2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.13"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION
);
72 static const u32 default_msg
73 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
76 static int debug
= -1; /* defaults above */
77 module_param(debug
, int, 0);
78 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table
[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
91 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
94 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
96 static int skge_up(struct net_device
*dev
);
97 static int skge_down(struct net_device
*dev
);
98 static void skge_phy_reset(struct skge_port
*skge
);
99 static void skge_tx_clean(struct net_device
*dev
);
100 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
101 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
102 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
103 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
104 static void yukon_init(struct skge_hw
*hw
, int port
);
105 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
106 static void genesis_link_up(struct skge_port
*skge
);
107 static void skge_set_multicast(struct net_device
*dev
);
109 /* Avoid conditionals by using array */
110 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
111 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
112 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
113 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
114 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
115 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
117 static int skge_get_regs_len(struct net_device
*dev
)
123 * Returns copy of whole control register region
124 * Note: skip RAM address register because accessing it will
127 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
130 const struct skge_port
*skge
= netdev_priv(dev
);
131 const void __iomem
*io
= skge
->hw
->regs
;
134 memset(p
, 0, regs
->len
);
135 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
137 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
138 regs
->len
- B3_RI_WTO_R1
);
141 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
142 static u32
wol_supported(const struct skge_hw
*hw
)
144 if (hw
->chip_id
== CHIP_ID_GENESIS
)
147 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
150 return WAKE_MAGIC
| WAKE_PHY
;
153 static void skge_wol_init(struct skge_port
*skge
)
155 struct skge_hw
*hw
= skge
->hw
;
156 int port
= skge
->port
;
159 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
160 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
163 skge_write8(hw
, B0_POWER_CTRL
,
164 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
166 /* WA code for COMA mode -- clear PHY reset */
167 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
168 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
169 u32 reg
= skge_read32(hw
, B2_GP_IO
);
172 skge_write32(hw
, B2_GP_IO
, reg
);
175 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
177 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
178 GPC_ANEG_1
| GPC_RST_SET
);
180 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
182 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
183 GPC_ANEG_1
| GPC_RST_CLR
);
185 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
187 /* Force to 10/100 skge_reset will re-enable on resume */
188 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
189 PHY_AN_100FULL
| PHY_AN_100HALF
|
190 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
192 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
193 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
194 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
195 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
198 /* Set GMAC to no flow control and auto update for speed/duplex */
199 gma_write16(hw
, port
, GM_GP_CTRL
,
200 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
201 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
203 /* Set WOL address */
204 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
205 skge
->netdev
->dev_addr
, ETH_ALEN
);
207 /* Turn on appropriate WOL control bits */
208 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
210 if (skge
->wol
& WAKE_PHY
)
211 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
213 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
215 if (skge
->wol
& WAKE_MAGIC
)
216 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
218 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
220 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
221 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
224 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
227 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
229 struct skge_port
*skge
= netdev_priv(dev
);
231 wol
->supported
= wol_supported(skge
->hw
);
232 wol
->wolopts
= skge
->wol
;
235 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
237 struct skge_port
*skge
= netdev_priv(dev
);
238 struct skge_hw
*hw
= skge
->hw
;
240 if ((wol
->wolopts
& ~wol_supported(hw
))
241 || !device_can_wakeup(&hw
->pdev
->dev
))
244 skge
->wol
= wol
->wolopts
;
246 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
251 /* Determine supported/advertised modes based on hardware.
252 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
254 static u32
skge_supported_modes(const struct skge_hw
*hw
)
259 supported
= SUPPORTED_10baseT_Half
260 | SUPPORTED_10baseT_Full
261 | SUPPORTED_100baseT_Half
262 | SUPPORTED_100baseT_Full
263 | SUPPORTED_1000baseT_Half
264 | SUPPORTED_1000baseT_Full
265 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
267 if (hw
->chip_id
== CHIP_ID_GENESIS
)
268 supported
&= ~(SUPPORTED_10baseT_Half
269 | SUPPORTED_10baseT_Full
270 | SUPPORTED_100baseT_Half
271 | SUPPORTED_100baseT_Full
);
273 else if (hw
->chip_id
== CHIP_ID_YUKON
)
274 supported
&= ~SUPPORTED_1000baseT_Half
;
276 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
277 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
282 static int skge_get_settings(struct net_device
*dev
,
283 struct ethtool_cmd
*ecmd
)
285 struct skge_port
*skge
= netdev_priv(dev
);
286 struct skge_hw
*hw
= skge
->hw
;
288 ecmd
->transceiver
= XCVR_INTERNAL
;
289 ecmd
->supported
= skge_supported_modes(hw
);
292 ecmd
->port
= PORT_TP
;
293 ecmd
->phy_address
= hw
->phy_addr
;
295 ecmd
->port
= PORT_FIBRE
;
297 ecmd
->advertising
= skge
->advertising
;
298 ecmd
->autoneg
= skge
->autoneg
;
299 ecmd
->speed
= skge
->speed
;
300 ecmd
->duplex
= skge
->duplex
;
304 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
306 struct skge_port
*skge
= netdev_priv(dev
);
307 const struct skge_hw
*hw
= skge
->hw
;
308 u32 supported
= skge_supported_modes(hw
);
311 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
312 ecmd
->advertising
= supported
;
318 switch (ecmd
->speed
) {
320 if (ecmd
->duplex
== DUPLEX_FULL
)
321 setting
= SUPPORTED_1000baseT_Full
;
322 else if (ecmd
->duplex
== DUPLEX_HALF
)
323 setting
= SUPPORTED_1000baseT_Half
;
328 if (ecmd
->duplex
== DUPLEX_FULL
)
329 setting
= SUPPORTED_100baseT_Full
;
330 else if (ecmd
->duplex
== DUPLEX_HALF
)
331 setting
= SUPPORTED_100baseT_Half
;
337 if (ecmd
->duplex
== DUPLEX_FULL
)
338 setting
= SUPPORTED_10baseT_Full
;
339 else if (ecmd
->duplex
== DUPLEX_HALF
)
340 setting
= SUPPORTED_10baseT_Half
;
348 if ((setting
& supported
) == 0)
351 skge
->speed
= ecmd
->speed
;
352 skge
->duplex
= ecmd
->duplex
;
355 skge
->autoneg
= ecmd
->autoneg
;
356 skge
->advertising
= ecmd
->advertising
;
358 if (netif_running(dev
)) {
370 static void skge_get_drvinfo(struct net_device
*dev
,
371 struct ethtool_drvinfo
*info
)
373 struct skge_port
*skge
= netdev_priv(dev
);
375 strcpy(info
->driver
, DRV_NAME
);
376 strcpy(info
->version
, DRV_VERSION
);
377 strcpy(info
->fw_version
, "N/A");
378 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
381 static const struct skge_stat
{
382 char name
[ETH_GSTRING_LEN
];
386 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
387 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
389 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
390 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
391 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
392 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
393 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
394 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
395 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
396 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
398 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
399 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
400 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
401 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
402 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
403 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
405 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
406 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
407 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
408 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
409 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
412 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
416 return ARRAY_SIZE(skge_stats
);
422 static void skge_get_ethtool_stats(struct net_device
*dev
,
423 struct ethtool_stats
*stats
, u64
*data
)
425 struct skge_port
*skge
= netdev_priv(dev
);
427 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
428 genesis_get_stats(skge
, data
);
430 yukon_get_stats(skge
, data
);
433 /* Use hardware MIB variables for critical path statistics and
434 * transmit feedback not reported at interrupt.
435 * Other errors are accounted for in interrupt handler.
437 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
439 struct skge_port
*skge
= netdev_priv(dev
);
440 u64 data
[ARRAY_SIZE(skge_stats
)];
442 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
443 genesis_get_stats(skge
, data
);
445 yukon_get_stats(skge
, data
);
447 dev
->stats
.tx_bytes
= data
[0];
448 dev
->stats
.rx_bytes
= data
[1];
449 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
450 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
451 dev
->stats
.multicast
= data
[3] + data
[5];
452 dev
->stats
.collisions
= data
[10];
453 dev
->stats
.tx_aborted_errors
= data
[12];
458 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
464 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
465 memcpy(data
+ i
* ETH_GSTRING_LEN
,
466 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
471 static void skge_get_ring_param(struct net_device
*dev
,
472 struct ethtool_ringparam
*p
)
474 struct skge_port
*skge
= netdev_priv(dev
);
476 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
477 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
478 p
->rx_mini_max_pending
= 0;
479 p
->rx_jumbo_max_pending
= 0;
481 p
->rx_pending
= skge
->rx_ring
.count
;
482 p
->tx_pending
= skge
->tx_ring
.count
;
483 p
->rx_mini_pending
= 0;
484 p
->rx_jumbo_pending
= 0;
487 static int skge_set_ring_param(struct net_device
*dev
,
488 struct ethtool_ringparam
*p
)
490 struct skge_port
*skge
= netdev_priv(dev
);
493 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
494 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
497 skge
->rx_ring
.count
= p
->rx_pending
;
498 skge
->tx_ring
.count
= p
->tx_pending
;
500 if (netif_running(dev
)) {
510 static u32
skge_get_msglevel(struct net_device
*netdev
)
512 struct skge_port
*skge
= netdev_priv(netdev
);
513 return skge
->msg_enable
;
516 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
518 struct skge_port
*skge
= netdev_priv(netdev
);
519 skge
->msg_enable
= value
;
522 static int skge_nway_reset(struct net_device
*dev
)
524 struct skge_port
*skge
= netdev_priv(dev
);
526 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
529 skge_phy_reset(skge
);
533 static int skge_set_sg(struct net_device
*dev
, u32 data
)
535 struct skge_port
*skge
= netdev_priv(dev
);
536 struct skge_hw
*hw
= skge
->hw
;
538 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
540 return ethtool_op_set_sg(dev
, data
);
543 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
545 struct skge_port
*skge
= netdev_priv(dev
);
546 struct skge_hw
*hw
= skge
->hw
;
548 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
551 return ethtool_op_set_tx_csum(dev
, data
);
554 static u32
skge_get_rx_csum(struct net_device
*dev
)
556 struct skge_port
*skge
= netdev_priv(dev
);
558 return skge
->rx_csum
;
561 /* Only Yukon supports checksum offload. */
562 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
564 struct skge_port
*skge
= netdev_priv(dev
);
566 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
569 skge
->rx_csum
= data
;
573 static void skge_get_pauseparam(struct net_device
*dev
,
574 struct ethtool_pauseparam
*ecmd
)
576 struct skge_port
*skge
= netdev_priv(dev
);
578 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
579 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
580 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
582 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
585 static int skge_set_pauseparam(struct net_device
*dev
,
586 struct ethtool_pauseparam
*ecmd
)
588 struct skge_port
*skge
= netdev_priv(dev
);
589 struct ethtool_pauseparam old
;
592 skge_get_pauseparam(dev
, &old
);
594 if (ecmd
->autoneg
!= old
.autoneg
)
595 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
597 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
598 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
599 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
600 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
601 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
602 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
604 skge
->flow_control
= FLOW_MODE_NONE
;
607 if (netif_running(dev
)) {
619 /* Chip internal frequency for clock calculations */
620 static inline u32
hwkhz(const struct skge_hw
*hw
)
622 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
625 /* Chip HZ to microseconds */
626 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
628 return (ticks
* 1000) / hwkhz(hw
);
631 /* Microseconds to chip HZ */
632 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
634 return hwkhz(hw
) * usec
/ 1000;
637 static int skge_get_coalesce(struct net_device
*dev
,
638 struct ethtool_coalesce
*ecmd
)
640 struct skge_port
*skge
= netdev_priv(dev
);
641 struct skge_hw
*hw
= skge
->hw
;
642 int port
= skge
->port
;
644 ecmd
->rx_coalesce_usecs
= 0;
645 ecmd
->tx_coalesce_usecs
= 0;
647 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
648 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
649 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
651 if (msk
& rxirqmask
[port
])
652 ecmd
->rx_coalesce_usecs
= delay
;
653 if (msk
& txirqmask
[port
])
654 ecmd
->tx_coalesce_usecs
= delay
;
660 /* Note: interrupt timer is per board, but can turn on/off per port */
661 static int skge_set_coalesce(struct net_device
*dev
,
662 struct ethtool_coalesce
*ecmd
)
664 struct skge_port
*skge
= netdev_priv(dev
);
665 struct skge_hw
*hw
= skge
->hw
;
666 int port
= skge
->port
;
667 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
670 if (ecmd
->rx_coalesce_usecs
== 0)
671 msk
&= ~rxirqmask
[port
];
672 else if (ecmd
->rx_coalesce_usecs
< 25 ||
673 ecmd
->rx_coalesce_usecs
> 33333)
676 msk
|= rxirqmask
[port
];
677 delay
= ecmd
->rx_coalesce_usecs
;
680 if (ecmd
->tx_coalesce_usecs
== 0)
681 msk
&= ~txirqmask
[port
];
682 else if (ecmd
->tx_coalesce_usecs
< 25 ||
683 ecmd
->tx_coalesce_usecs
> 33333)
686 msk
|= txirqmask
[port
];
687 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
690 skge_write32(hw
, B2_IRQM_MSK
, msk
);
692 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
694 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
695 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
700 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
701 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
703 struct skge_hw
*hw
= skge
->hw
;
704 int port
= skge
->port
;
706 spin_lock_bh(&hw
->phy_lock
);
707 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
710 if (hw
->phy_type
== SK_PHY_BCOM
)
711 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
713 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
714 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
716 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
717 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
718 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
722 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
723 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
725 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
726 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
731 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
732 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
733 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
735 if (hw
->phy_type
== SK_PHY_BCOM
)
736 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
738 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
739 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
740 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
747 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
748 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
749 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
750 PHY_M_LED_MO_10(MO_LED_OFF
) |
751 PHY_M_LED_MO_100(MO_LED_OFF
) |
752 PHY_M_LED_MO_1000(MO_LED_OFF
) |
753 PHY_M_LED_MO_RX(MO_LED_OFF
));
756 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
757 PHY_M_LED_PULS_DUR(PULS_170MS
) |
758 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
762 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
763 PHY_M_LED_MO_RX(MO_LED_OFF
) |
764 (skge
->speed
== SPEED_100
?
765 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
768 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
769 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
770 PHY_M_LED_MO_DUP(MO_LED_ON
) |
771 PHY_M_LED_MO_10(MO_LED_ON
) |
772 PHY_M_LED_MO_100(MO_LED_ON
) |
773 PHY_M_LED_MO_1000(MO_LED_ON
) |
774 PHY_M_LED_MO_RX(MO_LED_ON
));
777 spin_unlock_bh(&hw
->phy_lock
);
780 /* blink LED's for finding board */
781 static int skge_phys_id(struct net_device
*dev
, u32 data
)
783 struct skge_port
*skge
= netdev_priv(dev
);
785 enum led_mode mode
= LED_MODE_TST
;
787 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
788 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
793 skge_led(skge
, mode
);
794 mode
^= LED_MODE_TST
;
796 if (msleep_interruptible(BLINK_MS
))
801 /* back to regular LED state */
802 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
807 static int skge_get_eeprom_len(struct net_device
*dev
)
809 struct skge_port
*skge
= netdev_priv(dev
);
812 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
813 return 1 << ( ((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
816 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
820 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
823 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
824 } while (!(offset
& PCI_VPD_ADDR_F
));
826 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
830 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
832 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
833 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
834 offset
| PCI_VPD_ADDR_F
);
837 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
838 } while (offset
& PCI_VPD_ADDR_F
);
841 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
844 struct skge_port
*skge
= netdev_priv(dev
);
845 struct pci_dev
*pdev
= skge
->hw
->pdev
;
846 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
847 int length
= eeprom
->len
;
848 u16 offset
= eeprom
->offset
;
853 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
856 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
857 int n
= min_t(int, length
, sizeof(val
));
859 memcpy(data
, &val
, n
);
867 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
870 struct skge_port
*skge
= netdev_priv(dev
);
871 struct pci_dev
*pdev
= skge
->hw
->pdev
;
872 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
873 int length
= eeprom
->len
;
874 u16 offset
= eeprom
->offset
;
879 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
884 int n
= min_t(int, length
, sizeof(val
));
887 val
= skge_vpd_read(pdev
, cap
, offset
);
888 memcpy(&val
, data
, n
);
890 skge_vpd_write(pdev
, cap
, offset
, val
);
899 static const struct ethtool_ops skge_ethtool_ops
= {
900 .get_settings
= skge_get_settings
,
901 .set_settings
= skge_set_settings
,
902 .get_drvinfo
= skge_get_drvinfo
,
903 .get_regs_len
= skge_get_regs_len
,
904 .get_regs
= skge_get_regs
,
905 .get_wol
= skge_get_wol
,
906 .set_wol
= skge_set_wol
,
907 .get_msglevel
= skge_get_msglevel
,
908 .set_msglevel
= skge_set_msglevel
,
909 .nway_reset
= skge_nway_reset
,
910 .get_link
= ethtool_op_get_link
,
911 .get_eeprom_len
= skge_get_eeprom_len
,
912 .get_eeprom
= skge_get_eeprom
,
913 .set_eeprom
= skge_set_eeprom
,
914 .get_ringparam
= skge_get_ring_param
,
915 .set_ringparam
= skge_set_ring_param
,
916 .get_pauseparam
= skge_get_pauseparam
,
917 .set_pauseparam
= skge_set_pauseparam
,
918 .get_coalesce
= skge_get_coalesce
,
919 .set_coalesce
= skge_set_coalesce
,
920 .set_sg
= skge_set_sg
,
921 .set_tx_csum
= skge_set_tx_csum
,
922 .get_rx_csum
= skge_get_rx_csum
,
923 .set_rx_csum
= skge_set_rx_csum
,
924 .get_strings
= skge_get_strings
,
925 .phys_id
= skge_phys_id
,
926 .get_sset_count
= skge_get_sset_count
,
927 .get_ethtool_stats
= skge_get_ethtool_stats
,
931 * Allocate ring elements and chain them together
932 * One-to-one association of board descriptors with ring elements
934 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
936 struct skge_tx_desc
*d
;
937 struct skge_element
*e
;
940 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
944 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
946 if (i
== ring
->count
- 1) {
947 e
->next
= ring
->start
;
948 d
->next_offset
= base
;
951 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
954 ring
->to_use
= ring
->to_clean
= ring
->start
;
959 /* Allocate and setup a new buffer for receiving */
960 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
961 struct sk_buff
*skb
, unsigned int bufsize
)
963 struct skge_rx_desc
*rd
= e
->desc
;
966 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
970 rd
->dma_hi
= map
>> 32;
972 rd
->csum1_start
= ETH_HLEN
;
973 rd
->csum2_start
= ETH_HLEN
;
979 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
980 pci_unmap_addr_set(e
, mapaddr
, map
);
981 pci_unmap_len_set(e
, maplen
, bufsize
);
984 /* Resume receiving using existing skb,
985 * Note: DMA address is not changed by chip.
986 * MTU not changed while receiver active.
988 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
990 struct skge_rx_desc
*rd
= e
->desc
;
993 rd
->csum2_start
= ETH_HLEN
;
997 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1001 /* Free all buffers in receive ring, assumes receiver stopped */
1002 static void skge_rx_clean(struct skge_port
*skge
)
1004 struct skge_hw
*hw
= skge
->hw
;
1005 struct skge_ring
*ring
= &skge
->rx_ring
;
1006 struct skge_element
*e
;
1010 struct skge_rx_desc
*rd
= e
->desc
;
1013 pci_unmap_single(hw
->pdev
,
1014 pci_unmap_addr(e
, mapaddr
),
1015 pci_unmap_len(e
, maplen
),
1016 PCI_DMA_FROMDEVICE
);
1017 dev_kfree_skb(e
->skb
);
1020 } while ((e
= e
->next
) != ring
->start
);
1024 /* Allocate buffers for receive ring
1025 * For receive: to_clean is next received frame.
1027 static int skge_rx_fill(struct net_device
*dev
)
1029 struct skge_port
*skge
= netdev_priv(dev
);
1030 struct skge_ring
*ring
= &skge
->rx_ring
;
1031 struct skge_element
*e
;
1035 struct sk_buff
*skb
;
1037 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1042 skb_reserve(skb
, NET_IP_ALIGN
);
1043 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1044 } while ( (e
= e
->next
) != ring
->start
);
1046 ring
->to_clean
= ring
->start
;
1050 static const char *skge_pause(enum pause_status status
)
1053 case FLOW_STAT_NONE
:
1055 case FLOW_STAT_REM_SEND
:
1057 case FLOW_STAT_LOC_SEND
:
1059 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1062 return "indeterminated";
1067 static void skge_link_up(struct skge_port
*skge
)
1069 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1070 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1072 netif_carrier_on(skge
->netdev
);
1073 netif_wake_queue(skge
->netdev
);
1075 if (netif_msg_link(skge
)) {
1076 printk(KERN_INFO PFX
1077 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1078 skge
->netdev
->name
, skge
->speed
,
1079 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1080 skge_pause(skge
->flow_status
));
1084 static void skge_link_down(struct skge_port
*skge
)
1086 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1087 netif_carrier_off(skge
->netdev
);
1088 netif_stop_queue(skge
->netdev
);
1090 if (netif_msg_link(skge
))
1091 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
1095 static void xm_link_down(struct skge_hw
*hw
, int port
)
1097 struct net_device
*dev
= hw
->dev
[port
];
1098 struct skge_port
*skge
= netdev_priv(dev
);
1100 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1102 if (netif_carrier_ok(dev
))
1103 skge_link_down(skge
);
1106 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1110 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1111 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1113 if (hw
->phy_type
== SK_PHY_XMAC
)
1116 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1117 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1124 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1129 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1132 if (__xm_phy_read(hw
, port
, reg
, &v
))
1133 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1134 hw
->dev
[port
]->name
);
1138 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1142 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1143 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1144 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1151 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1152 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1153 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1160 static void genesis_init(struct skge_hw
*hw
)
1162 /* set blink source counter */
1163 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1164 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1166 /* configure mac arbiter */
1167 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1169 /* configure mac arbiter timeout values */
1170 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1171 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1172 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1173 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1175 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1176 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1177 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1178 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1180 /* configure packet arbiter timeout */
1181 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1182 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1183 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1184 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1185 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1188 static void genesis_reset(struct skge_hw
*hw
, int port
)
1190 const u8 zero
[8] = { 0 };
1193 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1195 /* reset the statistics module */
1196 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1197 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1198 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1199 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1200 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1202 /* disable Broadcom PHY IRQ */
1203 if (hw
->phy_type
== SK_PHY_BCOM
)
1204 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1206 xm_outhash(hw
, port
, XM_HSM
, zero
);
1208 /* Flush TX and RX fifo */
1209 reg
= xm_read32(hw
, port
, XM_MODE
);
1210 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1211 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1215 /* Convert mode to MII values */
1216 static const u16 phy_pause_map
[] = {
1217 [FLOW_MODE_NONE
] = 0,
1218 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1219 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1220 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1223 /* special defines for FIBER (88E1011S only) */
1224 static const u16 fiber_pause_map
[] = {
1225 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1226 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1227 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1228 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1232 /* Check status of Broadcom phy link */
1233 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1235 struct net_device
*dev
= hw
->dev
[port
];
1236 struct skge_port
*skge
= netdev_priv(dev
);
1239 /* read twice because of latch */
1240 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1241 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1243 if ((status
& PHY_ST_LSYNC
) == 0) {
1244 xm_link_down(hw
, port
);
1248 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1251 if (!(status
& PHY_ST_AN_OVER
))
1254 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1255 if (lpa
& PHY_B_AN_RF
) {
1256 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1261 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1263 /* Check Duplex mismatch */
1264 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1265 case PHY_B_RES_1000FD
:
1266 skge
->duplex
= DUPLEX_FULL
;
1268 case PHY_B_RES_1000HD
:
1269 skge
->duplex
= DUPLEX_HALF
;
1272 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1277 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1278 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1279 case PHY_B_AS_PAUSE_MSK
:
1280 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1283 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1286 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1289 skge
->flow_status
= FLOW_STAT_NONE
;
1291 skge
->speed
= SPEED_1000
;
1294 if (!netif_carrier_ok(dev
))
1295 genesis_link_up(skge
);
1298 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1299 * Phy on for 100 or 10Mbit operation
1301 static void bcom_phy_init(struct skge_port
*skge
)
1303 struct skge_hw
*hw
= skge
->hw
;
1304 int port
= skge
->port
;
1306 u16 id1
, r
, ext
, ctl
;
1308 /* magic workaround patterns for Broadcom */
1309 static const struct {
1313 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1314 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1315 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1316 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1318 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1319 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1322 /* read Id from external PHY (all have the same address) */
1323 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1325 /* Optimize MDIO transfer by suppressing preamble. */
1326 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1328 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1331 case PHY_BCOM_ID1_C0
:
1333 * Workaround BCOM Errata for the C0 type.
1334 * Write magic patterns to reserved registers.
1336 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1337 xm_phy_write(hw
, port
,
1338 C0hack
[i
].reg
, C0hack
[i
].val
);
1341 case PHY_BCOM_ID1_A1
:
1343 * Workaround BCOM Errata for the A1 type.
1344 * Write magic patterns to reserved registers.
1346 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1347 xm_phy_write(hw
, port
,
1348 A1hack
[i
].reg
, A1hack
[i
].val
);
1353 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1354 * Disable Power Management after reset.
1356 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1357 r
|= PHY_B_AC_DIS_PM
;
1358 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1361 xm_read16(hw
, port
, XM_ISRC
);
1363 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1364 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1366 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1368 * Workaround BCOM Errata #1 for the C5 type.
1369 * 1000Base-T Link Acquisition Failure in Slave Mode
1370 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1372 u16 adv
= PHY_B_1000C_RD
;
1373 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1374 adv
|= PHY_B_1000C_AHD
;
1375 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1376 adv
|= PHY_B_1000C_AFD
;
1377 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1379 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1381 if (skge
->duplex
== DUPLEX_FULL
)
1382 ctl
|= PHY_CT_DUP_MD
;
1383 /* Force to slave */
1384 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1387 /* Set autonegotiation pause parameters */
1388 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1389 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1391 /* Handle Jumbo frames */
1392 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1393 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1394 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1396 ext
|= PHY_B_PEC_HIGH_LA
;
1400 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1401 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1403 /* Use link status change interrupt */
1404 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1407 static void xm_phy_init(struct skge_port
*skge
)
1409 struct skge_hw
*hw
= skge
->hw
;
1410 int port
= skge
->port
;
1413 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1414 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1415 ctrl
|= PHY_X_AN_HD
;
1416 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1417 ctrl
|= PHY_X_AN_FD
;
1419 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1421 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1423 /* Restart Auto-negotiation */
1424 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1426 /* Set DuplexMode in Config register */
1427 if (skge
->duplex
== DUPLEX_FULL
)
1428 ctrl
|= PHY_CT_DUP_MD
;
1430 * Do NOT enable Auto-negotiation here. This would hold
1431 * the link down because no IDLEs are transmitted
1435 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1437 /* Poll PHY for status changes */
1438 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1441 static int xm_check_link(struct net_device
*dev
)
1443 struct skge_port
*skge
= netdev_priv(dev
);
1444 struct skge_hw
*hw
= skge
->hw
;
1445 int port
= skge
->port
;
1448 /* read twice because of latch */
1449 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1450 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1452 if ((status
& PHY_ST_LSYNC
) == 0) {
1453 xm_link_down(hw
, port
);
1457 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1460 if (!(status
& PHY_ST_AN_OVER
))
1463 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1464 if (lpa
& PHY_B_AN_RF
) {
1465 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1470 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1472 /* Check Duplex mismatch */
1473 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1475 skge
->duplex
= DUPLEX_FULL
;
1478 skge
->duplex
= DUPLEX_HALF
;
1481 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1488 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1489 (lpa
& PHY_X_P_SYM_MD
))
1490 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1491 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1492 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1495 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1496 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1500 skge
->flow_status
= FLOW_STAT_NONE
;
1502 skge
->speed
= SPEED_1000
;
1505 if (!netif_carrier_ok(dev
))
1506 genesis_link_up(skge
);
1510 /* Poll to check for link coming up.
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1516 static void xm_link_timer(unsigned long arg
)
1518 struct skge_port
*skge
= (struct skge_port
*) arg
;
1519 struct net_device
*dev
= skge
->netdev
;
1520 struct skge_hw
*hw
= skge
->hw
;
1521 int port
= skge
->port
;
1523 unsigned long flags
;
1525 if (!netif_running(dev
))
1528 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1534 for (i
= 0; i
< 3; i
++) {
1535 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev
)) {
1541 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1542 msk
&= ~XM_IS_INP_ASS
;
1543 xm_write16(hw
, port
, XM_IMSK
, msk
);
1544 xm_read16(hw
, port
, XM_ISRC
);
1547 mod_timer(&skge
->link_timer
,
1548 round_jiffies(jiffies
+ LINK_HZ
));
1550 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1553 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1555 struct net_device
*dev
= hw
->dev
[port
];
1556 struct skge_port
*skge
= netdev_priv(dev
);
1557 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1560 const u8 zero
[6] = { 0 };
1562 for (i
= 0; i
< 10; i
++) {
1563 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1565 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1570 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1573 /* Unreset the XMAC. */
1574 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1581 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1582 /* Take external Phy out of reset */
1583 r
= skge_read32(hw
, B2_GP_IO
);
1585 r
|= GP_DIR_0
|GP_IO_0
;
1587 r
|= GP_DIR_2
|GP_IO_2
;
1589 skge_write32(hw
, B2_GP_IO
, r
);
1591 /* Enable GMII interface */
1592 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1596 switch(hw
->phy_type
) {
1601 bcom_phy_init(skge
);
1602 bcom_check_link(hw
, port
);
1605 /* Set Station Address */
1606 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1608 /* We don't use match addresses so clear */
1609 for (i
= 1; i
< 16; i
++)
1610 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1612 /* Clear MIB counters */
1613 xm_write16(hw
, port
, XM_STAT_CMD
,
1614 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw
, port
, XM_STAT_CMD
,
1617 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1622 /* We don't need the FCS appended to the packet. */
1623 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1625 r
|= XM_RX_BIG_PK_OK
;
1627 if (skge
->duplex
== DUPLEX_HALF
) {
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1633 r
|= XM_RX_DIS_CEXT
;
1635 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1637 /* We want short frames padded to 60 bytes. */
1638 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1640 /* Increase threshold for jumbo frames on dual port */
1641 if (hw
->ports
> 1 && jumbo
)
1642 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1644 xm_write16(hw
, port
, XM_TX_THR
, 512);
1647 * Enable the reception of all error frames. This is is
1648 * a necessary evil due to the design of the XMAC. The
1649 * XMAC's receive FIFO is only 8K in size, however jumbo
1650 * frames can be up to 9000 bytes in length. When bad
1651 * frame filtering is enabled, the XMAC's RX FIFO operates
1652 * in 'store and forward' mode. For this to work, the
1653 * entire frame has to fit into the FIFO, but that means
1654 * that jumbo frames larger than 8192 bytes will be
1655 * truncated. Disabling all bad frame filtering causes
1656 * the RX FIFO to operate in streaming mode, in which
1657 * case the XMAC will start transferring frames out of the
1658 * RX FIFO as soon as the FIFO threshold is reached.
1660 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1664 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1665 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1666 * and 'Octets Rx OK Hi Cnt Ov'.
1668 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1671 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1672 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1673 * and 'Octets Tx OK Hi Cnt Ov'.
1675 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1677 /* Configure MAC arbiter */
1678 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1680 /* configure timeout values */
1681 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1682 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1684 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1686 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1687 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1689 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1691 /* Configure Rx MAC FIFO */
1692 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1693 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1694 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1696 /* Configure Tx MAC FIFO */
1697 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1698 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1699 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1702 /* Enable frame flushing if jumbo frames used */
1703 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1705 /* enable timeout timers if normal frames */
1706 skge_write16(hw
, B3_PA_CTRL
,
1707 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1711 static void genesis_stop(struct skge_port
*skge
)
1713 struct skge_hw
*hw
= skge
->hw
;
1714 int port
= skge
->port
;
1715 unsigned retries
= 1000;
1718 /* Disable Tx and Rx */
1719 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1720 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1721 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1723 genesis_reset(hw
, port
);
1725 /* Clear Tx packet arbiter timeout IRQ */
1726 skge_write16(hw
, B3_PA_CTRL
,
1727 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1730 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1732 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1733 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1735 } while (--retries
> 0);
1737 /* For external PHYs there must be special handling */
1738 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1739 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1747 skge_write32(hw
, B2_GP_IO
, reg
);
1748 skge_read32(hw
, B2_GP_IO
);
1751 xm_write16(hw
, port
, XM_MMU_CMD
,
1752 xm_read16(hw
, port
, XM_MMU_CMD
)
1753 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1755 xm_read16(hw
, port
, XM_MMU_CMD
);
1759 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1761 struct skge_hw
*hw
= skge
->hw
;
1762 int port
= skge
->port
;
1764 unsigned long timeout
= jiffies
+ HZ
;
1766 xm_write16(hw
, port
,
1767 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1769 /* wait for update to complete */
1770 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1771 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1772 if (time_after(jiffies
, timeout
))
1777 /* special case for 64 bit octet counter */
1778 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1779 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1780 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1781 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1783 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1784 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1787 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1789 struct net_device
*dev
= hw
->dev
[port
];
1790 struct skge_port
*skge
= netdev_priv(dev
);
1791 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1793 if (netif_msg_intr(skge
))
1794 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1797 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1798 xm_link_down(hw
, port
);
1799 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1802 if (status
& XM_IS_TXF_UR
) {
1803 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1804 ++dev
->stats
.tx_fifo_errors
;
1808 static void genesis_link_up(struct skge_port
*skge
)
1810 struct skge_hw
*hw
= skge
->hw
;
1811 int port
= skge
->port
;
1815 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1818 * enabling pause frame reception is required for 1000BT
1819 * because the XMAC is not reset if the link is going down
1821 if (skge
->flow_status
== FLOW_STAT_NONE
||
1822 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1823 /* Disable Pause Frame Reception */
1824 cmd
|= XM_MMU_IGN_PF
;
1826 /* Enable Pause Frame Reception */
1827 cmd
&= ~XM_MMU_IGN_PF
;
1829 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1831 mode
= xm_read32(hw
, port
, XM_MODE
);
1832 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1833 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1835 * Configure Pause Frame Generation
1836 * Use internal and external Pause Frame Generation.
1837 * Sending pause frames is edge triggered.
1838 * Send a Pause frame with the maximum pause time if
1839 * internal oder external FIFO full condition occurs.
1840 * Send a zero pause time frame to re-start transmission.
1842 /* XM_PAUSE_DA = '010000C28001' (default) */
1843 /* XM_MAC_PTIME = 0xffff (maximum) */
1844 /* remember this value is defined in big endian (!) */
1845 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1847 mode
|= XM_PAUSE_MODE
;
1848 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1851 * disable pause frame generation is required for 1000BT
1852 * because the XMAC is not reset if the link is going down
1854 /* Disable Pause Mode in Mode Register */
1855 mode
&= ~XM_PAUSE_MODE
;
1857 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1860 xm_write32(hw
, port
, XM_MODE
, mode
);
1862 /* Turn on detection of Tx underrun */
1863 msk
= xm_read16(hw
, port
, XM_IMSK
);
1864 msk
&= ~XM_IS_TXF_UR
;
1865 xm_write16(hw
, port
, XM_IMSK
, msk
);
1867 xm_read16(hw
, port
, XM_ISRC
);
1869 /* get MMU Command Reg. */
1870 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1871 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1872 cmd
|= XM_MMU_GMII_FD
;
1875 * Workaround BCOM Errata (#10523) for all BCom Phys
1876 * Enable Power Management after link up
1878 if (hw
->phy_type
== SK_PHY_BCOM
) {
1879 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1880 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1881 & ~PHY_B_AC_DIS_PM
);
1882 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1886 xm_write16(hw
, port
, XM_MMU_CMD
,
1887 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1892 static inline void bcom_phy_intr(struct skge_port
*skge
)
1894 struct skge_hw
*hw
= skge
->hw
;
1895 int port
= skge
->port
;
1898 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1899 if (netif_msg_intr(skge
))
1900 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1901 skge
->netdev
->name
, isrc
);
1903 if (isrc
& PHY_B_IS_PSE
)
1904 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1905 hw
->dev
[port
]->name
);
1907 /* Workaround BCom Errata:
1908 * enable and disable loopback mode if "NO HCD" occurs.
1910 if (isrc
& PHY_B_IS_NO_HDCL
) {
1911 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1912 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1913 ctrl
| PHY_CT_LOOP
);
1914 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1915 ctrl
& ~PHY_CT_LOOP
);
1918 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1919 bcom_check_link(hw
, port
);
1923 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1927 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1928 gma_write16(hw
, port
, GM_SMI_CTRL
,
1929 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1930 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1933 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1937 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1938 hw
->dev
[port
]->name
);
1942 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1946 gma_write16(hw
, port
, GM_SMI_CTRL
,
1947 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1948 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1950 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1952 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1958 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1962 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1965 if (__gm_phy_read(hw
, port
, reg
, &v
))
1966 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1967 hw
->dev
[port
]->name
);
1971 /* Marvell Phy Initialization */
1972 static void yukon_init(struct skge_hw
*hw
, int port
)
1974 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1975 u16 ctrl
, ct1000
, adv
;
1977 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1978 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1980 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1981 PHY_M_EC_MAC_S_MSK
);
1982 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1984 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1986 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1989 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1990 if (skge
->autoneg
== AUTONEG_DISABLE
)
1991 ctrl
&= ~PHY_CT_ANE
;
1993 ctrl
|= PHY_CT_RESET
;
1994 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2000 if (skge
->autoneg
== AUTONEG_ENABLE
) {
2002 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2003 ct1000
|= PHY_M_1000C_AFD
;
2004 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2005 ct1000
|= PHY_M_1000C_AHD
;
2006 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2007 adv
|= PHY_M_AN_100_FD
;
2008 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2009 adv
|= PHY_M_AN_100_HD
;
2010 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2011 adv
|= PHY_M_AN_10_FD
;
2012 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2013 adv
|= PHY_M_AN_10_HD
;
2015 /* Set Flow-control capabilities */
2016 adv
|= phy_pause_map
[skge
->flow_control
];
2018 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2019 adv
|= PHY_M_AN_1000X_AFD
;
2020 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2021 adv
|= PHY_M_AN_1000X_AHD
;
2023 adv
|= fiber_pause_map
[skge
->flow_control
];
2026 /* Restart Auto-negotiation */
2027 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2029 /* forced speed/duplex settings */
2030 ct1000
= PHY_M_1000C_MSE
;
2032 if (skge
->duplex
== DUPLEX_FULL
)
2033 ctrl
|= PHY_CT_DUP_MD
;
2035 switch (skge
->speed
) {
2037 ctrl
|= PHY_CT_SP1000
;
2040 ctrl
|= PHY_CT_SP100
;
2044 ctrl
|= PHY_CT_RESET
;
2047 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2049 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2050 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2052 /* Enable phy interrupt on autonegotiation complete (or link up) */
2053 if (skge
->autoneg
== AUTONEG_ENABLE
)
2054 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2056 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2059 static void yukon_reset(struct skge_hw
*hw
, int port
)
2061 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2062 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2063 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2064 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2065 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2067 gma_write16(hw
, port
, GM_RX_CTRL
,
2068 gma_read16(hw
, port
, GM_RX_CTRL
)
2069 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2072 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2073 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2078 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2081 reg
= skge_read32(hw
, B2_FAR
);
2082 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2083 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2084 skge_write32(hw
, B2_FAR
, reg
);
2088 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2090 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2093 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2095 /* WA code for COMA mode -- set PHY reset */
2096 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2097 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2098 reg
= skge_read32(hw
, B2_GP_IO
);
2099 reg
|= GP_DIR_9
| GP_IO_9
;
2100 skge_write32(hw
, B2_GP_IO
, reg
);
2104 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2105 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2107 /* WA code for COMA mode -- clear PHY reset */
2108 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2109 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2110 reg
= skge_read32(hw
, B2_GP_IO
);
2113 skge_write32(hw
, B2_GP_IO
, reg
);
2116 /* Set hardware config mode */
2117 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2118 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2119 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2121 /* Clear GMC reset */
2122 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2123 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2124 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2126 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2127 reg
= GM_GPCR_AU_ALL_DIS
;
2128 gma_write16(hw
, port
, GM_GP_CTRL
,
2129 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2131 switch (skge
->speed
) {
2133 reg
&= ~GM_GPCR_SPEED_100
;
2134 reg
|= GM_GPCR_SPEED_1000
;
2137 reg
&= ~GM_GPCR_SPEED_1000
;
2138 reg
|= GM_GPCR_SPEED_100
;
2141 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2145 if (skge
->duplex
== DUPLEX_FULL
)
2146 reg
|= GM_GPCR_DUP_FULL
;
2148 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2150 switch (skge
->flow_control
) {
2151 case FLOW_MODE_NONE
:
2152 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2153 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2155 case FLOW_MODE_LOC_SEND
:
2156 /* disable Rx flow-control */
2157 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2159 case FLOW_MODE_SYMMETRIC
:
2160 case FLOW_MODE_SYM_OR_REM
:
2161 /* enable Tx & Rx flow-control */
2165 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2166 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2168 yukon_init(hw
, port
);
2171 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2172 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2174 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2175 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2176 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2178 /* transmit control */
2179 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2181 /* receive control reg: unicast + multicast + no FCS */
2182 gma_write16(hw
, port
, GM_RX_CTRL
,
2183 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2185 /* transmit flow control */
2186 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2188 /* transmit parameter */
2189 gma_write16(hw
, port
, GM_TX_PARAM
,
2190 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2191 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2192 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2194 /* configure the Serial Mode Register */
2195 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2197 | IPG_DATA_VAL(IPG_DATA_DEF
);
2199 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2200 reg
|= GM_SMOD_JUMBO_ENA
;
2202 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2204 /* physical address: used for pause frames */
2205 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2206 /* virtual address for data */
2207 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2209 /* enable interrupt mask for counter overflows */
2210 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2211 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2212 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2214 /* Initialize Mac Fifo */
2216 /* Configure Rx MAC FIFO */
2217 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2218 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2220 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2221 if (is_yukon_lite_a0(hw
))
2222 reg
&= ~GMF_RX_F_FL_ON
;
2224 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2225 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2227 * because Pause Packet Truncation in GMAC is not working
2228 * we have to increase the Flush Threshold to 64 bytes
2229 * in order to flush pause packets in Rx FIFO on Yukon-1
2231 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2233 /* Configure Tx MAC FIFO */
2234 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2235 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2238 /* Go into power down mode */
2239 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2243 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2244 ctrl
|= PHY_M_PC_POL_R_DIS
;
2245 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2247 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2248 ctrl
|= PHY_CT_RESET
;
2249 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2251 /* switch IEEE compatible power down mode on */
2252 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2253 ctrl
|= PHY_CT_PDOWN
;
2254 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2257 static void yukon_stop(struct skge_port
*skge
)
2259 struct skge_hw
*hw
= skge
->hw
;
2260 int port
= skge
->port
;
2262 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2263 yukon_reset(hw
, port
);
2265 gma_write16(hw
, port
, GM_GP_CTRL
,
2266 gma_read16(hw
, port
, GM_GP_CTRL
)
2267 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2268 gma_read16(hw
, port
, GM_GP_CTRL
);
2270 yukon_suspend(hw
, port
);
2272 /* set GPHY Control reset */
2273 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2274 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2277 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2279 struct skge_hw
*hw
= skge
->hw
;
2280 int port
= skge
->port
;
2283 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2284 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2285 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2286 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2288 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2289 data
[i
] = gma_read32(hw
, port
,
2290 skge_stats
[i
].gma_offset
);
2293 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2295 struct net_device
*dev
= hw
->dev
[port
];
2296 struct skge_port
*skge
= netdev_priv(dev
);
2297 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2299 if (netif_msg_intr(skge
))
2300 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2303 if (status
& GM_IS_RX_FF_OR
) {
2304 ++dev
->stats
.rx_fifo_errors
;
2305 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2308 if (status
& GM_IS_TX_FF_UR
) {
2309 ++dev
->stats
.tx_fifo_errors
;
2310 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2315 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2317 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2318 case PHY_M_PS_SPEED_1000
:
2320 case PHY_M_PS_SPEED_100
:
2327 static void yukon_link_up(struct skge_port
*skge
)
2329 struct skge_hw
*hw
= skge
->hw
;
2330 int port
= skge
->port
;
2333 /* Enable Transmit FIFO Underrun */
2334 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2336 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2337 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2338 reg
|= GM_GPCR_DUP_FULL
;
2341 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2342 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2344 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2348 static void yukon_link_down(struct skge_port
*skge
)
2350 struct skge_hw
*hw
= skge
->hw
;
2351 int port
= skge
->port
;
2354 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2355 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2356 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2358 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2359 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2360 ctrl
|= PHY_M_AN_ASP
;
2361 /* restore Asymmetric Pause bit */
2362 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2365 skge_link_down(skge
);
2367 yukon_init(hw
, port
);
2370 static void yukon_phy_intr(struct skge_port
*skge
)
2372 struct skge_hw
*hw
= skge
->hw
;
2373 int port
= skge
->port
;
2374 const char *reason
= NULL
;
2375 u16 istatus
, phystat
;
2377 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2378 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2380 if (netif_msg_intr(skge
))
2381 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2382 skge
->netdev
->name
, istatus
, phystat
);
2384 if (istatus
& PHY_M_IS_AN_COMPL
) {
2385 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2387 reason
= "remote fault";
2391 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2392 reason
= "master/slave fault";
2396 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2397 reason
= "speed/duplex";
2401 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2402 ? DUPLEX_FULL
: DUPLEX_HALF
;
2403 skge
->speed
= yukon_speed(hw
, phystat
);
2405 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2406 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2407 case PHY_M_PS_PAUSE_MSK
:
2408 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2410 case PHY_M_PS_RX_P_EN
:
2411 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2413 case PHY_M_PS_TX_P_EN
:
2414 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2417 skge
->flow_status
= FLOW_STAT_NONE
;
2420 if (skge
->flow_status
== FLOW_STAT_NONE
||
2421 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2422 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2424 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2425 yukon_link_up(skge
);
2429 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2430 skge
->speed
= yukon_speed(hw
, phystat
);
2432 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2433 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2434 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2435 if (phystat
& PHY_M_PS_LINK_UP
)
2436 yukon_link_up(skge
);
2438 yukon_link_down(skge
);
2442 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2443 skge
->netdev
->name
, reason
);
2445 /* XXX restart autonegotiation? */
2448 static void skge_phy_reset(struct skge_port
*skge
)
2450 struct skge_hw
*hw
= skge
->hw
;
2451 int port
= skge
->port
;
2452 struct net_device
*dev
= hw
->dev
[port
];
2454 netif_stop_queue(skge
->netdev
);
2455 netif_carrier_off(skge
->netdev
);
2457 spin_lock_bh(&hw
->phy_lock
);
2458 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2459 genesis_reset(hw
, port
);
2460 genesis_mac_init(hw
, port
);
2462 yukon_reset(hw
, port
);
2463 yukon_init(hw
, port
);
2465 spin_unlock_bh(&hw
->phy_lock
);
2467 skge_set_multicast(dev
);
2470 /* Basic MII support */
2471 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2473 struct mii_ioctl_data
*data
= if_mii(ifr
);
2474 struct skge_port
*skge
= netdev_priv(dev
);
2475 struct skge_hw
*hw
= skge
->hw
;
2476 int err
= -EOPNOTSUPP
;
2478 if (!netif_running(dev
))
2479 return -ENODEV
; /* Phy still in reset */
2483 data
->phy_id
= hw
->phy_addr
;
2488 spin_lock_bh(&hw
->phy_lock
);
2489 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2490 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2492 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2493 spin_unlock_bh(&hw
->phy_lock
);
2494 data
->val_out
= val
;
2499 spin_lock_bh(&hw
->phy_lock
);
2500 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2501 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2504 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2506 spin_unlock_bh(&hw
->phy_lock
);
2512 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2518 end
= start
+ len
- 1;
2520 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2521 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2522 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2523 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2524 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2526 if (q
== Q_R1
|| q
== Q_R2
) {
2527 /* Set thresholds on receive queue's */
2528 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2530 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2533 /* Enable store & forward on Tx queue's because
2534 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2536 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2539 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2542 /* Setup Bus Memory Interface */
2543 static void skge_qset(struct skge_port
*skge
, u16 q
,
2544 const struct skge_element
*e
)
2546 struct skge_hw
*hw
= skge
->hw
;
2547 u32 watermark
= 0x600;
2548 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2550 /* optimization to reduce window on 32bit/33mhz */
2551 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2554 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2555 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2556 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2557 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2560 static int skge_up(struct net_device
*dev
)
2562 struct skge_port
*skge
= netdev_priv(dev
);
2563 struct skge_hw
*hw
= skge
->hw
;
2564 int port
= skge
->port
;
2565 u32 chunk
, ram_addr
;
2566 size_t rx_size
, tx_size
;
2569 if (!is_valid_ether_addr(dev
->dev_addr
))
2572 if (netif_msg_ifup(skge
))
2573 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2575 if (dev
->mtu
> RX_BUF_SIZE
)
2576 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2578 skge
->rx_buf_size
= RX_BUF_SIZE
;
2581 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2582 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2583 skge
->mem_size
= tx_size
+ rx_size
;
2584 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2588 BUG_ON(skge
->dma
& 7);
2590 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2591 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2596 memset(skge
->mem
, 0, skge
->mem_size
);
2598 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2602 err
= skge_rx_fill(dev
);
2606 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2607 skge
->dma
+ rx_size
);
2611 /* Initialize MAC */
2612 spin_lock_bh(&hw
->phy_lock
);
2613 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2614 genesis_mac_init(hw
, port
);
2616 yukon_mac_init(hw
, port
);
2617 spin_unlock_bh(&hw
->phy_lock
);
2619 /* Configure RAMbuffers - equally between ports and tx/rx */
2620 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2621 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2623 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2624 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2626 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2627 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2628 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2630 /* Start receiver BMU */
2632 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2633 skge_led(skge
, LED_MODE_ON
);
2635 spin_lock_irq(&hw
->hw_lock
);
2636 hw
->intr_mask
|= portmask
[port
];
2637 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2638 spin_unlock_irq(&hw
->hw_lock
);
2640 napi_enable(&skge
->napi
);
2644 skge_rx_clean(skge
);
2645 kfree(skge
->rx_ring
.start
);
2647 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2654 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2656 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2657 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2658 RB_RST_SET
|RB_DIS_OP_MD
);
2659 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2662 static int skge_down(struct net_device
*dev
)
2664 struct skge_port
*skge
= netdev_priv(dev
);
2665 struct skge_hw
*hw
= skge
->hw
;
2666 int port
= skge
->port
;
2668 if (skge
->mem
== NULL
)
2671 if (netif_msg_ifdown(skge
))
2672 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2674 netif_tx_disable(dev
);
2676 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2677 del_timer_sync(&skge
->link_timer
);
2679 napi_disable(&skge
->napi
);
2680 netif_carrier_off(dev
);
2682 spin_lock_irq(&hw
->hw_lock
);
2683 hw
->intr_mask
&= ~portmask
[port
];
2684 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2685 spin_unlock_irq(&hw
->hw_lock
);
2687 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2688 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2693 /* Stop transmitter */
2694 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2695 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2696 RB_RST_SET
|RB_DIS_OP_MD
);
2699 /* Disable Force Sync bit and Enable Alloc bit */
2700 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2701 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2703 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2704 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2705 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2707 /* Reset PCI FIFO */
2708 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2709 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2711 /* Reset the RAM Buffer async Tx queue */
2712 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2714 skge_rx_stop(hw
, port
);
2716 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2717 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2718 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2720 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2721 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2724 skge_led(skge
, LED_MODE_OFF
);
2726 netif_tx_lock_bh(dev
);
2728 netif_tx_unlock_bh(dev
);
2730 skge_rx_clean(skge
);
2732 kfree(skge
->rx_ring
.start
);
2733 kfree(skge
->tx_ring
.start
);
2734 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2739 static inline int skge_avail(const struct skge_ring
*ring
)
2742 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2743 + (ring
->to_clean
- ring
->to_use
) - 1;
2746 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2747 struct net_device
*dev
)
2749 struct skge_port
*skge
= netdev_priv(dev
);
2750 struct skge_hw
*hw
= skge
->hw
;
2751 struct skge_element
*e
;
2752 struct skge_tx_desc
*td
;
2757 if (skb_padto(skb
, ETH_ZLEN
))
2758 return NETDEV_TX_OK
;
2760 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2761 return NETDEV_TX_BUSY
;
2763 e
= skge
->tx_ring
.to_use
;
2765 BUG_ON(td
->control
& BMU_OWN
);
2767 len
= skb_headlen(skb
);
2768 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2769 pci_unmap_addr_set(e
, mapaddr
, map
);
2770 pci_unmap_len_set(e
, maplen
, len
);
2773 td
->dma_hi
= map
>> 32;
2775 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2776 const int offset
= skb_transport_offset(skb
);
2778 /* This seems backwards, but it is what the sk98lin
2779 * does. Looks like hardware is wrong?
2781 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2782 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2783 control
= BMU_TCP_CHECK
;
2785 control
= BMU_UDP_CHECK
;
2788 td
->csum_start
= offset
;
2789 td
->csum_write
= offset
+ skb
->csum_offset
;
2791 control
= BMU_CHECK
;
2793 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2794 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2796 struct skge_tx_desc
*tf
= td
;
2798 control
|= BMU_STFWD
;
2799 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2800 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2802 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2803 frag
->size
, PCI_DMA_TODEVICE
);
2808 BUG_ON(tf
->control
& BMU_OWN
);
2811 tf
->dma_hi
= (u64
) map
>> 32;
2812 pci_unmap_addr_set(e
, mapaddr
, map
);
2813 pci_unmap_len_set(e
, maplen
, frag
->size
);
2815 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2817 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2819 /* Make sure all the descriptors written */
2821 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2824 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2826 if (unlikely(netif_msg_tx_queued(skge
)))
2827 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2828 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2830 skge
->tx_ring
.to_use
= e
->next
;
2833 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2834 pr_debug("%s: transmit queue full\n", dev
->name
);
2835 netif_stop_queue(dev
);
2838 return NETDEV_TX_OK
;
2842 /* Free resources associated with this reing element */
2843 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2846 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2848 /* skb header vs. fragment */
2849 if (control
& BMU_STF
)
2850 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2851 pci_unmap_len(e
, maplen
),
2854 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2855 pci_unmap_len(e
, maplen
),
2858 if (control
& BMU_EOF
) {
2859 if (unlikely(netif_msg_tx_done(skge
)))
2860 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2861 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2863 dev_kfree_skb(e
->skb
);
2867 /* Free all buffers in transmit ring */
2868 static void skge_tx_clean(struct net_device
*dev
)
2870 struct skge_port
*skge
= netdev_priv(dev
);
2871 struct skge_element
*e
;
2873 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2874 struct skge_tx_desc
*td
= e
->desc
;
2875 skge_tx_free(skge
, e
, td
->control
);
2879 skge
->tx_ring
.to_clean
= e
;
2882 static void skge_tx_timeout(struct net_device
*dev
)
2884 struct skge_port
*skge
= netdev_priv(dev
);
2886 if (netif_msg_timer(skge
))
2887 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2889 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2891 netif_wake_queue(dev
);
2894 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2898 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2901 if (!netif_running(dev
)) {
2917 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2919 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2923 crc
= ether_crc_le(ETH_ALEN
, addr
);
2925 filter
[bit
/8] |= 1 << (bit
%8);
2928 static void genesis_set_multicast(struct net_device
*dev
)
2930 struct skge_port
*skge
= netdev_priv(dev
);
2931 struct skge_hw
*hw
= skge
->hw
;
2932 int port
= skge
->port
;
2933 int i
, count
= dev
->mc_count
;
2934 struct dev_mc_list
*list
= dev
->mc_list
;
2938 mode
= xm_read32(hw
, port
, XM_MODE
);
2939 mode
|= XM_MD_ENA_HASH
;
2940 if (dev
->flags
& IFF_PROMISC
)
2941 mode
|= XM_MD_ENA_PROM
;
2943 mode
&= ~XM_MD_ENA_PROM
;
2945 if (dev
->flags
& IFF_ALLMULTI
)
2946 memset(filter
, 0xff, sizeof(filter
));
2948 memset(filter
, 0, sizeof(filter
));
2950 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2951 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2952 genesis_add_filter(filter
, pause_mc_addr
);
2954 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2955 genesis_add_filter(filter
, list
->dmi_addr
);
2958 xm_write32(hw
, port
, XM_MODE
, mode
);
2959 xm_outhash(hw
, port
, XM_HSM
, filter
);
2962 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2964 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2965 filter
[bit
/8] |= 1 << (bit
%8);
2968 static void yukon_set_multicast(struct net_device
*dev
)
2970 struct skge_port
*skge
= netdev_priv(dev
);
2971 struct skge_hw
*hw
= skge
->hw
;
2972 int port
= skge
->port
;
2973 struct dev_mc_list
*list
= dev
->mc_list
;
2974 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2975 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2979 memset(filter
, 0, sizeof(filter
));
2981 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2982 reg
|= GM_RXCR_UCF_ENA
;
2984 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2985 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2986 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2987 memset(filter
, 0xff, sizeof(filter
));
2988 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2989 reg
&= ~GM_RXCR_MCF_ENA
;
2992 reg
|= GM_RXCR_MCF_ENA
;
2995 yukon_add_filter(filter
, pause_mc_addr
);
2997 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
2998 yukon_add_filter(filter
, list
->dmi_addr
);
3002 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3003 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3004 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3005 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3006 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3007 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3008 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3009 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3011 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3014 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3016 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3017 return status
>> XMR_FS_LEN_SHIFT
;
3019 return status
>> GMR_FS_LEN_SHIFT
;
3022 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3024 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3025 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3027 return (status
& GMR_FS_ANY_ERR
) ||
3028 (status
& GMR_FS_RX_OK
) == 0;
3031 static void skge_set_multicast(struct net_device
*dev
)
3033 struct skge_port
*skge
= netdev_priv(dev
);
3034 struct skge_hw
*hw
= skge
->hw
;
3036 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3037 genesis_set_multicast(dev
);
3039 yukon_set_multicast(dev
);
3044 /* Get receive buffer from descriptor.
3045 * Handles copy of small buffers and reallocation failures
3047 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3048 struct skge_element
*e
,
3049 u32 control
, u32 status
, u16 csum
)
3051 struct skge_port
*skge
= netdev_priv(dev
);
3052 struct sk_buff
*skb
;
3053 u16 len
= control
& BMU_BBC
;
3055 if (unlikely(netif_msg_rx_status(skge
)))
3056 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
3057 dev
->name
, e
- skge
->rx_ring
.start
,
3060 if (len
> skge
->rx_buf_size
)
3063 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3066 if (bad_phy_status(skge
->hw
, status
))
3069 if (phy_length(skge
->hw
, status
) != len
)
3072 if (len
< RX_COPY_THRESHOLD
) {
3073 skb
= netdev_alloc_skb(dev
, len
+ 2);
3077 skb_reserve(skb
, 2);
3078 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3079 pci_unmap_addr(e
, mapaddr
),
3080 len
, PCI_DMA_FROMDEVICE
);
3081 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3082 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3083 pci_unmap_addr(e
, mapaddr
),
3084 len
, PCI_DMA_FROMDEVICE
);
3085 skge_rx_reuse(e
, skge
->rx_buf_size
);
3087 struct sk_buff
*nskb
;
3088 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
3092 skb_reserve(nskb
, NET_IP_ALIGN
);
3093 pci_unmap_single(skge
->hw
->pdev
,
3094 pci_unmap_addr(e
, mapaddr
),
3095 pci_unmap_len(e
, maplen
),
3096 PCI_DMA_FROMDEVICE
);
3098 prefetch(skb
->data
);
3099 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3103 if (skge
->rx_csum
) {
3105 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3108 skb
->protocol
= eth_type_trans(skb
, dev
);
3113 if (netif_msg_rx_err(skge
))
3114 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
3115 dev
->name
, e
- skge
->rx_ring
.start
,
3118 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3119 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3120 dev
->stats
.rx_length_errors
++;
3121 if (status
& XMR_FS_FRA_ERR
)
3122 dev
->stats
.rx_frame_errors
++;
3123 if (status
& XMR_FS_FCS_ERR
)
3124 dev
->stats
.rx_crc_errors
++;
3126 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3127 dev
->stats
.rx_length_errors
++;
3128 if (status
& GMR_FS_FRAGMENT
)
3129 dev
->stats
.rx_frame_errors
++;
3130 if (status
& GMR_FS_CRC_ERR
)
3131 dev
->stats
.rx_crc_errors
++;
3135 skge_rx_reuse(e
, skge
->rx_buf_size
);
3139 /* Free all buffers in Tx ring which are no longer owned by device */
3140 static void skge_tx_done(struct net_device
*dev
)
3142 struct skge_port
*skge
= netdev_priv(dev
);
3143 struct skge_ring
*ring
= &skge
->tx_ring
;
3144 struct skge_element
*e
;
3146 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3148 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3149 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3151 if (control
& BMU_OWN
)
3154 skge_tx_free(skge
, e
, control
);
3156 skge
->tx_ring
.to_clean
= e
;
3158 /* Can run lockless until we need to synchronize to restart queue. */
3161 if (unlikely(netif_queue_stopped(dev
) &&
3162 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3164 if (unlikely(netif_queue_stopped(dev
) &&
3165 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3166 netif_wake_queue(dev
);
3169 netif_tx_unlock(dev
);
3173 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3175 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3176 struct net_device
*dev
= skge
->netdev
;
3177 struct skge_hw
*hw
= skge
->hw
;
3178 struct skge_ring
*ring
= &skge
->rx_ring
;
3179 struct skge_element
*e
;
3184 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3186 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3187 struct skge_rx_desc
*rd
= e
->desc
;
3188 struct sk_buff
*skb
;
3192 control
= rd
->control
;
3193 if (control
& BMU_OWN
)
3196 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3198 netif_receive_skb(skb
);
3205 /* restart receiver */
3207 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3209 if (work_done
< to_do
) {
3210 unsigned long flags
;
3212 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3213 __napi_complete(napi
);
3214 hw
->intr_mask
|= napimask
[skge
->port
];
3215 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3216 skge_read32(hw
, B0_IMSK
);
3217 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3223 /* Parity errors seem to happen when Genesis is connected to a switch
3224 * with no other ports present. Heartbeat error??
3226 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3228 struct net_device
*dev
= hw
->dev
[port
];
3230 ++dev
->stats
.tx_heartbeat_errors
;
3232 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3233 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3236 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3237 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3238 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3239 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3242 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3244 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3245 genesis_mac_intr(hw
, port
);
3247 yukon_mac_intr(hw
, port
);
3250 /* Handle device specific framing and timeout interrupts */
3251 static void skge_error_irq(struct skge_hw
*hw
)
3253 struct pci_dev
*pdev
= hw
->pdev
;
3254 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3256 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3257 /* clear xmac errors */
3258 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3259 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3260 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3261 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3263 /* Timestamp (unused) overflow */
3264 if (hwstatus
& IS_IRQ_TIST_OV
)
3265 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3268 if (hwstatus
& IS_RAM_RD_PAR
) {
3269 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3270 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3273 if (hwstatus
& IS_RAM_WR_PAR
) {
3274 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3275 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3278 if (hwstatus
& IS_M1_PAR_ERR
)
3279 skge_mac_parity(hw
, 0);
3281 if (hwstatus
& IS_M2_PAR_ERR
)
3282 skge_mac_parity(hw
, 1);
3284 if (hwstatus
& IS_R1_PAR_ERR
) {
3285 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3287 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3290 if (hwstatus
& IS_R2_PAR_ERR
) {
3291 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3293 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3296 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3297 u16 pci_status
, pci_cmd
;
3299 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3300 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3302 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3303 pci_cmd
, pci_status
);
3305 /* Write the error bits back to clear them. */
3306 pci_status
&= PCI_STATUS_ERROR_BITS
;
3307 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3308 pci_write_config_word(pdev
, PCI_COMMAND
,
3309 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3310 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3311 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3313 /* if error still set then just ignore it */
3314 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3315 if (hwstatus
& IS_IRQ_STAT
) {
3316 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3317 hw
->intr_mask
&= ~IS_HW_ERR
;
3323 * Interrupt from PHY are handled in tasklet (softirq)
3324 * because accessing phy registers requires spin wait which might
3325 * cause excess interrupt latency.
3327 static void skge_extirq(unsigned long arg
)
3329 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3332 for (port
= 0; port
< hw
->ports
; port
++) {
3333 struct net_device
*dev
= hw
->dev
[port
];
3335 if (netif_running(dev
)) {
3336 struct skge_port
*skge
= netdev_priv(dev
);
3338 spin_lock(&hw
->phy_lock
);
3339 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3340 yukon_phy_intr(skge
);
3341 else if (hw
->phy_type
== SK_PHY_BCOM
)
3342 bcom_phy_intr(skge
);
3343 spin_unlock(&hw
->phy_lock
);
3347 spin_lock_irq(&hw
->hw_lock
);
3348 hw
->intr_mask
|= IS_EXT_REG
;
3349 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3350 skge_read32(hw
, B0_IMSK
);
3351 spin_unlock_irq(&hw
->hw_lock
);
3354 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3356 struct skge_hw
*hw
= dev_id
;
3360 spin_lock(&hw
->hw_lock
);
3361 /* Reading this register masks IRQ */
3362 status
= skge_read32(hw
, B0_SP_ISRC
);
3363 if (status
== 0 || status
== ~0)
3367 status
&= hw
->intr_mask
;
3368 if (status
& IS_EXT_REG
) {
3369 hw
->intr_mask
&= ~IS_EXT_REG
;
3370 tasklet_schedule(&hw
->phy_task
);
3373 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3374 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3375 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3376 napi_schedule(&skge
->napi
);
3379 if (status
& IS_PA_TO_TX1
)
3380 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3382 if (status
& IS_PA_TO_RX1
) {
3383 ++hw
->dev
[0]->stats
.rx_over_errors
;
3384 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3388 if (status
& IS_MAC1
)
3389 skge_mac_intr(hw
, 0);
3392 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3394 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3395 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3396 napi_schedule(&skge
->napi
);
3399 if (status
& IS_PA_TO_RX2
) {
3400 ++hw
->dev
[1]->stats
.rx_over_errors
;
3401 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3404 if (status
& IS_PA_TO_TX2
)
3405 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3407 if (status
& IS_MAC2
)
3408 skge_mac_intr(hw
, 1);
3411 if (status
& IS_HW_ERR
)
3414 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3415 skge_read32(hw
, B0_IMSK
);
3417 spin_unlock(&hw
->hw_lock
);
3419 return IRQ_RETVAL(handled
);
3422 #ifdef CONFIG_NET_POLL_CONTROLLER
3423 static void skge_netpoll(struct net_device
*dev
)
3425 struct skge_port
*skge
= netdev_priv(dev
);
3427 disable_irq(dev
->irq
);
3428 skge_intr(dev
->irq
, skge
->hw
);
3429 enable_irq(dev
->irq
);
3433 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3435 struct skge_port
*skge
= netdev_priv(dev
);
3436 struct skge_hw
*hw
= skge
->hw
;
3437 unsigned port
= skge
->port
;
3438 const struct sockaddr
*addr
= p
;
3441 if (!is_valid_ether_addr(addr
->sa_data
))
3442 return -EADDRNOTAVAIL
;
3444 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3446 if (!netif_running(dev
)) {
3447 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3448 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3451 spin_lock_bh(&hw
->phy_lock
);
3452 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3453 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3455 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3456 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3458 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3459 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3461 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3462 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3465 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3466 spin_unlock_bh(&hw
->phy_lock
);
3472 static const struct {
3476 { CHIP_ID_GENESIS
, "Genesis" },
3477 { CHIP_ID_YUKON
, "Yukon" },
3478 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3479 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3482 static const char *skge_board_name(const struct skge_hw
*hw
)
3485 static char buf
[16];
3487 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3488 if (skge_chips
[i
].id
== hw
->chip_id
)
3489 return skge_chips
[i
].name
;
3491 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3497 * Setup the board data structure, but don't bring up
3500 static int skge_reset(struct skge_hw
*hw
)
3503 u16 ctst
, pci_status
;
3504 u8 t8
, mac_cfg
, pmd_type
;
3507 ctst
= skge_read16(hw
, B0_CTST
);
3510 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3511 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3513 /* clear PCI errors, if any */
3514 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3515 skge_write8(hw
, B2_TST_CTRL2
, 0);
3517 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3518 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3519 pci_status
| PCI_STATUS_ERROR_BITS
);
3520 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3521 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3523 /* restore CLK_RUN bits (for Yukon-Lite) */
3524 skge_write16(hw
, B0_CTST
,
3525 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3527 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3528 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3529 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3530 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3532 switch (hw
->chip_id
) {
3533 case CHIP_ID_GENESIS
:
3534 switch (hw
->phy_type
) {
3536 hw
->phy_addr
= PHY_ADDR_XMAC
;
3539 hw
->phy_addr
= PHY_ADDR_BCOM
;
3542 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3549 case CHIP_ID_YUKON_LITE
:
3550 case CHIP_ID_YUKON_LP
:
3551 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3554 hw
->phy_addr
= PHY_ADDR_MARV
;
3558 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3563 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3564 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3565 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3567 /* read the adapters RAM size */
3568 t8
= skge_read8(hw
, B2_E_0
);
3569 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3571 /* special case: 4 x 64k x 36, offset = 0x80000 */
3572 hw
->ram_size
= 0x100000;
3573 hw
->ram_offset
= 0x80000;
3575 hw
->ram_size
= t8
* 512;
3578 hw
->ram_size
= 0x20000;
3580 hw
->ram_size
= t8
* 4096;
3582 hw
->intr_mask
= IS_HW_ERR
;
3584 /* Use PHY IRQ for all but fiber based Genesis board */
3585 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3586 hw
->intr_mask
|= IS_EXT_REG
;
3588 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3591 /* switch power to VCC (WA for VAUX problem) */
3592 skge_write8(hw
, B0_POWER_CTRL
,
3593 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3595 /* avoid boards with stuck Hardware error bits */
3596 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3597 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3598 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3599 hw
->intr_mask
&= ~IS_HW_ERR
;
3602 /* Clear PHY COMA */
3603 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3604 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3605 reg
&= ~PCI_PHY_COMA
;
3606 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3607 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3610 for (i
= 0; i
< hw
->ports
; i
++) {
3611 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3612 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3616 /* turn off hardware timer (unused) */
3617 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3618 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3619 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3621 /* enable the Tx Arbiters */
3622 for (i
= 0; i
< hw
->ports
; i
++)
3623 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3625 /* Initialize ram interface */
3626 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3628 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3629 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3630 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3631 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3632 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3633 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3634 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3635 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3636 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3637 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3638 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3639 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3641 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3643 /* Set interrupt moderation for Transmit only
3644 * Receive interrupts avoided by NAPI
3646 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3647 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3648 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3650 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3652 for (i
= 0; i
< hw
->ports
; i
++) {
3653 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3654 genesis_reset(hw
, i
);
3663 #ifdef CONFIG_SKGE_DEBUG
3665 static struct dentry
*skge_debug
;
3667 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3669 struct net_device
*dev
= seq
->private;
3670 const struct skge_port
*skge
= netdev_priv(dev
);
3671 const struct skge_hw
*hw
= skge
->hw
;
3672 const struct skge_element
*e
;
3674 if (!netif_running(dev
))
3677 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3678 skge_read32(hw
, B0_IMSK
));
3680 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3681 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3682 const struct skge_tx_desc
*t
= e
->desc
;
3683 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3684 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3685 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3688 seq_printf(seq
, "\nRx Ring: \n");
3689 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3690 const struct skge_rx_desc
*r
= e
->desc
;
3692 if (r
->control
& BMU_OWN
)
3695 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3696 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3697 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3703 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3705 return single_open(file
, skge_debug_show
, inode
->i_private
);
3708 static const struct file_operations skge_debug_fops
= {
3709 .owner
= THIS_MODULE
,
3710 .open
= skge_debug_open
,
3712 .llseek
= seq_lseek
,
3713 .release
= single_release
,
3717 * Use network device events to create/remove/rename
3718 * debugfs file entries
3720 static int skge_device_event(struct notifier_block
*unused
,
3721 unsigned long event
, void *ptr
)
3723 struct net_device
*dev
= ptr
;
3724 struct skge_port
*skge
;
3727 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3730 skge
= netdev_priv(dev
);
3732 case NETDEV_CHANGENAME
:
3733 if (skge
->debugfs
) {
3734 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3735 skge_debug
, dev
->name
);
3739 pr_info(PFX
"%s: rename failed\n", dev
->name
);
3740 debugfs_remove(skge
->debugfs
);
3745 case NETDEV_GOING_DOWN
:
3746 if (skge
->debugfs
) {
3747 debugfs_remove(skge
->debugfs
);
3748 skge
->debugfs
= NULL
;
3753 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3756 if (!d
|| IS_ERR(d
))
3757 pr_info(PFX
"%s: debugfs create failed\n",
3768 static struct notifier_block skge_notifier
= {
3769 .notifier_call
= skge_device_event
,
3773 static __init
void skge_debug_init(void)
3777 ent
= debugfs_create_dir("skge", NULL
);
3778 if (!ent
|| IS_ERR(ent
)) {
3779 pr_info(PFX
"debugfs create directory failed\n");
3784 register_netdevice_notifier(&skge_notifier
);
3787 static __exit
void skge_debug_cleanup(void)
3790 unregister_netdevice_notifier(&skge_notifier
);
3791 debugfs_remove(skge_debug
);
3797 #define skge_debug_init()
3798 #define skge_debug_cleanup()
3801 static const struct net_device_ops skge_netdev_ops
= {
3802 .ndo_open
= skge_up
,
3803 .ndo_stop
= skge_down
,
3804 .ndo_start_xmit
= skge_xmit_frame
,
3805 .ndo_do_ioctl
= skge_ioctl
,
3806 .ndo_get_stats
= skge_get_stats
,
3807 .ndo_tx_timeout
= skge_tx_timeout
,
3808 .ndo_change_mtu
= skge_change_mtu
,
3809 .ndo_validate_addr
= eth_validate_addr
,
3810 .ndo_set_multicast_list
= skge_set_multicast
,
3811 .ndo_set_mac_address
= skge_set_mac_address
,
3812 #ifdef CONFIG_NET_POLL_CONTROLLER
3813 .ndo_poll_controller
= skge_netpoll
,
3818 /* Initialize network device */
3819 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3822 struct skge_port
*skge
;
3823 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3826 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3830 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3831 dev
->netdev_ops
= &skge_netdev_ops
;
3832 dev
->ethtool_ops
= &skge_ethtool_ops
;
3833 dev
->watchdog_timeo
= TX_WATCHDOG
;
3834 dev
->irq
= hw
->pdev
->irq
;
3837 dev
->features
|= NETIF_F_HIGHDMA
;
3839 skge
= netdev_priv(dev
);
3840 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3843 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3845 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3846 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3848 /* Auto speed and flow control */
3849 skge
->autoneg
= AUTONEG_ENABLE
;
3850 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3853 skge
->advertising
= skge_supported_modes(hw
);
3855 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3856 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3857 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3860 hw
->dev
[port
] = dev
;
3864 /* Only used for Genesis XMAC */
3865 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3867 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3868 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3872 /* read the mac address */
3873 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3874 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3876 /* device is off until link detection */
3877 netif_carrier_off(dev
);
3878 netif_stop_queue(dev
);
3883 static void __devinit
skge_show_addr(struct net_device
*dev
)
3885 const struct skge_port
*skge
= netdev_priv(dev
);
3887 if (netif_msg_probe(skge
))
3888 printk(KERN_INFO PFX
"%s: addr %pM\n",
3889 dev
->name
, dev
->dev_addr
);
3892 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3893 const struct pci_device_id
*ent
)
3895 struct net_device
*dev
, *dev1
;
3897 int err
, using_dac
= 0;
3899 err
= pci_enable_device(pdev
);
3901 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3905 err
= pci_request_regions(pdev
, DRV_NAME
);
3907 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3908 goto err_out_disable_pdev
;
3911 pci_set_master(pdev
);
3913 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3915 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3916 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3918 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3922 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3923 goto err_out_free_regions
;
3927 /* byte swap descriptors in hardware */
3931 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3932 reg
|= PCI_REV_DESC
;
3933 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3938 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3940 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3941 goto err_out_free_regions
;
3945 spin_lock_init(&hw
->hw_lock
);
3946 spin_lock_init(&hw
->phy_lock
);
3947 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3949 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3951 dev_err(&pdev
->dev
, "cannot map device registers\n");
3952 goto err_out_free_hw
;
3955 err
= skge_reset(hw
);
3957 goto err_out_iounmap
;
3959 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3960 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3961 skge_board_name(hw
), hw
->chip_rev
);
3963 dev
= skge_devinit(hw
, 0, using_dac
);
3965 goto err_out_led_off
;
3967 /* Some motherboards are broken and has zero in ROM. */
3968 if (!is_valid_ether_addr(dev
->dev_addr
))
3969 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3971 err
= register_netdev(dev
);
3973 dev_err(&pdev
->dev
, "cannot register net device\n");
3974 goto err_out_free_netdev
;
3977 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3979 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3980 dev
->name
, pdev
->irq
);
3981 goto err_out_unregister
;
3983 skge_show_addr(dev
);
3985 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3986 if (register_netdev(dev1
) == 0)
3987 skge_show_addr(dev1
);
3989 /* Failure to register second port need not be fatal */
3990 dev_warn(&pdev
->dev
, "register of second port failed\n");
3995 pci_set_drvdata(pdev
, hw
);
4000 unregister_netdev(dev
);
4001 err_out_free_netdev
:
4004 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4009 err_out_free_regions
:
4010 pci_release_regions(pdev
);
4011 err_out_disable_pdev
:
4012 pci_disable_device(pdev
);
4013 pci_set_drvdata(pdev
, NULL
);
4018 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4020 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4021 struct net_device
*dev0
, *dev1
;
4026 flush_scheduled_work();
4028 if ((dev1
= hw
->dev
[1]))
4029 unregister_netdev(dev1
);
4031 unregister_netdev(dev0
);
4033 tasklet_disable(&hw
->phy_task
);
4035 spin_lock_irq(&hw
->hw_lock
);
4037 skge_write32(hw
, B0_IMSK
, 0);
4038 skge_read32(hw
, B0_IMSK
);
4039 spin_unlock_irq(&hw
->hw_lock
);
4041 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4042 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4044 free_irq(pdev
->irq
, hw
);
4045 pci_release_regions(pdev
);
4046 pci_disable_device(pdev
);
4053 pci_set_drvdata(pdev
, NULL
);
4057 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4059 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4060 int i
, err
, wol
= 0;
4065 err
= pci_save_state(pdev
);
4069 for (i
= 0; i
< hw
->ports
; i
++) {
4070 struct net_device
*dev
= hw
->dev
[i
];
4071 struct skge_port
*skge
= netdev_priv(dev
);
4073 if (netif_running(dev
))
4076 skge_wol_init(skge
);
4081 skge_write32(hw
, B0_IMSK
, 0);
4083 pci_prepare_to_sleep(pdev
);
4088 static int skge_resume(struct pci_dev
*pdev
)
4090 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4096 err
= pci_back_from_sleep(pdev
);
4100 err
= pci_restore_state(pdev
);
4104 err
= skge_reset(hw
);
4108 for (i
= 0; i
< hw
->ports
; i
++) {
4109 struct net_device
*dev
= hw
->dev
[i
];
4111 if (netif_running(dev
)) {
4115 printk(KERN_ERR PFX
"%s: could not up: %d\n",
4127 static void skge_shutdown(struct pci_dev
*pdev
)
4129 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4135 for (i
= 0; i
< hw
->ports
; i
++) {
4136 struct net_device
*dev
= hw
->dev
[i
];
4137 struct skge_port
*skge
= netdev_priv(dev
);
4140 skge_wol_init(skge
);
4144 if (pci_enable_wake(pdev
, PCI_D3cold
, wol
))
4145 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4147 pci_disable_device(pdev
);
4148 pci_set_power_state(pdev
, PCI_D3hot
);
4152 static struct pci_driver skge_driver
= {
4154 .id_table
= skge_id_table
,
4155 .probe
= skge_probe
,
4156 .remove
= __devexit_p(skge_remove
),
4158 .suspend
= skge_suspend
,
4159 .resume
= skge_resume
,
4161 .shutdown
= skge_shutdown
,
4164 static int __init
skge_init_module(void)
4167 return pci_register_driver(&skge_driver
);
4170 static void __exit
skge_cleanup_module(void)
4172 pci_unregister_driver(&skge_driver
);
4173 skge_debug_cleanup();
4176 module_init(skge_init_module
);
4177 module_exit(skge_cleanup_module
);