Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / drivers / scsi / aacraid / commsup.c
blob956261f251817ea5ab0873a60c96835e1bcf13e1
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <linux/semaphore.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_host.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_cmnd.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev,
84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85 dev->hw_fib_va, dev->hw_fib_pa);
86 dev->hw_fib_va = NULL;
87 dev->hw_fib_pa = 0;
90 /**
91 * aac_fib_setup - setup the fibs
92 * @dev: Adapter to set up
94 * Allocate the PCI space for the fibs, map it and then intialise the
95 * fib area, the unmapped fib data and also the free list
98 int aac_fib_setup(struct aac_dev * dev)
100 struct fib *fibptr;
101 struct hw_fib *hw_fib;
102 dma_addr_t hw_fib_pa;
103 int i;
105 while (((i = fib_map_alloc(dev)) == -ENOMEM)
106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
110 if (i<0)
111 return -ENOMEM;
113 hw_fib = dev->hw_fib_va;
114 hw_fib_pa = dev->hw_fib_pa;
115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
117 * Initialise the fibs
119 for (i = 0, fibptr = &dev->fibs[i];
120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121 i++, fibptr++)
123 fibptr->dev = dev;
124 fibptr->hw_fib_va = hw_fib;
125 fibptr->data = (void *) fibptr->hw_fib_va->data;
126 fibptr->next = fibptr+1; /* Forward chain the fibs */
127 init_MUTEX_LOCKED(&fibptr->event_wait);
128 spin_lock_init(&fibptr->event_lock);
129 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131 fibptr->hw_fib_pa = hw_fib_pa;
132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
136 * Add the fib chain to the free list
138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
140 * Enable this to debug out of queue space
142 dev->free_fib = &dev->fibs[0];
143 return 0;
147 * aac_fib_alloc - allocate a fib
148 * @dev: Adapter to allocate the fib for
150 * Allocate a fib from the adapter fib pool. If the pool is empty we
151 * return NULL.
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
156 struct fib * fibptr;
157 unsigned long flags;
158 spin_lock_irqsave(&dev->fib_lock, flags);
159 fibptr = dev->free_fib;
160 if(!fibptr){
161 spin_unlock_irqrestore(&dev->fib_lock, flags);
162 return fibptr;
164 dev->free_fib = fibptr->next;
165 spin_unlock_irqrestore(&dev->fib_lock, flags);
167 * Set the proper node type code and node byte size
169 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170 fibptr->size = sizeof(struct fib);
172 * Null out fields that depend on being zero at the start of
173 * each I/O
175 fibptr->hw_fib_va->header.XferState = 0;
176 fibptr->flags = 0;
177 fibptr->callback = NULL;
178 fibptr->callback_data = NULL;
180 return fibptr;
184 * aac_fib_free - free a fib
185 * @fibptr: fib to free up
187 * Frees up a fib and places it on the appropriate queue
190 void aac_fib_free(struct fib *fibptr)
192 unsigned long flags;
194 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
195 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
196 aac_config.fib_timeouts++;
197 if (fibptr->hw_fib_va->header.XferState != 0) {
198 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
199 (void*)fibptr,
200 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
202 fibptr->next = fibptr->dev->free_fib;
203 fibptr->dev->free_fib = fibptr;
204 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
208 * aac_fib_init - initialise a fib
209 * @fibptr: The fib to initialize
211 * Set up the generic fib fields ready for use
214 void aac_fib_init(struct fib *fibptr)
216 struct hw_fib *hw_fib = fibptr->hw_fib_va;
218 hw_fib->header.StructType = FIB_MAGIC;
219 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
220 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
221 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
222 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
223 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
227 * fib_deallocate - deallocate a fib
228 * @fibptr: fib to deallocate
230 * Will deallocate and return to the free pool the FIB pointed to by the
231 * caller.
234 static void fib_dealloc(struct fib * fibptr)
236 struct hw_fib *hw_fib = fibptr->hw_fib_va;
237 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
238 hw_fib->header.XferState = 0;
242 * Commuication primitives define and support the queuing method we use to
243 * support host to adapter commuication. All queue accesses happen through
244 * these routines and are the only routines which have a knowledge of the
245 * how these queues are implemented.
249 * aac_get_entry - get a queue entry
250 * @dev: Adapter
251 * @qid: Queue Number
252 * @entry: Entry return
253 * @index: Index return
254 * @nonotify: notification control
256 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
257 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
258 * returned.
261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
263 struct aac_queue * q;
264 unsigned long idx;
267 * All of the queues wrap when they reach the end, so we check
268 * to see if they have reached the end and if they have we just
269 * set the index back to zero. This is a wrap. You could or off
270 * the high bits in all updates but this is a bit faster I think.
273 q = &dev->queues->queue[qid];
275 idx = *index = le32_to_cpu(*(q->headers.producer));
276 /* Interrupt Moderation, only interrupt for first two entries */
277 if (idx != le32_to_cpu(*(q->headers.consumer))) {
278 if (--idx == 0) {
279 if (qid == AdapNormCmdQueue)
280 idx = ADAP_NORM_CMD_ENTRIES;
281 else
282 idx = ADAP_NORM_RESP_ENTRIES;
284 if (idx != le32_to_cpu(*(q->headers.consumer)))
285 *nonotify = 1;
288 if (qid == AdapNormCmdQueue) {
289 if (*index >= ADAP_NORM_CMD_ENTRIES)
290 *index = 0; /* Wrap to front of the Producer Queue. */
291 } else {
292 if (*index >= ADAP_NORM_RESP_ENTRIES)
293 *index = 0; /* Wrap to front of the Producer Queue. */
296 /* Queue is full */
297 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
298 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
299 qid, q->numpending);
300 return 0;
301 } else {
302 *entry = q->base + *index;
303 return 1;
308 * aac_queue_get - get the next free QE
309 * @dev: Adapter
310 * @index: Returned index
311 * @priority: Priority of fib
312 * @fib: Fib to associate with the queue entry
313 * @wait: Wait if queue full
314 * @fibptr: Driver fib object to go with fib
315 * @nonotify: Don't notify the adapter
317 * Gets the next free QE off the requested priorty adapter command
318 * queue and associates the Fib with the QE. The QE represented by
319 * index is ready to insert on the queue when this routine returns
320 * success.
323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
325 struct aac_entry * entry = NULL;
326 int map = 0;
328 if (qid == AdapNormCmdQueue) {
329 /* if no entries wait for some if caller wants to */
330 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
331 printk(KERN_ERR "GetEntries failed\n");
334 * Setup queue entry with a command, status and fib mapped
336 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337 map = 1;
338 } else {
339 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
340 /* if no entries wait for some if caller wants to */
343 * Setup queue entry with command, status and fib mapped
345 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
346 entry->addr = hw_fib->header.SenderFibAddress;
347 /* Restore adapters pointer to the FIB */
348 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
349 map = 0;
352 * If MapFib is true than we need to map the Fib and put pointers
353 * in the queue entry.
355 if (map)
356 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
357 return 0;
361 * Define the highest level of host to adapter communication routines.
362 * These routines will support host to adapter FS commuication. These
363 * routines have no knowledge of the commuication method used. This level
364 * sends and receives FIBs. This level has no knowledge of how these FIBs
365 * get passed back and forth.
369 * aac_fib_send - send a fib to the adapter
370 * @command: Command to send
371 * @fibptr: The fib
372 * @size: Size of fib data area
373 * @priority: Priority of Fib
374 * @wait: Async/sync select
375 * @reply: True if a reply is wanted
376 * @callback: Called with reply
377 * @callback_data: Passed to callback
379 * Sends the requested FIB to the adapter and optionally will wait for a
380 * response FIB. If the caller does not wish to wait for a response than
381 * an event to wait on must be supplied. This event will be set when a
382 * response FIB is received from the adapter.
385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
386 int priority, int wait, int reply, fib_callback callback,
387 void *callback_data)
389 struct aac_dev * dev = fibptr->dev;
390 struct hw_fib * hw_fib = fibptr->hw_fib_va;
391 unsigned long flags = 0;
392 unsigned long qflags;
394 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395 return -EBUSY;
397 * There are 5 cases with the wait and reponse requested flags.
398 * The only invalid cases are if the caller requests to wait and
399 * does not request a response and if the caller does not want a
400 * response and the Fib is not allocated from pool. If a response
401 * is not requesed the Fib will just be deallocaed by the DPC
402 * routine when the response comes back from the adapter. No
403 * further processing will be done besides deleting the Fib. We
404 * will have a debug mode where the adapter can notify the host
405 * it had a problem and the host can log that fact.
407 fibptr->flags = 0;
408 if (wait && !reply) {
409 return -EINVAL;
410 } else if (!wait && reply) {
411 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
412 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
413 } else if (!wait && !reply) {
414 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
415 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
416 } else if (wait && reply) {
417 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
418 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
421 * Map the fib into 32bits by using the fib number
424 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
425 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
427 * Set FIB state to indicate where it came from and if we want a
428 * response from the adapter. Also load the command from the
429 * caller.
431 * Map the hw fib pointer as a 32bit value
433 hw_fib->header.Command = cpu_to_le16(command);
434 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
435 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
437 * Set the size of the Fib we want to send to the adapter
439 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
440 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
441 return -EMSGSIZE;
444 * Get a queue entry connect the FIB to it and send an notify
445 * the adapter a command is ready.
447 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
450 * Fill in the Callback and CallbackContext if we are not
451 * going to wait.
453 if (!wait) {
454 fibptr->callback = callback;
455 fibptr->callback_data = callback_data;
456 fibptr->flags = FIB_CONTEXT_FLAG;
459 fibptr->done = 0;
461 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
463 dprintk((KERN_DEBUG "Fib contents:.\n"));
464 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
465 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
466 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
467 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
468 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
469 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
471 if (!dev->queues)
472 return -EBUSY;
474 if(wait)
475 spin_lock_irqsave(&fibptr->event_lock, flags);
476 aac_adapter_deliver(fibptr);
479 * If the caller wanted us to wait for response wait now.
482 if (wait) {
483 spin_unlock_irqrestore(&fibptr->event_lock, flags);
484 /* Only set for first known interruptable command */
485 if (wait < 0) {
487 * *VERY* Dangerous to time out a command, the
488 * assumption is made that we have no hope of
489 * functioning because an interrupt routing or other
490 * hardware failure has occurred.
492 unsigned long count = 36000000L; /* 3 minutes */
493 while (down_trylock(&fibptr->event_wait)) {
494 int blink;
495 if (--count == 0) {
496 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
497 spin_lock_irqsave(q->lock, qflags);
498 q->numpending--;
499 spin_unlock_irqrestore(q->lock, qflags);
500 if (wait == -1) {
501 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
502 "Usually a result of a PCI interrupt routing problem;\n"
503 "update mother board BIOS or consider utilizing one of\n"
504 "the SAFE mode kernel options (acpi, apic etc)\n");
506 return -ETIMEDOUT;
508 if ((blink = aac_adapter_check_health(dev)) > 0) {
509 if (wait == -1) {
510 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
511 "Usually a result of a serious unrecoverable hardware problem\n",
512 blink);
514 return -EFAULT;
516 udelay(5);
518 } else if (down_interruptible(&fibptr->event_wait)) {
519 fibptr->done = 2;
520 up(&fibptr->event_wait);
522 spin_lock_irqsave(&fibptr->event_lock, flags);
523 if ((fibptr->done == 0) || (fibptr->done == 2)) {
524 fibptr->done = 2; /* Tell interrupt we aborted */
525 spin_unlock_irqrestore(&fibptr->event_lock, flags);
526 return -EINTR;
528 spin_unlock_irqrestore(&fibptr->event_lock, flags);
529 BUG_ON(fibptr->done == 0);
531 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
532 return -ETIMEDOUT;
533 return 0;
536 * If the user does not want a response than return success otherwise
537 * return pending
539 if (reply)
540 return -EINPROGRESS;
541 else
542 return 0;
546 * aac_consumer_get - get the top of the queue
547 * @dev: Adapter
548 * @q: Queue
549 * @entry: Return entry
551 * Will return a pointer to the entry on the top of the queue requested that
552 * we are a consumer of, and return the address of the queue entry. It does
553 * not change the state of the queue.
556 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
558 u32 index;
559 int status;
560 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
561 status = 0;
562 } else {
564 * The consumer index must be wrapped if we have reached
565 * the end of the queue, else we just use the entry
566 * pointed to by the header index
568 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
569 index = 0;
570 else
571 index = le32_to_cpu(*q->headers.consumer);
572 *entry = q->base + index;
573 status = 1;
575 return(status);
579 * aac_consumer_free - free consumer entry
580 * @dev: Adapter
581 * @q: Queue
582 * @qid: Queue ident
584 * Frees up the current top of the queue we are a consumer of. If the
585 * queue was full notify the producer that the queue is no longer full.
588 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
590 int wasfull = 0;
591 u32 notify;
593 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
594 wasfull = 1;
596 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
597 *q->headers.consumer = cpu_to_le32(1);
598 else
599 le32_add_cpu(q->headers.consumer, 1);
601 if (wasfull) {
602 switch (qid) {
604 case HostNormCmdQueue:
605 notify = HostNormCmdNotFull;
606 break;
607 case HostNormRespQueue:
608 notify = HostNormRespNotFull;
609 break;
610 default:
611 BUG();
612 return;
614 aac_adapter_notify(dev, notify);
619 * aac_fib_adapter_complete - complete adapter issued fib
620 * @fibptr: fib to complete
621 * @size: size of fib
623 * Will do all necessary work to complete a FIB that was sent from
624 * the adapter.
627 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
629 struct hw_fib * hw_fib = fibptr->hw_fib_va;
630 struct aac_dev * dev = fibptr->dev;
631 struct aac_queue * q;
632 unsigned long nointr = 0;
633 unsigned long qflags;
635 if (hw_fib->header.XferState == 0) {
636 if (dev->comm_interface == AAC_COMM_MESSAGE)
637 kfree (hw_fib);
638 return 0;
641 * If we plan to do anything check the structure type first.
643 if (hw_fib->header.StructType != FIB_MAGIC) {
644 if (dev->comm_interface == AAC_COMM_MESSAGE)
645 kfree (hw_fib);
646 return -EINVAL;
649 * This block handles the case where the adapter had sent us a
650 * command and we have finished processing the command. We
651 * call completeFib when we are done processing the command
652 * and want to send a response back to the adapter. This will
653 * send the completed cdb to the adapter.
655 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
656 if (dev->comm_interface == AAC_COMM_MESSAGE) {
657 kfree (hw_fib);
658 } else {
659 u32 index;
660 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
661 if (size) {
662 size += sizeof(struct aac_fibhdr);
663 if (size > le16_to_cpu(hw_fib->header.SenderSize))
664 return -EMSGSIZE;
665 hw_fib->header.Size = cpu_to_le16(size);
667 q = &dev->queues->queue[AdapNormRespQueue];
668 spin_lock_irqsave(q->lock, qflags);
669 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
670 *(q->headers.producer) = cpu_to_le32(index + 1);
671 spin_unlock_irqrestore(q->lock, qflags);
672 if (!(nointr & (int)aac_config.irq_mod))
673 aac_adapter_notify(dev, AdapNormRespQueue);
675 } else {
676 printk(KERN_WARNING "aac_fib_adapter_complete: "
677 "Unknown xferstate detected.\n");
678 BUG();
680 return 0;
684 * aac_fib_complete - fib completion handler
685 * @fib: FIB to complete
687 * Will do all necessary work to complete a FIB.
690 int aac_fib_complete(struct fib *fibptr)
692 struct hw_fib * hw_fib = fibptr->hw_fib_va;
695 * Check for a fib which has already been completed
698 if (hw_fib->header.XferState == 0)
699 return 0;
701 * If we plan to do anything check the structure type first.
704 if (hw_fib->header.StructType != FIB_MAGIC)
705 return -EINVAL;
707 * This block completes a cdb which orginated on the host and we
708 * just need to deallocate the cdb or reinit it. At this point the
709 * command is complete that we had sent to the adapter and this
710 * cdb could be reused.
712 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
713 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
715 fib_dealloc(fibptr);
717 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
720 * This handles the case when the host has aborted the I/O
721 * to the adapter because the adapter is not responding
723 fib_dealloc(fibptr);
724 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
725 fib_dealloc(fibptr);
726 } else {
727 BUG();
729 return 0;
733 * aac_printf - handle printf from firmware
734 * @dev: Adapter
735 * @val: Message info
737 * Print a message passed to us by the controller firmware on the
738 * Adaptec board
741 void aac_printf(struct aac_dev *dev, u32 val)
743 char *cp = dev->printfbuf;
744 if (dev->printf_enabled)
746 int length = val & 0xffff;
747 int level = (val >> 16) & 0xffff;
750 * The size of the printfbuf is set in port.c
751 * There is no variable or define for it
753 if (length > 255)
754 length = 255;
755 if (cp[length] != 0)
756 cp[length] = 0;
757 if (level == LOG_AAC_HIGH_ERROR)
758 printk(KERN_WARNING "%s:%s", dev->name, cp);
759 else
760 printk(KERN_INFO "%s:%s", dev->name, cp);
762 memset(cp, 0, 256);
767 * aac_handle_aif - Handle a message from the firmware
768 * @dev: Which adapter this fib is from
769 * @fibptr: Pointer to fibptr from adapter
771 * This routine handles a driver notify fib from the adapter and
772 * dispatches it to the appropriate routine for handling.
775 #define AIF_SNIFF_TIMEOUT (30*HZ)
776 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
778 struct hw_fib * hw_fib = fibptr->hw_fib_va;
779 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
780 u32 channel, id, lun, container;
781 struct scsi_device *device;
782 enum {
783 NOTHING,
784 DELETE,
785 ADD,
786 CHANGE
787 } device_config_needed = NOTHING;
789 /* Sniff for container changes */
791 if (!dev || !dev->fsa_dev)
792 return;
793 container = channel = id = lun = (u32)-1;
796 * We have set this up to try and minimize the number of
797 * re-configures that take place. As a result of this when
798 * certain AIF's come in we will set a flag waiting for another
799 * type of AIF before setting the re-config flag.
801 switch (le32_to_cpu(aifcmd->command)) {
802 case AifCmdDriverNotify:
803 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
805 * Morph or Expand complete
807 case AifDenMorphComplete:
808 case AifDenVolumeExtendComplete:
809 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
810 if (container >= dev->maximum_num_containers)
811 break;
814 * Find the scsi_device associated with the SCSI
815 * address. Make sure we have the right array, and if
816 * so set the flag to initiate a new re-config once we
817 * see an AifEnConfigChange AIF come through.
820 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
821 device = scsi_device_lookup(dev->scsi_host_ptr,
822 CONTAINER_TO_CHANNEL(container),
823 CONTAINER_TO_ID(container),
824 CONTAINER_TO_LUN(container));
825 if (device) {
826 dev->fsa_dev[container].config_needed = CHANGE;
827 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
828 dev->fsa_dev[container].config_waiting_stamp = jiffies;
829 scsi_device_put(device);
835 * If we are waiting on something and this happens to be
836 * that thing then set the re-configure flag.
838 if (container != (u32)-1) {
839 if (container >= dev->maximum_num_containers)
840 break;
841 if ((dev->fsa_dev[container].config_waiting_on ==
842 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
843 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
844 dev->fsa_dev[container].config_waiting_on = 0;
845 } else for (container = 0;
846 container < dev->maximum_num_containers; ++container) {
847 if ((dev->fsa_dev[container].config_waiting_on ==
848 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
849 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
850 dev->fsa_dev[container].config_waiting_on = 0;
852 break;
854 case AifCmdEventNotify:
855 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
856 case AifEnBatteryEvent:
857 dev->cache_protected =
858 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
859 break;
861 * Add an Array.
863 case AifEnAddContainer:
864 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
865 if (container >= dev->maximum_num_containers)
866 break;
867 dev->fsa_dev[container].config_needed = ADD;
868 dev->fsa_dev[container].config_waiting_on =
869 AifEnConfigChange;
870 dev->fsa_dev[container].config_waiting_stamp = jiffies;
871 break;
874 * Delete an Array.
876 case AifEnDeleteContainer:
877 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
878 if (container >= dev->maximum_num_containers)
879 break;
880 dev->fsa_dev[container].config_needed = DELETE;
881 dev->fsa_dev[container].config_waiting_on =
882 AifEnConfigChange;
883 dev->fsa_dev[container].config_waiting_stamp = jiffies;
884 break;
887 * Container change detected. If we currently are not
888 * waiting on something else, setup to wait on a Config Change.
890 case AifEnContainerChange:
891 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
892 if (container >= dev->maximum_num_containers)
893 break;
894 if (dev->fsa_dev[container].config_waiting_on &&
895 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
896 break;
897 dev->fsa_dev[container].config_needed = CHANGE;
898 dev->fsa_dev[container].config_waiting_on =
899 AifEnConfigChange;
900 dev->fsa_dev[container].config_waiting_stamp = jiffies;
901 break;
903 case AifEnConfigChange:
904 break;
906 case AifEnAddJBOD:
907 case AifEnDeleteJBOD:
908 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
909 if ((container >> 28)) {
910 container = (u32)-1;
911 break;
913 channel = (container >> 24) & 0xF;
914 if (channel >= dev->maximum_num_channels) {
915 container = (u32)-1;
916 break;
918 id = container & 0xFFFF;
919 if (id >= dev->maximum_num_physicals) {
920 container = (u32)-1;
921 break;
923 lun = (container >> 16) & 0xFF;
924 container = (u32)-1;
925 channel = aac_phys_to_logical(channel);
926 device_config_needed =
927 (((__le32 *)aifcmd->data)[0] ==
928 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
929 break;
931 case AifEnEnclosureManagement:
933 * If in JBOD mode, automatic exposure of new
934 * physical target to be suppressed until configured.
936 if (dev->jbod)
937 break;
938 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
939 case EM_DRIVE_INSERTION:
940 case EM_DRIVE_REMOVAL:
941 container = le32_to_cpu(
942 ((__le32 *)aifcmd->data)[2]);
943 if ((container >> 28)) {
944 container = (u32)-1;
945 break;
947 channel = (container >> 24) & 0xF;
948 if (channel >= dev->maximum_num_channels) {
949 container = (u32)-1;
950 break;
952 id = container & 0xFFFF;
953 lun = (container >> 16) & 0xFF;
954 container = (u32)-1;
955 if (id >= dev->maximum_num_physicals) {
956 /* legacy dev_t ? */
957 if ((0x2000 <= id) || lun || channel ||
958 ((channel = (id >> 7) & 0x3F) >=
959 dev->maximum_num_channels))
960 break;
961 lun = (id >> 4) & 7;
962 id &= 0xF;
964 channel = aac_phys_to_logical(channel);
965 device_config_needed =
966 (((__le32 *)aifcmd->data)[3]
967 == cpu_to_le32(EM_DRIVE_INSERTION)) ?
968 ADD : DELETE;
969 break;
971 break;
975 * If we are waiting on something and this happens to be
976 * that thing then set the re-configure flag.
978 if (container != (u32)-1) {
979 if (container >= dev->maximum_num_containers)
980 break;
981 if ((dev->fsa_dev[container].config_waiting_on ==
982 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
983 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
984 dev->fsa_dev[container].config_waiting_on = 0;
985 } else for (container = 0;
986 container < dev->maximum_num_containers; ++container) {
987 if ((dev->fsa_dev[container].config_waiting_on ==
988 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
989 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
990 dev->fsa_dev[container].config_waiting_on = 0;
992 break;
994 case AifCmdJobProgress:
996 * These are job progress AIF's. When a Clear is being
997 * done on a container it is initially created then hidden from
998 * the OS. When the clear completes we don't get a config
999 * change so we monitor the job status complete on a clear then
1000 * wait for a container change.
1003 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1004 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1005 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1006 for (container = 0;
1007 container < dev->maximum_num_containers;
1008 ++container) {
1010 * Stomp on all config sequencing for all
1011 * containers?
1013 dev->fsa_dev[container].config_waiting_on =
1014 AifEnContainerChange;
1015 dev->fsa_dev[container].config_needed = ADD;
1016 dev->fsa_dev[container].config_waiting_stamp =
1017 jiffies;
1020 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1021 ((__le32 *)aifcmd->data)[6] == 0 &&
1022 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1023 for (container = 0;
1024 container < dev->maximum_num_containers;
1025 ++container) {
1027 * Stomp on all config sequencing for all
1028 * containers?
1030 dev->fsa_dev[container].config_waiting_on =
1031 AifEnContainerChange;
1032 dev->fsa_dev[container].config_needed = DELETE;
1033 dev->fsa_dev[container].config_waiting_stamp =
1034 jiffies;
1037 break;
1040 container = 0;
1041 retry_next:
1042 if (device_config_needed == NOTHING)
1043 for (; container < dev->maximum_num_containers; ++container) {
1044 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1045 (dev->fsa_dev[container].config_needed != NOTHING) &&
1046 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1047 device_config_needed =
1048 dev->fsa_dev[container].config_needed;
1049 dev->fsa_dev[container].config_needed = NOTHING;
1050 channel = CONTAINER_TO_CHANNEL(container);
1051 id = CONTAINER_TO_ID(container);
1052 lun = CONTAINER_TO_LUN(container);
1053 break;
1056 if (device_config_needed == NOTHING)
1057 return;
1060 * If we decided that a re-configuration needs to be done,
1061 * schedule it here on the way out the door, please close the door
1062 * behind you.
1066 * Find the scsi_device associated with the SCSI address,
1067 * and mark it as changed, invalidating the cache. This deals
1068 * with changes to existing device IDs.
1071 if (!dev || !dev->scsi_host_ptr)
1072 return;
1074 * force reload of disk info via aac_probe_container
1076 if ((channel == CONTAINER_CHANNEL) &&
1077 (device_config_needed != NOTHING)) {
1078 if (dev->fsa_dev[container].valid == 1)
1079 dev->fsa_dev[container].valid = 2;
1080 aac_probe_container(dev, container);
1082 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1083 if (device) {
1084 switch (device_config_needed) {
1085 case DELETE:
1086 if (scsi_device_online(device)) {
1087 scsi_device_set_state(device, SDEV_OFFLINE);
1088 sdev_printk(KERN_INFO, device,
1089 "Device offlined - %s\n",
1090 (channel == CONTAINER_CHANNEL) ?
1091 "array deleted" :
1092 "enclosure services event");
1094 break;
1095 case ADD:
1096 if (!scsi_device_online(device)) {
1097 sdev_printk(KERN_INFO, device,
1098 "Device online - %s\n",
1099 (channel == CONTAINER_CHANNEL) ?
1100 "array created" :
1101 "enclosure services event");
1102 scsi_device_set_state(device, SDEV_RUNNING);
1104 /* FALLTHRU */
1105 case CHANGE:
1106 if ((channel == CONTAINER_CHANNEL)
1107 && (!dev->fsa_dev[container].valid)) {
1108 if (!scsi_device_online(device))
1109 break;
1110 scsi_device_set_state(device, SDEV_OFFLINE);
1111 sdev_printk(KERN_INFO, device,
1112 "Device offlined - %s\n",
1113 "array failed");
1114 break;
1116 scsi_rescan_device(&device->sdev_gendev);
1118 default:
1119 break;
1121 scsi_device_put(device);
1122 device_config_needed = NOTHING;
1124 if (device_config_needed == ADD)
1125 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1126 if (channel == CONTAINER_CHANNEL) {
1127 container++;
1128 device_config_needed = NOTHING;
1129 goto retry_next;
1133 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1135 int index, quirks;
1136 int retval;
1137 struct Scsi_Host *host;
1138 struct scsi_device *dev;
1139 struct scsi_cmnd *command;
1140 struct scsi_cmnd *command_list;
1141 int jafo = 0;
1144 * Assumptions:
1145 * - host is locked, unless called by the aacraid thread.
1146 * (a matter of convenience, due to legacy issues surrounding
1147 * eh_host_adapter_reset).
1148 * - in_reset is asserted, so no new i/o is getting to the
1149 * card.
1150 * - The card is dead, or will be very shortly ;-/ so no new
1151 * commands are completing in the interrupt service.
1153 host = aac->scsi_host_ptr;
1154 scsi_block_requests(host);
1155 aac_adapter_disable_int(aac);
1156 if (aac->thread->pid != current->pid) {
1157 spin_unlock_irq(host->host_lock);
1158 kthread_stop(aac->thread);
1159 jafo = 1;
1163 * If a positive health, means in a known DEAD PANIC
1164 * state and the adapter could be reset to `try again'.
1166 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1168 if (retval)
1169 goto out;
1172 * Loop through the fibs, close the synchronous FIBS
1174 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1175 struct fib *fib = &aac->fibs[index];
1176 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1177 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1178 unsigned long flagv;
1179 spin_lock_irqsave(&fib->event_lock, flagv);
1180 up(&fib->event_wait);
1181 spin_unlock_irqrestore(&fib->event_lock, flagv);
1182 schedule();
1183 retval = 0;
1186 /* Give some extra time for ioctls to complete. */
1187 if (retval == 0)
1188 ssleep(2);
1189 index = aac->cardtype;
1192 * Re-initialize the adapter, first free resources, then carefully
1193 * apply the initialization sequence to come back again. Only risk
1194 * is a change in Firmware dropping cache, it is assumed the caller
1195 * will ensure that i/o is queisced and the card is flushed in that
1196 * case.
1198 aac_fib_map_free(aac);
1199 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1200 aac->comm_addr = NULL;
1201 aac->comm_phys = 0;
1202 kfree(aac->queues);
1203 aac->queues = NULL;
1204 free_irq(aac->pdev->irq, aac);
1205 kfree(aac->fsa_dev);
1206 aac->fsa_dev = NULL;
1207 quirks = aac_get_driver_ident(index)->quirks;
1208 if (quirks & AAC_QUIRK_31BIT) {
1209 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1210 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1211 goto out;
1212 } else {
1213 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1214 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1215 goto out;
1217 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1218 goto out;
1219 if (quirks & AAC_QUIRK_31BIT)
1220 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1221 goto out;
1222 if (jafo) {
1223 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1224 if (IS_ERR(aac->thread)) {
1225 retval = PTR_ERR(aac->thread);
1226 goto out;
1229 (void)aac_get_adapter_info(aac);
1230 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1231 host->sg_tablesize = 34;
1232 host->max_sectors = (host->sg_tablesize * 8) + 112;
1234 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1235 host->sg_tablesize = 17;
1236 host->max_sectors = (host->sg_tablesize * 8) + 112;
1238 aac_get_config_status(aac, 1);
1239 aac_get_containers(aac);
1241 * This is where the assumption that the Adapter is quiesced
1242 * is important.
1244 command_list = NULL;
1245 __shost_for_each_device(dev, host) {
1246 unsigned long flags;
1247 spin_lock_irqsave(&dev->list_lock, flags);
1248 list_for_each_entry(command, &dev->cmd_list, list)
1249 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1250 command->SCp.buffer = (struct scatterlist *)command_list;
1251 command_list = command;
1253 spin_unlock_irqrestore(&dev->list_lock, flags);
1255 while ((command = command_list)) {
1256 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1257 command->SCp.buffer = NULL;
1258 command->result = DID_OK << 16
1259 | COMMAND_COMPLETE << 8
1260 | SAM_STAT_TASK_SET_FULL;
1261 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1262 command->scsi_done(command);
1264 retval = 0;
1266 out:
1267 aac->in_reset = 0;
1268 scsi_unblock_requests(host);
1269 if (jafo) {
1270 spin_lock_irq(host->host_lock);
1272 return retval;
1275 int aac_reset_adapter(struct aac_dev * aac, int forced)
1277 unsigned long flagv = 0;
1278 int retval;
1279 struct Scsi_Host * host;
1281 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1282 return -EBUSY;
1284 if (aac->in_reset) {
1285 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1286 return -EBUSY;
1288 aac->in_reset = 1;
1289 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1292 * Wait for all commands to complete to this specific
1293 * target (block maximum 60 seconds). Although not necessary,
1294 * it does make us a good storage citizen.
1296 host = aac->scsi_host_ptr;
1297 scsi_block_requests(host);
1298 if (forced < 2) for (retval = 60; retval; --retval) {
1299 struct scsi_device * dev;
1300 struct scsi_cmnd * command;
1301 int active = 0;
1303 __shost_for_each_device(dev, host) {
1304 spin_lock_irqsave(&dev->list_lock, flagv);
1305 list_for_each_entry(command, &dev->cmd_list, list) {
1306 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1307 active++;
1308 break;
1311 spin_unlock_irqrestore(&dev->list_lock, flagv);
1312 if (active)
1313 break;
1317 * We can exit If all the commands are complete
1319 if (active == 0)
1320 break;
1321 ssleep(1);
1324 /* Quiesce build, flush cache, write through mode */
1325 if (forced < 2)
1326 aac_send_shutdown(aac);
1327 spin_lock_irqsave(host->host_lock, flagv);
1328 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1329 spin_unlock_irqrestore(host->host_lock, flagv);
1331 if ((forced < 2) && (retval == -ENODEV)) {
1332 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1333 struct fib * fibctx = aac_fib_alloc(aac);
1334 if (fibctx) {
1335 struct aac_pause *cmd;
1336 int status;
1338 aac_fib_init(fibctx);
1340 cmd = (struct aac_pause *) fib_data(fibctx);
1342 cmd->command = cpu_to_le32(VM_ContainerConfig);
1343 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1344 cmd->timeout = cpu_to_le32(1);
1345 cmd->min = cpu_to_le32(1);
1346 cmd->noRescan = cpu_to_le32(1);
1347 cmd->count = cpu_to_le32(0);
1349 status = aac_fib_send(ContainerCommand,
1350 fibctx,
1351 sizeof(struct aac_pause),
1352 FsaNormal,
1353 -2 /* Timeout silently */, 1,
1354 NULL, NULL);
1356 if (status >= 0)
1357 aac_fib_complete(fibctx);
1358 aac_fib_free(fibctx);
1362 return retval;
1365 int aac_check_health(struct aac_dev * aac)
1367 int BlinkLED;
1368 unsigned long time_now, flagv = 0;
1369 struct list_head * entry;
1370 struct Scsi_Host * host;
1372 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1373 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1374 return 0;
1376 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1377 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1378 return 0; /* OK */
1381 aac->in_reset = 1;
1383 /* Fake up an AIF:
1384 * aac_aifcmd.command = AifCmdEventNotify = 1
1385 * aac_aifcmd.seqnum = 0xFFFFFFFF
1386 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1387 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1388 * aac.aifcmd.data[2] = AifHighPriority = 3
1389 * aac.aifcmd.data[3] = BlinkLED
1392 time_now = jiffies/HZ;
1393 entry = aac->fib_list.next;
1396 * For each Context that is on the
1397 * fibctxList, make a copy of the
1398 * fib, and then set the event to wake up the
1399 * thread that is waiting for it.
1401 while (entry != &aac->fib_list) {
1403 * Extract the fibctx
1405 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1406 struct hw_fib * hw_fib;
1407 struct fib * fib;
1409 * Check if the queue is getting
1410 * backlogged
1412 if (fibctx->count > 20) {
1414 * It's *not* jiffies folks,
1415 * but jiffies / HZ, so do not
1416 * panic ...
1418 u32 time_last = fibctx->jiffies;
1420 * Has it been > 2 minutes
1421 * since the last read off
1422 * the queue?
1424 if ((time_now - time_last) > aif_timeout) {
1425 entry = entry->next;
1426 aac_close_fib_context(aac, fibctx);
1427 continue;
1431 * Warning: no sleep allowed while
1432 * holding spinlock
1434 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1435 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1436 if (fib && hw_fib) {
1437 struct aac_aifcmd * aif;
1439 fib->hw_fib_va = hw_fib;
1440 fib->dev = aac;
1441 aac_fib_init(fib);
1442 fib->type = FSAFS_NTC_FIB_CONTEXT;
1443 fib->size = sizeof (struct fib);
1444 fib->data = hw_fib->data;
1445 aif = (struct aac_aifcmd *)hw_fib->data;
1446 aif->command = cpu_to_le32(AifCmdEventNotify);
1447 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1448 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1449 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1450 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1451 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1454 * Put the FIB onto the
1455 * fibctx's fibs
1457 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1458 fibctx->count++;
1460 * Set the event to wake up the
1461 * thread that will waiting.
1463 up(&fibctx->wait_sem);
1464 } else {
1465 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1466 kfree(fib);
1467 kfree(hw_fib);
1469 entry = entry->next;
1472 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1474 if (BlinkLED < 0) {
1475 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1476 goto out;
1479 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1481 if (!aac_check_reset || ((aac_check_reset == 1) &&
1482 (aac->supplement_adapter_info.SupportedOptions2 &
1483 AAC_OPTION_IGNORE_RESET)))
1484 goto out;
1485 host = aac->scsi_host_ptr;
1486 if (aac->thread->pid != current->pid)
1487 spin_lock_irqsave(host->host_lock, flagv);
1488 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1489 if (aac->thread->pid != current->pid)
1490 spin_unlock_irqrestore(host->host_lock, flagv);
1491 return BlinkLED;
1493 out:
1494 aac->in_reset = 0;
1495 return BlinkLED;
1500 * aac_command_thread - command processing thread
1501 * @dev: Adapter to monitor
1503 * Waits on the commandready event in it's queue. When the event gets set
1504 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1505 * until the queue is empty. When the queue is empty it will wait for
1506 * more FIBs.
1509 int aac_command_thread(void *data)
1511 struct aac_dev *dev = data;
1512 struct hw_fib *hw_fib, *hw_newfib;
1513 struct fib *fib, *newfib;
1514 struct aac_fib_context *fibctx;
1515 unsigned long flags;
1516 DECLARE_WAITQUEUE(wait, current);
1517 unsigned long next_jiffies = jiffies + HZ;
1518 unsigned long next_check_jiffies = next_jiffies;
1519 long difference = HZ;
1522 * We can only have one thread per adapter for AIF's.
1524 if (dev->aif_thread)
1525 return -EINVAL;
1528 * Let the DPC know it has a place to send the AIF's to.
1530 dev->aif_thread = 1;
1531 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1532 set_current_state(TASK_INTERRUPTIBLE);
1533 dprintk ((KERN_INFO "aac_command_thread start\n"));
1534 while (1) {
1535 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1536 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1537 struct list_head *entry;
1538 struct aac_aifcmd * aifcmd;
1540 set_current_state(TASK_RUNNING);
1542 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1543 list_del(entry);
1545 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1546 fib = list_entry(entry, struct fib, fiblink);
1548 * We will process the FIB here or pass it to a
1549 * worker thread that is TBD. We Really can't
1550 * do anything at this point since we don't have
1551 * anything defined for this thread to do.
1553 hw_fib = fib->hw_fib_va;
1554 memset(fib, 0, sizeof(struct fib));
1555 fib->type = FSAFS_NTC_FIB_CONTEXT;
1556 fib->size = sizeof(struct fib);
1557 fib->hw_fib_va = hw_fib;
1558 fib->data = hw_fib->data;
1559 fib->dev = dev;
1561 * We only handle AifRequest fibs from the adapter.
1563 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1564 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1565 /* Handle Driver Notify Events */
1566 aac_handle_aif(dev, fib);
1567 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1568 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1569 } else {
1570 /* The u32 here is important and intended. We are using
1571 32bit wrapping time to fit the adapter field */
1573 u32 time_now, time_last;
1574 unsigned long flagv;
1575 unsigned num;
1576 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1577 struct fib ** fib_pool, ** fib_p;
1579 /* Sniff events */
1580 if ((aifcmd->command ==
1581 cpu_to_le32(AifCmdEventNotify)) ||
1582 (aifcmd->command ==
1583 cpu_to_le32(AifCmdJobProgress))) {
1584 aac_handle_aif(dev, fib);
1587 time_now = jiffies/HZ;
1590 * Warning: no sleep allowed while
1591 * holding spinlock. We take the estimate
1592 * and pre-allocate a set of fibs outside the
1593 * lock.
1595 num = le32_to_cpu(dev->init->AdapterFibsSize)
1596 / sizeof(struct hw_fib); /* some extra */
1597 spin_lock_irqsave(&dev->fib_lock, flagv);
1598 entry = dev->fib_list.next;
1599 while (entry != &dev->fib_list) {
1600 entry = entry->next;
1601 ++num;
1603 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1604 hw_fib_pool = NULL;
1605 fib_pool = NULL;
1606 if (num
1607 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1608 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1609 hw_fib_p = hw_fib_pool;
1610 fib_p = fib_pool;
1611 while (hw_fib_p < &hw_fib_pool[num]) {
1612 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1613 --hw_fib_p;
1614 break;
1616 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1617 kfree(*(--hw_fib_p));
1618 break;
1621 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1622 kfree(fib_pool);
1623 fib_pool = NULL;
1624 kfree(hw_fib_pool);
1625 hw_fib_pool = NULL;
1627 } else {
1628 kfree(hw_fib_pool);
1629 hw_fib_pool = NULL;
1631 spin_lock_irqsave(&dev->fib_lock, flagv);
1632 entry = dev->fib_list.next;
1634 * For each Context that is on the
1635 * fibctxList, make a copy of the
1636 * fib, and then set the event to wake up the
1637 * thread that is waiting for it.
1639 hw_fib_p = hw_fib_pool;
1640 fib_p = fib_pool;
1641 while (entry != &dev->fib_list) {
1643 * Extract the fibctx
1645 fibctx = list_entry(entry, struct aac_fib_context, next);
1647 * Check if the queue is getting
1648 * backlogged
1650 if (fibctx->count > 20)
1653 * It's *not* jiffies folks,
1654 * but jiffies / HZ so do not
1655 * panic ...
1657 time_last = fibctx->jiffies;
1659 * Has it been > 2 minutes
1660 * since the last read off
1661 * the queue?
1663 if ((time_now - time_last) > aif_timeout) {
1664 entry = entry->next;
1665 aac_close_fib_context(dev, fibctx);
1666 continue;
1670 * Warning: no sleep allowed while
1671 * holding spinlock
1673 if (hw_fib_p < &hw_fib_pool[num]) {
1674 hw_newfib = *hw_fib_p;
1675 *(hw_fib_p++) = NULL;
1676 newfib = *fib_p;
1677 *(fib_p++) = NULL;
1679 * Make the copy of the FIB
1681 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1682 memcpy(newfib, fib, sizeof(struct fib));
1683 newfib->hw_fib_va = hw_newfib;
1685 * Put the FIB onto the
1686 * fibctx's fibs
1688 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1689 fibctx->count++;
1691 * Set the event to wake up the
1692 * thread that is waiting.
1694 up(&fibctx->wait_sem);
1695 } else {
1696 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1698 entry = entry->next;
1701 * Set the status of this FIB
1703 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1704 aac_fib_adapter_complete(fib, sizeof(u32));
1705 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1706 /* Free up the remaining resources */
1707 hw_fib_p = hw_fib_pool;
1708 fib_p = fib_pool;
1709 while (hw_fib_p < &hw_fib_pool[num]) {
1710 kfree(*hw_fib_p);
1711 kfree(*fib_p);
1712 ++fib_p;
1713 ++hw_fib_p;
1715 kfree(hw_fib_pool);
1716 kfree(fib_pool);
1718 kfree(fib);
1719 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1722 * There are no more AIF's
1724 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1727 * Background activity
1729 if ((time_before(next_check_jiffies,next_jiffies))
1730 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1731 next_check_jiffies = next_jiffies;
1732 if (aac_check_health(dev) == 0) {
1733 difference = ((long)(unsigned)check_interval)
1734 * HZ;
1735 next_check_jiffies = jiffies + difference;
1736 } else if (!dev->queues)
1737 break;
1739 if (!time_before(next_check_jiffies,next_jiffies)
1740 && ((difference = next_jiffies - jiffies) <= 0)) {
1741 struct timeval now;
1742 int ret;
1744 /* Don't even try to talk to adapter if its sick */
1745 ret = aac_check_health(dev);
1746 if (!ret && !dev->queues)
1747 break;
1748 next_check_jiffies = jiffies
1749 + ((long)(unsigned)check_interval)
1750 * HZ;
1751 do_gettimeofday(&now);
1753 /* Synchronize our watches */
1754 if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1755 && (now.tv_usec > (1000000 / HZ)))
1756 difference = (((1000000 - now.tv_usec) * HZ)
1757 + 500000) / 1000000;
1758 else if (ret == 0) {
1759 struct fib *fibptr;
1761 if ((fibptr = aac_fib_alloc(dev))) {
1762 __le32 *info;
1764 aac_fib_init(fibptr);
1766 info = (__le32 *) fib_data(fibptr);
1767 if (now.tv_usec > 500000)
1768 ++now.tv_sec;
1770 *info = cpu_to_le32(now.tv_sec);
1772 (void)aac_fib_send(SendHostTime,
1773 fibptr,
1774 sizeof(*info),
1775 FsaNormal,
1776 1, 1,
1777 NULL,
1778 NULL);
1779 aac_fib_complete(fibptr);
1780 aac_fib_free(fibptr);
1782 difference = (long)(unsigned)update_interval*HZ;
1783 } else {
1784 /* retry shortly */
1785 difference = 10 * HZ;
1787 next_jiffies = jiffies + difference;
1788 if (time_before(next_check_jiffies,next_jiffies))
1789 difference = next_check_jiffies - jiffies;
1791 if (difference <= 0)
1792 difference = 1;
1793 set_current_state(TASK_INTERRUPTIBLE);
1794 schedule_timeout(difference);
1796 if (kthread_should_stop())
1797 break;
1799 if (dev->queues)
1800 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1801 dev->aif_thread = 0;
1802 return 0;