx FIFO
2749 * allocation, take space away from current Rx allocation
2751 if ((tx_space
< min_tx_space
) &&
2752 ((min_tx_space
- tx_space
) < pba
)) {
2753 pba
-= min_tx_space
- tx_space
;
2756 * if short on Rx space, Rx wins and must trump tx
2757 * adjustment or use Early Receive if available
2759 if ((pba
< min_rx_space
) &&
2760 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2761 /* ERT enabled in e1000_configure_rx */
2770 * flow control settings
2772 * The high water mark must be low enough to fit two full frame
2773 * (or the size used for early receive) above it in the Rx FIFO.
2774 * Set it to the lower of:
2775 * - 90% of the Rx FIFO size, and
2776 * - the full Rx FIFO size minus the early receive size (for parts
2777 * with ERT support assuming ERT set to E1000_ERT_2048), or
2778 * - the full Rx FIFO size minus two full frames
2780 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2781 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
2782 hwm
= min(((pba
<< 10) * 9 / 10),
2783 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2785 hwm
= min(((pba
<< 10) * 9 / 10),
2786 ((pba
<< 10) - (2 * adapter
->max_frame_size
)));
2788 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
2789 fc
->low_water
= (fc
->high_water
- (2 * adapter
->max_frame_size
));
2790 fc
->low_water
&= E1000_FCRTL_RTL
; /* 8-byte granularity */
2792 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2793 fc
->pause_time
= 0xFFFF;
2795 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2797 fc
->current_mode
= fc
->requested_mode
;
2799 /* Allow time for pending master requests to run */
2800 mac
->ops
.reset_hw(hw
);
2803 * For parts with AMT enabled, let the firmware know
2804 * that the network interface is in control
2806 if (adapter
->flags
& FLAG_HAS_AMT
)
2807 e1000_get_hw_control(adapter
);
2810 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
)
2811 e1e_wphy(&adapter
->hw
, BM_WUC
, 0);
2813 if (mac
->ops
.init_hw(hw
))
2814 e_err("Hardware Error\n");
2816 e1000_update_mng_vlan(adapter
);
2818 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2819 ew32(VET
, ETH_P_8021Q
);
2821 e1000e_reset_adaptive(hw
);
2822 e1000_get_phy_info(hw
);
2824 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
2825 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2828 * speed up time to link by disabling smart power down, ignore
2829 * the return value of this function because there is nothing
2830 * different we would do if it failed
2832 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2833 phy_data
&= ~IGP02E1000_PM_SPD
;
2834 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2838 int e1000e_up(struct e1000_adapter
*adapter
)
2840 struct e1000_hw
*hw
= &adapter
->hw
;
2842 /* hardware has been reset, we need to reload some things */
2843 e1000_configure(adapter
);
2845 clear_bit(__E1000_DOWN
, &adapter
->state
);
2847 napi_enable(&adapter
->napi
);
2848 if (adapter
->msix_entries
)
2849 e1000_configure_msix(adapter
);
2850 e1000_irq_enable(adapter
);
2852 netif_wake_queue(adapter
->netdev
);
2854 /* fire a link change interrupt to start the watchdog */
2855 ew32(ICS
, E1000_ICS_LSC
);
2859 void e1000e_down(struct e1000_adapter
*adapter
)
2861 struct net_device
*netdev
= adapter
->netdev
;
2862 struct e1000_hw
*hw
= &adapter
->hw
;
2866 * signal that we're down so the interrupt handler does not
2867 * reschedule our watchdog timer
2869 set_bit(__E1000_DOWN
, &adapter
->state
);
2871 /* disable receives in the hardware */
2873 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2874 /* flush and sleep below */
2876 netif_stop_queue(netdev
);
2878 /* disable transmits in the hardware */
2880 tctl
&= ~E1000_TCTL_EN
;
2882 /* flush both disables and wait for them to finish */
2886 napi_disable(&adapter
->napi
);
2887 e1000_irq_disable(adapter
);
2889 del_timer_sync(&adapter
->watchdog_timer
);
2890 del_timer_sync(&adapter
->phy_info_timer
);
2892 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2893 netif_carrier_off(netdev
);
2894 adapter
->link_speed
= 0;
2895 adapter
->link_duplex
= 0;
2897 if (!pci_channel_offline(adapter
->pdev
))
2898 e1000e_reset(adapter
);
2899 e1000_clean_tx_ring(adapter
);
2900 e1000_clean_rx_ring(adapter
);
2903 * TODO: for power management, we could drop the link and
2904 * pci_disable_device here.
2908 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2911 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2913 e1000e_down(adapter
);
2915 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2919 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2920 * @adapter: board private structure to initialize
2922 * e1000_sw_init initializes the Adapter private data structure.
2923 * Fields are initialized based on PCI device information and
2924 * OS network device settings (MTU size).
2926 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2928 struct net_device
*netdev
= adapter
->netdev
;
2930 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2931 adapter
->rx_ps_bsize0
= 128;
2932 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2933 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2935 e1000e_set_interrupt_capability(adapter
);
2937 if (e1000_alloc_queues(adapter
))
2940 /* Explicitly disable IRQ since the NIC can be in any state. */
2941 e1000_irq_disable(adapter
);
2943 set_bit(__E1000_DOWN
, &adapter
->state
);
2948 * e1000_intr_msi_test - Interrupt Handler
2949 * @irq: interrupt number
2950 * @data: pointer to a network interface device structure
2952 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
2954 struct net_device
*netdev
= data
;
2955 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2956 struct e1000_hw
*hw
= &adapter
->hw
;
2957 u32 icr
= er32(ICR
);
2959 e_dbg("%s: icr is %08X\n", netdev
->name
, icr
);
2960 if (icr
& E1000_ICR_RXSEQ
) {
2961 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
2969 * e1000_test_msi_interrupt - Returns 0 for successful test
2970 * @adapter: board private struct
2972 * code flow taken from tg3.c
2974 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
2976 struct net_device
*netdev
= adapter
->netdev
;
2977 struct e1000_hw
*hw
= &adapter
->hw
;
2980 /* poll_enable hasn't been called yet, so don't need disable */
2981 /* clear any pending events */
2984 /* free the real vector and request a test handler */
2985 e1000_free_irq(adapter
);
2986 e1000e_reset_interrupt_capability(adapter
);
2988 /* Assume that the test fails, if it succeeds then the test
2989 * MSI irq handler will unset this flag */
2990 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
2992 err
= pci_enable_msi(adapter
->pdev
);
2994 goto msi_test_failed
;
2996 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi_test
, 0,
2997 netdev
->name
, netdev
);
2999 pci_disable_msi(adapter
->pdev
);
3000 goto msi_test_failed
;
3005 e1000_irq_enable(adapter
);
3007 /* fire an unusual interrupt on the test handler */
3008 ew32(ICS
, E1000_ICS_RXSEQ
);
3012 e1000_irq_disable(adapter
);
3016 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3017 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3019 e_info("MSI interrupt test failed!\n");
3022 free_irq(adapter
->pdev
->irq
, netdev
);
3023 pci_disable_msi(adapter
->pdev
);
3026 goto msi_test_failed
;
3028 /* okay so the test worked, restore settings */
3029 e_dbg("%s: MSI interrupt test succeeded!\n", netdev
->name
);
3031 e1000e_set_interrupt_capability(adapter
);
3032 e1000_request_irq(adapter
);
3037 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3038 * @adapter: board private struct
3040 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3042 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3047 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3050 /* disable SERR in case the MSI write causes a master abort */
3051 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3052 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3053 pci_cmd
& ~PCI_COMMAND_SERR
);
3055 err
= e1000_test_msi_interrupt(adapter
);
3057 /* restore previous setting of command word */
3058 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3064 /* EIO means MSI test failed */
3068 /* back to INTx mode */
3069 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3071 e1000_free_irq(adapter
);
3073 err
= e1000_request_irq(adapter
);
3079 * e1000_open - Called when a network interface is made active
3080 * @netdev: network interface device structure
3082 * Returns 0 on success, negative value on failure
3084 * The open entry point is called when a network interface is made
3085 * active by the system (IFF_UP). At this point all resources needed
3086 * for transmit and receive operations are allocated, the interrupt
3087 * handler is registered with the OS, the watchdog timer is started,
3088 * and the stack is notified that the interface is ready.
3090 static int e1000_open(struct net_device
*netdev
)
3092 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3093 struct e1000_hw
*hw
= &adapter
->hw
;
3096 /* disallow open during test */
3097 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3100 netif_carrier_off(netdev
);
3102 /* allocate transmit descriptors */
3103 err
= e1000e_setup_tx_resources(adapter
);
3107 /* allocate receive descriptors */
3108 err
= e1000e_setup_rx_resources(adapter
);
3112 e1000e_power_up_phy(adapter
);
3114 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3115 if ((adapter
->hw
.mng_cookie
.status
&
3116 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3117 e1000_update_mng_vlan(adapter
);
3120 * If AMT is enabled, let the firmware know that the network
3121 * interface is now open
3123 if (adapter
->flags
& FLAG_HAS_AMT
)
3124 e1000_get_hw_control(adapter
);
3127 * before we allocate an interrupt, we must be ready to handle it.
3128 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3129 * as soon as we call pci_request_irq, so we have to setup our
3130 * clean_rx handler before we do so.
3132 e1000_configure(adapter
);
3134 err
= e1000_request_irq(adapter
);
3139 * Work around PCIe errata with MSI interrupts causing some chipsets to
3140 * ignore e1000e MSI messages, which means we need to test our MSI
3143 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3144 err
= e1000_test_msi(adapter
);
3146 e_err("Interrupt allocation failed\n");
3151 /* From here on the code is the same as e1000e_up() */
3152 clear_bit(__E1000_DOWN
, &adapter
->state
);
3154 napi_enable(&adapter
->napi
);
3156 e1000_irq_enable(adapter
);
3158 netif_start_queue(netdev
);
3160 /* fire a link status change interrupt to start the watchdog */
3161 ew32(ICS
, E1000_ICS_LSC
);
3166 e1000_release_hw_control(adapter
);
3167 e1000_power_down_phy(adapter
);
3168 e1000e_free_rx_resources(adapter
);
3170 e1000e_free_tx_resources(adapter
);
3172 e1000e_reset(adapter
);
3178 * e1000_close - Disables a network interface
3179 * @netdev: network interface device structure
3181 * Returns 0, this is not allowed to fail
3183 * The close entry point is called when an interface is de-activated
3184 * by the OS. The hardware is still under the drivers control, but
3185 * needs to be disabled. A global MAC reset is issued to stop the
3186 * hardware, and all transmit and receive resources are freed.
3188 static int e1000_close(struct net_device
*netdev
)
3190 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3192 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3193 e1000e_down(adapter
);
3194 e1000_power_down_phy(adapter
);
3195 e1000_free_irq(adapter
);
3197 e1000e_free_tx_resources(adapter
);
3198 e1000e_free_rx_resources(adapter
);
3201 * kill manageability vlan ID if supported, but not if a vlan with
3202 * the same ID is registered on the host OS (let 8021q kill it)
3204 if ((adapter
->hw
.mng_cookie
.status
&
3205 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3207 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3208 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3211 * If AMT is enabled, let the firmware know that the network
3212 * interface is now closed
3214 if (adapter
->flags
& FLAG_HAS_AMT
)
3215 e1000_release_hw_control(adapter
);
3220 * e1000_set_mac - Change the Ethernet Address of the NIC
3221 * @netdev: network interface device structure
3222 * @p: pointer to an address structure
3224 * Returns 0 on success, negative on failure
3226 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3228 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3229 struct sockaddr
*addr
= p
;
3231 if (!is_valid_ether_addr(addr
->sa_data
))
3232 return -EADDRNOTAVAIL
;
3234 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3235 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3237 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3239 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3240 /* activate the work around */
3241 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3244 * Hold a copy of the LAA in RAR[14] This is done so that
3245 * between the time RAR[0] gets clobbered and the time it
3246 * gets fixed (in e1000_watchdog), the actual LAA is in one
3247 * of the RARs and no incoming packets directed to this port
3248 * are dropped. Eventually the LAA will be in RAR[0] and
3251 e1000e_rar_set(&adapter
->hw
,
3252 adapter
->hw
.mac
.addr
,
3253 adapter
->hw
.mac
.rar_entry_count
- 1);
3260 * e1000e_update_phy_task - work thread to update phy
3261 * @work: pointer to our work struct
3263 * this worker thread exists because we must acquire a
3264 * semaphore to read the phy, which we could msleep while
3265 * waiting for it, and we can't msleep in a timer.
3267 static void e1000e_update_phy_task(struct work_struct
*work
)
3269 struct e1000_adapter
*adapter
= container_of(work
,
3270 struct e1000_adapter
, update_phy_task
);
3271 e1000_get_phy_info(&adapter
->hw
);
3275 * Need to wait a few seconds after link up to get diagnostic information from
3278 static void e1000_update_phy_info(unsigned long data
)
3280 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3281 schedule_work(&adapter
->update_phy_task
);
3285 * e1000e_update_stats - Update the board statistics counters
3286 * @adapter: board private structure
3288 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3290 struct e1000_hw
*hw
= &adapter
->hw
;
3291 struct pci_dev
*pdev
= adapter
->pdev
;
3295 * Prevent stats update while adapter is being reset, or if the pci
3296 * connection is down.
3298 if (adapter
->link_speed
== 0)
3300 if (pci_channel_offline(pdev
))
3303 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3304 adapter
->stats
.gprc
+= er32(GPRC
);
3305 adapter
->stats
.gorc
+= er32(GORCL
);
3306 er32(GORCH
); /* Clear gorc */
3307 adapter
->stats
.bprc
+= er32(BPRC
);
3308 adapter
->stats
.mprc
+= er32(MPRC
);
3309 adapter
->stats
.roc
+= er32(ROC
);
3311 adapter
->stats
.mpc
+= er32(MPC
);
3312 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3313 (hw
->phy
.type
== e1000_phy_82577
)) {
3314 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3315 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3316 adapter
->stats
.scc
+= phy_data
;
3318 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3319 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3320 adapter
->stats
.ecol
+= phy_data
;
3322 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3323 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3324 adapter
->stats
.mcc
+= phy_data
;
3326 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3327 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3328 adapter
->stats
.latecol
+= phy_data
;
3330 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3331 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3332 adapter
->stats
.dc
+= phy_data
;
3334 adapter
->stats
.scc
+= er32(SCC
);
3335 adapter
->stats
.ecol
+= er32(ECOL
);
3336 adapter
->stats
.mcc
+= er32(MCC
);
3337 adapter
->stats
.latecol
+= er32(LATECOL
);
3338 adapter
->stats
.dc
+= er32(DC
);
3340 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3341 adapter
->stats
.xontxc
+= er32(XONTXC
);
3342 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3343 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3344 adapter
->stats
.gptc
+= er32(GPTC
);
3345 adapter
->stats
.gotc
+= er32(GOTCL
);
3346 er32(GOTCH
); /* Clear gotc */
3347 adapter
->stats
.rnbc
+= er32(RNBC
);
3348 adapter
->stats
.ruc
+= er32(RUC
);
3350 adapter
->stats
.mptc
+= er32(MPTC
);
3351 adapter
->stats
.bptc
+= er32(BPTC
);
3353 /* used for adaptive IFS */
3355 hw
->mac
.tx_packet_delta
= er32(TPT
);
3356 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3357 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3358 (hw
->phy
.type
== e1000_phy_82577
)) {
3359 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3360 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3361 hw
->mac
.collision_delta
= phy_data
;
3363 hw
->mac
.collision_delta
= er32(COLC
);
3365 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3367 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3368 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3369 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3370 (hw
->phy
.type
== e1000_phy_82577
)) {
3371 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3372 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3373 adapter
->stats
.tncrs
+= phy_data
;
3375 if ((hw
->mac
.type
!= e1000_82574
) &&
3376 (hw
->mac
.type
!= e1000_82583
))
3377 adapter
->stats
.tncrs
+= er32(TNCRS
);
3379 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3380 adapter
->stats
.tsctc
+= er32(TSCTC
);
3381 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3383 /* Fill out the OS statistics structure */
3384 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3385 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3390 * RLEC on some newer hardware can be incorrect so build
3391 * our own version based on RUC and ROC
3393 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3394 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3395 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3396 adapter
->stats
.cexterr
;
3397 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3399 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3400 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3401 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3404 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3405 adapter
->stats
.latecol
;
3406 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3407 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3408 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3410 /* Tx Dropped needs to be maintained elsewhere */
3412 /* Management Stats */
3413 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3414 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3415 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3419 * e1000_phy_read_status - Update the PHY register status snapshot
3420 * @adapter: board private structure
3422 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3424 struct e1000_hw
*hw
= &adapter
->hw
;
3425 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3428 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3429 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3430 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3431 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3432 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3433 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3434 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3435 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3436 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3437 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3439 e_warn("Error reading PHY register\n");
3442 * Do not read PHY registers if link is not up
3443 * Set values to typical power-on defaults
3445 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3446 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3447 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3449 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3450 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3452 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3453 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3455 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3459 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3461 struct e1000_hw
*hw
= &adapter
->hw
;
3462 u32 ctrl
= er32(CTRL
);
3464 /* Link status message must follow this format for user tools */
3465 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
3466 "Flow Control: %s\n",
3467 adapter
->netdev
->name
,
3468 adapter
->link_speed
,
3469 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3470 "Full Duplex" : "Half Duplex",
3471 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3473 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3474 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3477 bool e1000_has_link(struct e1000_adapter
*adapter
)
3479 struct e1000_hw
*hw
= &adapter
->hw
;
3480 bool link_active
= 0;
3484 * get_link_status is set on LSC (link status) interrupt or
3485 * Rx sequence error interrupt. get_link_status will stay
3486 * false until the check_for_link establishes link
3487 * for copper adapters ONLY
3489 switch (hw
->phy
.media_type
) {
3490 case e1000_media_type_copper
:
3491 if (hw
->mac
.get_link_status
) {
3492 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3493 link_active
= !hw
->mac
.get_link_status
;
3498 case e1000_media_type_fiber
:
3499 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3500 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3502 case e1000_media_type_internal_serdes
:
3503 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3504 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3507 case e1000_media_type_unknown
:
3511 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3512 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3513 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3514 e_info("Gigabit has been disabled, downgrading speed\n");
3520 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3522 /* make sure the receive unit is started */
3523 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3524 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3525 struct e1000_hw
*hw
= &adapter
->hw
;
3526 u32 rctl
= er32(RCTL
);
3527 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3528 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3533 * e1000_watchdog - Timer Call-back
3534 * @data: pointer to adapter cast into an unsigned long
3536 static void e1000_watchdog(unsigned long data
)
3538 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3540 /* Do the rest outside of interrupt context */
3541 schedule_work(&adapter
->watchdog_task
);
3543 /* TODO: make this use queue_delayed_work() */
3546 static void e1000_watchdog_task(struct work_struct
*work
)
3548 struct e1000_adapter
*adapter
= container_of(work
,
3549 struct e1000_adapter
, watchdog_task
);
3550 struct net_device
*netdev
= adapter
->netdev
;
3551 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3552 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
3553 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3554 struct e1000_hw
*hw
= &adapter
->hw
;
3558 link
= e1000_has_link(adapter
);
3559 if ((netif_carrier_ok(netdev
)) && link
) {
3560 e1000e_enable_receives(adapter
);
3564 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3565 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3566 e1000_update_mng_vlan(adapter
);
3569 if (!netif_carrier_ok(netdev
)) {
3571 /* update snapshot of PHY registers on LSC */
3572 e1000_phy_read_status(adapter
);
3573 mac
->ops
.get_link_up_info(&adapter
->hw
,
3574 &adapter
->link_speed
,
3575 &adapter
->link_duplex
);
3576 e1000_print_link_info(adapter
);
3578 * On supported PHYs, check for duplex mismatch only
3579 * if link has autonegotiated at 10/100 half
3581 if ((hw
->phy
.type
== e1000_phy_igp_3
||
3582 hw
->phy
.type
== e1000_phy_bm
) &&
3583 (hw
->mac
.autoneg
== true) &&
3584 (adapter
->link_speed
== SPEED_10
||
3585 adapter
->link_speed
== SPEED_100
) &&
3586 (adapter
->link_duplex
== HALF_DUPLEX
)) {
3589 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
3591 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
3592 e_info("Autonegotiated half duplex but"
3593 " link partner cannot autoneg. "
3594 " Try forcing full duplex if "
3595 "link gets many collisions.\n");
3599 * tweak tx_queue_len according to speed/duplex
3600 * and adjust the timeout factor
3602 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
3603 adapter
->tx_timeout_factor
= 1;
3604 switch (adapter
->link_speed
) {
3607 netdev
->tx_queue_len
= 10;
3608 adapter
->tx_timeout_factor
= 16;
3612 netdev
->tx_queue_len
= 100;
3613 /* maybe add some timeout factor ? */
3618 * workaround: re-program speed mode bit after
3621 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3624 tarc0
= er32(TARC(0));
3625 tarc0
&= ~SPEED_MODE_BIT
;
3626 ew32(TARC(0), tarc0
);
3630 * disable TSO for pcie and 10/100 speeds, to avoid
3631 * some hardware issues
3633 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3634 switch (adapter
->link_speed
) {
3637 e_info("10/100 speed: disabling TSO\n");
3638 netdev
->features
&= ~NETIF_F_TSO
;
3639 netdev
->features
&= ~NETIF_F_TSO6
;
3642 netdev
->features
|= NETIF_F_TSO
;
3643 netdev
->features
|= NETIF_F_TSO6
;
3652 * enable transmits in the hardware, need to do this
3653 * after setting TARC(0)
3656 tctl
|= E1000_TCTL_EN
;
3660 * Perform any post-link-up configuration before
3661 * reporting link up.
3663 if (phy
->ops
.cfg_on_link_up
)
3664 phy
->ops
.cfg_on_link_up(hw
);
3666 netif_carrier_on(netdev
);
3668 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3669 mod_timer(&adapter
->phy_info_timer
,
3670 round_jiffies(jiffies
+ 2 * HZ
));
3673 if (netif_carrier_ok(netdev
)) {
3674 adapter
->link_speed
= 0;
3675 adapter
->link_duplex
= 0;
3676 /* Link status message must follow this format */
3677 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
3678 adapter
->netdev
->name
);
3679 netif_carrier_off(netdev
);
3680 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3681 mod_timer(&adapter
->phy_info_timer
,
3682 round_jiffies(jiffies
+ 2 * HZ
));
3684 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3685 schedule_work(&adapter
->reset_task
);
3690 e1000e_update_stats(adapter
);
3692 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3693 adapter
->tpt_old
= adapter
->stats
.tpt
;
3694 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3695 adapter
->colc_old
= adapter
->stats
.colc
;
3697 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3698 adapter
->gorc_old
= adapter
->stats
.gorc
;
3699 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3700 adapter
->gotc_old
= adapter
->stats
.gotc
;
3702 e1000e_update_adaptive(&adapter
->hw
);
3704 if (!netif_carrier_ok(netdev
)) {
3705 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3709 * We've lost link, so the controller stops DMA,
3710 * but we've got queued Tx work that's never going
3711 * to get done, so reset controller to flush Tx.
3712 * (Do the reset outside of interrupt context).
3714 adapter
->tx_timeout_count
++;
3715 schedule_work(&adapter
->reset_task
);
3716 /* return immediately since reset is imminent */
3721 /* Cause software interrupt to ensure Rx ring is cleaned */
3722 if (adapter
->msix_entries
)
3723 ew32(ICS
, adapter
->rx_ring
->ims_val
);
3725 ew32(ICS
, E1000_ICS_RXDMT0
);
3727 /* Force detection of hung controller every watchdog period */
3728 adapter
->detect_tx_hung
= 1;
3731 * With 82571 controllers, LAA may be overwritten due to controller
3732 * reset from the other port. Set the appropriate LAA in RAR[0]
3734 if (e1000e_get_laa_state_82571(hw
))
3735 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3737 /* Reset the timer */
3738 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3739 mod_timer(&adapter
->watchdog_timer
,
3740 round_jiffies(jiffies
+ 2 * HZ
));
3743 #define E1000_TX_FLAGS_CSUM 0x00000001
3744 #define E1000_TX_FLAGS_VLAN 0x00000002
3745 #define E1000_TX_FLAGS_TSO 0x00000004
3746 #define E1000_TX_FLAGS_IPV4 0x00000008
3747 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3748 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3750 static int e1000_tso(struct e1000_adapter
*adapter
,
3751 struct sk_buff
*skb
)
3753 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3754 struct e1000_context_desc
*context_desc
;
3755 struct e1000_buffer
*buffer_info
;
3758 u16 ipcse
= 0, tucse
, mss
;
3759 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3762 if (skb_is_gso(skb
)) {
3763 if (skb_header_cloned(skb
)) {
3764 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3769 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3770 mss
= skb_shinfo(skb
)->gso_size
;
3771 if (skb
->protocol
== htons(ETH_P_IP
)) {
3772 struct iphdr
*iph
= ip_hdr(skb
);
3775 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3779 cmd_length
= E1000_TXD_CMD_IP
;
3780 ipcse
= skb_transport_offset(skb
) - 1;
3781 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3782 ipv6_hdr(skb
)->payload_len
= 0;
3783 tcp_hdr(skb
)->check
=
3784 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3785 &ipv6_hdr(skb
)->daddr
,
3789 ipcss
= skb_network_offset(skb
);
3790 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3791 tucss
= skb_transport_offset(skb
);
3792 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3795 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3796 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3798 i
= tx_ring
->next_to_use
;
3799 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3800 buffer_info
= &tx_ring
->buffer_info
[i
];
3802 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3803 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3804 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3805 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3806 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3807 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3808 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3809 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3810 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3812 buffer_info
->time_stamp
= jiffies
;
3813 buffer_info
->next_to_watch
= i
;
3816 if (i
== tx_ring
->count
)
3818 tx_ring
->next_to_use
= i
;
3826 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3828 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3829 struct e1000_context_desc
*context_desc
;
3830 struct e1000_buffer
*buffer_info
;
3833 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
3836 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3839 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
3840 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
3842 protocol
= skb
->protocol
;
3845 case cpu_to_be16(ETH_P_IP
):
3846 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3847 cmd_len
|= E1000_TXD_CMD_TCP
;
3849 case cpu_to_be16(ETH_P_IPV6
):
3850 /* XXX not handling all IPV6 headers */
3851 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3852 cmd_len
|= E1000_TXD_CMD_TCP
;
3855 if (unlikely(net_ratelimit()))
3856 e_warn("checksum_partial proto=%x!\n",
3857 be16_to_cpu(protocol
));
3861 css
= skb_transport_offset(skb
);
3863 i
= tx_ring
->next_to_use
;
3864 buffer_info
= &tx_ring
->buffer_info
[i
];
3865 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3867 context_desc
->lower_setup
.ip_config
= 0;
3868 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3869 context_desc
->upper_setup
.tcp_fields
.tucso
=
3870 css
+ skb
->csum_offset
;
3871 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3872 context_desc
->tcp_seg_setup
.data
= 0;
3873 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
3875 buffer_info
->time_stamp
= jiffies
;
3876 buffer_info
->next_to_watch
= i
;
3879 if (i
== tx_ring
->count
)
3881 tx_ring
->next_to_use
= i
;
3886 #define E1000_MAX_PER_TXD 8192
3887 #define E1000_MAX_TXD_PWR 12
3889 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3890 struct sk_buff
*skb
, unsigned int first
,
3891 unsigned int max_per_txd
, unsigned int nr_frags
,
3894 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3895 struct e1000_buffer
*buffer_info
;
3896 unsigned int len
= skb_headlen(skb
);
3897 unsigned int offset
, size
, count
= 0, i
;
3901 i
= tx_ring
->next_to_use
;
3903 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
3904 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3905 adapter
->tx_dma_failed
++;
3909 map
= skb_shinfo(skb
)->dma_maps
;
3913 buffer_info
= &tx_ring
->buffer_info
[i
];
3914 size
= min(len
, max_per_txd
);
3916 buffer_info
->length
= size
;
3917 buffer_info
->time_stamp
= jiffies
;
3918 buffer_info
->next_to_watch
= i
;
3919 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
+ offset
;
3927 if (i
== tx_ring
->count
)
3932 for (f
= 0; f
< nr_frags
; f
++) {
3933 struct skb_frag_struct
*frag
;
3935 frag
= &skb_shinfo(skb
)->frags
[f
];
3941 if (i
== tx_ring
->count
)
3944 buffer_info
= &tx_ring
->buffer_info
[i
];
3945 size
= min(len
, max_per_txd
);
3947 buffer_info
->length
= size
;
3948 buffer_info
->time_stamp
= jiffies
;
3949 buffer_info
->next_to_watch
= i
;
3950 buffer_info
->dma
= map
[f
] + offset
;
3958 tx_ring
->buffer_info
[i
].skb
= skb
;
3959 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3964 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3965 int tx_flags
, int count
)
3967 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3968 struct e1000_tx_desc
*tx_desc
= NULL
;
3969 struct e1000_buffer
*buffer_info
;
3970 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3973 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3974 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3976 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3978 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3979 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3982 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3983 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3984 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3987 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3988 txd_lower
|= E1000_TXD_CMD_VLE
;
3989 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3992 i
= tx_ring
->next_to_use
;
3995 buffer_info
= &tx_ring
->buffer_info
[i
];
3996 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3997 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3998 tx_desc
->lower
.data
=
3999 cpu_to_le32(txd_lower
| buffer_info
->length
);
4000 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4003 if (i
== tx_ring
->count
)
4007 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4010 * Force memory writes to complete before letting h/w
4011 * know there are new descriptors to fetch. (Only
4012 * applicable for weak-ordered memory model archs,
4017 tx_ring
->next_to_use
= i
;
4018 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4020 * we need this if more than one processor can write to our tail
4021 * at a time, it synchronizes IO on IA64/Altix systems
4026 #define MINIMUM_DHCP_PACKET_SIZE 282
4027 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4028 struct sk_buff
*skb
)
4030 struct e1000_hw
*hw
= &adapter
->hw
;
4033 if (vlan_tx_tag_present(skb
)) {
4034 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
4035 && (adapter
->hw
.mng_cookie
.status
&
4036 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4040 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4043 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4047 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4050 if (ip
->protocol
!= IPPROTO_UDP
)
4053 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4054 if (ntohs(udp
->dest
) != 67)
4057 offset
= (u8
*)udp
+ 8 - skb
->data
;
4058 length
= skb
->len
- offset
;
4059 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4065 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4067 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4069 netif_stop_queue(netdev
);
4071 * Herbert's original patch had:
4072 * smp_mb__after_netif_stop_queue();
4073 * but since that doesn't exist yet, just open code it.
4078 * We need to check again in a case another CPU has just
4079 * made room available.
4081 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4085 netif_start_queue(netdev
);
4086 ++adapter
->restart_queue
;
4090 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4092 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4094 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4096 return __e1000_maybe_stop_tx(netdev
, size
);
4099 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4100 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4101 struct net_device
*netdev
)
4103 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4104 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4106 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4107 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4108 unsigned int tx_flags
= 0;
4109 unsigned int len
= skb
->len
- skb
->data_len
;
4110 unsigned int nr_frags
;
4116 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4117 dev_kfree_skb_any(skb
);
4118 return NETDEV_TX_OK
;
4121 if (skb
->len
<= 0) {
4122 dev_kfree_skb_any(skb
);
4123 return NETDEV_TX_OK
;
4126 mss
= skb_shinfo(skb
)->gso_size
;
4128 * The controller does a simple calculation to
4129 * make sure there is enough room in the FIFO before
4130 * initiating the DMA for each buffer. The calc is:
4131 * 4 = ceil(buffer len/mss). To make sure we don't
4132 * overrun the FIFO, adjust the max buffer len if mss
4137 max_per_txd
= min(mss
<< 2, max_per_txd
);
4138 max_txd_pwr
= fls(max_per_txd
) - 1;
4141 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4142 * points to just header, pull a few bytes of payload from
4143 * frags into skb->data
4145 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4147 * we do this workaround for ES2LAN, but it is un-necessary,
4148 * avoiding it could save a lot of cycles
4150 if (skb
->data_len
&& (hdr_len
== len
)) {
4151 unsigned int pull_size
;
4153 pull_size
= min((unsigned int)4, skb
->data_len
);
4154 if (!__pskb_pull_tail(skb
, pull_size
)) {
4155 e_err("__pskb_pull_tail failed.\n");
4156 dev_kfree_skb_any(skb
);
4157 return NETDEV_TX_OK
;
4159 len
= skb
->len
- skb
->data_len
;
4163 /* reserve a descriptor for the offload context */
4164 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4168 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4170 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4171 for (f
= 0; f
< nr_frags
; f
++)
4172 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4175 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4176 e1000_transfer_dhcp_info(adapter
, skb
);
4179 * need: count + 2 desc gap to keep tail from touching
4180 * head, otherwise try next time
4182 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4183 return NETDEV_TX_BUSY
;
4185 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4186 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4187 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4190 first
= tx_ring
->next_to_use
;
4192 tso
= e1000_tso(adapter
, skb
);
4194 dev_kfree_skb_any(skb
);
4195 return NETDEV_TX_OK
;
4199 tx_flags
|= E1000_TX_FLAGS_TSO
;
4200 else if (e1000_tx_csum(adapter
, skb
))
4201 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4204 * Old method was to assume IPv4 packet by default if TSO was enabled.
4205 * 82571 hardware supports TSO capabilities for IPv6 as well...
4206 * no longer assume, we must.
4208 if (skb
->protocol
== htons(ETH_P_IP
))
4209 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4211 /* if count is 0 then mapping error has occured */
4212 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4214 e1000_tx_queue(adapter
, tx_flags
, count
);
4215 /* Make sure there is space in the ring for the next send. */
4216 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4219 dev_kfree_skb_any(skb
);
4220 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4221 tx_ring
->next_to_use
= first
;
4224 return NETDEV_TX_OK
;
4228 * e1000_tx_timeout - Respond to a Tx Hang
4229 * @netdev: network interface device structure
4231 static void e1000_tx_timeout(struct net_device
*netdev
)
4233 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4235 /* Do the reset outside of interrupt context */
4236 adapter
->tx_timeout_count
++;
4237 schedule_work(&adapter
->reset_task
);
4240 static void e1000_reset_task(struct work_struct
*work
)
4242 struct e1000_adapter
*adapter
;
4243 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4245 e1000e_reinit_locked(adapter
);
4249 * e1000_get_stats - Get System Network Statistics
4250 * @netdev: network interface device structure
4252 * Returns the address of the device statistics structure.
4253 * The statistics are actually updated from the timer callback.
4255 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4259 /* only return the current stats */
4260 return &adapter
->net_stats
;
4264 * e1000_change_mtu - Change the Maximum Transfer Unit
4265 * @netdev: network interface device structure
4266 * @new_mtu: new value for maximum frame size
4268 * Returns 0 on success, negative on failure
4270 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4272 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4273 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4275 /* Jumbo frame support */
4276 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4277 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4278 e_err("Jumbo Frames not supported.\n");
4282 /* Supported frame sizes */
4283 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4284 (max_frame
> adapter
->max_hw_frame_size
)) {
4285 e_err("Unsupported MTU setting\n");
4289 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4291 /* e1000e_down has a dependency on max_frame_size */
4292 adapter
->max_frame_size
= max_frame
;
4293 if (netif_running(netdev
))
4294 e1000e_down(adapter
);
4297 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4298 * means we reserve 2 more, this pushes us to allocate from the next
4300 * i.e. RXBUFFER_2048 --> size-4096 slab
4301 * However with the new *_jumbo_rx* routines, jumbo receives will use
4305 if (max_frame
<= 256)
4306 adapter
->rx_buffer_len
= 256;
4307 else if (max_frame
<= 512)
4308 adapter
->rx_buffer_len
= 512;
4309 else if (max_frame
<= 1024)
4310 adapter
->rx_buffer_len
= 1024;
4311 else if (max_frame
<= 2048)
4312 adapter
->rx_buffer_len
= 2048;
4314 adapter
->rx_buffer_len
= 4096;
4316 /* adjust allocation if LPE protects us, and we aren't using SBP */
4317 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4318 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4319 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4322 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4323 netdev
->mtu
= new_mtu
;
4325 if (netif_running(netdev
))
4328 e1000e_reset(adapter
);
4330 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4335 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4338 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4339 struct mii_ioctl_data
*data
= if_mii(ifr
);
4341 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4346 data
->phy_id
= adapter
->hw
.phy
.addr
;
4349 switch (data
->reg_num
& 0x1F) {
4351 data
->val_out
= adapter
->phy_regs
.bmcr
;
4354 data
->val_out
= adapter
->phy_regs
.bmsr
;
4357 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
4360 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
4363 data
->val_out
= adapter
->phy_regs
.advertise
;
4366 data
->val_out
= adapter
->phy_regs
.lpa
;
4369 data
->val_out
= adapter
->phy_regs
.expansion
;
4372 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
4375 data
->val_out
= adapter
->phy_regs
.stat1000
;
4378 data
->val_out
= adapter
->phy_regs
.estatus
;
4391 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4397 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4403 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
4405 struct e1000_hw
*hw
= &adapter
->hw
;
4410 /* copy MAC RARs to PHY RARs */
4411 for (i
= 0; i
< adapter
->hw
.mac
.rar_entry_count
; i
++) {
4412 mac_reg
= er32(RAL(i
));
4413 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
4414 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4415 mac_reg
= er32(RAH(i
));
4416 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
4417 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4420 /* copy MAC MTA to PHY MTA */
4421 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
4422 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
4423 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
4424 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
4427 /* configure PHY Rx Control register */
4428 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
4429 mac_reg
= er32(RCTL
);
4430 if (mac_reg
& E1000_RCTL_UPE
)
4431 phy_reg
|= BM_RCTL_UPE
;
4432 if (mac_reg
& E1000_RCTL_MPE
)
4433 phy_reg
|= BM_RCTL_MPE
;
4434 phy_reg
&= ~(BM_RCTL_MO_MASK
);
4435 if (mac_reg
& E1000_RCTL_MO_3
)
4436 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
4437 << BM_RCTL_MO_SHIFT
);
4438 if (mac_reg
& E1000_RCTL_BAM
)
4439 phy_reg
|= BM_RCTL_BAM
;
4440 if (mac_reg
& E1000_RCTL_PMCF
)
4441 phy_reg
|= BM_RCTL_PMCF
;
4442 mac_reg
= er32(CTRL
);
4443 if (mac_reg
& E1000_CTRL_RFCE
)
4444 phy_reg
|= BM_RCTL_RFCE
;
4445 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
4447 /* enable PHY wakeup in MAC register */
4449 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
4451 /* configure and enable PHY wakeup in PHY registers */
4452 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
4453 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
4455 /* activate PHY wakeup */
4456 retval
= hw
->phy
.ops
.acquire_phy(hw
);
4458 e_err("Could not acquire PHY\n");
4461 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4462 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
4463 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
4465 e_err("Could not read PHY page 769\n");
4468 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
4469 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
4471 e_err("Could not set PHY Host Wakeup bit\n");
4473 hw
->phy
.ops
.release_phy(hw
);
4478 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4480 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4481 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4482 struct e1000_hw
*hw
= &adapter
->hw
;
4483 u32 ctrl
, ctrl_ext
, rctl
, status
;
4484 u32 wufc
= adapter
->wol
;
4487 netif_device_detach(netdev
);
4489 if (netif_running(netdev
)) {
4490 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4491 e1000e_down(adapter
);
4492 e1000_free_irq(adapter
);
4494 e1000e_reset_interrupt_capability(adapter
);
4496 retval
= pci_save_state(pdev
);
4500 status
= er32(STATUS
);
4501 if (status
& E1000_STATUS_LU
)
4502 wufc
&= ~E1000_WUFC_LNKC
;
4505 e1000_setup_rctl(adapter
);
4506 e1000_set_multi(netdev
);
4508 /* turn on all-multi mode if wake on multicast is enabled */
4509 if (wufc
& E1000_WUFC_MC
) {
4511 rctl
|= E1000_RCTL_MPE
;
4516 /* advertise wake from D3Cold */
4517 #define E1000_CTRL_ADVD3WUC 0x00100000
4518 /* phy power management enable */
4519 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4520 ctrl
|= E1000_CTRL_ADVD3WUC
;
4521 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
4522 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
4525 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4526 adapter
->hw
.phy
.media_type
==
4527 e1000_media_type_internal_serdes
) {
4528 /* keep the laser running in D3 */
4529 ctrl_ext
= er32(CTRL_EXT
);
4530 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4531 ew32(CTRL_EXT
, ctrl_ext
);
4534 if (adapter
->flags
& FLAG_IS_ICH
)
4535 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4537 /* Allow time for pending master requests to run */
4538 e1000e_disable_pcie_master(&adapter
->hw
);
4540 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4541 /* enable wakeup by the PHY */
4542 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
4546 /* enable wakeup by the MAC */
4548 ew32(WUC
, E1000_WUC_PME_EN
);
4555 *enable_wake
= !!wufc
;
4557 /* make sure adapter isn't asleep if manageability is enabled */
4558 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
4559 (hw
->mac
.ops
.check_mng_mode(hw
)))
4560 *enable_wake
= true;
4562 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4563 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
4566 * Release control of h/w to f/w. If f/w is AMT enabled, this
4567 * would have already happened in close and is redundant.
4569 e1000_release_hw_control(adapter
);
4571 pci_disable_device(pdev
);
4576 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
4578 if (sleep
&& wake
) {
4579 pci_prepare_to_sleep(pdev
);
4583 pci_wake_from_d3(pdev
, wake
);
4584 pci_set_power_state(pdev
, PCI_D3hot
);
4587 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
4590 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4591 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4594 * The pci-e switch on some quad port adapters will report a
4595 * correctable error when the MAC transitions from D0 to D3. To
4596 * prevent this we need to mask off the correctable errors on the
4597 * downstream port of the pci-e switch.
4599 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
4600 struct pci_dev
*us_dev
= pdev
->bus
->self
;
4601 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
4604 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
4605 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
4606 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
4608 e1000_power_off(pdev
, sleep
, wake
);
4610 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
4612 e1000_power_off(pdev
, sleep
, wake
);
4616 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
4622 * 82573 workaround - disable L1 ASPM on mobile chipsets
4624 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4625 * resulting in lost data or garbage information on the pci-e link
4626 * level. This could result in (false) bad EEPROM checksum errors,
4627 * long ping times (up to 2s) or even a system freeze/hang.
4629 * Unfortunately this feature saves about 1W power consumption when
4632 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
4633 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
4635 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
4637 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
4642 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4647 retval
= __e1000_shutdown(pdev
, &wake
);
4649 e1000_complete_shutdown(pdev
, true, wake
);
4654 static int e1000_resume(struct pci_dev
*pdev
)
4656 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4657 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4658 struct e1000_hw
*hw
= &adapter
->hw
;
4661 pci_set_power_state(pdev
, PCI_D0
);
4662 pci_restore_state(pdev
);
4663 e1000e_disable_l1aspm(pdev
);
4665 err
= pci_enable_device_mem(pdev
);
4668 "Cannot enable PCI device from suspend\n");
4672 pci_set_master(pdev
);
4674 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4675 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4677 e1000e_set_interrupt_capability(adapter
);
4678 if (netif_running(netdev
)) {
4679 err
= e1000_request_irq(adapter
);
4684 e1000e_power_up_phy(adapter
);
4686 /* report the system wakeup cause from S3/S4 */
4687 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4690 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
4692 e_info("PHY Wakeup cause - %s\n",
4693 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
4694 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
4695 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
4696 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
4697 phy_data
& E1000_WUS_LNKC
? "Link Status "
4698 " Change" : "other");
4700 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
4702 u32 wus
= er32(WUS
);
4704 e_info("MAC Wakeup cause - %s\n",
4705 wus
& E1000_WUS_EX
? "Unicast Packet" :
4706 wus
& E1000_WUS_MC
? "Multicast Packet" :
4707 wus
& E1000_WUS_BC
? "Broadcast Packet" :
4708 wus
& E1000_WUS_MAG
? "Magic Packet" :
4709 wus
& E1000_WUS_LNKC
? "Link Status Change" :
4715 e1000e_reset(adapter
);
4717 e1000_init_manageability(adapter
);
4719 if (netif_running(netdev
))
4722 netif_device_attach(netdev
);
4725 * If the controller has AMT, do not set DRV_LOAD until the interface
4726 * is up. For all other cases, let the f/w know that the h/w is now
4727 * under the control of the driver.
4729 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4730 e1000_get_hw_control(adapter
);
4736 static void e1000_shutdown(struct pci_dev
*pdev
)
4740 __e1000_shutdown(pdev
, &wake
);
4742 if (system_state
== SYSTEM_POWER_OFF
)
4743 e1000_complete_shutdown(pdev
, false, wake
);
4746 #ifdef CONFIG_NET_POLL_CONTROLLER
4748 * Polling 'interrupt' - used by things like netconsole to send skbs
4749 * without having to re-enable interrupts. It's not called while
4750 * the interrupt routine is executing.
4752 static void e1000_netpoll(struct net_device
*netdev
)
4754 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4756 disable_irq(adapter
->pdev
->irq
);
4757 e1000_intr(adapter
->pdev
->irq
, netdev
);
4759 enable_irq(adapter
->pdev
->irq
);
4764 * e1000_io_error_detected - called when PCI error is detected
4765 * @pdev: Pointer to PCI device
4766 * @state: The current pci connection state
4768 * This function is called after a PCI bus error affecting
4769 * this device has been detected.
4771 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4772 pci_channel_state_t state
)
4774 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4775 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4777 netif_device_detach(netdev
);
4779 if (state
== pci_channel_io_perm_failure
)
4780 return PCI_ERS_RESULT_DISCONNECT
;
4782 if (netif_running(netdev
))
4783 e1000e_down(adapter
);
4784 pci_disable_device(pdev
);
4786 /* Request a slot slot reset. */
4787 return PCI_ERS_RESULT_NEED_RESET
;
4791 * e1000_io_slot_reset - called after the pci bus has been reset.
4792 * @pdev: Pointer to PCI device
4794 * Restart the card from scratch, as if from a cold-boot. Implementation
4795 * resembles the first-half of the e1000_resume routine.
4797 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4799 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4800 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4801 struct e1000_hw
*hw
= &adapter
->hw
;
4803 pci_ers_result_t result
;
4805 e1000e_disable_l1aspm(pdev
);
4806 err
= pci_enable_device_mem(pdev
);
4809 "Cannot re-enable PCI device after reset.\n");
4810 result
= PCI_ERS_RESULT_DISCONNECT
;
4812 pci_set_master(pdev
);
4813 pci_restore_state(pdev
);
4815 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4816 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4818 e1000e_reset(adapter
);
4820 result
= PCI_ERS_RESULT_RECOVERED
;
4823 pci_cleanup_aer_uncorrect_error_status(pdev
);
4829 * e1000_io_resume - called when traffic can start flowing again.
4830 * @pdev: Pointer to PCI device
4832 * This callback is called when the error recovery driver tells us that
4833 * its OK to resume normal operation. Implementation resembles the
4834 * second-half of the e1000_resume routine.
4836 static void e1000_io_resume(struct pci_dev
*pdev
)
4838 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4839 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4841 e1000_init_manageability(adapter
);
4843 if (netif_running(netdev
)) {
4844 if (e1000e_up(adapter
)) {
4846 "can't bring device back up after reset\n");
4851 netif_device_attach(netdev
);
4854 * If the controller has AMT, do not set DRV_LOAD until the interface
4855 * is up. For all other cases, let the f/w know that the h/w is now
4856 * under the control of the driver.
4858 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4859 e1000_get_hw_control(adapter
);
4863 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4865 struct e1000_hw
*hw
= &adapter
->hw
;
4866 struct net_device
*netdev
= adapter
->netdev
;
4869 /* print bus type/speed/width info */
4870 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4872 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4876 e_info("Intel(R) PRO/%s Network Connection\n",
4877 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
4878 e1000e_read_pba_num(hw
, &pba_num
);
4879 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4880 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
4883 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
4885 struct e1000_hw
*hw
= &adapter
->hw
;
4889 if (hw
->mac
.type
!= e1000_82573
)
4892 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
4893 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
4894 /* Deep Smart Power Down (DSPD) */
4895 dev_warn(&adapter
->pdev
->dev
,
4896 "Warning: detected DSPD enabled in EEPROM\n");
4899 ret_val
= e1000_read_nvm(hw
, NVM_INIT_3GIO_3
, 1, &buf
);
4900 if (!ret_val
&& (le16_to_cpu(buf
) & (3 << 2))) {
4902 dev_warn(&adapter
->pdev
->dev
,
4903 "Warning: detected ASPM enabled in EEPROM\n");
4907 static const struct net_device_ops e1000e_netdev_ops
= {
4908 .ndo_open
= e1000_open
,
4909 .ndo_stop
= e1000_close
,
4910 .ndo_start_xmit
= e1000_xmit_frame
,
4911 .ndo_get_stats
= e1000_get_stats
,
4912 .ndo_set_multicast_list
= e1000_set_multi
,
4913 .ndo_set_mac_address
= e1000_set_mac
,
4914 .ndo_change_mtu
= e1000_change_mtu
,
4915 .ndo_do_ioctl
= e1000_ioctl
,
4916 .ndo_tx_timeout
= e1000_tx_timeout
,
4917 .ndo_validate_addr
= eth_validate_addr
,
4919 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
4920 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
4921 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
4922 #ifdef CONFIG_NET_POLL_CONTROLLER
4923 .ndo_poll_controller
= e1000_netpoll
,
4928 * e1000_probe - Device Initialization Routine
4929 * @pdev: PCI device information struct
4930 * @ent: entry in e1000_pci_tbl
4932 * Returns 0 on success, negative on failure
4934 * e1000_probe initializes an adapter identified by a pci_dev structure.
4935 * The OS initialization, configuring of the adapter private structure,
4936 * and a hardware reset occur.
4938 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4939 const struct pci_device_id
*ent
)
4941 struct net_device
*netdev
;
4942 struct e1000_adapter
*adapter
;
4943 struct e1000_hw
*hw
;
4944 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4945 resource_size_t mmio_start
, mmio_len
;
4946 resource_size_t flash_start
, flash_len
;
4948 static int cards_found
;
4949 int i
, err
, pci_using_dac
;
4950 u16 eeprom_data
= 0;
4951 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4953 e1000e_disable_l1aspm(pdev
);
4955 err
= pci_enable_device_mem(pdev
);
4960 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4962 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4966 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4968 err
= pci_set_consistent_dma_mask(pdev
,
4971 dev_err(&pdev
->dev
, "No usable DMA "
4972 "configuration, aborting\n");
4978 err
= pci_request_selected_regions_exclusive(pdev
,
4979 pci_select_bars(pdev
, IORESOURCE_MEM
),
4980 e1000e_driver_name
);
4984 /* AER (Advanced Error Reporting) hooks */
4985 err
= pci_enable_pcie_error_reporting(pdev
);
4987 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting failed "
4989 /* non-fatal, continue */
4992 pci_set_master(pdev
);
4993 /* PCI config space info */
4994 err
= pci_save_state(pdev
);
4996 goto err_alloc_etherdev
;
4999 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5001 goto err_alloc_etherdev
;
5003 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5005 pci_set_drvdata(pdev
, netdev
);
5006 adapter
= netdev_priv(netdev
);
5008 adapter
->netdev
= netdev
;
5009 adapter
->pdev
= pdev
;
5011 adapter
->pba
= ei
->pba
;
5012 adapter
->flags
= ei
->flags
;
5013 adapter
->flags2
= ei
->flags2
;
5014 adapter
->hw
.adapter
= adapter
;
5015 adapter
->hw
.mac
.type
= ei
->mac
;
5016 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5017 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5019 mmio_start
= pci_resource_start(pdev
, 0);
5020 mmio_len
= pci_resource_len(pdev
, 0);
5023 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5024 if (!adapter
->hw
.hw_addr
)
5027 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5028 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5029 flash_start
= pci_resource_start(pdev
, 1);
5030 flash_len
= pci_resource_len(pdev
, 1);
5031 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5032 if (!adapter
->hw
.flash_address
)
5036 /* construct the net_device struct */
5037 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5038 e1000e_set_ethtool_ops(netdev
);
5039 netdev
->watchdog_timeo
= 5 * HZ
;
5040 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5041 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5043 netdev
->mem_start
= mmio_start
;
5044 netdev
->mem_end
= mmio_start
+ mmio_len
;
5046 adapter
->bd_number
= cards_found
++;
5048 e1000e_check_options(adapter
);
5050 /* setup adapter struct */
5051 err
= e1000_sw_init(adapter
);
5057 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5058 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5059 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5061 err
= ei
->get_variants(adapter
);
5065 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5066 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5067 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5069 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5071 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5073 /* Copper options */
5074 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5075 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5076 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5077 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5080 if (e1000_check_reset_block(&adapter
->hw
))
5081 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5083 netdev
->features
= NETIF_F_SG
|
5085 NETIF_F_HW_VLAN_TX
|
5088 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5089 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5091 netdev
->features
|= NETIF_F_TSO
;
5092 netdev
->features
|= NETIF_F_TSO6
;
5094 netdev
->vlan_features
|= NETIF_F_TSO
;
5095 netdev
->vlan_features
|= NETIF_F_TSO6
;
5096 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5097 netdev
->vlan_features
|= NETIF_F_SG
;
5100 netdev
->features
|= NETIF_F_HIGHDMA
;
5102 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5103 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5106 * before reading the NVM, reset the controller to
5107 * put the device in a known good starting state
5109 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5112 * systems with ASPM and others may see the checksum fail on the first
5113 * attempt. Let's give it a few tries
5116 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5119 e_err("The NVM Checksum Is Not Valid\n");
5125 e1000_eeprom_checks(adapter
);
5127 /* copy the MAC address out of the NVM */
5128 if (e1000e_read_mac_addr(&adapter
->hw
))
5129 e_err("NVM Read Error while reading MAC address\n");
5131 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5132 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5134 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5135 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5140 init_timer(&adapter
->watchdog_timer
);
5141 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
5142 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5144 init_timer(&adapter
->phy_info_timer
);
5145 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
5146 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5148 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5149 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5150 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5151 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5153 /* Initialize link parameters. User can change them with ethtool */
5154 adapter
->hw
.mac
.autoneg
= 1;
5155 adapter
->fc_autoneg
= 1;
5156 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5157 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5158 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5160 /* ring size defaults */
5161 adapter
->rx_ring
->count
= 256;
5162 adapter
->tx_ring
->count
= 256;
5165 * Initial Wake on LAN setting - If APM wake is enabled in
5166 * the EEPROM, enable the ACPI Magic Packet filter
5168 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5169 /* APME bit in EEPROM is mapped to WUC.APME */
5170 eeprom_data
= er32(WUC
);
5171 eeprom_apme_mask
= E1000_WUC_APME
;
5172 if (eeprom_data
& E1000_WUC_PHY_WAKE
)
5173 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5174 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5175 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5176 (adapter
->hw
.bus
.func
== 1))
5177 e1000_read_nvm(&adapter
->hw
,
5178 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5180 e1000_read_nvm(&adapter
->hw
,
5181 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5184 /* fetch WoL from EEPROM */
5185 if (eeprom_data
& eeprom_apme_mask
)
5186 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5189 * now that we have the eeprom settings, apply the special cases
5190 * where the eeprom may be wrong or the board simply won't support
5191 * wake on lan on a particular port
5193 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5194 adapter
->eeprom_wol
= 0;
5196 /* initialize the wol settings based on the eeprom settings */
5197 adapter
->wol
= adapter
->eeprom_wol
;
5198 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5200 /* save off EEPROM version number */
5201 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5203 /* reset the hardware with the new settings */
5204 e1000e_reset(adapter
);
5207 * If the controller has AMT, do not set DRV_LOAD until the interface
5208 * is up. For all other cases, let the f/w know that the h/w is now
5209 * under the control of the driver.
5211 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5212 e1000_get_hw_control(adapter
);
5214 strcpy(netdev
->name
, "eth%d");
5215 err
= register_netdev(netdev
);
5219 /* carrier off reporting is important to ethtool even BEFORE open */
5220 netif_carrier_off(netdev
);
5222 e1000_print_device_info(adapter
);
5227 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5228 e1000_release_hw_control(adapter
);
5230 if (!e1000_check_reset_block(&adapter
->hw
))
5231 e1000_phy_hw_reset(&adapter
->hw
);
5234 kfree(adapter
->tx_ring
);
5235 kfree(adapter
->rx_ring
);
5237 if (adapter
->hw
.flash_address
)
5238 iounmap(adapter
->hw
.flash_address
);
5239 e1000e_reset_interrupt_capability(adapter
);
5241 iounmap(adapter
->hw
.hw_addr
);
5243 free_netdev(netdev
);
5245 pci_release_selected_regions(pdev
,
5246 pci_select_bars(pdev
, IORESOURCE_MEM
));
5249 pci_disable_device(pdev
);
5254 * e1000_remove - Device Removal Routine
5255 * @pdev: PCI device information struct
5257 * e1000_remove is called by the PCI subsystem to alert the driver
5258 * that it should release a PCI device. The could be caused by a
5259 * Hot-Plug event, or because the driver is going to be removed from
5262 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
5264 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5265 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5269 * flush_scheduled work may reschedule our watchdog task, so
5270 * explicitly disable watchdog tasks from being rescheduled
5272 set_bit(__E1000_DOWN
, &adapter
->state
);
5273 del_timer_sync(&adapter
->watchdog_timer
);
5274 del_timer_sync(&adapter
->phy_info_timer
);
5276 flush_scheduled_work();
5279 * Release control of h/w to f/w. If f/w is AMT enabled, this
5280 * would have already happened in close and is redundant.
5282 e1000_release_hw_control(adapter
);
5284 unregister_netdev(netdev
);
5286 if (!e1000_check_reset_block(&adapter
->hw
))
5287 e1000_phy_hw_reset(&adapter
->hw
);
5289 e1000e_reset_interrupt_capability(adapter
);
5290 kfree(adapter
->tx_ring
);
5291 kfree(adapter
->rx_ring
);
5293 iounmap(adapter
->hw
.hw_addr
);
5294 if (adapter
->hw
.flash_address
)
5295 iounmap(adapter
->hw
.flash_address
);
5296 pci_release_selected_regions(pdev
,
5297 pci_select_bars(pdev
, IORESOURCE_MEM
));
5299 free_netdev(netdev
);
5302 err
= pci_disable_pcie_error_reporting(pdev
);
5305 "pci_disable_pcie_error_reporting failed 0x%x\n", err
);
5307 pci_disable_device(pdev
);
5310 /* PCI Error Recovery (ERS) */
5311 static struct pci_error_handlers e1000_err_handler
= {
5312 .error_detected
= e1000_io_error_detected
,
5313 .slot_reset
= e1000_io_slot_reset
,
5314 .resume
= e1000_io_resume
,
5317 static struct pci_device_id e1000_pci_tbl
[] = {
5318 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
5319 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
5320 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
5321 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
5322 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
5323 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
5324 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
5325 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
5326 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
5328 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
5329 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
5330 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
5331 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
5333 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
5334 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
5335 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
5337 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
5338 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
5339 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
5341 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
5342 board_80003es2lan
},
5343 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
5344 board_80003es2lan
},
5345 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
5346 board_80003es2lan
},
5347 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
5348 board_80003es2lan
},
5350 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
5351 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
5352 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
5353 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
5354 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
5355 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
5356 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
5358 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
5359 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
5360 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
5361 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
5362 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
5363 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
5364 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
5365 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
5366 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
5368 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
5369 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
5370 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
5372 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
5373 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
5375 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
5376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
5377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
5378 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
5380 { } /* terminate list */
5382 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
5384 /* PCI Device API Driver */
5385 static struct pci_driver e1000_driver
= {
5386 .name
= e1000e_driver_name
,
5387 .id_table
= e1000_pci_tbl
,
5388 .probe
= e1000_probe
,
5389 .remove
= __devexit_p(e1000_remove
),
5391 /* Power Management Hooks */
5392 .suspend
= e1000_suspend
,
5393 .resume
= e1000_resume
,
5395 .shutdown
= e1000_shutdown
,
5396 .err_handler
= &e1000_err_handler
5400 * e1000_init_module - Driver Registration Routine
5402 * e1000_init_module is the first routine called when the driver is
5403 * loaded. All it does is register with the PCI subsystem.
5405 static int __init
e1000_init_module(void)
5408 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
5409 e1000e_driver_name
, e1000e_driver_version
);
5410 printk(KERN_INFO
"%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5411 e1000e_driver_name
);
5412 ret
= pci_register_driver(&e1000_driver
);
5413 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
,
5414 PM_QOS_DEFAULT_VALUE
);
5418 module_init(e1000_init_module
);
5421 * e1000_exit_module - Driver Exit Cleanup Routine
5423 * e1000_exit_module is called just before the driver is removed
5426 static void __exit
e1000_exit_module(void)
5428 pci_unregister_driver(&e1000_driver
);
5429 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
);
5431 module_exit(e1000_exit_module
);
5434 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5435 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5436 MODULE_LICENSE("GPL");
5437 MODULE_VERSION(DRV_VERSION
);