2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
29 #include "print-tree.h"
30 #include "transaction.h"
33 #include "free-space-cache.h"
35 static int update_reserved_extents(struct btrfs_root
*root
,
36 u64 bytenr
, u64 num
, int reserve
);
37 static int update_block_group(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 u64 bytenr
, u64 num_bytes
, int alloc
,
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
61 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
62 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
63 u64 flags
, int force
);
66 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
69 return cache
->cached
== BTRFS_CACHE_FINISHED
;
72 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
74 return (cache
->flags
& bits
) == bits
;
78 * this adds the block group to the fs_info rb tree for the block group
81 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
82 struct btrfs_block_group_cache
*block_group
)
85 struct rb_node
*parent
= NULL
;
86 struct btrfs_block_group_cache
*cache
;
88 spin_lock(&info
->block_group_cache_lock
);
89 p
= &info
->block_group_cache_tree
.rb_node
;
93 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
95 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
97 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
100 spin_unlock(&info
->block_group_cache_lock
);
105 rb_link_node(&block_group
->cache_node
, parent
, p
);
106 rb_insert_color(&block_group
->cache_node
,
107 &info
->block_group_cache_tree
);
108 spin_unlock(&info
->block_group_cache_lock
);
114 * This will return the block group at or after bytenr if contains is 0, else
115 * it will return the block group that contains the bytenr
117 static struct btrfs_block_group_cache
*
118 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
121 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
125 spin_lock(&info
->block_group_cache_lock
);
126 n
= info
->block_group_cache_tree
.rb_node
;
129 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
131 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
132 start
= cache
->key
.objectid
;
134 if (bytenr
< start
) {
135 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
138 } else if (bytenr
> start
) {
139 if (contains
&& bytenr
<= end
) {
150 atomic_inc(&ret
->count
);
151 spin_unlock(&info
->block_group_cache_lock
);
157 * We always set EXTENT_LOCKED for the super mirror extents so we don't
158 * overwrite them, so those bits need to be unset. Also, if we are unmounting
159 * with pinned extents still sitting there because we had a block group caching,
160 * we need to clear those now, since we are done.
162 void btrfs_free_pinned_extents(struct btrfs_fs_info
*info
)
164 u64 start
, end
, last
= 0;
168 ret
= find_first_extent_bit(&info
->pinned_extents
, last
,
170 EXTENT_LOCKED
|EXTENT_DIRTY
);
174 clear_extent_bits(&info
->pinned_extents
, start
, end
,
175 EXTENT_LOCKED
|EXTENT_DIRTY
, GFP_NOFS
);
180 static int remove_sb_from_cache(struct btrfs_root
*root
,
181 struct btrfs_block_group_cache
*cache
)
183 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
189 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
190 bytenr
= btrfs_sb_offset(i
);
191 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
192 cache
->key
.objectid
, bytenr
,
193 0, &logical
, &nr
, &stripe_len
);
196 try_lock_extent(&fs_info
->pinned_extents
,
198 logical
[nr
] + stripe_len
- 1, GFP_NOFS
);
207 * this is only called by cache_block_group, since we could have freed extents
208 * we need to check the pinned_extents for any extents that can't be used yet
209 * since their free space will be released as soon as the transaction commits.
211 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
212 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
214 u64 extent_start
, extent_end
, size
, total_added
= 0;
217 while (start
< end
) {
218 ret
= find_first_extent_bit(&info
->pinned_extents
, start
,
219 &extent_start
, &extent_end
,
220 EXTENT_DIRTY
|EXTENT_LOCKED
);
224 if (extent_start
== start
) {
225 start
= extent_end
+ 1;
226 } else if (extent_start
> start
&& extent_start
< end
) {
227 size
= extent_start
- start
;
229 ret
= btrfs_add_free_space(block_group
, start
,
232 start
= extent_end
+ 1;
241 ret
= btrfs_add_free_space(block_group
, start
, size
);
248 static int caching_kthread(void *data
)
250 struct btrfs_block_group_cache
*block_group
= data
;
251 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
253 struct btrfs_path
*path
;
255 struct btrfs_key key
;
256 struct extent_buffer
*leaf
;
262 path
= btrfs_alloc_path();
266 atomic_inc(&block_group
->space_info
->caching_threads
);
267 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
269 * We don't want to deadlock with somebody trying to allocate a new
270 * extent for the extent root while also trying to search the extent
271 * root to add free space. So we skip locking and search the commit
272 * root, since its read-only
274 path
->skip_locking
= 1;
275 path
->search_commit_root
= 1;
280 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
282 /* need to make sure the commit_root doesn't disappear */
283 down_read(&fs_info
->extent_commit_sem
);
285 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
291 if (block_group
->fs_info
->closing
> 1) {
296 leaf
= path
->nodes
[0];
297 slot
= path
->slots
[0];
298 if (slot
>= btrfs_header_nritems(leaf
)) {
299 ret
= btrfs_next_leaf(fs_info
->extent_root
, path
);
305 if (need_resched() ||
306 btrfs_transaction_in_commit(fs_info
)) {
307 leaf
= path
->nodes
[0];
309 /* this shouldn't happen, but if the
310 * leaf is empty just move on.
312 if (btrfs_header_nritems(leaf
) == 0)
315 * we need to copy the key out so that
316 * we are sure the next search advances
317 * us forward in the btree.
319 btrfs_item_key_to_cpu(leaf
, &key
, 0);
320 btrfs_release_path(fs_info
->extent_root
, path
);
321 up_read(&fs_info
->extent_commit_sem
);
328 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
329 if (key
.objectid
< block_group
->key
.objectid
)
332 if (key
.objectid
>= block_group
->key
.objectid
+
333 block_group
->key
.offset
)
336 if (btrfs_key_type(&key
) == BTRFS_EXTENT_ITEM_KEY
) {
337 total_found
+= add_new_free_space(block_group
,
340 last
= key
.objectid
+ key
.offset
;
343 if (total_found
> (1024 * 1024 * 2)) {
345 wake_up(&block_group
->caching_q
);
352 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
353 block_group
->key
.objectid
+
354 block_group
->key
.offset
);
356 spin_lock(&block_group
->lock
);
357 block_group
->cached
= BTRFS_CACHE_FINISHED
;
358 spin_unlock(&block_group
->lock
);
361 btrfs_free_path(path
);
362 up_read(&fs_info
->extent_commit_sem
);
363 atomic_dec(&block_group
->space_info
->caching_threads
);
364 wake_up(&block_group
->caching_q
);
369 static int cache_block_group(struct btrfs_block_group_cache
*cache
)
371 struct task_struct
*tsk
;
374 spin_lock(&cache
->lock
);
375 if (cache
->cached
!= BTRFS_CACHE_NO
) {
376 spin_unlock(&cache
->lock
);
379 cache
->cached
= BTRFS_CACHE_STARTED
;
380 spin_unlock(&cache
->lock
);
382 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
383 cache
->key
.objectid
);
386 printk(KERN_ERR
"error running thread %d\n", ret
);
394 * return the block group that starts at or after bytenr
396 static struct btrfs_block_group_cache
*
397 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
399 struct btrfs_block_group_cache
*cache
;
401 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
407 * return the block group that contains the given bytenr
409 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
410 struct btrfs_fs_info
*info
,
413 struct btrfs_block_group_cache
*cache
;
415 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
420 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
422 if (atomic_dec_and_test(&cache
->count
))
426 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
429 struct list_head
*head
= &info
->space_info
;
430 struct btrfs_space_info
*found
;
433 list_for_each_entry_rcu(found
, head
, list
) {
434 if (found
->flags
== flags
) {
444 * after adding space to the filesystem, we need to clear the full flags
445 * on all the space infos.
447 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
449 struct list_head
*head
= &info
->space_info
;
450 struct btrfs_space_info
*found
;
453 list_for_each_entry_rcu(found
, head
, list
)
458 static u64
div_factor(u64 num
, int factor
)
467 u64
btrfs_find_block_group(struct btrfs_root
*root
,
468 u64 search_start
, u64 search_hint
, int owner
)
470 struct btrfs_block_group_cache
*cache
;
472 u64 last
= max(search_hint
, search_start
);
479 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
483 spin_lock(&cache
->lock
);
484 last
= cache
->key
.objectid
+ cache
->key
.offset
;
485 used
= btrfs_block_group_used(&cache
->item
);
487 if ((full_search
|| !cache
->ro
) &&
488 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
489 if (used
+ cache
->pinned
+ cache
->reserved
<
490 div_factor(cache
->key
.offset
, factor
)) {
491 group_start
= cache
->key
.objectid
;
492 spin_unlock(&cache
->lock
);
493 btrfs_put_block_group(cache
);
497 spin_unlock(&cache
->lock
);
498 btrfs_put_block_group(cache
);
506 if (!full_search
&& factor
< 10) {
516 /* simple helper to search for an existing extent at a given offset */
517 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
520 struct btrfs_key key
;
521 struct btrfs_path
*path
;
523 path
= btrfs_alloc_path();
525 key
.objectid
= start
;
527 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
528 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
530 btrfs_free_path(path
);
535 * Back reference rules. Back refs have three main goals:
537 * 1) differentiate between all holders of references to an extent so that
538 * when a reference is dropped we can make sure it was a valid reference
539 * before freeing the extent.
541 * 2) Provide enough information to quickly find the holders of an extent
542 * if we notice a given block is corrupted or bad.
544 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
545 * maintenance. This is actually the same as #2, but with a slightly
546 * different use case.
548 * There are two kinds of back refs. The implicit back refs is optimized
549 * for pointers in non-shared tree blocks. For a given pointer in a block,
550 * back refs of this kind provide information about the block's owner tree
551 * and the pointer's key. These information allow us to find the block by
552 * b-tree searching. The full back refs is for pointers in tree blocks not
553 * referenced by their owner trees. The location of tree block is recorded
554 * in the back refs. Actually the full back refs is generic, and can be
555 * used in all cases the implicit back refs is used. The major shortcoming
556 * of the full back refs is its overhead. Every time a tree block gets
557 * COWed, we have to update back refs entry for all pointers in it.
559 * For a newly allocated tree block, we use implicit back refs for
560 * pointers in it. This means most tree related operations only involve
561 * implicit back refs. For a tree block created in old transaction, the
562 * only way to drop a reference to it is COW it. So we can detect the
563 * event that tree block loses its owner tree's reference and do the
564 * back refs conversion.
566 * When a tree block is COW'd through a tree, there are four cases:
568 * The reference count of the block is one and the tree is the block's
569 * owner tree. Nothing to do in this case.
571 * The reference count of the block is one and the tree is not the
572 * block's owner tree. In this case, full back refs is used for pointers
573 * in the block. Remove these full back refs, add implicit back refs for
574 * every pointers in the new block.
576 * The reference count of the block is greater than one and the tree is
577 * the block's owner tree. In this case, implicit back refs is used for
578 * pointers in the block. Add full back refs for every pointers in the
579 * block, increase lower level extents' reference counts. The original
580 * implicit back refs are entailed to the new block.
582 * The reference count of the block is greater than one and the tree is
583 * not the block's owner tree. Add implicit back refs for every pointer in
584 * the new block, increase lower level extents' reference count.
586 * Back Reference Key composing:
588 * The key objectid corresponds to the first byte in the extent,
589 * The key type is used to differentiate between types of back refs.
590 * There are different meanings of the key offset for different types
593 * File extents can be referenced by:
595 * - multiple snapshots, subvolumes, or different generations in one subvol
596 * - different files inside a single subvolume
597 * - different offsets inside a file (bookend extents in file.c)
599 * The extent ref structure for the implicit back refs has fields for:
601 * - Objectid of the subvolume root
602 * - objectid of the file holding the reference
603 * - original offset in the file
604 * - how many bookend extents
606 * The key offset for the implicit back refs is hash of the first
609 * The extent ref structure for the full back refs has field for:
611 * - number of pointers in the tree leaf
613 * The key offset for the implicit back refs is the first byte of
616 * When a file extent is allocated, The implicit back refs is used.
617 * the fields are filled in:
619 * (root_key.objectid, inode objectid, offset in file, 1)
621 * When a file extent is removed file truncation, we find the
622 * corresponding implicit back refs and check the following fields:
624 * (btrfs_header_owner(leaf), inode objectid, offset in file)
626 * Btree extents can be referenced by:
628 * - Different subvolumes
630 * Both the implicit back refs and the full back refs for tree blocks
631 * only consist of key. The key offset for the implicit back refs is
632 * objectid of block's owner tree. The key offset for the full back refs
633 * is the first byte of parent block.
635 * When implicit back refs is used, information about the lowest key and
636 * level of the tree block are required. These information are stored in
637 * tree block info structure.
640 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
641 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
642 struct btrfs_root
*root
,
643 struct btrfs_path
*path
,
644 u64 owner
, u32 extra_size
)
646 struct btrfs_extent_item
*item
;
647 struct btrfs_extent_item_v0
*ei0
;
648 struct btrfs_extent_ref_v0
*ref0
;
649 struct btrfs_tree_block_info
*bi
;
650 struct extent_buffer
*leaf
;
651 struct btrfs_key key
;
652 struct btrfs_key found_key
;
653 u32 new_size
= sizeof(*item
);
657 leaf
= path
->nodes
[0];
658 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
660 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
661 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
662 struct btrfs_extent_item_v0
);
663 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
665 if (owner
== (u64
)-1) {
667 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
668 ret
= btrfs_next_leaf(root
, path
);
672 leaf
= path
->nodes
[0];
674 btrfs_item_key_to_cpu(leaf
, &found_key
,
676 BUG_ON(key
.objectid
!= found_key
.objectid
);
677 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
681 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
682 struct btrfs_extent_ref_v0
);
683 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
687 btrfs_release_path(root
, path
);
689 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
690 new_size
+= sizeof(*bi
);
692 new_size
-= sizeof(*ei0
);
693 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
694 new_size
+ extra_size
, 1);
699 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
702 leaf
= path
->nodes
[0];
703 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
704 btrfs_set_extent_refs(leaf
, item
, refs
);
705 /* FIXME: get real generation */
706 btrfs_set_extent_generation(leaf
, item
, 0);
707 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
708 btrfs_set_extent_flags(leaf
, item
,
709 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
710 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
711 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
712 /* FIXME: get first key of the block */
713 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
714 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
716 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
718 btrfs_mark_buffer_dirty(leaf
);
723 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
725 u32 high_crc
= ~(u32
)0;
726 u32 low_crc
= ~(u32
)0;
729 lenum
= cpu_to_le64(root_objectid
);
730 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
731 lenum
= cpu_to_le64(owner
);
732 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
733 lenum
= cpu_to_le64(offset
);
734 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
736 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
739 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
740 struct btrfs_extent_data_ref
*ref
)
742 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
743 btrfs_extent_data_ref_objectid(leaf
, ref
),
744 btrfs_extent_data_ref_offset(leaf
, ref
));
747 static int match_extent_data_ref(struct extent_buffer
*leaf
,
748 struct btrfs_extent_data_ref
*ref
,
749 u64 root_objectid
, u64 owner
, u64 offset
)
751 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
752 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
753 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
758 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
759 struct btrfs_root
*root
,
760 struct btrfs_path
*path
,
761 u64 bytenr
, u64 parent
,
763 u64 owner
, u64 offset
)
765 struct btrfs_key key
;
766 struct btrfs_extent_data_ref
*ref
;
767 struct extent_buffer
*leaf
;
773 key
.objectid
= bytenr
;
775 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
778 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
779 key
.offset
= hash_extent_data_ref(root_objectid
,
784 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
793 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
794 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
795 btrfs_release_path(root
, path
);
796 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
807 leaf
= path
->nodes
[0];
808 nritems
= btrfs_header_nritems(leaf
);
810 if (path
->slots
[0] >= nritems
) {
811 ret
= btrfs_next_leaf(root
, path
);
817 leaf
= path
->nodes
[0];
818 nritems
= btrfs_header_nritems(leaf
);
822 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
823 if (key
.objectid
!= bytenr
||
824 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
827 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
828 struct btrfs_extent_data_ref
);
830 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
833 btrfs_release_path(root
, path
);
845 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
846 struct btrfs_root
*root
,
847 struct btrfs_path
*path
,
848 u64 bytenr
, u64 parent
,
849 u64 root_objectid
, u64 owner
,
850 u64 offset
, int refs_to_add
)
852 struct btrfs_key key
;
853 struct extent_buffer
*leaf
;
858 key
.objectid
= bytenr
;
860 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
862 size
= sizeof(struct btrfs_shared_data_ref
);
864 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
865 key
.offset
= hash_extent_data_ref(root_objectid
,
867 size
= sizeof(struct btrfs_extent_data_ref
);
870 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
871 if (ret
&& ret
!= -EEXIST
)
874 leaf
= path
->nodes
[0];
876 struct btrfs_shared_data_ref
*ref
;
877 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
878 struct btrfs_shared_data_ref
);
880 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
882 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
883 num_refs
+= refs_to_add
;
884 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
887 struct btrfs_extent_data_ref
*ref
;
888 while (ret
== -EEXIST
) {
889 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
890 struct btrfs_extent_data_ref
);
891 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
894 btrfs_release_path(root
, path
);
896 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
898 if (ret
&& ret
!= -EEXIST
)
901 leaf
= path
->nodes
[0];
903 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
904 struct btrfs_extent_data_ref
);
906 btrfs_set_extent_data_ref_root(leaf
, ref
,
908 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
909 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
910 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
912 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
913 num_refs
+= refs_to_add
;
914 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
917 btrfs_mark_buffer_dirty(leaf
);
920 btrfs_release_path(root
, path
);
924 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
925 struct btrfs_root
*root
,
926 struct btrfs_path
*path
,
929 struct btrfs_key key
;
930 struct btrfs_extent_data_ref
*ref1
= NULL
;
931 struct btrfs_shared_data_ref
*ref2
= NULL
;
932 struct extent_buffer
*leaf
;
936 leaf
= path
->nodes
[0];
937 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
939 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
940 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
941 struct btrfs_extent_data_ref
);
942 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
943 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
944 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
945 struct btrfs_shared_data_ref
);
946 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
947 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
948 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
949 struct btrfs_extent_ref_v0
*ref0
;
950 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
951 struct btrfs_extent_ref_v0
);
952 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
958 BUG_ON(num_refs
< refs_to_drop
);
959 num_refs
-= refs_to_drop
;
962 ret
= btrfs_del_item(trans
, root
, path
);
964 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
965 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
966 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
967 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 struct btrfs_extent_ref_v0
*ref0
;
971 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
972 struct btrfs_extent_ref_v0
);
973 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
976 btrfs_mark_buffer_dirty(leaf
);
981 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
982 struct btrfs_path
*path
,
983 struct btrfs_extent_inline_ref
*iref
)
985 struct btrfs_key key
;
986 struct extent_buffer
*leaf
;
987 struct btrfs_extent_data_ref
*ref1
;
988 struct btrfs_shared_data_ref
*ref2
;
991 leaf
= path
->nodes
[0];
992 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
994 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
995 BTRFS_EXTENT_DATA_REF_KEY
) {
996 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
997 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
999 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1000 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1002 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1003 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1004 struct btrfs_extent_data_ref
);
1005 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1006 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1007 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1008 struct btrfs_shared_data_ref
);
1009 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1010 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1011 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1012 struct btrfs_extent_ref_v0
*ref0
;
1013 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1014 struct btrfs_extent_ref_v0
);
1015 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1023 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1024 struct btrfs_root
*root
,
1025 struct btrfs_path
*path
,
1026 u64 bytenr
, u64 parent
,
1029 struct btrfs_key key
;
1032 key
.objectid
= bytenr
;
1034 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1035 key
.offset
= parent
;
1037 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1038 key
.offset
= root_objectid
;
1041 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 if (ret
== -ENOENT
&& parent
) {
1046 btrfs_release_path(root
, path
);
1047 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1048 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1056 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1057 struct btrfs_root
*root
,
1058 struct btrfs_path
*path
,
1059 u64 bytenr
, u64 parent
,
1062 struct btrfs_key key
;
1065 key
.objectid
= bytenr
;
1067 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1068 key
.offset
= parent
;
1070 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1071 key
.offset
= root_objectid
;
1074 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1075 btrfs_release_path(root
, path
);
1079 static inline int extent_ref_type(u64 parent
, u64 owner
)
1082 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1084 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1086 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1089 type
= BTRFS_SHARED_DATA_REF_KEY
;
1091 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1096 static int find_next_key(struct btrfs_path
*path
, int level
,
1097 struct btrfs_key
*key
)
1100 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1101 if (!path
->nodes
[level
])
1103 if (path
->slots
[level
] + 1 >=
1104 btrfs_header_nritems(path
->nodes
[level
]))
1107 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1108 path
->slots
[level
] + 1);
1110 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1111 path
->slots
[level
] + 1);
1118 * look for inline back ref. if back ref is found, *ref_ret is set
1119 * to the address of inline back ref, and 0 is returned.
1121 * if back ref isn't found, *ref_ret is set to the address where it
1122 * should be inserted, and -ENOENT is returned.
1124 * if insert is true and there are too many inline back refs, the path
1125 * points to the extent item, and -EAGAIN is returned.
1127 * NOTE: inline back refs are ordered in the same way that back ref
1128 * items in the tree are ordered.
1130 static noinline_for_stack
1131 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1132 struct btrfs_root
*root
,
1133 struct btrfs_path
*path
,
1134 struct btrfs_extent_inline_ref
**ref_ret
,
1135 u64 bytenr
, u64 num_bytes
,
1136 u64 parent
, u64 root_objectid
,
1137 u64 owner
, u64 offset
, int insert
)
1139 struct btrfs_key key
;
1140 struct extent_buffer
*leaf
;
1141 struct btrfs_extent_item
*ei
;
1142 struct btrfs_extent_inline_ref
*iref
;
1153 key
.objectid
= bytenr
;
1154 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1155 key
.offset
= num_bytes
;
1157 want
= extent_ref_type(parent
, owner
);
1159 extra_size
= btrfs_extent_inline_ref_size(want
);
1160 path
->keep_locks
= 1;
1163 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1170 leaf
= path
->nodes
[0];
1171 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1172 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1173 if (item_size
< sizeof(*ei
)) {
1178 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1184 leaf
= path
->nodes
[0];
1185 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1188 BUG_ON(item_size
< sizeof(*ei
));
1190 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1191 flags
= btrfs_extent_flags(leaf
, ei
);
1193 ptr
= (unsigned long)(ei
+ 1);
1194 end
= (unsigned long)ei
+ item_size
;
1196 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1197 ptr
+= sizeof(struct btrfs_tree_block_info
);
1200 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1209 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1210 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1214 ptr
+= btrfs_extent_inline_ref_size(type
);
1218 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1219 struct btrfs_extent_data_ref
*dref
;
1220 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1221 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1226 if (hash_extent_data_ref_item(leaf
, dref
) <
1227 hash_extent_data_ref(root_objectid
, owner
, offset
))
1231 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1233 if (parent
== ref_offset
) {
1237 if (ref_offset
< parent
)
1240 if (root_objectid
== ref_offset
) {
1244 if (ref_offset
< root_objectid
)
1248 ptr
+= btrfs_extent_inline_ref_size(type
);
1250 if (err
== -ENOENT
&& insert
) {
1251 if (item_size
+ extra_size
>=
1252 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1257 * To add new inline back ref, we have to make sure
1258 * there is no corresponding back ref item.
1259 * For simplicity, we just do not add new inline back
1260 * ref if there is any kind of item for this block
1262 if (find_next_key(path
, 0, &key
) == 0 &&
1263 key
.objectid
== bytenr
&&
1264 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1269 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1272 path
->keep_locks
= 0;
1273 btrfs_unlock_up_safe(path
, 1);
1279 * helper to add new inline back ref
1281 static noinline_for_stack
1282 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1283 struct btrfs_root
*root
,
1284 struct btrfs_path
*path
,
1285 struct btrfs_extent_inline_ref
*iref
,
1286 u64 parent
, u64 root_objectid
,
1287 u64 owner
, u64 offset
, int refs_to_add
,
1288 struct btrfs_delayed_extent_op
*extent_op
)
1290 struct extent_buffer
*leaf
;
1291 struct btrfs_extent_item
*ei
;
1294 unsigned long item_offset
;
1300 leaf
= path
->nodes
[0];
1301 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1302 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1304 type
= extent_ref_type(parent
, owner
);
1305 size
= btrfs_extent_inline_ref_size(type
);
1307 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1310 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1311 refs
= btrfs_extent_refs(leaf
, ei
);
1312 refs
+= refs_to_add
;
1313 btrfs_set_extent_refs(leaf
, ei
, refs
);
1315 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1317 ptr
= (unsigned long)ei
+ item_offset
;
1318 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1319 if (ptr
< end
- size
)
1320 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1323 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1324 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1325 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1326 struct btrfs_extent_data_ref
*dref
;
1327 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1328 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1329 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1330 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1331 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1332 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1333 struct btrfs_shared_data_ref
*sref
;
1334 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1335 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1336 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1337 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1338 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1340 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1342 btrfs_mark_buffer_dirty(leaf
);
1346 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1347 struct btrfs_root
*root
,
1348 struct btrfs_path
*path
,
1349 struct btrfs_extent_inline_ref
**ref_ret
,
1350 u64 bytenr
, u64 num_bytes
, u64 parent
,
1351 u64 root_objectid
, u64 owner
, u64 offset
)
1355 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1356 bytenr
, num_bytes
, parent
,
1357 root_objectid
, owner
, offset
, 0);
1361 btrfs_release_path(root
, path
);
1364 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1365 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1368 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1369 root_objectid
, owner
, offset
);
1375 * helper to update/remove inline back ref
1377 static noinline_for_stack
1378 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1379 struct btrfs_root
*root
,
1380 struct btrfs_path
*path
,
1381 struct btrfs_extent_inline_ref
*iref
,
1383 struct btrfs_delayed_extent_op
*extent_op
)
1385 struct extent_buffer
*leaf
;
1386 struct btrfs_extent_item
*ei
;
1387 struct btrfs_extent_data_ref
*dref
= NULL
;
1388 struct btrfs_shared_data_ref
*sref
= NULL
;
1397 leaf
= path
->nodes
[0];
1398 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1399 refs
= btrfs_extent_refs(leaf
, ei
);
1400 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1401 refs
+= refs_to_mod
;
1402 btrfs_set_extent_refs(leaf
, ei
, refs
);
1404 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1406 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1408 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1409 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1410 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1411 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1412 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1413 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1416 BUG_ON(refs_to_mod
!= -1);
1419 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1420 refs
+= refs_to_mod
;
1423 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1424 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1426 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1428 size
= btrfs_extent_inline_ref_size(type
);
1429 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1430 ptr
= (unsigned long)iref
;
1431 end
= (unsigned long)ei
+ item_size
;
1432 if (ptr
+ size
< end
)
1433 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1436 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1439 btrfs_mark_buffer_dirty(leaf
);
1443 static noinline_for_stack
1444 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1445 struct btrfs_root
*root
,
1446 struct btrfs_path
*path
,
1447 u64 bytenr
, u64 num_bytes
, u64 parent
,
1448 u64 root_objectid
, u64 owner
,
1449 u64 offset
, int refs_to_add
,
1450 struct btrfs_delayed_extent_op
*extent_op
)
1452 struct btrfs_extent_inline_ref
*iref
;
1455 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1456 bytenr
, num_bytes
, parent
,
1457 root_objectid
, owner
, offset
, 1);
1459 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1460 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1461 refs_to_add
, extent_op
);
1462 } else if (ret
== -ENOENT
) {
1463 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1464 parent
, root_objectid
,
1465 owner
, offset
, refs_to_add
,
1471 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1472 struct btrfs_root
*root
,
1473 struct btrfs_path
*path
,
1474 u64 bytenr
, u64 parent
, u64 root_objectid
,
1475 u64 owner
, u64 offset
, int refs_to_add
)
1478 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1479 BUG_ON(refs_to_add
!= 1);
1480 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1481 parent
, root_objectid
);
1483 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1484 parent
, root_objectid
,
1485 owner
, offset
, refs_to_add
);
1490 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1491 struct btrfs_root
*root
,
1492 struct btrfs_path
*path
,
1493 struct btrfs_extent_inline_ref
*iref
,
1494 int refs_to_drop
, int is_data
)
1498 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1500 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1501 -refs_to_drop
, NULL
);
1502 } else if (is_data
) {
1503 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1505 ret
= btrfs_del_item(trans
, root
, path
);
1510 #ifdef BIO_RW_DISCARD
1511 static void btrfs_issue_discard(struct block_device
*bdev
,
1514 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
,
1515 DISCARD_FL_BARRIER
);
1519 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1522 #ifdef BIO_RW_DISCARD
1524 u64 map_length
= num_bytes
;
1525 struct btrfs_multi_bio
*multi
= NULL
;
1527 /* Tell the block device(s) that the sectors can be discarded */
1528 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1529 bytenr
, &map_length
, &multi
, 0);
1531 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1534 if (map_length
> num_bytes
)
1535 map_length
= num_bytes
;
1537 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1538 btrfs_issue_discard(stripe
->dev
->bdev
,
1551 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1552 struct btrfs_root
*root
,
1553 u64 bytenr
, u64 num_bytes
, u64 parent
,
1554 u64 root_objectid
, u64 owner
, u64 offset
)
1557 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1558 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1560 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1561 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1562 parent
, root_objectid
, (int)owner
,
1563 BTRFS_ADD_DELAYED_REF
, NULL
);
1565 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1566 parent
, root_objectid
, owner
, offset
,
1567 BTRFS_ADD_DELAYED_REF
, NULL
);
1572 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1573 struct btrfs_root
*root
,
1574 u64 bytenr
, u64 num_bytes
,
1575 u64 parent
, u64 root_objectid
,
1576 u64 owner
, u64 offset
, int refs_to_add
,
1577 struct btrfs_delayed_extent_op
*extent_op
)
1579 struct btrfs_path
*path
;
1580 struct extent_buffer
*leaf
;
1581 struct btrfs_extent_item
*item
;
1586 path
= btrfs_alloc_path();
1591 path
->leave_spinning
= 1;
1592 /* this will setup the path even if it fails to insert the back ref */
1593 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1594 path
, bytenr
, num_bytes
, parent
,
1595 root_objectid
, owner
, offset
,
1596 refs_to_add
, extent_op
);
1600 if (ret
!= -EAGAIN
) {
1605 leaf
= path
->nodes
[0];
1606 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1607 refs
= btrfs_extent_refs(leaf
, item
);
1608 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1610 __run_delayed_extent_op(extent_op
, leaf
, item
);
1612 btrfs_mark_buffer_dirty(leaf
);
1613 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1616 path
->leave_spinning
= 1;
1618 /* now insert the actual backref */
1619 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1620 path
, bytenr
, parent
, root_objectid
,
1621 owner
, offset
, refs_to_add
);
1624 btrfs_free_path(path
);
1628 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1629 struct btrfs_root
*root
,
1630 struct btrfs_delayed_ref_node
*node
,
1631 struct btrfs_delayed_extent_op
*extent_op
,
1632 int insert_reserved
)
1635 struct btrfs_delayed_data_ref
*ref
;
1636 struct btrfs_key ins
;
1641 ins
.objectid
= node
->bytenr
;
1642 ins
.offset
= node
->num_bytes
;
1643 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1645 ref
= btrfs_delayed_node_to_data_ref(node
);
1646 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1647 parent
= ref
->parent
;
1649 ref_root
= ref
->root
;
1651 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1653 BUG_ON(extent_op
->update_key
);
1654 flags
|= extent_op
->flags_to_set
;
1656 ret
= alloc_reserved_file_extent(trans
, root
,
1657 parent
, ref_root
, flags
,
1658 ref
->objectid
, ref
->offset
,
1659 &ins
, node
->ref_mod
);
1660 update_reserved_extents(root
, ins
.objectid
, ins
.offset
, 0);
1661 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1662 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1663 node
->num_bytes
, parent
,
1664 ref_root
, ref
->objectid
,
1665 ref
->offset
, node
->ref_mod
,
1667 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1668 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1669 node
->num_bytes
, parent
,
1670 ref_root
, ref
->objectid
,
1671 ref
->offset
, node
->ref_mod
,
1679 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1680 struct extent_buffer
*leaf
,
1681 struct btrfs_extent_item
*ei
)
1683 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1684 if (extent_op
->update_flags
) {
1685 flags
|= extent_op
->flags_to_set
;
1686 btrfs_set_extent_flags(leaf
, ei
, flags
);
1689 if (extent_op
->update_key
) {
1690 struct btrfs_tree_block_info
*bi
;
1691 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1692 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1693 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1697 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1698 struct btrfs_root
*root
,
1699 struct btrfs_delayed_ref_node
*node
,
1700 struct btrfs_delayed_extent_op
*extent_op
)
1702 struct btrfs_key key
;
1703 struct btrfs_path
*path
;
1704 struct btrfs_extent_item
*ei
;
1705 struct extent_buffer
*leaf
;
1710 path
= btrfs_alloc_path();
1714 key
.objectid
= node
->bytenr
;
1715 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1716 key
.offset
= node
->num_bytes
;
1719 path
->leave_spinning
= 1;
1720 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1731 leaf
= path
->nodes
[0];
1732 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1733 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1734 if (item_size
< sizeof(*ei
)) {
1735 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1741 leaf
= path
->nodes
[0];
1742 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1745 BUG_ON(item_size
< sizeof(*ei
));
1746 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1747 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1749 btrfs_mark_buffer_dirty(leaf
);
1751 btrfs_free_path(path
);
1755 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1756 struct btrfs_root
*root
,
1757 struct btrfs_delayed_ref_node
*node
,
1758 struct btrfs_delayed_extent_op
*extent_op
,
1759 int insert_reserved
)
1762 struct btrfs_delayed_tree_ref
*ref
;
1763 struct btrfs_key ins
;
1767 ins
.objectid
= node
->bytenr
;
1768 ins
.offset
= node
->num_bytes
;
1769 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1771 ref
= btrfs_delayed_node_to_tree_ref(node
);
1772 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1773 parent
= ref
->parent
;
1775 ref_root
= ref
->root
;
1777 BUG_ON(node
->ref_mod
!= 1);
1778 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1779 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
1780 !extent_op
->update_key
);
1781 ret
= alloc_reserved_tree_block(trans
, root
,
1783 extent_op
->flags_to_set
,
1786 update_reserved_extents(root
, ins
.objectid
, ins
.offset
, 0);
1787 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1788 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1789 node
->num_bytes
, parent
, ref_root
,
1790 ref
->level
, 0, 1, extent_op
);
1791 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1792 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1793 node
->num_bytes
, parent
, ref_root
,
1794 ref
->level
, 0, 1, extent_op
);
1802 /* helper function to actually process a single delayed ref entry */
1803 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1804 struct btrfs_root
*root
,
1805 struct btrfs_delayed_ref_node
*node
,
1806 struct btrfs_delayed_extent_op
*extent_op
,
1807 int insert_reserved
)
1810 if (btrfs_delayed_ref_is_head(node
)) {
1811 struct btrfs_delayed_ref_head
*head
;
1813 * we've hit the end of the chain and we were supposed
1814 * to insert this extent into the tree. But, it got
1815 * deleted before we ever needed to insert it, so all
1816 * we have to do is clean up the accounting
1819 head
= btrfs_delayed_node_to_head(node
);
1820 if (insert_reserved
) {
1821 if (head
->is_data
) {
1822 ret
= btrfs_del_csums(trans
, root
,
1827 btrfs_update_pinned_extents(root
, node
->bytenr
,
1828 node
->num_bytes
, 1);
1829 update_reserved_extents(root
, node
->bytenr
,
1830 node
->num_bytes
, 0);
1832 mutex_unlock(&head
->mutex
);
1836 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1837 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1838 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
1840 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1841 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1842 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
1849 static noinline
struct btrfs_delayed_ref_node
*
1850 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1852 struct rb_node
*node
;
1853 struct btrfs_delayed_ref_node
*ref
;
1854 int action
= BTRFS_ADD_DELAYED_REF
;
1857 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1858 * this prevents ref count from going down to zero when
1859 * there still are pending delayed ref.
1861 node
= rb_prev(&head
->node
.rb_node
);
1865 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
1867 if (ref
->bytenr
!= head
->node
.bytenr
)
1869 if (ref
->action
== action
)
1871 node
= rb_prev(node
);
1873 if (action
== BTRFS_ADD_DELAYED_REF
) {
1874 action
= BTRFS_DROP_DELAYED_REF
;
1880 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
1881 struct btrfs_root
*root
,
1882 struct list_head
*cluster
)
1884 struct btrfs_delayed_ref_root
*delayed_refs
;
1885 struct btrfs_delayed_ref_node
*ref
;
1886 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
1887 struct btrfs_delayed_extent_op
*extent_op
;
1890 int must_insert_reserved
= 0;
1892 delayed_refs
= &trans
->transaction
->delayed_refs
;
1895 /* pick a new head ref from the cluster list */
1896 if (list_empty(cluster
))
1899 locked_ref
= list_entry(cluster
->next
,
1900 struct btrfs_delayed_ref_head
, cluster
);
1902 /* grab the lock that says we are going to process
1903 * all the refs for this head */
1904 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
1907 * we may have dropped the spin lock to get the head
1908 * mutex lock, and that might have given someone else
1909 * time to free the head. If that's true, it has been
1910 * removed from our list and we can move on.
1912 if (ret
== -EAGAIN
) {
1920 * record the must insert reserved flag before we
1921 * drop the spin lock.
1923 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1924 locked_ref
->must_insert_reserved
= 0;
1926 extent_op
= locked_ref
->extent_op
;
1927 locked_ref
->extent_op
= NULL
;
1930 * locked_ref is the head node, so we have to go one
1931 * node back for any delayed ref updates
1933 ref
= select_delayed_ref(locked_ref
);
1935 /* All delayed refs have been processed, Go ahead
1936 * and send the head node to run_one_delayed_ref,
1937 * so that any accounting fixes can happen
1939 ref
= &locked_ref
->node
;
1941 if (extent_op
&& must_insert_reserved
) {
1947 spin_unlock(&delayed_refs
->lock
);
1949 ret
= run_delayed_extent_op(trans
, root
,
1955 spin_lock(&delayed_refs
->lock
);
1959 list_del_init(&locked_ref
->cluster
);
1964 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
1965 delayed_refs
->num_entries
--;
1967 spin_unlock(&delayed_refs
->lock
);
1969 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
1970 must_insert_reserved
);
1973 btrfs_put_delayed_ref(ref
);
1978 spin_lock(&delayed_refs
->lock
);
1984 * this starts processing the delayed reference count updates and
1985 * extent insertions we have queued up so far. count can be
1986 * 0, which means to process everything in the tree at the start
1987 * of the run (but not newly added entries), or it can be some target
1988 * number you'd like to process.
1990 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
1991 struct btrfs_root
*root
, unsigned long count
)
1993 struct rb_node
*node
;
1994 struct btrfs_delayed_ref_root
*delayed_refs
;
1995 struct btrfs_delayed_ref_node
*ref
;
1996 struct list_head cluster
;
1998 int run_all
= count
== (unsigned long)-1;
2001 if (root
== root
->fs_info
->extent_root
)
2002 root
= root
->fs_info
->tree_root
;
2004 delayed_refs
= &trans
->transaction
->delayed_refs
;
2005 INIT_LIST_HEAD(&cluster
);
2007 spin_lock(&delayed_refs
->lock
);
2009 count
= delayed_refs
->num_entries
* 2;
2013 if (!(run_all
|| run_most
) &&
2014 delayed_refs
->num_heads_ready
< 64)
2018 * go find something we can process in the rbtree. We start at
2019 * the beginning of the tree, and then build a cluster
2020 * of refs to process starting at the first one we are able to
2023 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2024 delayed_refs
->run_delayed_start
);
2028 ret
= run_clustered_refs(trans
, root
, &cluster
);
2031 count
-= min_t(unsigned long, ret
, count
);
2038 node
= rb_first(&delayed_refs
->root
);
2041 count
= (unsigned long)-1;
2044 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2046 if (btrfs_delayed_ref_is_head(ref
)) {
2047 struct btrfs_delayed_ref_head
*head
;
2049 head
= btrfs_delayed_node_to_head(ref
);
2050 atomic_inc(&ref
->refs
);
2052 spin_unlock(&delayed_refs
->lock
);
2053 mutex_lock(&head
->mutex
);
2054 mutex_unlock(&head
->mutex
);
2056 btrfs_put_delayed_ref(ref
);
2060 node
= rb_next(node
);
2062 spin_unlock(&delayed_refs
->lock
);
2063 schedule_timeout(1);
2067 spin_unlock(&delayed_refs
->lock
);
2071 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2072 struct btrfs_root
*root
,
2073 u64 bytenr
, u64 num_bytes
, u64 flags
,
2076 struct btrfs_delayed_extent_op
*extent_op
;
2079 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2083 extent_op
->flags_to_set
= flags
;
2084 extent_op
->update_flags
= 1;
2085 extent_op
->update_key
= 0;
2086 extent_op
->is_data
= is_data
? 1 : 0;
2088 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2094 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2095 struct btrfs_root
*root
,
2096 struct btrfs_path
*path
,
2097 u64 objectid
, u64 offset
, u64 bytenr
)
2099 struct btrfs_delayed_ref_head
*head
;
2100 struct btrfs_delayed_ref_node
*ref
;
2101 struct btrfs_delayed_data_ref
*data_ref
;
2102 struct btrfs_delayed_ref_root
*delayed_refs
;
2103 struct rb_node
*node
;
2107 delayed_refs
= &trans
->transaction
->delayed_refs
;
2108 spin_lock(&delayed_refs
->lock
);
2109 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2113 if (!mutex_trylock(&head
->mutex
)) {
2114 atomic_inc(&head
->node
.refs
);
2115 spin_unlock(&delayed_refs
->lock
);
2117 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2119 mutex_lock(&head
->mutex
);
2120 mutex_unlock(&head
->mutex
);
2121 btrfs_put_delayed_ref(&head
->node
);
2125 node
= rb_prev(&head
->node
.rb_node
);
2129 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2131 if (ref
->bytenr
!= bytenr
)
2135 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2138 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2140 node
= rb_prev(node
);
2142 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2143 if (ref
->bytenr
== bytenr
)
2147 if (data_ref
->root
!= root
->root_key
.objectid
||
2148 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2153 mutex_unlock(&head
->mutex
);
2155 spin_unlock(&delayed_refs
->lock
);
2159 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2160 struct btrfs_root
*root
,
2161 struct btrfs_path
*path
,
2162 u64 objectid
, u64 offset
, u64 bytenr
)
2164 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2165 struct extent_buffer
*leaf
;
2166 struct btrfs_extent_data_ref
*ref
;
2167 struct btrfs_extent_inline_ref
*iref
;
2168 struct btrfs_extent_item
*ei
;
2169 struct btrfs_key key
;
2173 key
.objectid
= bytenr
;
2174 key
.offset
= (u64
)-1;
2175 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2177 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2183 if (path
->slots
[0] == 0)
2187 leaf
= path
->nodes
[0];
2188 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2190 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2194 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size
< sizeof(*ei
)) {
2197 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2201 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2203 if (item_size
!= sizeof(*ei
) +
2204 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2207 if (btrfs_extent_generation(leaf
, ei
) <=
2208 btrfs_root_last_snapshot(&root
->root_item
))
2211 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2212 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2213 BTRFS_EXTENT_DATA_REF_KEY
)
2216 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2217 if (btrfs_extent_refs(leaf
, ei
) !=
2218 btrfs_extent_data_ref_count(leaf
, ref
) ||
2219 btrfs_extent_data_ref_root(leaf
, ref
) !=
2220 root
->root_key
.objectid
||
2221 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2222 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2230 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2231 struct btrfs_root
*root
,
2232 u64 objectid
, u64 offset
, u64 bytenr
)
2234 struct btrfs_path
*path
;
2238 path
= btrfs_alloc_path();
2243 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2245 if (ret
&& ret
!= -ENOENT
)
2248 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2250 } while (ret2
== -EAGAIN
);
2252 if (ret2
&& ret2
!= -ENOENT
) {
2257 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2260 btrfs_free_path(path
);
2265 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2266 struct extent_buffer
*buf
, u32 nr_extents
)
2268 struct btrfs_key key
;
2269 struct btrfs_file_extent_item
*fi
;
2277 if (!root
->ref_cows
)
2280 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2282 root_gen
= root
->root_key
.offset
;
2285 root_gen
= trans
->transid
- 1;
2288 level
= btrfs_header_level(buf
);
2289 nritems
= btrfs_header_nritems(buf
);
2292 struct btrfs_leaf_ref
*ref
;
2293 struct btrfs_extent_info
*info
;
2295 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2301 ref
->root_gen
= root_gen
;
2302 ref
->bytenr
= buf
->start
;
2303 ref
->owner
= btrfs_header_owner(buf
);
2304 ref
->generation
= btrfs_header_generation(buf
);
2305 ref
->nritems
= nr_extents
;
2306 info
= ref
->extents
;
2308 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2310 btrfs_item_key_to_cpu(buf
, &key
, i
);
2311 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2313 fi
= btrfs_item_ptr(buf
, i
,
2314 struct btrfs_file_extent_item
);
2315 if (btrfs_file_extent_type(buf
, fi
) ==
2316 BTRFS_FILE_EXTENT_INLINE
)
2318 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2319 if (disk_bytenr
== 0)
2322 info
->bytenr
= disk_bytenr
;
2324 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2325 info
->objectid
= key
.objectid
;
2326 info
->offset
= key
.offset
;
2330 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2331 if (ret
== -EEXIST
&& shared
) {
2332 struct btrfs_leaf_ref
*old
;
2333 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2335 btrfs_remove_leaf_ref(root
, old
);
2336 btrfs_free_leaf_ref(root
, old
);
2337 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2340 btrfs_free_leaf_ref(root
, ref
);
2346 /* when a block goes through cow, we update the reference counts of
2347 * everything that block points to. The internal pointers of the block
2348 * can be in just about any order, and it is likely to have clusters of
2349 * things that are close together and clusters of things that are not.
2351 * To help reduce the seeks that come with updating all of these reference
2352 * counts, sort them by byte number before actual updates are done.
2354 * struct refsort is used to match byte number to slot in the btree block.
2355 * we sort based on the byte number and then use the slot to actually
2358 * struct refsort is smaller than strcut btrfs_item and smaller than
2359 * struct btrfs_key_ptr. Since we're currently limited to the page size
2360 * for a btree block, there's no way for a kmalloc of refsorts for a
2361 * single node to be bigger than a page.
2369 * for passing into sort()
2371 static int refsort_cmp(const void *a_void
, const void *b_void
)
2373 const struct refsort
*a
= a_void
;
2374 const struct refsort
*b
= b_void
;
2376 if (a
->bytenr
< b
->bytenr
)
2378 if (a
->bytenr
> b
->bytenr
)
2384 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2385 struct btrfs_root
*root
,
2386 struct extent_buffer
*buf
,
2387 int full_backref
, int inc
)
2394 struct btrfs_key key
;
2395 struct btrfs_file_extent_item
*fi
;
2399 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2400 u64
, u64
, u64
, u64
, u64
, u64
);
2402 ref_root
= btrfs_header_owner(buf
);
2403 nritems
= btrfs_header_nritems(buf
);
2404 level
= btrfs_header_level(buf
);
2406 if (!root
->ref_cows
&& level
== 0)
2410 process_func
= btrfs_inc_extent_ref
;
2412 process_func
= btrfs_free_extent
;
2415 parent
= buf
->start
;
2419 for (i
= 0; i
< nritems
; i
++) {
2421 btrfs_item_key_to_cpu(buf
, &key
, i
);
2422 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2424 fi
= btrfs_item_ptr(buf
, i
,
2425 struct btrfs_file_extent_item
);
2426 if (btrfs_file_extent_type(buf
, fi
) ==
2427 BTRFS_FILE_EXTENT_INLINE
)
2429 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2433 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2434 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2435 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2436 parent
, ref_root
, key
.objectid
,
2441 bytenr
= btrfs_node_blockptr(buf
, i
);
2442 num_bytes
= btrfs_level_size(root
, level
- 1);
2443 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2444 parent
, ref_root
, level
- 1, 0);
2455 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2456 struct extent_buffer
*buf
, int full_backref
)
2458 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2461 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2462 struct extent_buffer
*buf
, int full_backref
)
2464 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2467 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2468 struct btrfs_root
*root
,
2469 struct btrfs_path
*path
,
2470 struct btrfs_block_group_cache
*cache
)
2473 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2475 struct extent_buffer
*leaf
;
2477 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2482 leaf
= path
->nodes
[0];
2483 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2484 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2485 btrfs_mark_buffer_dirty(leaf
);
2486 btrfs_release_path(extent_root
, path
);
2494 static struct btrfs_block_group_cache
*
2495 next_block_group(struct btrfs_root
*root
,
2496 struct btrfs_block_group_cache
*cache
)
2498 struct rb_node
*node
;
2499 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2500 node
= rb_next(&cache
->cache_node
);
2501 btrfs_put_block_group(cache
);
2503 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2505 atomic_inc(&cache
->count
);
2508 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2512 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2513 struct btrfs_root
*root
)
2515 struct btrfs_block_group_cache
*cache
;
2517 struct btrfs_path
*path
;
2520 path
= btrfs_alloc_path();
2526 err
= btrfs_run_delayed_refs(trans
, root
,
2531 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2535 cache
= next_block_group(root
, cache
);
2545 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2547 err
= write_one_cache_group(trans
, root
, path
, cache
);
2549 btrfs_put_block_group(cache
);
2552 btrfs_free_path(path
);
2556 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2558 struct btrfs_block_group_cache
*block_group
;
2561 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2562 if (!block_group
|| block_group
->ro
)
2565 btrfs_put_block_group(block_group
);
2569 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2570 u64 total_bytes
, u64 bytes_used
,
2571 struct btrfs_space_info
**space_info
)
2573 struct btrfs_space_info
*found
;
2575 found
= __find_space_info(info
, flags
);
2577 spin_lock(&found
->lock
);
2578 found
->total_bytes
+= total_bytes
;
2579 found
->bytes_used
+= bytes_used
;
2581 spin_unlock(&found
->lock
);
2582 *space_info
= found
;
2585 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2589 INIT_LIST_HEAD(&found
->block_groups
);
2590 init_rwsem(&found
->groups_sem
);
2591 spin_lock_init(&found
->lock
);
2592 found
->flags
= flags
;
2593 found
->total_bytes
= total_bytes
;
2594 found
->bytes_used
= bytes_used
;
2595 found
->bytes_pinned
= 0;
2596 found
->bytes_reserved
= 0;
2597 found
->bytes_readonly
= 0;
2598 found
->bytes_delalloc
= 0;
2600 found
->force_alloc
= 0;
2601 *space_info
= found
;
2602 list_add_rcu(&found
->list
, &info
->space_info
);
2603 atomic_set(&found
->caching_threads
, 0);
2607 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2609 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2610 BTRFS_BLOCK_GROUP_RAID1
|
2611 BTRFS_BLOCK_GROUP_RAID10
|
2612 BTRFS_BLOCK_GROUP_DUP
);
2614 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2615 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2616 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2617 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2618 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2619 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2623 static void set_block_group_readonly(struct btrfs_block_group_cache
*cache
)
2625 spin_lock(&cache
->space_info
->lock
);
2626 spin_lock(&cache
->lock
);
2628 cache
->space_info
->bytes_readonly
+= cache
->key
.offset
-
2629 btrfs_block_group_used(&cache
->item
);
2632 spin_unlock(&cache
->lock
);
2633 spin_unlock(&cache
->space_info
->lock
);
2636 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2638 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
2640 if (num_devices
== 1)
2641 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2642 if (num_devices
< 4)
2643 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2645 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2646 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2647 BTRFS_BLOCK_GROUP_RAID10
))) {
2648 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2651 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2652 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2653 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2656 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2657 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2658 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2659 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2660 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2664 static u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, u64 data
)
2666 struct btrfs_fs_info
*info
= root
->fs_info
;
2670 alloc_profile
= info
->avail_data_alloc_bits
&
2671 info
->data_alloc_profile
;
2672 data
= BTRFS_BLOCK_GROUP_DATA
| alloc_profile
;
2673 } else if (root
== root
->fs_info
->chunk_root
) {
2674 alloc_profile
= info
->avail_system_alloc_bits
&
2675 info
->system_alloc_profile
;
2676 data
= BTRFS_BLOCK_GROUP_SYSTEM
| alloc_profile
;
2678 alloc_profile
= info
->avail_metadata_alloc_bits
&
2679 info
->metadata_alloc_profile
;
2680 data
= BTRFS_BLOCK_GROUP_METADATA
| alloc_profile
;
2683 return btrfs_reduce_alloc_profile(root
, data
);
2686 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
2690 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2691 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
2696 * for now this just makes sure we have at least 5% of our metadata space free
2699 int btrfs_check_metadata_free_space(struct btrfs_root
*root
)
2701 struct btrfs_fs_info
*info
= root
->fs_info
;
2702 struct btrfs_space_info
*meta_sinfo
;
2703 u64 alloc_target
, thresh
;
2704 int committed
= 0, ret
;
2706 /* get the space info for where the metadata will live */
2707 alloc_target
= btrfs_get_alloc_profile(root
, 0);
2708 meta_sinfo
= __find_space_info(info
, alloc_target
);
2711 spin_lock(&meta_sinfo
->lock
);
2712 if (!meta_sinfo
->full
)
2713 thresh
= meta_sinfo
->total_bytes
* 80;
2715 thresh
= meta_sinfo
->total_bytes
* 95;
2717 do_div(thresh
, 100);
2719 if (meta_sinfo
->bytes_used
+ meta_sinfo
->bytes_reserved
+
2720 meta_sinfo
->bytes_pinned
+ meta_sinfo
->bytes_readonly
> thresh
) {
2721 struct btrfs_trans_handle
*trans
;
2722 if (!meta_sinfo
->full
) {
2723 meta_sinfo
->force_alloc
= 1;
2724 spin_unlock(&meta_sinfo
->lock
);
2726 trans
= btrfs_start_transaction(root
, 1);
2730 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2731 2 * 1024 * 1024, alloc_target
, 0);
2732 btrfs_end_transaction(trans
, root
);
2735 spin_unlock(&meta_sinfo
->lock
);
2739 trans
= btrfs_join_transaction(root
, 1);
2742 ret
= btrfs_commit_transaction(trans
, root
);
2749 spin_unlock(&meta_sinfo
->lock
);
2755 * This will check the space that the inode allocates from to make sure we have
2756 * enough space for bytes.
2758 int btrfs_check_data_free_space(struct btrfs_root
*root
, struct inode
*inode
,
2761 struct btrfs_space_info
*data_sinfo
;
2762 int ret
= 0, committed
= 0;
2764 /* make sure bytes are sectorsize aligned */
2765 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
2767 data_sinfo
= BTRFS_I(inode
)->space_info
;
2769 /* make sure we have enough space to handle the data first */
2770 spin_lock(&data_sinfo
->lock
);
2771 if (data_sinfo
->total_bytes
- data_sinfo
->bytes_used
-
2772 data_sinfo
->bytes_delalloc
- data_sinfo
->bytes_reserved
-
2773 data_sinfo
->bytes_pinned
- data_sinfo
->bytes_readonly
-
2774 data_sinfo
->bytes_may_use
< bytes
) {
2775 struct btrfs_trans_handle
*trans
;
2778 * if we don't have enough free bytes in this space then we need
2779 * to alloc a new chunk.
2781 if (!data_sinfo
->full
) {
2784 data_sinfo
->force_alloc
= 1;
2785 spin_unlock(&data_sinfo
->lock
);
2787 alloc_target
= btrfs_get_alloc_profile(root
, 1);
2788 trans
= btrfs_start_transaction(root
, 1);
2792 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2793 bytes
+ 2 * 1024 * 1024,
2795 btrfs_end_transaction(trans
, root
);
2800 spin_unlock(&data_sinfo
->lock
);
2802 /* commit the current transaction and try again */
2805 trans
= btrfs_join_transaction(root
, 1);
2808 ret
= btrfs_commit_transaction(trans
, root
);
2814 printk(KERN_ERR
"no space left, need %llu, %llu delalloc bytes"
2815 ", %llu bytes_used, %llu bytes_reserved, "
2816 "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
2817 "%llu total\n", (unsigned long long)bytes
,
2818 (unsigned long long)data_sinfo
->bytes_delalloc
,
2819 (unsigned long long)data_sinfo
->bytes_used
,
2820 (unsigned long long)data_sinfo
->bytes_reserved
,
2821 (unsigned long long)data_sinfo
->bytes_pinned
,
2822 (unsigned long long)data_sinfo
->bytes_readonly
,
2823 (unsigned long long)data_sinfo
->bytes_may_use
,
2824 (unsigned long long)data_sinfo
->total_bytes
);
2827 data_sinfo
->bytes_may_use
+= bytes
;
2828 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
2829 spin_unlock(&data_sinfo
->lock
);
2831 return btrfs_check_metadata_free_space(root
);
2835 * if there was an error for whatever reason after calling
2836 * btrfs_check_data_free_space, call this so we can cleanup the counters.
2838 void btrfs_free_reserved_data_space(struct btrfs_root
*root
,
2839 struct inode
*inode
, u64 bytes
)
2841 struct btrfs_space_info
*data_sinfo
;
2843 /* make sure bytes are sectorsize aligned */
2844 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
2846 data_sinfo
= BTRFS_I(inode
)->space_info
;
2847 spin_lock(&data_sinfo
->lock
);
2848 data_sinfo
->bytes_may_use
-= bytes
;
2849 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
2850 spin_unlock(&data_sinfo
->lock
);
2853 /* called when we are adding a delalloc extent to the inode's io_tree */
2854 void btrfs_delalloc_reserve_space(struct btrfs_root
*root
, struct inode
*inode
,
2857 struct btrfs_space_info
*data_sinfo
;
2859 /* get the space info for where this inode will be storing its data */
2860 data_sinfo
= BTRFS_I(inode
)->space_info
;
2862 /* make sure we have enough space to handle the data first */
2863 spin_lock(&data_sinfo
->lock
);
2864 data_sinfo
->bytes_delalloc
+= bytes
;
2867 * we are adding a delalloc extent without calling
2868 * btrfs_check_data_free_space first. This happens on a weird
2869 * writepage condition, but shouldn't hurt our accounting
2871 if (unlikely(bytes
> BTRFS_I(inode
)->reserved_bytes
)) {
2872 data_sinfo
->bytes_may_use
-= BTRFS_I(inode
)->reserved_bytes
;
2873 BTRFS_I(inode
)->reserved_bytes
= 0;
2875 data_sinfo
->bytes_may_use
-= bytes
;
2876 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
2879 spin_unlock(&data_sinfo
->lock
);
2882 /* called when we are clearing an delalloc extent from the inode's io_tree */
2883 void btrfs_delalloc_free_space(struct btrfs_root
*root
, struct inode
*inode
,
2886 struct btrfs_space_info
*info
;
2888 info
= BTRFS_I(inode
)->space_info
;
2890 spin_lock(&info
->lock
);
2891 info
->bytes_delalloc
-= bytes
;
2892 spin_unlock(&info
->lock
);
2895 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
2897 struct list_head
*head
= &info
->space_info
;
2898 struct btrfs_space_info
*found
;
2901 list_for_each_entry_rcu(found
, head
, list
) {
2902 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
2903 found
->force_alloc
= 1;
2908 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
2909 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
2910 u64 flags
, int force
)
2912 struct btrfs_space_info
*space_info
;
2913 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
2917 mutex_lock(&fs_info
->chunk_mutex
);
2919 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
2921 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
2923 ret
= update_space_info(extent_root
->fs_info
, flags
,
2927 BUG_ON(!space_info
);
2929 spin_lock(&space_info
->lock
);
2930 if (space_info
->force_alloc
) {
2932 space_info
->force_alloc
= 0;
2934 if (space_info
->full
) {
2935 spin_unlock(&space_info
->lock
);
2939 thresh
= space_info
->total_bytes
- space_info
->bytes_readonly
;
2940 thresh
= div_factor(thresh
, 6);
2942 (space_info
->bytes_used
+ space_info
->bytes_pinned
+
2943 space_info
->bytes_reserved
+ alloc_bytes
) < thresh
) {
2944 spin_unlock(&space_info
->lock
);
2947 spin_unlock(&space_info
->lock
);
2950 * if we're doing a data chunk, go ahead and make sure that
2951 * we keep a reasonable number of metadata chunks allocated in the
2954 if (flags
& BTRFS_BLOCK_GROUP_DATA
) {
2955 fs_info
->data_chunk_allocations
++;
2956 if (!(fs_info
->data_chunk_allocations
%
2957 fs_info
->metadata_ratio
))
2958 force_metadata_allocation(fs_info
);
2961 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
2963 space_info
->full
= 1;
2965 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
2969 static int update_block_group(struct btrfs_trans_handle
*trans
,
2970 struct btrfs_root
*root
,
2971 u64 bytenr
, u64 num_bytes
, int alloc
,
2974 struct btrfs_block_group_cache
*cache
;
2975 struct btrfs_fs_info
*info
= root
->fs_info
;
2976 u64 total
= num_bytes
;
2980 /* block accounting for super block */
2981 spin_lock(&info
->delalloc_lock
);
2982 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
2984 old_val
+= num_bytes
;
2986 old_val
-= num_bytes
;
2987 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
2989 /* block accounting for root item */
2990 old_val
= btrfs_root_used(&root
->root_item
);
2992 old_val
+= num_bytes
;
2994 old_val
-= num_bytes
;
2995 btrfs_set_root_used(&root
->root_item
, old_val
);
2996 spin_unlock(&info
->delalloc_lock
);
2999 cache
= btrfs_lookup_block_group(info
, bytenr
);
3002 byte_in_group
= bytenr
- cache
->key
.objectid
;
3003 WARN_ON(byte_in_group
> cache
->key
.offset
);
3005 spin_lock(&cache
->space_info
->lock
);
3006 spin_lock(&cache
->lock
);
3008 old_val
= btrfs_block_group_used(&cache
->item
);
3009 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
3011 old_val
+= num_bytes
;
3012 cache
->space_info
->bytes_used
+= num_bytes
;
3014 cache
->space_info
->bytes_readonly
-= num_bytes
;
3015 btrfs_set_block_group_used(&cache
->item
, old_val
);
3016 spin_unlock(&cache
->lock
);
3017 spin_unlock(&cache
->space_info
->lock
);
3019 old_val
-= num_bytes
;
3020 cache
->space_info
->bytes_used
-= num_bytes
;
3022 cache
->space_info
->bytes_readonly
+= num_bytes
;
3023 btrfs_set_block_group_used(&cache
->item
, old_val
);
3024 spin_unlock(&cache
->lock
);
3025 spin_unlock(&cache
->space_info
->lock
);
3029 ret
= btrfs_discard_extent(root
, bytenr
,
3033 ret
= btrfs_add_free_space(cache
, bytenr
,
3038 btrfs_put_block_group(cache
);
3040 bytenr
+= num_bytes
;
3045 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
3047 struct btrfs_block_group_cache
*cache
;
3050 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
3054 bytenr
= cache
->key
.objectid
;
3055 btrfs_put_block_group(cache
);
3060 int btrfs_update_pinned_extents(struct btrfs_root
*root
,
3061 u64 bytenr
, u64 num
, int pin
)
3064 struct btrfs_block_group_cache
*cache
;
3065 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3068 set_extent_dirty(&fs_info
->pinned_extents
,
3069 bytenr
, bytenr
+ num
- 1, GFP_NOFS
);
3072 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
3074 len
= min(num
, cache
->key
.offset
-
3075 (bytenr
- cache
->key
.objectid
));
3077 spin_lock(&cache
->space_info
->lock
);
3078 spin_lock(&cache
->lock
);
3079 cache
->pinned
+= len
;
3080 cache
->space_info
->bytes_pinned
+= len
;
3081 spin_unlock(&cache
->lock
);
3082 spin_unlock(&cache
->space_info
->lock
);
3083 fs_info
->total_pinned
+= len
;
3088 * in order to not race with the block group caching, we
3089 * only want to unpin the extent if we are cached. If
3090 * we aren't cached, we want to start async caching this
3091 * block group so we can free the extent the next time
3094 spin_lock(&cache
->space_info
->lock
);
3095 spin_lock(&cache
->lock
);
3096 unpin
= (cache
->cached
== BTRFS_CACHE_FINISHED
);
3097 if (likely(unpin
)) {
3098 cache
->pinned
-= len
;
3099 cache
->space_info
->bytes_pinned
-= len
;
3100 fs_info
->total_pinned
-= len
;
3102 spin_unlock(&cache
->lock
);
3103 spin_unlock(&cache
->space_info
->lock
);
3106 clear_extent_dirty(&fs_info
->pinned_extents
,
3107 bytenr
, bytenr
+ len
-1,
3110 cache_block_group(cache
);
3113 btrfs_add_free_space(cache
, bytenr
, len
);
3115 btrfs_put_block_group(cache
);
3122 static int update_reserved_extents(struct btrfs_root
*root
,
3123 u64 bytenr
, u64 num
, int reserve
)
3126 struct btrfs_block_group_cache
*cache
;
3127 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3130 cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
3132 len
= min(num
, cache
->key
.offset
-
3133 (bytenr
- cache
->key
.objectid
));
3135 spin_lock(&cache
->space_info
->lock
);
3136 spin_lock(&cache
->lock
);
3138 cache
->reserved
+= len
;
3139 cache
->space_info
->bytes_reserved
+= len
;
3141 cache
->reserved
-= len
;
3142 cache
->space_info
->bytes_reserved
-= len
;
3144 spin_unlock(&cache
->lock
);
3145 spin_unlock(&cache
->space_info
->lock
);
3146 btrfs_put_block_group(cache
);
3153 int btrfs_copy_pinned(struct btrfs_root
*root
, struct extent_io_tree
*copy
)
3158 struct extent_io_tree
*pinned_extents
= &root
->fs_info
->pinned_extents
;
3162 ret
= find_first_extent_bit(pinned_extents
, last
,
3163 &start
, &end
, EXTENT_DIRTY
);
3167 set_extent_dirty(copy
, start
, end
, GFP_NOFS
);
3173 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
3174 struct btrfs_root
*root
,
3175 struct extent_io_tree
*unpin
)
3182 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3187 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
3189 /* unlocks the pinned mutex */
3190 btrfs_update_pinned_extents(root
, start
, end
+ 1 - start
, 0);
3191 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3199 static int pin_down_bytes(struct btrfs_trans_handle
*trans
,
3200 struct btrfs_root
*root
,
3201 struct btrfs_path
*path
,
3202 u64 bytenr
, u64 num_bytes
, int is_data
,
3203 struct extent_buffer
**must_clean
)
3206 struct extent_buffer
*buf
;
3211 buf
= btrfs_find_tree_block(root
, bytenr
, num_bytes
);
3215 /* we can reuse a block if it hasn't been written
3216 * and it is from this transaction. We can't
3217 * reuse anything from the tree log root because
3218 * it has tiny sub-transactions.
3220 if (btrfs_buffer_uptodate(buf
, 0) &&
3221 btrfs_try_tree_lock(buf
)) {
3222 u64 header_owner
= btrfs_header_owner(buf
);
3223 u64 header_transid
= btrfs_header_generation(buf
);
3224 if (header_owner
!= BTRFS_TREE_LOG_OBJECTID
&&
3225 header_transid
== trans
->transid
&&
3226 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3230 btrfs_tree_unlock(buf
);
3232 free_extent_buffer(buf
);
3234 btrfs_set_path_blocking(path
);
3235 /* unlocks the pinned mutex */
3236 btrfs_update_pinned_extents(root
, bytenr
, num_bytes
, 1);
3243 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
3244 struct btrfs_root
*root
,
3245 u64 bytenr
, u64 num_bytes
, u64 parent
,
3246 u64 root_objectid
, u64 owner_objectid
,
3247 u64 owner_offset
, int refs_to_drop
,
3248 struct btrfs_delayed_extent_op
*extent_op
)
3250 struct btrfs_key key
;
3251 struct btrfs_path
*path
;
3252 struct btrfs_fs_info
*info
= root
->fs_info
;
3253 struct btrfs_root
*extent_root
= info
->extent_root
;
3254 struct extent_buffer
*leaf
;
3255 struct btrfs_extent_item
*ei
;
3256 struct btrfs_extent_inline_ref
*iref
;
3259 int extent_slot
= 0;
3260 int found_extent
= 0;
3265 path
= btrfs_alloc_path();
3270 path
->leave_spinning
= 1;
3272 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3273 BUG_ON(!is_data
&& refs_to_drop
!= 1);
3275 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
3276 bytenr
, num_bytes
, parent
,
3277 root_objectid
, owner_objectid
,
3280 extent_slot
= path
->slots
[0];
3281 while (extent_slot
>= 0) {
3282 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3284 if (key
.objectid
!= bytenr
)
3286 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3287 key
.offset
== num_bytes
) {
3291 if (path
->slots
[0] - extent_slot
> 5)
3295 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3296 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
3297 if (found_extent
&& item_size
< sizeof(*ei
))
3300 if (!found_extent
) {
3302 ret
= remove_extent_backref(trans
, extent_root
, path
,
3306 btrfs_release_path(extent_root
, path
);
3307 path
->leave_spinning
= 1;
3309 key
.objectid
= bytenr
;
3310 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3311 key
.offset
= num_bytes
;
3313 ret
= btrfs_search_slot(trans
, extent_root
,
3316 printk(KERN_ERR
"umm, got %d back from search"
3317 ", was looking for %llu\n", ret
,
3318 (unsigned long long)bytenr
);
3319 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3322 extent_slot
= path
->slots
[0];
3325 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3327 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
3328 "parent %llu root %llu owner %llu offset %llu\n",
3329 (unsigned long long)bytenr
,
3330 (unsigned long long)parent
,
3331 (unsigned long long)root_objectid
,
3332 (unsigned long long)owner_objectid
,
3333 (unsigned long long)owner_offset
);
3336 leaf
= path
->nodes
[0];
3337 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3338 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3339 if (item_size
< sizeof(*ei
)) {
3340 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
3341 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
3345 btrfs_release_path(extent_root
, path
);
3346 path
->leave_spinning
= 1;
3348 key
.objectid
= bytenr
;
3349 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3350 key
.offset
= num_bytes
;
3352 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
3355 printk(KERN_ERR
"umm, got %d back from search"
3356 ", was looking for %llu\n", ret
,
3357 (unsigned long long)bytenr
);
3358 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
3361 extent_slot
= path
->slots
[0];
3362 leaf
= path
->nodes
[0];
3363 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3366 BUG_ON(item_size
< sizeof(*ei
));
3367 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3368 struct btrfs_extent_item
);
3369 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
3370 struct btrfs_tree_block_info
*bi
;
3371 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3372 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3373 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3376 refs
= btrfs_extent_refs(leaf
, ei
);
3377 BUG_ON(refs
< refs_to_drop
);
3378 refs
-= refs_to_drop
;
3382 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3384 * In the case of inline back ref, reference count will
3385 * be updated by remove_extent_backref
3388 BUG_ON(!found_extent
);
3390 btrfs_set_extent_refs(leaf
, ei
, refs
);
3391 btrfs_mark_buffer_dirty(leaf
);
3394 ret
= remove_extent_backref(trans
, extent_root
, path
,
3401 struct extent_buffer
*must_clean
= NULL
;
3404 BUG_ON(is_data
&& refs_to_drop
!=
3405 extent_data_ref_count(root
, path
, iref
));
3407 BUG_ON(path
->slots
[0] != extent_slot
);
3409 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3410 path
->slots
[0] = extent_slot
;
3415 ret
= pin_down_bytes(trans
, root
, path
, bytenr
,
3416 num_bytes
, is_data
, &must_clean
);
3421 * it is going to be very rare for someone to be waiting
3422 * on the block we're freeing. del_items might need to
3423 * schedule, so rather than get fancy, just force it
3427 btrfs_set_lock_blocking(must_clean
);
3429 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3432 btrfs_release_path(extent_root
, path
);
3435 clean_tree_block(NULL
, root
, must_clean
);
3436 btrfs_tree_unlock(must_clean
);
3437 free_extent_buffer(must_clean
);
3441 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
3444 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
3445 bytenr
>> PAGE_CACHE_SHIFT
,
3446 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
3449 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0,
3453 btrfs_free_path(path
);
3458 * when we free an extent, it is possible (and likely) that we free the last
3459 * delayed ref for that extent as well. This searches the delayed ref tree for
3460 * a given extent, and if there are no other delayed refs to be processed, it
3461 * removes it from the tree.
3463 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3464 struct btrfs_root
*root
, u64 bytenr
)
3466 struct btrfs_delayed_ref_head
*head
;
3467 struct btrfs_delayed_ref_root
*delayed_refs
;
3468 struct btrfs_delayed_ref_node
*ref
;
3469 struct rb_node
*node
;
3472 delayed_refs
= &trans
->transaction
->delayed_refs
;
3473 spin_lock(&delayed_refs
->lock
);
3474 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3478 node
= rb_prev(&head
->node
.rb_node
);
3482 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3484 /* there are still entries for this ref, we can't drop it */
3485 if (ref
->bytenr
== bytenr
)
3488 if (head
->extent_op
) {
3489 if (!head
->must_insert_reserved
)
3491 kfree(head
->extent_op
);
3492 head
->extent_op
= NULL
;
3496 * waiting for the lock here would deadlock. If someone else has it
3497 * locked they are already in the process of dropping it anyway
3499 if (!mutex_trylock(&head
->mutex
))
3503 * at this point we have a head with no other entries. Go
3504 * ahead and process it.
3506 head
->node
.in_tree
= 0;
3507 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
3509 delayed_refs
->num_entries
--;
3512 * we don't take a ref on the node because we're removing it from the
3513 * tree, so we just steal the ref the tree was holding.
3515 delayed_refs
->num_heads
--;
3516 if (list_empty(&head
->cluster
))
3517 delayed_refs
->num_heads_ready
--;
3519 list_del_init(&head
->cluster
);
3520 spin_unlock(&delayed_refs
->lock
);
3522 ret
= run_one_delayed_ref(trans
, root
->fs_info
->tree_root
,
3523 &head
->node
, head
->extent_op
,
3524 head
->must_insert_reserved
);
3526 btrfs_put_delayed_ref(&head
->node
);
3529 spin_unlock(&delayed_refs
->lock
);
3533 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
3534 struct btrfs_root
*root
,
3535 u64 bytenr
, u64 num_bytes
, u64 parent
,
3536 u64 root_objectid
, u64 owner
, u64 offset
)
3541 * tree log blocks never actually go into the extent allocation
3542 * tree, just update pinning info and exit early.
3544 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
3545 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
3546 /* unlocks the pinned mutex */
3547 btrfs_update_pinned_extents(root
, bytenr
, num_bytes
, 1);
3548 update_reserved_extents(root
, bytenr
, num_bytes
, 0);
3550 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
3551 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
3552 parent
, root_objectid
, (int)owner
,
3553 BTRFS_DROP_DELAYED_REF
, NULL
);
3555 ret
= check_ref_cleanup(trans
, root
, bytenr
);
3558 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
3559 parent
, root_objectid
, owner
,
3560 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
3566 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
3568 u64 mask
= ((u64
)root
->stripesize
- 1);
3569 u64 ret
= (val
+ mask
) & ~mask
;
3574 * when we wait for progress in the block group caching, its because
3575 * our allocation attempt failed at least once. So, we must sleep
3576 * and let some progress happen before we try again.
3578 * This function will sleep at least once waiting for new free space to
3579 * show up, and then it will check the block group free space numbers
3580 * for our min num_bytes. Another option is to have it go ahead
3581 * and look in the rbtree for a free extent of a given size, but this
3585 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
3590 prepare_to_wait(&cache
->caching_q
, &wait
, TASK_UNINTERRUPTIBLE
);
3592 if (block_group_cache_done(cache
)) {
3593 finish_wait(&cache
->caching_q
, &wait
);
3597 finish_wait(&cache
->caching_q
, &wait
);
3599 wait_event(cache
->caching_q
, block_group_cache_done(cache
) ||
3600 (cache
->free_space
>= num_bytes
));
3604 enum btrfs_loop_type
{
3605 LOOP_CACHED_ONLY
= 0,
3606 LOOP_CACHING_NOWAIT
= 1,
3607 LOOP_CACHING_WAIT
= 2,
3608 LOOP_ALLOC_CHUNK
= 3,
3609 LOOP_NO_EMPTY_SIZE
= 4,
3613 * walks the btree of allocated extents and find a hole of a given size.
3614 * The key ins is changed to record the hole:
3615 * ins->objectid == block start
3616 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3617 * ins->offset == number of blocks
3618 * Any available blocks before search_start are skipped.
3620 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
3621 struct btrfs_root
*orig_root
,
3622 u64 num_bytes
, u64 empty_size
,
3623 u64 search_start
, u64 search_end
,
3624 u64 hint_byte
, struct btrfs_key
*ins
,
3625 u64 exclude_start
, u64 exclude_nr
,
3629 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
3630 struct btrfs_free_cluster
*last_ptr
= NULL
;
3631 struct btrfs_block_group_cache
*block_group
= NULL
;
3632 int empty_cluster
= 2 * 1024 * 1024;
3633 int allowed_chunk_alloc
= 0;
3634 struct btrfs_space_info
*space_info
;
3635 int last_ptr_loop
= 0;
3637 bool found_uncached_bg
= false;
3639 WARN_ON(num_bytes
< root
->sectorsize
);
3640 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
3644 space_info
= __find_space_info(root
->fs_info
, data
);
3646 if (orig_root
->ref_cows
|| empty_size
)
3647 allowed_chunk_alloc
= 1;
3649 if (data
& BTRFS_BLOCK_GROUP_METADATA
) {
3650 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
3651 if (!btrfs_test_opt(root
, SSD
))
3652 empty_cluster
= 64 * 1024;
3655 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && btrfs_test_opt(root
, SSD
)) {
3656 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
3660 spin_lock(&last_ptr
->lock
);
3661 if (last_ptr
->block_group
)
3662 hint_byte
= last_ptr
->window_start
;
3663 spin_unlock(&last_ptr
->lock
);
3666 search_start
= max(search_start
, first_logical_byte(root
, 0));
3667 search_start
= max(search_start
, hint_byte
);
3672 if (search_start
== hint_byte
) {
3673 block_group
= btrfs_lookup_block_group(root
->fs_info
,
3676 * we don't want to use the block group if it doesn't match our
3677 * allocation bits, or if its not cached.
3679 if (block_group
&& block_group_bits(block_group
, data
) &&
3680 block_group_cache_done(block_group
)) {
3681 down_read(&space_info
->groups_sem
);
3682 if (list_empty(&block_group
->list
) ||
3685 * someone is removing this block group,
3686 * we can't jump into the have_block_group
3687 * target because our list pointers are not
3690 btrfs_put_block_group(block_group
);
3691 up_read(&space_info
->groups_sem
);
3693 goto have_block_group
;
3694 } else if (block_group
) {
3695 btrfs_put_block_group(block_group
);
3700 down_read(&space_info
->groups_sem
);
3701 list_for_each_entry(block_group
, &space_info
->block_groups
, list
) {
3705 atomic_inc(&block_group
->count
);
3706 search_start
= block_group
->key
.objectid
;
3709 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
3711 * we want to start caching kthreads, but not too many
3712 * right off the bat so we don't overwhelm the system,
3713 * so only start them if there are less than 2 and we're
3714 * in the initial allocation phase.
3716 if (loop
> LOOP_CACHING_NOWAIT
||
3717 atomic_read(&space_info
->caching_threads
) < 2) {
3718 ret
= cache_block_group(block_group
);
3723 cached
= block_group_cache_done(block_group
);
3724 if (unlikely(!cached
)) {
3725 found_uncached_bg
= true;
3727 /* if we only want cached bgs, loop */
3728 if (loop
== LOOP_CACHED_ONLY
)
3732 if (unlikely(block_group
->ro
))
3737 * the refill lock keeps out other
3738 * people trying to start a new cluster
3740 spin_lock(&last_ptr
->refill_lock
);
3741 if (last_ptr
->block_group
&&
3742 (last_ptr
->block_group
->ro
||
3743 !block_group_bits(last_ptr
->block_group
, data
))) {
3745 goto refill_cluster
;
3748 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
3749 num_bytes
, search_start
);
3751 /* we have a block, we're done */
3752 spin_unlock(&last_ptr
->refill_lock
);
3756 spin_lock(&last_ptr
->lock
);
3758 * whoops, this cluster doesn't actually point to
3759 * this block group. Get a ref on the block
3760 * group is does point to and try again
3762 if (!last_ptr_loop
&& last_ptr
->block_group
&&
3763 last_ptr
->block_group
!= block_group
) {
3765 btrfs_put_block_group(block_group
);
3766 block_group
= last_ptr
->block_group
;
3767 atomic_inc(&block_group
->count
);
3768 spin_unlock(&last_ptr
->lock
);
3769 spin_unlock(&last_ptr
->refill_lock
);
3772 search_start
= block_group
->key
.objectid
;
3774 * we know this block group is properly
3775 * in the list because
3776 * btrfs_remove_block_group, drops the
3777 * cluster before it removes the block
3778 * group from the list
3780 goto have_block_group
;
3782 spin_unlock(&last_ptr
->lock
);
3785 * this cluster didn't work out, free it and
3788 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3792 /* allocate a cluster in this block group */
3793 ret
= btrfs_find_space_cluster(trans
, root
,
3794 block_group
, last_ptr
,
3796 empty_cluster
+ empty_size
);
3799 * now pull our allocation out of this
3802 offset
= btrfs_alloc_from_cluster(block_group
,
3803 last_ptr
, num_bytes
,
3806 /* we found one, proceed */
3807 spin_unlock(&last_ptr
->refill_lock
);
3810 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
) {
3811 spin_unlock(&last_ptr
->refill_lock
);
3813 wait_block_group_cache_progress(block_group
,
3814 num_bytes
+ empty_cluster
+ empty_size
);
3815 goto have_block_group
;
3819 * at this point we either didn't find a cluster
3820 * or we weren't able to allocate a block from our
3821 * cluster. Free the cluster we've been trying
3822 * to use, and go to the next block group
3824 if (loop
< LOOP_NO_EMPTY_SIZE
) {
3825 btrfs_return_cluster_to_free_space(NULL
,
3827 spin_unlock(&last_ptr
->refill_lock
);
3830 spin_unlock(&last_ptr
->refill_lock
);
3833 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
3834 num_bytes
, empty_size
);
3835 if (!offset
&& (cached
|| (!cached
&&
3836 loop
== LOOP_CACHING_NOWAIT
))) {
3838 } else if (!offset
&& (!cached
&&
3839 loop
> LOOP_CACHING_NOWAIT
)) {
3840 wait_block_group_cache_progress(block_group
,
3841 num_bytes
+ empty_size
);
3842 goto have_block_group
;
3845 search_start
= stripe_align(root
, offset
);
3846 /* move on to the next group */
3847 if (search_start
+ num_bytes
>= search_end
) {
3848 btrfs_add_free_space(block_group
, offset
, num_bytes
);
3852 /* move on to the next group */
3853 if (search_start
+ num_bytes
>
3854 block_group
->key
.objectid
+ block_group
->key
.offset
) {
3855 btrfs_add_free_space(block_group
, offset
, num_bytes
);
3859 if (exclude_nr
> 0 &&
3860 (search_start
+ num_bytes
> exclude_start
&&
3861 search_start
< exclude_start
+ exclude_nr
)) {
3862 search_start
= exclude_start
+ exclude_nr
;
3864 btrfs_add_free_space(block_group
, offset
, num_bytes
);
3866 * if search_start is still in this block group
3867 * then we just re-search this block group
3869 if (search_start
>= block_group
->key
.objectid
&&
3870 search_start
< (block_group
->key
.objectid
+
3871 block_group
->key
.offset
))
3872 goto have_block_group
;
3876 ins
->objectid
= search_start
;
3877 ins
->offset
= num_bytes
;
3879 if (offset
< search_start
)
3880 btrfs_add_free_space(block_group
, offset
,
3881 search_start
- offset
);
3882 BUG_ON(offset
> search_start
);
3884 /* we are all good, lets return */
3887 btrfs_put_block_group(block_group
);
3889 up_read(&space_info
->groups_sem
);
3891 /* LOOP_CACHED_ONLY, only search fully cached block groups
3892 * LOOP_CACHING_NOWAIT, search partially cached block groups, but
3893 * dont wait foR them to finish caching
3894 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3895 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3896 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3899 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
3900 (found_uncached_bg
|| empty_size
|| empty_cluster
||
3901 allowed_chunk_alloc
)) {
3902 if (found_uncached_bg
) {
3903 found_uncached_bg
= false;
3904 if (loop
< LOOP_CACHING_WAIT
) {
3910 if (loop
== LOOP_ALLOC_CHUNK
) {
3915 if (allowed_chunk_alloc
) {
3916 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
3917 2 * 1024 * 1024, data
, 1);
3918 allowed_chunk_alloc
= 0;
3920 space_info
->force_alloc
= 1;
3923 if (loop
< LOOP_NO_EMPTY_SIZE
) {
3928 } else if (!ins
->objectid
) {
3932 /* we found what we needed */
3933 if (ins
->objectid
) {
3934 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
3935 trans
->block_group
= block_group
->key
.objectid
;
3937 btrfs_put_block_group(block_group
);
3944 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
)
3946 struct btrfs_block_group_cache
*cache
;
3948 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
3949 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
3950 info
->bytes_pinned
- info
->bytes_reserved
),
3951 (info
->full
) ? "" : "not ");
3952 printk(KERN_INFO
"space_info total=%llu, pinned=%llu, delalloc=%llu,"
3953 " may_use=%llu, used=%llu\n",
3954 (unsigned long long)info
->total_bytes
,
3955 (unsigned long long)info
->bytes_pinned
,
3956 (unsigned long long)info
->bytes_delalloc
,
3957 (unsigned long long)info
->bytes_may_use
,
3958 (unsigned long long)info
->bytes_used
);
3960 down_read(&info
->groups_sem
);
3961 list_for_each_entry(cache
, &info
->block_groups
, list
) {
3962 spin_lock(&cache
->lock
);
3963 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
3964 "%llu pinned %llu reserved\n",
3965 (unsigned long long)cache
->key
.objectid
,
3966 (unsigned long long)cache
->key
.offset
,
3967 (unsigned long long)btrfs_block_group_used(&cache
->item
),
3968 (unsigned long long)cache
->pinned
,
3969 (unsigned long long)cache
->reserved
);
3970 btrfs_dump_free_space(cache
, bytes
);
3971 spin_unlock(&cache
->lock
);
3973 up_read(&info
->groups_sem
);
3976 static int __btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
3977 struct btrfs_root
*root
,
3978 u64 num_bytes
, u64 min_alloc_size
,
3979 u64 empty_size
, u64 hint_byte
,
3980 u64 search_end
, struct btrfs_key
*ins
,
3984 u64 search_start
= 0;
3985 struct btrfs_fs_info
*info
= root
->fs_info
;
3987 data
= btrfs_get_alloc_profile(root
, data
);
3990 * the only place that sets empty_size is btrfs_realloc_node, which
3991 * is not called recursively on allocations
3993 if (empty_size
|| root
->ref_cows
) {
3994 if (!(data
& BTRFS_BLOCK_GROUP_METADATA
)) {
3995 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3997 BTRFS_BLOCK_GROUP_METADATA
|
3998 (info
->metadata_alloc_profile
&
3999 info
->avail_metadata_alloc_bits
), 0);
4001 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4002 num_bytes
+ 2 * 1024 * 1024, data
, 0);
4005 WARN_ON(num_bytes
< root
->sectorsize
);
4006 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
4007 search_start
, search_end
, hint_byte
, ins
,
4008 trans
->alloc_exclude_start
,
4009 trans
->alloc_exclude_nr
, data
);
4011 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
4012 num_bytes
= num_bytes
>> 1;
4013 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
4014 num_bytes
= max(num_bytes
, min_alloc_size
);
4015 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4016 num_bytes
, data
, 1);
4019 if (ret
== -ENOSPC
) {
4020 struct btrfs_space_info
*sinfo
;
4022 sinfo
= __find_space_info(root
->fs_info
, data
);
4023 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
4024 "wanted %llu\n", (unsigned long long)data
,
4025 (unsigned long long)num_bytes
);
4026 dump_space_info(sinfo
, num_bytes
);
4032 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
4034 struct btrfs_block_group_cache
*cache
;
4037 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
4039 printk(KERN_ERR
"Unable to find block group for %llu\n",
4040 (unsigned long long)start
);
4044 ret
= btrfs_discard_extent(root
, start
, len
);
4046 btrfs_add_free_space(cache
, start
, len
);
4047 btrfs_put_block_group(cache
);
4048 update_reserved_extents(root
, start
, len
, 0);
4053 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
4054 struct btrfs_root
*root
,
4055 u64 num_bytes
, u64 min_alloc_size
,
4056 u64 empty_size
, u64 hint_byte
,
4057 u64 search_end
, struct btrfs_key
*ins
,
4061 ret
= __btrfs_reserve_extent(trans
, root
, num_bytes
, min_alloc_size
,
4062 empty_size
, hint_byte
, search_end
, ins
,
4065 update_reserved_extents(root
, ins
->objectid
, ins
->offset
, 1);
4070 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4071 struct btrfs_root
*root
,
4072 u64 parent
, u64 root_objectid
,
4073 u64 flags
, u64 owner
, u64 offset
,
4074 struct btrfs_key
*ins
, int ref_mod
)
4077 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4078 struct btrfs_extent_item
*extent_item
;
4079 struct btrfs_extent_inline_ref
*iref
;
4080 struct btrfs_path
*path
;
4081 struct extent_buffer
*leaf
;
4086 type
= BTRFS_SHARED_DATA_REF_KEY
;
4088 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4090 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4092 path
= btrfs_alloc_path();
4095 path
->leave_spinning
= 1;
4096 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4100 leaf
= path
->nodes
[0];
4101 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4102 struct btrfs_extent_item
);
4103 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4104 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4105 btrfs_set_extent_flags(leaf
, extent_item
,
4106 flags
| BTRFS_EXTENT_FLAG_DATA
);
4108 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4109 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4111 struct btrfs_shared_data_ref
*ref
;
4112 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4113 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4114 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4116 struct btrfs_extent_data_ref
*ref
;
4117 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4118 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4119 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4120 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4121 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4124 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4125 btrfs_free_path(path
);
4127 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4130 printk(KERN_ERR
"btrfs update block group failed for %llu "
4131 "%llu\n", (unsigned long long)ins
->objectid
,
4132 (unsigned long long)ins
->offset
);
4138 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4139 struct btrfs_root
*root
,
4140 u64 parent
, u64 root_objectid
,
4141 u64 flags
, struct btrfs_disk_key
*key
,
4142 int level
, struct btrfs_key
*ins
)
4145 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4146 struct btrfs_extent_item
*extent_item
;
4147 struct btrfs_tree_block_info
*block_info
;
4148 struct btrfs_extent_inline_ref
*iref
;
4149 struct btrfs_path
*path
;
4150 struct extent_buffer
*leaf
;
4151 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
4153 path
= btrfs_alloc_path();
4156 path
->leave_spinning
= 1;
4157 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4161 leaf
= path
->nodes
[0];
4162 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4163 struct btrfs_extent_item
);
4164 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4165 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4166 btrfs_set_extent_flags(leaf
, extent_item
,
4167 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4168 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4170 btrfs_set_tree_block_key(leaf
, block_info
, key
);
4171 btrfs_set_tree_block_level(leaf
, block_info
, level
);
4173 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4175 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4176 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4177 BTRFS_SHARED_BLOCK_REF_KEY
);
4178 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4180 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4181 BTRFS_TREE_BLOCK_REF_KEY
);
4182 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
4185 btrfs_mark_buffer_dirty(leaf
);
4186 btrfs_free_path(path
);
4188 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
,
4191 printk(KERN_ERR
"btrfs update block group failed for %llu "
4192 "%llu\n", (unsigned long long)ins
->objectid
,
4193 (unsigned long long)ins
->offset
);
4199 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4200 struct btrfs_root
*root
,
4201 u64 root_objectid
, u64 owner
,
4202 u64 offset
, struct btrfs_key
*ins
)
4206 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
4208 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
4209 0, root_objectid
, owner
, offset
,
4210 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
4215 * this is used by the tree logging recovery code. It records that
4216 * an extent has been allocated and makes sure to clear the free
4217 * space cache bits as well
4219 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4220 struct btrfs_root
*root
,
4221 u64 root_objectid
, u64 owner
, u64 offset
,
4222 struct btrfs_key
*ins
)
4225 struct btrfs_block_group_cache
*block_group
;
4227 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
4228 cache_block_group(block_group
);
4229 wait_event(block_group
->caching_q
,
4230 block_group_cache_done(block_group
));
4232 ret
= btrfs_remove_free_space(block_group
, ins
->objectid
,
4235 btrfs_put_block_group(block_group
);
4236 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
4237 0, owner
, offset
, ins
, 1);
4242 * finds a free extent and does all the dirty work required for allocation
4243 * returns the key for the extent through ins, and a tree buffer for
4244 * the first block of the extent through buf.
4246 * returns 0 if everything worked, non-zero otherwise.
4248 static int alloc_tree_block(struct btrfs_trans_handle
*trans
,
4249 struct btrfs_root
*root
,
4250 u64 num_bytes
, u64 parent
, u64 root_objectid
,
4251 struct btrfs_disk_key
*key
, int level
,
4252 u64 empty_size
, u64 hint_byte
, u64 search_end
,
4253 struct btrfs_key
*ins
)
4258 ret
= __btrfs_reserve_extent(trans
, root
, num_bytes
, num_bytes
,
4259 empty_size
, hint_byte
, search_end
,
4264 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4266 parent
= ins
->objectid
;
4267 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4271 update_reserved_extents(root
, ins
->objectid
, ins
->offset
, 1);
4272 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4273 struct btrfs_delayed_extent_op
*extent_op
;
4274 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
4277 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4279 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4280 extent_op
->flags_to_set
= flags
;
4281 extent_op
->update_key
= 1;
4282 extent_op
->update_flags
= 1;
4283 extent_op
->is_data
= 0;
4285 ret
= btrfs_add_delayed_tree_ref(trans
, ins
->objectid
,
4286 ins
->offset
, parent
, root_objectid
,
4287 level
, BTRFS_ADD_DELAYED_EXTENT
,
4294 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
4295 struct btrfs_root
*root
,
4296 u64 bytenr
, u32 blocksize
,
4299 struct extent_buffer
*buf
;
4301 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
4303 return ERR_PTR(-ENOMEM
);
4304 btrfs_set_header_generation(buf
, trans
->transid
);
4305 btrfs_set_buffer_lockdep_class(buf
, level
);
4306 btrfs_tree_lock(buf
);
4307 clean_tree_block(trans
, root
, buf
);
4309 btrfs_set_lock_blocking(buf
);
4310 btrfs_set_buffer_uptodate(buf
);
4312 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4313 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4314 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4316 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4317 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4319 trans
->blocks_used
++;
4320 /* this returns a buffer locked for blocking */
4325 * helper function to allocate a block for a given tree
4326 * returns the tree buffer or NULL.
4328 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
4329 struct btrfs_root
*root
, u32 blocksize
,
4330 u64 parent
, u64 root_objectid
,
4331 struct btrfs_disk_key
*key
, int level
,
4332 u64 hint
, u64 empty_size
)
4334 struct btrfs_key ins
;
4336 struct extent_buffer
*buf
;
4338 ret
= alloc_tree_block(trans
, root
, blocksize
, parent
, root_objectid
,
4339 key
, level
, empty_size
, hint
, (u64
)-1, &ins
);
4342 return ERR_PTR(ret
);
4345 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
4351 int btrfs_drop_leaf_ref(struct btrfs_trans_handle
*trans
,
4352 struct btrfs_root
*root
, struct extent_buffer
*leaf
)
4356 struct btrfs_key key
;
4357 struct btrfs_file_extent_item
*fi
;
4362 BUG_ON(!btrfs_is_leaf(leaf
));
4363 nritems
= btrfs_header_nritems(leaf
);
4365 for (i
= 0; i
< nritems
; i
++) {
4367 btrfs_item_key_to_cpu(leaf
, &key
, i
);
4369 /* only extents have references, skip everything else */
4370 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
4373 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
4375 /* inline extents live in the btree, they don't have refs */
4376 if (btrfs_file_extent_type(leaf
, fi
) ==
4377 BTRFS_FILE_EXTENT_INLINE
)
4380 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4382 /* holes don't have refs */
4383 if (disk_bytenr
== 0)
4386 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
4387 ret
= btrfs_free_extent(trans
, root
, disk_bytenr
, num_bytes
,
4388 leaf
->start
, 0, key
.objectid
, 0);
4394 static noinline
int cache_drop_leaf_ref(struct btrfs_trans_handle
*trans
,
4395 struct btrfs_root
*root
,
4396 struct btrfs_leaf_ref
*ref
)
4400 struct btrfs_extent_info
*info
;
4401 struct refsort
*sorted
;
4403 if (ref
->nritems
== 0)
4406 sorted
= kmalloc(sizeof(*sorted
) * ref
->nritems
, GFP_NOFS
);
4407 for (i
= 0; i
< ref
->nritems
; i
++) {
4408 sorted
[i
].bytenr
= ref
->extents
[i
].bytenr
;
4411 sort(sorted
, ref
->nritems
, sizeof(struct refsort
), refsort_cmp
, NULL
);
4414 * the items in the ref were sorted when the ref was inserted
4415 * into the ref cache, so this is already in order
4417 for (i
= 0; i
< ref
->nritems
; i
++) {
4418 info
= ref
->extents
+ sorted
[i
].slot
;
4419 ret
= btrfs_free_extent(trans
, root
, info
->bytenr
,
4420 info
->num_bytes
, ref
->bytenr
,
4421 ref
->owner
, ref
->generation
,
4424 atomic_inc(&root
->fs_info
->throttle_gen
);
4425 wake_up(&root
->fs_info
->transaction_throttle
);
4437 static int drop_snap_lookup_refcount(struct btrfs_trans_handle
*trans
,
4438 struct btrfs_root
*root
, u64 start
,
4443 ret
= btrfs_lookup_extent_refs(trans
, root
, start
, len
, refs
);
4446 #if 0 /* some debugging code in case we see problems here */
4447 /* if the refs count is one, it won't get increased again. But
4448 * if the ref count is > 1, someone may be decreasing it at
4449 * the same time we are.
4452 struct extent_buffer
*eb
= NULL
;
4453 eb
= btrfs_find_create_tree_block(root
, start
, len
);
4455 btrfs_tree_lock(eb
);
4457 mutex_lock(&root
->fs_info
->alloc_mutex
);
4458 ret
= lookup_extent_ref(NULL
, root
, start
, len
, refs
);
4460 mutex_unlock(&root
->fs_info
->alloc_mutex
);
4463 btrfs_tree_unlock(eb
);
4464 free_extent_buffer(eb
);
4467 printk(KERN_ERR
"btrfs block %llu went down to one "
4468 "during drop_snap\n", (unsigned long long)start
);
4480 * this is used while deleting old snapshots, and it drops the refs
4481 * on a whole subtree starting from a level 1 node.
4483 * The idea is to sort all the leaf pointers, and then drop the
4484 * ref on all the leaves in order. Most of the time the leaves
4485 * will have ref cache entries, so no leaf IOs will be required to
4486 * find the extents they have references on.
4488 * For each leaf, any references it has are also dropped in order
4490 * This ends up dropping the references in something close to optimal
4491 * order for reading and modifying the extent allocation tree.
4493 static noinline
int drop_level_one_refs(struct btrfs_trans_handle
*trans
,
4494 struct btrfs_root
*root
,
4495 struct btrfs_path
*path
)
4500 struct extent_buffer
*eb
= path
->nodes
[1];
4501 struct extent_buffer
*leaf
;
4502 struct btrfs_leaf_ref
*ref
;
4503 struct refsort
*sorted
= NULL
;
4504 int nritems
= btrfs_header_nritems(eb
);
4508 int slot
= path
->slots
[1];
4509 u32 blocksize
= btrfs_level_size(root
, 0);
4515 root_owner
= btrfs_header_owner(eb
);
4516 root_gen
= btrfs_header_generation(eb
);
4517 sorted
= kmalloc(sizeof(*sorted
) * nritems
, GFP_NOFS
);
4520 * step one, sort all the leaf pointers so we don't scribble
4521 * randomly into the extent allocation tree
4523 for (i
= slot
; i
< nritems
; i
++) {
4524 sorted
[refi
].bytenr
= btrfs_node_blockptr(eb
, i
);
4525 sorted
[refi
].slot
= i
;
4530 * nritems won't be zero, but if we're picking up drop_snapshot
4531 * after a crash, slot might be > 0, so double check things
4537 sort(sorted
, refi
, sizeof(struct refsort
), refsort_cmp
, NULL
);
4540 * the first loop frees everything the leaves point to
4542 for (i
= 0; i
< refi
; i
++) {
4545 bytenr
= sorted
[i
].bytenr
;
4548 * check the reference count on this leaf. If it is > 1
4549 * we just decrement it below and don't update any
4550 * of the refs the leaf points to.
4552 ret
= drop_snap_lookup_refcount(trans
, root
, bytenr
,
4558 ptr_gen
= btrfs_node_ptr_generation(eb
, sorted
[i
].slot
);
4561 * the leaf only had one reference, which means the
4562 * only thing pointing to this leaf is the snapshot
4563 * we're deleting. It isn't possible for the reference
4564 * count to increase again later
4566 * The reference cache is checked for the leaf,
4567 * and if found we'll be able to drop any refs held by
4568 * the leaf without needing to read it in.
4570 ref
= btrfs_lookup_leaf_ref(root
, bytenr
);
4571 if (ref
&& ref
->generation
!= ptr_gen
) {
4572 btrfs_free_leaf_ref(root
, ref
);
4576 ret
= cache_drop_leaf_ref(trans
, root
, ref
);
4578 btrfs_remove_leaf_ref(root
, ref
);
4579 btrfs_free_leaf_ref(root
, ref
);
4582 * the leaf wasn't in the reference cache, so
4583 * we have to read it.
4585 leaf
= read_tree_block(root
, bytenr
, blocksize
,
4587 ret
= btrfs_drop_leaf_ref(trans
, root
, leaf
);
4589 free_extent_buffer(leaf
);
4591 atomic_inc(&root
->fs_info
->throttle_gen
);
4592 wake_up(&root
->fs_info
->transaction_throttle
);
4597 * run through the loop again to free the refs on the leaves.
4598 * This is faster than doing it in the loop above because
4599 * the leaves are likely to be clustered together. We end up
4600 * working in nice chunks on the extent allocation tree.
4602 for (i
= 0; i
< refi
; i
++) {
4603 bytenr
= sorted
[i
].bytenr
;
4604 ret
= btrfs_free_extent(trans
, root
, bytenr
,
4605 blocksize
, eb
->start
,
4606 root_owner
, root_gen
, 0, 1);
4609 atomic_inc(&root
->fs_info
->throttle_gen
);
4610 wake_up(&root
->fs_info
->transaction_throttle
);
4617 * update the path to show we've processed the entire level 1
4618 * node. This will get saved into the root's drop_snapshot_progress
4619 * field so these drops are not repeated again if this transaction
4622 path
->slots
[1] = nritems
;
4627 * helper function for drop_snapshot, this walks down the tree dropping ref
4628 * counts as it goes.
4630 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
4631 struct btrfs_root
*root
,
4632 struct btrfs_path
*path
, int *level
)
4638 struct extent_buffer
*next
;
4639 struct extent_buffer
*cur
;
4640 struct extent_buffer
*parent
;
4645 WARN_ON(*level
< 0);
4646 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
4647 ret
= drop_snap_lookup_refcount(trans
, root
, path
->nodes
[*level
]->start
,
4648 path
->nodes
[*level
]->len
, &refs
);
4654 * walk down to the last node level and free all the leaves
4656 while (*level
>= 0) {
4657 WARN_ON(*level
< 0);
4658 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
4659 cur
= path
->nodes
[*level
];
4661 if (btrfs_header_level(cur
) != *level
)
4664 if (path
->slots
[*level
] >=
4665 btrfs_header_nritems(cur
))
4668 /* the new code goes down to level 1 and does all the
4669 * leaves pointed to that node in bulk. So, this check
4670 * for level 0 will always be false.
4672 * But, the disk format allows the drop_snapshot_progress
4673 * field in the root to leave things in a state where
4674 * a leaf will need cleaning up here. If someone crashes
4675 * with the old code and then boots with the new code,
4676 * we might find a leaf here.
4679 ret
= btrfs_drop_leaf_ref(trans
, root
, cur
);
4685 * once we get to level one, process the whole node
4686 * at once, including everything below it.
4689 ret
= drop_level_one_refs(trans
, root
, path
);
4694 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
4695 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
4696 blocksize
= btrfs_level_size(root
, *level
- 1);
4698 ret
= drop_snap_lookup_refcount(trans
, root
, bytenr
,
4703 * if there is more than one reference, we don't need
4704 * to read that node to drop any references it has. We
4705 * just drop the ref we hold on that node and move on to the
4706 * next slot in this level.
4709 parent
= path
->nodes
[*level
];
4710 root_owner
= btrfs_header_owner(parent
);
4711 root_gen
= btrfs_header_generation(parent
);
4712 path
->slots
[*level
]++;
4714 ret
= btrfs_free_extent(trans
, root
, bytenr
,
4715 blocksize
, parent
->start
,
4716 root_owner
, root_gen
,
4720 atomic_inc(&root
->fs_info
->throttle_gen
);
4721 wake_up(&root
->fs_info
->transaction_throttle
);
4728 * we need to keep freeing things in the next level down.
4729 * read the block and loop around to process it
4731 next
= read_tree_block(root
, bytenr
, blocksize
, ptr_gen
);
4732 WARN_ON(*level
<= 0);
4733 if (path
->nodes
[*level
-1])
4734 free_extent_buffer(path
->nodes
[*level
-1]);
4735 path
->nodes
[*level
-1] = next
;
4736 *level
= btrfs_header_level(next
);
4737 path
->slots
[*level
] = 0;
4741 WARN_ON(*level
< 0);
4742 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
4744 if (path
->nodes
[*level
] == root
->node
) {
4745 parent
= path
->nodes
[*level
];
4746 bytenr
= path
->nodes
[*level
]->start
;
4748 parent
= path
->nodes
[*level
+ 1];
4749 bytenr
= btrfs_node_blockptr(parent
, path
->slots
[*level
+ 1]);
4752 blocksize
= btrfs_level_size(root
, *level
);
4753 root_owner
= btrfs_header_owner(parent
);
4754 root_gen
= btrfs_header_generation(parent
);
4757 * cleanup and free the reference on the last node
4760 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
,
4761 parent
->start
, root_owner
, root_gen
,
4763 free_extent_buffer(path
->nodes
[*level
]);
4764 path
->nodes
[*level
] = NULL
;
4774 struct walk_control
{
4775 u64 refs
[BTRFS_MAX_LEVEL
];
4776 u64 flags
[BTRFS_MAX_LEVEL
];
4777 struct btrfs_key update_progress
;
4785 #define DROP_REFERENCE 1
4786 #define UPDATE_BACKREF 2
4789 * hepler to process tree block while walking down the tree.
4791 * when wc->stage == DROP_REFERENCE, this function checks
4792 * reference count of the block. if the block is shared and
4793 * we need update back refs for the subtree rooted at the
4794 * block, this function changes wc->stage to UPDATE_BACKREF
4796 * when wc->stage == UPDATE_BACKREF, this function updates
4797 * back refs for pointers in the block.
4799 * NOTE: return value 1 means we should stop walking down.
4801 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
4802 struct btrfs_root
*root
,
4803 struct btrfs_path
*path
,
4804 struct walk_control
*wc
)
4806 int level
= wc
->level
;
4807 struct extent_buffer
*eb
= path
->nodes
[level
];
4808 struct btrfs_key key
;
4809 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4812 if (wc
->stage
== UPDATE_BACKREF
&&
4813 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
4817 * when reference count of tree block is 1, it won't increase
4818 * again. once full backref flag is set, we never clear it.
4820 if ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
4821 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
))) {
4822 BUG_ON(!path
->locks
[level
]);
4823 ret
= btrfs_lookup_extent_info(trans
, root
,
4828 BUG_ON(wc
->refs
[level
] == 0);
4831 if (wc
->stage
== DROP_REFERENCE
&&
4832 wc
->update_ref
&& wc
->refs
[level
] > 1) {
4833 BUG_ON(eb
== root
->node
);
4834 BUG_ON(path
->slots
[level
] > 0);
4836 btrfs_item_key_to_cpu(eb
, &key
, path
->slots
[level
]);
4838 btrfs_node_key_to_cpu(eb
, &key
, path
->slots
[level
]);
4839 if (btrfs_header_owner(eb
) == root
->root_key
.objectid
&&
4840 btrfs_comp_cpu_keys(&key
, &wc
->update_progress
) >= 0) {
4841 wc
->stage
= UPDATE_BACKREF
;
4842 wc
->shared_level
= level
;
4846 if (wc
->stage
== DROP_REFERENCE
) {
4847 if (wc
->refs
[level
] > 1)
4850 if (path
->locks
[level
] && !wc
->keep_locks
) {
4851 btrfs_tree_unlock(eb
);
4852 path
->locks
[level
] = 0;
4857 /* wc->stage == UPDATE_BACKREF */
4858 if (!(wc
->flags
[level
] & flag
)) {
4859 BUG_ON(!path
->locks
[level
]);
4860 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
4862 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
4864 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
4867 wc
->flags
[level
] |= flag
;
4871 * the block is shared by multiple trees, so it's not good to
4872 * keep the tree lock
4874 if (path
->locks
[level
] && level
> 0) {
4875 btrfs_tree_unlock(eb
);
4876 path
->locks
[level
] = 0;
4882 * hepler to process tree block while walking up the tree.
4884 * when wc->stage == DROP_REFERENCE, this function drops
4885 * reference count on the block.
4887 * when wc->stage == UPDATE_BACKREF, this function changes
4888 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4889 * to UPDATE_BACKREF previously while processing the block.
4891 * NOTE: return value 1 means we should stop walking up.
4893 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
4894 struct btrfs_root
*root
,
4895 struct btrfs_path
*path
,
4896 struct walk_control
*wc
)
4899 int level
= wc
->level
;
4900 struct extent_buffer
*eb
= path
->nodes
[level
];
4903 if (wc
->stage
== UPDATE_BACKREF
) {
4904 BUG_ON(wc
->shared_level
< level
);
4905 if (level
< wc
->shared_level
)
4908 BUG_ON(wc
->refs
[level
] <= 1);
4909 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
4913 wc
->stage
= DROP_REFERENCE
;
4914 wc
->shared_level
= -1;
4915 path
->slots
[level
] = 0;
4918 * check reference count again if the block isn't locked.
4919 * we should start walking down the tree again if reference
4922 if (!path
->locks
[level
]) {
4924 btrfs_tree_lock(eb
);
4925 btrfs_set_lock_blocking(eb
);
4926 path
->locks
[level
] = 1;
4928 ret
= btrfs_lookup_extent_info(trans
, root
,
4933 BUG_ON(wc
->refs
[level
] == 0);
4934 if (wc
->refs
[level
] == 1) {
4935 btrfs_tree_unlock(eb
);
4936 path
->locks
[level
] = 0;
4944 /* wc->stage == DROP_REFERENCE */
4945 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
4947 if (wc
->refs
[level
] == 1) {
4949 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
4950 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
4952 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
4955 /* make block locked assertion in clean_tree_block happy */
4956 if (!path
->locks
[level
] &&
4957 btrfs_header_generation(eb
) == trans
->transid
) {
4958 btrfs_tree_lock(eb
);
4959 btrfs_set_lock_blocking(eb
);
4960 path
->locks
[level
] = 1;
4962 clean_tree_block(trans
, root
, eb
);
4965 if (eb
== root
->node
) {
4966 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
4969 BUG_ON(root
->root_key
.objectid
!=
4970 btrfs_header_owner(eb
));
4972 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
4973 parent
= path
->nodes
[level
+ 1]->start
;
4975 BUG_ON(root
->root_key
.objectid
!=
4976 btrfs_header_owner(path
->nodes
[level
+ 1]));
4979 ret
= btrfs_free_extent(trans
, root
, eb
->start
, eb
->len
, parent
,
4980 root
->root_key
.objectid
, level
, 0);
4983 wc
->refs
[level
] = 0;
4984 wc
->flags
[level
] = 0;
4988 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
4989 struct btrfs_root
*root
,
4990 struct btrfs_path
*path
,
4991 struct walk_control
*wc
)
4993 struct extent_buffer
*next
;
4994 struct extent_buffer
*cur
;
4998 int level
= wc
->level
;
5001 while (level
>= 0) {
5002 cur
= path
->nodes
[level
];
5003 BUG_ON(path
->slots
[level
] >= btrfs_header_nritems(cur
));
5005 ret
= walk_down_proc(trans
, root
, path
, wc
);
5012 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[level
]);
5013 blocksize
= btrfs_level_size(root
, level
- 1);
5014 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[level
]);
5016 next
= read_tree_block(root
, bytenr
, blocksize
, ptr_gen
);
5017 btrfs_tree_lock(next
);
5018 btrfs_set_lock_blocking(next
);
5021 BUG_ON(level
!= btrfs_header_level(next
));
5022 path
->nodes
[level
] = next
;
5023 path
->slots
[level
] = 0;
5024 path
->locks
[level
] = 1;
5030 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5031 struct btrfs_root
*root
,
5032 struct btrfs_path
*path
,
5033 struct walk_control
*wc
, int max_level
)
5035 int level
= wc
->level
;
5038 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5039 while (level
< max_level
&& path
->nodes
[level
]) {
5041 if (path
->slots
[level
] + 1 <
5042 btrfs_header_nritems(path
->nodes
[level
])) {
5043 path
->slots
[level
]++;
5046 ret
= walk_up_proc(trans
, root
, path
, wc
);
5050 if (path
->locks
[level
]) {
5051 btrfs_tree_unlock(path
->nodes
[level
]);
5052 path
->locks
[level
] = 0;
5054 free_extent_buffer(path
->nodes
[level
]);
5055 path
->nodes
[level
] = NULL
;
5063 * drop a subvolume tree.
5065 * this function traverses the tree freeing any blocks that only
5066 * referenced by the tree.
5068 * when a shared tree block is found. this function decreases its
5069 * reference count by one. if update_ref is true, this function
5070 * also make sure backrefs for the shared block and all lower level
5071 * blocks are properly updated.
5073 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
)
5075 struct btrfs_path
*path
;
5076 struct btrfs_trans_handle
*trans
;
5077 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
5078 struct btrfs_root_item
*root_item
= &root
->root_item
;
5079 struct walk_control
*wc
;
5080 struct btrfs_key key
;
5085 path
= btrfs_alloc_path();
5088 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5091 trans
= btrfs_start_transaction(tree_root
, 1);
5093 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5094 level
= btrfs_header_level(root
->node
);
5095 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5096 btrfs_set_lock_blocking(path
->nodes
[level
]);
5097 path
->slots
[level
] = 0;
5098 path
->locks
[level
] = 1;
5099 memset(&wc
->update_progress
, 0,
5100 sizeof(wc
->update_progress
));
5102 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5103 memcpy(&wc
->update_progress
, &key
,
5104 sizeof(wc
->update_progress
));
5106 level
= root_item
->drop_level
;
5108 path
->lowest_level
= level
;
5109 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5110 path
->lowest_level
= 0;
5115 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5116 path
->slots
[level
]);
5117 WARN_ON(memcmp(&key
, &wc
->update_progress
, sizeof(key
)));
5120 * unlock our path, this is safe because only this
5121 * function is allowed to delete this snapshot
5123 btrfs_unlock_up_safe(path
, 0);
5125 level
= btrfs_header_level(root
->node
);
5127 btrfs_tree_lock(path
->nodes
[level
]);
5128 btrfs_set_lock_blocking(path
->nodes
[level
]);
5130 ret
= btrfs_lookup_extent_info(trans
, root
,
5131 path
->nodes
[level
]->start
,
5132 path
->nodes
[level
]->len
,
5136 BUG_ON(wc
->refs
[level
] == 0);
5138 if (level
== root_item
->drop_level
)
5141 btrfs_tree_unlock(path
->nodes
[level
]);
5142 WARN_ON(wc
->refs
[level
] != 1);
5148 wc
->shared_level
= -1;
5149 wc
->stage
= DROP_REFERENCE
;
5150 wc
->update_ref
= update_ref
;
5154 ret
= walk_down_tree(trans
, root
, path
, wc
);
5160 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5167 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5171 if (wc
->stage
== DROP_REFERENCE
) {
5173 btrfs_node_key(path
->nodes
[level
],
5174 &root_item
->drop_progress
,
5175 path
->slots
[level
]);
5176 root_item
->drop_level
= level
;
5179 BUG_ON(wc
->level
== 0);
5180 if (trans
->transaction
->in_commit
||
5181 trans
->transaction
->delayed_refs
.flushing
) {
5182 ret
= btrfs_update_root(trans
, tree_root
,
5187 btrfs_end_transaction(trans
, tree_root
);
5188 trans
= btrfs_start_transaction(tree_root
, 1);
5190 unsigned long update
;
5191 update
= trans
->delayed_ref_updates
;
5192 trans
->delayed_ref_updates
= 0;
5194 btrfs_run_delayed_refs(trans
, tree_root
,
5198 btrfs_release_path(root
, path
);
5201 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
5204 free_extent_buffer(root
->node
);
5205 free_extent_buffer(root
->commit_root
);
5208 btrfs_end_transaction(trans
, tree_root
);
5210 btrfs_free_path(path
);
5215 * drop subtree rooted at tree block 'node'.
5217 * NOTE: this function will unlock and release tree block 'node'
5219 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5220 struct btrfs_root
*root
,
5221 struct extent_buffer
*node
,
5222 struct extent_buffer
*parent
)
5224 struct btrfs_path
*path
;
5225 struct walk_control
*wc
;
5231 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5233 path
= btrfs_alloc_path();
5236 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5239 btrfs_assert_tree_locked(parent
);
5240 parent_level
= btrfs_header_level(parent
);
5241 extent_buffer_get(parent
);
5242 path
->nodes
[parent_level
] = parent
;
5243 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5245 btrfs_assert_tree_locked(node
);
5246 level
= btrfs_header_level(node
);
5247 path
->nodes
[level
] = node
;
5248 path
->slots
[level
] = 0;
5249 path
->locks
[level
] = 1;
5251 wc
->refs
[parent_level
] = 1;
5252 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5254 wc
->shared_level
= -1;
5255 wc
->stage
= DROP_REFERENCE
;
5260 wret
= walk_down_tree(trans
, root
, path
, wc
);
5266 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5274 btrfs_free_path(path
);
5279 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
5282 return min(last
, start
+ nr
- 1);
5285 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
5290 unsigned long first_index
;
5291 unsigned long last_index
;
5294 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5295 struct file_ra_state
*ra
;
5296 struct btrfs_ordered_extent
*ordered
;
5297 unsigned int total_read
= 0;
5298 unsigned int total_dirty
= 0;
5301 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
5303 mutex_lock(&inode
->i_mutex
);
5304 first_index
= start
>> PAGE_CACHE_SHIFT
;
5305 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
5307 /* make sure the dirty trick played by the caller work */
5308 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5309 first_index
, last_index
);
5313 file_ra_state_init(ra
, inode
->i_mapping
);
5315 for (i
= first_index
; i
<= last_index
; i
++) {
5316 if (total_read
% ra
->ra_pages
== 0) {
5317 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
5318 calc_ra(i
, last_index
, ra
->ra_pages
));
5322 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
5324 page
= grab_cache_page(inode
->i_mapping
, i
);
5329 if (!PageUptodate(page
)) {
5330 btrfs_readpage(NULL
, page
);
5332 if (!PageUptodate(page
)) {
5334 page_cache_release(page
);
5339 wait_on_page_writeback(page
);
5341 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
5342 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
5343 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5345 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5347 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5349 page_cache_release(page
);
5350 btrfs_start_ordered_extent(inode
, ordered
, 1);
5351 btrfs_put_ordered_extent(ordered
);
5354 set_page_extent_mapped(page
);
5356 if (i
== first_index
)
5357 set_extent_bits(io_tree
, page_start
, page_end
,
5358 EXTENT_BOUNDARY
, GFP_NOFS
);
5359 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
5361 set_page_dirty(page
);
5364 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5366 page_cache_release(page
);
5371 mutex_unlock(&inode
->i_mutex
);
5372 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
5376 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
5377 struct btrfs_key
*extent_key
,
5380 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5381 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
5382 struct extent_map
*em
;
5383 u64 start
= extent_key
->objectid
- offset
;
5384 u64 end
= start
+ extent_key
->offset
- 1;
5386 em
= alloc_extent_map(GFP_NOFS
);
5387 BUG_ON(!em
|| IS_ERR(em
));
5390 em
->len
= extent_key
->offset
;
5391 em
->block_len
= extent_key
->offset
;
5392 em
->block_start
= extent_key
->objectid
;
5393 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5394 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5396 /* setup extent map to cheat btrfs_readpage */
5397 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5400 spin_lock(&em_tree
->lock
);
5401 ret
= add_extent_mapping(em_tree
, em
);
5402 spin_unlock(&em_tree
->lock
);
5403 if (ret
!= -EEXIST
) {
5404 free_extent_map(em
);
5407 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
5409 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
5411 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
5414 struct btrfs_ref_path
{
5416 u64 nodes
[BTRFS_MAX_LEVEL
];
5418 u64 root_generation
;
5425 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
5426 u64 new_nodes
[BTRFS_MAX_LEVEL
];
5429 struct disk_extent
{
5440 static int is_cowonly_root(u64 root_objectid
)
5442 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
5443 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
5444 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
5445 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
5446 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
5447 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
5452 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
5453 struct btrfs_root
*extent_root
,
5454 struct btrfs_ref_path
*ref_path
,
5457 struct extent_buffer
*leaf
;
5458 struct btrfs_path
*path
;
5459 struct btrfs_extent_ref
*ref
;
5460 struct btrfs_key key
;
5461 struct btrfs_key found_key
;
5467 path
= btrfs_alloc_path();
5472 ref_path
->lowest_level
= -1;
5473 ref_path
->current_level
= -1;
5474 ref_path
->shared_level
= -1;
5478 level
= ref_path
->current_level
- 1;
5479 while (level
>= -1) {
5481 if (level
< ref_path
->lowest_level
)
5485 bytenr
= ref_path
->nodes
[level
];
5487 bytenr
= ref_path
->extent_start
;
5488 BUG_ON(bytenr
== 0);
5490 parent
= ref_path
->nodes
[level
+ 1];
5491 ref_path
->nodes
[level
+ 1] = 0;
5492 ref_path
->current_level
= level
;
5493 BUG_ON(parent
== 0);
5495 key
.objectid
= bytenr
;
5496 key
.offset
= parent
+ 1;
5497 key
.type
= BTRFS_EXTENT_REF_KEY
;
5499 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5504 leaf
= path
->nodes
[0];
5505 nritems
= btrfs_header_nritems(leaf
);
5506 if (path
->slots
[0] >= nritems
) {
5507 ret
= btrfs_next_leaf(extent_root
, path
);
5512 leaf
= path
->nodes
[0];
5515 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5516 if (found_key
.objectid
== bytenr
&&
5517 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
5518 if (level
< ref_path
->shared_level
)
5519 ref_path
->shared_level
= level
;
5524 btrfs_release_path(extent_root
, path
);
5527 /* reached lowest level */
5531 level
= ref_path
->current_level
;
5532 while (level
< BTRFS_MAX_LEVEL
- 1) {
5536 bytenr
= ref_path
->nodes
[level
];
5538 bytenr
= ref_path
->extent_start
;
5540 BUG_ON(bytenr
== 0);
5542 key
.objectid
= bytenr
;
5544 key
.type
= BTRFS_EXTENT_REF_KEY
;
5546 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
5550 leaf
= path
->nodes
[0];
5551 nritems
= btrfs_header_nritems(leaf
);
5552 if (path
->slots
[0] >= nritems
) {
5553 ret
= btrfs_next_leaf(extent_root
, path
);
5557 /* the extent was freed by someone */
5558 if (ref_path
->lowest_level
== level
)
5560 btrfs_release_path(extent_root
, path
);
5563 leaf
= path
->nodes
[0];
5566 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5567 if (found_key
.objectid
!= bytenr
||
5568 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
5569 /* the extent was freed by someone */
5570 if (ref_path
->lowest_level
== level
) {
5574 btrfs_release_path(extent_root
, path
);
5578 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
5579 struct btrfs_extent_ref
);
5580 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
5581 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5583 level
= (int)ref_objectid
;
5584 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
5585 ref_path
->lowest_level
= level
;
5586 ref_path
->current_level
= level
;
5587 ref_path
->nodes
[level
] = bytenr
;
5589 WARN_ON(ref_objectid
!= level
);
5592 WARN_ON(level
!= -1);
5596 if (ref_path
->lowest_level
== level
) {
5597 ref_path
->owner_objectid
= ref_objectid
;
5598 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
5602 * the block is tree root or the block isn't in reference
5605 if (found_key
.objectid
== found_key
.offset
||
5606 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
5607 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5608 ref_path
->root_generation
=
5609 btrfs_ref_generation(leaf
, ref
);
5611 /* special reference from the tree log */
5612 ref_path
->nodes
[0] = found_key
.offset
;
5613 ref_path
->current_level
= 0;
5620 BUG_ON(ref_path
->nodes
[level
] != 0);
5621 ref_path
->nodes
[level
] = found_key
.offset
;
5622 ref_path
->current_level
= level
;
5625 * the reference was created in the running transaction,
5626 * no need to continue walking up.
5628 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
5629 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
5630 ref_path
->root_generation
=
5631 btrfs_ref_generation(leaf
, ref
);
5636 btrfs_release_path(extent_root
, path
);
5639 /* reached max tree level, but no tree root found. */
5642 btrfs_free_path(path
);
5646 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
5647 struct btrfs_root
*extent_root
,
5648 struct btrfs_ref_path
*ref_path
,
5651 memset(ref_path
, 0, sizeof(*ref_path
));
5652 ref_path
->extent_start
= extent_start
;
5654 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
5657 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
5658 struct btrfs_root
*extent_root
,
5659 struct btrfs_ref_path
*ref_path
)
5661 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
5664 static noinline
int get_new_locations(struct inode
*reloc_inode
,
5665 struct btrfs_key
*extent_key
,
5666 u64 offset
, int no_fragment
,
5667 struct disk_extent
**extents
,
5670 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
5671 struct btrfs_path
*path
;
5672 struct btrfs_file_extent_item
*fi
;
5673 struct extent_buffer
*leaf
;
5674 struct disk_extent
*exts
= *extents
;
5675 struct btrfs_key found_key
;
5680 int max
= *nr_extents
;
5683 WARN_ON(!no_fragment
&& *extents
);
5686 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
5691 path
= btrfs_alloc_path();
5694 cur_pos
= extent_key
->objectid
- offset
;
5695 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
5696 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
5706 leaf
= path
->nodes
[0];
5707 nritems
= btrfs_header_nritems(leaf
);
5708 if (path
->slots
[0] >= nritems
) {
5709 ret
= btrfs_next_leaf(root
, path
);
5714 leaf
= path
->nodes
[0];
5717 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5718 if (found_key
.offset
!= cur_pos
||
5719 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
5720 found_key
.objectid
!= reloc_inode
->i_ino
)
5723 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
5724 struct btrfs_file_extent_item
);
5725 if (btrfs_file_extent_type(leaf
, fi
) !=
5726 BTRFS_FILE_EXTENT_REG
||
5727 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
5731 struct disk_extent
*old
= exts
;
5733 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
5734 memcpy(exts
, old
, sizeof(*exts
) * nr
);
5735 if (old
!= *extents
)
5739 exts
[nr
].disk_bytenr
=
5740 btrfs_file_extent_disk_bytenr(leaf
, fi
);
5741 exts
[nr
].disk_num_bytes
=
5742 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
5743 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
5744 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
5745 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
5746 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
5747 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
5748 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
5750 BUG_ON(exts
[nr
].offset
> 0);
5751 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
5752 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
5754 cur_pos
+= exts
[nr
].num_bytes
;
5757 if (cur_pos
+ offset
>= last_byte
)
5767 BUG_ON(cur_pos
+ offset
> last_byte
);
5768 if (cur_pos
+ offset
< last_byte
) {
5774 btrfs_free_path(path
);
5776 if (exts
!= *extents
)
5785 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
5786 struct btrfs_root
*root
,
5787 struct btrfs_path
*path
,
5788 struct btrfs_key
*extent_key
,
5789 struct btrfs_key
*leaf_key
,
5790 struct btrfs_ref_path
*ref_path
,
5791 struct disk_extent
*new_extents
,
5794 struct extent_buffer
*leaf
;
5795 struct btrfs_file_extent_item
*fi
;
5796 struct inode
*inode
= NULL
;
5797 struct btrfs_key key
;
5802 u64 search_end
= (u64
)-1;
5805 int extent_locked
= 0;
5809 memcpy(&key
, leaf_key
, sizeof(key
));
5810 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
5811 if (key
.objectid
< ref_path
->owner_objectid
||
5812 (key
.objectid
== ref_path
->owner_objectid
&&
5813 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
5814 key
.objectid
= ref_path
->owner_objectid
;
5815 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5821 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
5825 leaf
= path
->nodes
[0];
5826 nritems
= btrfs_header_nritems(leaf
);
5828 if (extent_locked
&& ret
> 0) {
5830 * the file extent item was modified by someone
5831 * before the extent got locked.
5833 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
5834 lock_end
, GFP_NOFS
);
5838 if (path
->slots
[0] >= nritems
) {
5839 if (++nr_scaned
> 2)
5842 BUG_ON(extent_locked
);
5843 ret
= btrfs_next_leaf(root
, path
);
5848 leaf
= path
->nodes
[0];
5849 nritems
= btrfs_header_nritems(leaf
);
5852 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
5854 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
5855 if ((key
.objectid
> ref_path
->owner_objectid
) ||
5856 (key
.objectid
== ref_path
->owner_objectid
&&
5857 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
5858 key
.offset
>= search_end
)
5862 if (inode
&& key
.objectid
!= inode
->i_ino
) {
5863 BUG_ON(extent_locked
);
5864 btrfs_release_path(root
, path
);
5865 mutex_unlock(&inode
->i_mutex
);
5871 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5876 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
5877 struct btrfs_file_extent_item
);
5878 extent_type
= btrfs_file_extent_type(leaf
, fi
);
5879 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
5880 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
5881 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
5882 extent_key
->objectid
)) {
5888 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
5889 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
5891 if (search_end
== (u64
)-1) {
5892 search_end
= key
.offset
- ext_offset
+
5893 btrfs_file_extent_ram_bytes(leaf
, fi
);
5896 if (!extent_locked
) {
5897 lock_start
= key
.offset
;
5898 lock_end
= lock_start
+ num_bytes
- 1;
5900 if (lock_start
> key
.offset
||
5901 lock_end
+ 1 < key
.offset
+ num_bytes
) {
5902 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5903 lock_start
, lock_end
, GFP_NOFS
);
5909 btrfs_release_path(root
, path
);
5911 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
5912 key
.objectid
, root
);
5913 if (inode
->i_state
& I_NEW
) {
5914 BTRFS_I(inode
)->root
= root
;
5915 BTRFS_I(inode
)->location
.objectid
=
5917 BTRFS_I(inode
)->location
.type
=
5918 BTRFS_INODE_ITEM_KEY
;
5919 BTRFS_I(inode
)->location
.offset
= 0;
5920 btrfs_read_locked_inode(inode
);
5921 unlock_new_inode(inode
);
5924 * some code call btrfs_commit_transaction while
5925 * holding the i_mutex, so we can't use mutex_lock
5928 if (is_bad_inode(inode
) ||
5929 !mutex_trylock(&inode
->i_mutex
)) {
5932 key
.offset
= (u64
)-1;
5937 if (!extent_locked
) {
5938 struct btrfs_ordered_extent
*ordered
;
5940 btrfs_release_path(root
, path
);
5942 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
5943 lock_end
, GFP_NOFS
);
5944 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5947 ordered
->file_offset
<= lock_end
&&
5948 ordered
->file_offset
+ ordered
->len
> lock_start
) {
5949 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5950 lock_start
, lock_end
, GFP_NOFS
);
5951 btrfs_start_ordered_extent(inode
, ordered
, 1);
5952 btrfs_put_ordered_extent(ordered
);
5953 key
.offset
+= num_bytes
;
5957 btrfs_put_ordered_extent(ordered
);
5963 if (nr_extents
== 1) {
5964 /* update extent pointer in place */
5965 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
5966 new_extents
[0].disk_bytenr
);
5967 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
5968 new_extents
[0].disk_num_bytes
);
5969 btrfs_mark_buffer_dirty(leaf
);
5971 btrfs_drop_extent_cache(inode
, key
.offset
,
5972 key
.offset
+ num_bytes
- 1, 0);
5974 ret
= btrfs_inc_extent_ref(trans
, root
,
5975 new_extents
[0].disk_bytenr
,
5976 new_extents
[0].disk_num_bytes
,
5978 root
->root_key
.objectid
,
5983 ret
= btrfs_free_extent(trans
, root
,
5984 extent_key
->objectid
,
5987 btrfs_header_owner(leaf
),
5988 btrfs_header_generation(leaf
),
5992 btrfs_release_path(root
, path
);
5993 key
.offset
+= num_bytes
;
6001 * drop old extent pointer at first, then insert the
6002 * new pointers one bye one
6004 btrfs_release_path(root
, path
);
6005 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
6006 key
.offset
+ num_bytes
,
6007 key
.offset
, &alloc_hint
);
6010 for (i
= 0; i
< nr_extents
; i
++) {
6011 if (ext_offset
>= new_extents
[i
].num_bytes
) {
6012 ext_offset
-= new_extents
[i
].num_bytes
;
6015 extent_len
= min(new_extents
[i
].num_bytes
-
6016 ext_offset
, num_bytes
);
6018 ret
= btrfs_insert_empty_item(trans
, root
,
6023 leaf
= path
->nodes
[0];
6024 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6025 struct btrfs_file_extent_item
);
6026 btrfs_set_file_extent_generation(leaf
, fi
,
6028 btrfs_set_file_extent_type(leaf
, fi
,
6029 BTRFS_FILE_EXTENT_REG
);
6030 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6031 new_extents
[i
].disk_bytenr
);
6032 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6033 new_extents
[i
].disk_num_bytes
);
6034 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
6035 new_extents
[i
].ram_bytes
);
6037 btrfs_set_file_extent_compression(leaf
, fi
,
6038 new_extents
[i
].compression
);
6039 btrfs_set_file_extent_encryption(leaf
, fi
,
6040 new_extents
[i
].encryption
);
6041 btrfs_set_file_extent_other_encoding(leaf
, fi
,
6042 new_extents
[i
].other_encoding
);
6044 btrfs_set_file_extent_num_bytes(leaf
, fi
,
6046 ext_offset
+= new_extents
[i
].offset
;
6047 btrfs_set_file_extent_offset(leaf
, fi
,
6049 btrfs_mark_buffer_dirty(leaf
);
6051 btrfs_drop_extent_cache(inode
, key
.offset
,
6052 key
.offset
+ extent_len
- 1, 0);
6054 ret
= btrfs_inc_extent_ref(trans
, root
,
6055 new_extents
[i
].disk_bytenr
,
6056 new_extents
[i
].disk_num_bytes
,
6058 root
->root_key
.objectid
,
6059 trans
->transid
, key
.objectid
);
6061 btrfs_release_path(root
, path
);
6063 inode_add_bytes(inode
, extent_len
);
6066 num_bytes
-= extent_len
;
6067 key
.offset
+= extent_len
;
6072 BUG_ON(i
>= nr_extents
);
6076 if (extent_locked
) {
6077 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6078 lock_end
, GFP_NOFS
);
6082 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
6083 key
.offset
>= search_end
)
6090 btrfs_release_path(root
, path
);
6092 mutex_unlock(&inode
->i_mutex
);
6093 if (extent_locked
) {
6094 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
6095 lock_end
, GFP_NOFS
);
6102 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
6103 struct btrfs_root
*root
,
6104 struct extent_buffer
*buf
, u64 orig_start
)
6109 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
6110 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6112 level
= btrfs_header_level(buf
);
6114 struct btrfs_leaf_ref
*ref
;
6115 struct btrfs_leaf_ref
*orig_ref
;
6117 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
6121 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
6123 btrfs_free_leaf_ref(root
, orig_ref
);
6127 ref
->nritems
= orig_ref
->nritems
;
6128 memcpy(ref
->extents
, orig_ref
->extents
,
6129 sizeof(ref
->extents
[0]) * ref
->nritems
);
6131 btrfs_free_leaf_ref(root
, orig_ref
);
6133 ref
->root_gen
= trans
->transid
;
6134 ref
->bytenr
= buf
->start
;
6135 ref
->owner
= btrfs_header_owner(buf
);
6136 ref
->generation
= btrfs_header_generation(buf
);
6138 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
6140 btrfs_free_leaf_ref(root
, ref
);
6145 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
6146 struct extent_buffer
*leaf
,
6147 struct btrfs_block_group_cache
*group
,
6148 struct btrfs_root
*target_root
)
6150 struct btrfs_key key
;
6151 struct inode
*inode
= NULL
;
6152 struct btrfs_file_extent_item
*fi
;
6154 u64 skip_objectid
= 0;
6158 nritems
= btrfs_header_nritems(leaf
);
6159 for (i
= 0; i
< nritems
; i
++) {
6160 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6161 if (key
.objectid
== skip_objectid
||
6162 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6164 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6165 if (btrfs_file_extent_type(leaf
, fi
) ==
6166 BTRFS_FILE_EXTENT_INLINE
)
6168 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6170 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
6172 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
6173 key
.objectid
, target_root
, 1);
6176 skip_objectid
= key
.objectid
;
6179 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6181 lock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6182 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6183 btrfs_drop_extent_cache(inode
, key
.offset
,
6184 key
.offset
+ num_bytes
- 1, 1);
6185 unlock_extent(&BTRFS_I(inode
)->io_tree
, key
.offset
,
6186 key
.offset
+ num_bytes
- 1, GFP_NOFS
);
6193 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
6194 struct btrfs_root
*root
,
6195 struct extent_buffer
*leaf
,
6196 struct btrfs_block_group_cache
*group
,
6197 struct inode
*reloc_inode
)
6199 struct btrfs_key key
;
6200 struct btrfs_key extent_key
;
6201 struct btrfs_file_extent_item
*fi
;
6202 struct btrfs_leaf_ref
*ref
;
6203 struct disk_extent
*new_extent
;
6212 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
6213 BUG_ON(!new_extent
);
6215 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
6219 nritems
= btrfs_header_nritems(leaf
);
6220 for (i
= 0; i
< nritems
; i
++) {
6221 btrfs_item_key_to_cpu(leaf
, &key
, i
);
6222 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
6224 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
6225 if (btrfs_file_extent_type(leaf
, fi
) ==
6226 BTRFS_FILE_EXTENT_INLINE
)
6228 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6229 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6234 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
6235 bytenr
+ num_bytes
<= group
->key
.objectid
)
6238 extent_key
.objectid
= bytenr
;
6239 extent_key
.offset
= num_bytes
;
6240 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6242 ret
= get_new_locations(reloc_inode
, &extent_key
,
6243 group
->key
.objectid
, 1,
6244 &new_extent
, &nr_extent
);
6249 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
6250 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
6251 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
6252 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
6254 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
6255 new_extent
->disk_bytenr
);
6256 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
6257 new_extent
->disk_num_bytes
);
6258 btrfs_mark_buffer_dirty(leaf
);
6260 ret
= btrfs_inc_extent_ref(trans
, root
,
6261 new_extent
->disk_bytenr
,
6262 new_extent
->disk_num_bytes
,
6264 root
->root_key
.objectid
,
6265 trans
->transid
, key
.objectid
);
6268 ret
= btrfs_free_extent(trans
, root
,
6269 bytenr
, num_bytes
, leaf
->start
,
6270 btrfs_header_owner(leaf
),
6271 btrfs_header_generation(leaf
),
6277 BUG_ON(ext_index
+ 1 != ref
->nritems
);
6278 btrfs_free_leaf_ref(root
, ref
);
6282 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
6283 struct btrfs_root
*root
)
6285 struct btrfs_root
*reloc_root
;
6288 if (root
->reloc_root
) {
6289 reloc_root
= root
->reloc_root
;
6290 root
->reloc_root
= NULL
;
6291 list_add(&reloc_root
->dead_list
,
6292 &root
->fs_info
->dead_reloc_roots
);
6294 btrfs_set_root_bytenr(&reloc_root
->root_item
,
6295 reloc_root
->node
->start
);
6296 btrfs_set_root_level(&root
->root_item
,
6297 btrfs_header_level(reloc_root
->node
));
6298 memset(&reloc_root
->root_item
.drop_progress
, 0,
6299 sizeof(struct btrfs_disk_key
));
6300 reloc_root
->root_item
.drop_level
= 0;
6302 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
6303 &reloc_root
->root_key
,
6304 &reloc_root
->root_item
);
6310 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
6312 struct btrfs_trans_handle
*trans
;
6313 struct btrfs_root
*reloc_root
;
6314 struct btrfs_root
*prev_root
= NULL
;
6315 struct list_head dead_roots
;
6319 INIT_LIST_HEAD(&dead_roots
);
6320 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
6322 while (!list_empty(&dead_roots
)) {
6323 reloc_root
= list_entry(dead_roots
.prev
,
6324 struct btrfs_root
, dead_list
);
6325 list_del_init(&reloc_root
->dead_list
);
6327 BUG_ON(reloc_root
->commit_root
!= NULL
);
6329 trans
= btrfs_join_transaction(root
, 1);
6332 mutex_lock(&root
->fs_info
->drop_mutex
);
6333 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
6336 mutex_unlock(&root
->fs_info
->drop_mutex
);
6338 nr
= trans
->blocks_used
;
6339 ret
= btrfs_end_transaction(trans
, root
);
6341 btrfs_btree_balance_dirty(root
, nr
);
6344 free_extent_buffer(reloc_root
->node
);
6346 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
6347 &reloc_root
->root_key
);
6349 mutex_unlock(&root
->fs_info
->drop_mutex
);
6351 nr
= trans
->blocks_used
;
6352 ret
= btrfs_end_transaction(trans
, root
);
6354 btrfs_btree_balance_dirty(root
, nr
);
6357 prev_root
= reloc_root
;
6360 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
6366 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
6368 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
6372 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
6374 struct btrfs_root
*reloc_root
;
6375 struct btrfs_trans_handle
*trans
;
6376 struct btrfs_key location
;
6380 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6381 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
6383 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
6384 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6387 trans
= btrfs_start_transaction(root
, 1);
6389 ret
= btrfs_commit_transaction(trans
, root
);
6393 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
6394 location
.offset
= (u64
)-1;
6395 location
.type
= BTRFS_ROOT_ITEM_KEY
;
6397 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
6398 BUG_ON(!reloc_root
);
6399 btrfs_orphan_cleanup(reloc_root
);
6403 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
6404 struct btrfs_root
*root
)
6406 struct btrfs_root
*reloc_root
;
6407 struct extent_buffer
*eb
;
6408 struct btrfs_root_item
*root_item
;
6409 struct btrfs_key root_key
;
6412 BUG_ON(!root
->ref_cows
);
6413 if (root
->reloc_root
)
6416 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
6419 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
6420 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
6423 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
6424 root_key
.offset
= root
->root_key
.objectid
;
6425 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6427 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
6428 btrfs_set_root_refs(root_item
, 0);
6429 btrfs_set_root_bytenr(root_item
, eb
->start
);
6430 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
6431 btrfs_set_root_generation(root_item
, trans
->transid
);
6433 btrfs_tree_unlock(eb
);
6434 free_extent_buffer(eb
);
6436 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
6437 &root_key
, root_item
);
6441 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
6443 BUG_ON(!reloc_root
);
6444 reloc_root
->last_trans
= trans
->transid
;
6445 reloc_root
->commit_root
= NULL
;
6446 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
6448 root
->reloc_root
= reloc_root
;
6453 * Core function of space balance.
6455 * The idea is using reloc trees to relocate tree blocks in reference
6456 * counted roots. There is one reloc tree for each subvol, and all
6457 * reloc trees share same root key objectid. Reloc trees are snapshots
6458 * of the latest committed roots of subvols (root->commit_root).
6460 * To relocate a tree block referenced by a subvol, there are two steps.
6461 * COW the block through subvol's reloc tree, then update block pointer
6462 * in the subvol to point to the new block. Since all reloc trees share
6463 * same root key objectid, doing special handing for tree blocks owned
6464 * by them is easy. Once a tree block has been COWed in one reloc tree,
6465 * we can use the resulting new block directly when the same block is
6466 * required to COW again through other reloc trees. By this way, relocated
6467 * tree blocks are shared between reloc trees, so they are also shared
6470 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
6471 struct btrfs_root
*root
,
6472 struct btrfs_path
*path
,
6473 struct btrfs_key
*first_key
,
6474 struct btrfs_ref_path
*ref_path
,
6475 struct btrfs_block_group_cache
*group
,
6476 struct inode
*reloc_inode
)
6478 struct btrfs_root
*reloc_root
;
6479 struct extent_buffer
*eb
= NULL
;
6480 struct btrfs_key
*keys
;
6484 int lowest_level
= 0;
6487 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
6488 lowest_level
= ref_path
->owner_objectid
;
6490 if (!root
->ref_cows
) {
6491 path
->lowest_level
= lowest_level
;
6492 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
6494 path
->lowest_level
= 0;
6495 btrfs_release_path(root
, path
);
6499 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
6500 ret
= init_reloc_tree(trans
, root
);
6502 reloc_root
= root
->reloc_root
;
6504 shared_level
= ref_path
->shared_level
;
6505 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
6507 keys
= ref_path
->node_keys
;
6508 nodes
= ref_path
->new_nodes
;
6509 memset(&keys
[shared_level
+ 1], 0,
6510 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6511 memset(&nodes
[shared_level
+ 1], 0,
6512 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
6514 if (nodes
[lowest_level
] == 0) {
6515 path
->lowest_level
= lowest_level
;
6516 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6519 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
6520 eb
= path
->nodes
[level
];
6521 if (!eb
|| eb
== reloc_root
->node
)
6523 nodes
[level
] = eb
->start
;
6525 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
6527 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
6530 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6531 eb
= path
->nodes
[0];
6532 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
6533 group
, reloc_inode
);
6536 btrfs_release_path(reloc_root
, path
);
6538 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
6544 * replace tree blocks in the fs tree with tree blocks in
6547 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
6550 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6551 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
6554 extent_buffer_get(path
->nodes
[0]);
6555 eb
= path
->nodes
[0];
6556 btrfs_release_path(reloc_root
, path
);
6557 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
6559 free_extent_buffer(eb
);
6562 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
6563 path
->lowest_level
= 0;
6567 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
6568 struct btrfs_root
*root
,
6569 struct btrfs_path
*path
,
6570 struct btrfs_key
*first_key
,
6571 struct btrfs_ref_path
*ref_path
)
6575 ret
= relocate_one_path(trans
, root
, path
, first_key
,
6576 ref_path
, NULL
, NULL
);
6582 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
6583 struct btrfs_root
*extent_root
,
6584 struct btrfs_path
*path
,
6585 struct btrfs_key
*extent_key
)
6589 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
6592 ret
= btrfs_del_item(trans
, extent_root
, path
);
6594 btrfs_release_path(extent_root
, path
);
6598 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
6599 struct btrfs_ref_path
*ref_path
)
6601 struct btrfs_key root_key
;
6603 root_key
.objectid
= ref_path
->root_objectid
;
6604 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6605 if (is_cowonly_root(ref_path
->root_objectid
))
6606 root_key
.offset
= 0;
6608 root_key
.offset
= (u64
)-1;
6610 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
6613 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
6614 struct btrfs_path
*path
,
6615 struct btrfs_key
*extent_key
,
6616 struct btrfs_block_group_cache
*group
,
6617 struct inode
*reloc_inode
, int pass
)
6619 struct btrfs_trans_handle
*trans
;
6620 struct btrfs_root
*found_root
;
6621 struct btrfs_ref_path
*ref_path
= NULL
;
6622 struct disk_extent
*new_extents
= NULL
;
6627 struct btrfs_key first_key
;
6631 trans
= btrfs_start_transaction(extent_root
, 1);
6634 if (extent_key
->objectid
== 0) {
6635 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
6639 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
6645 for (loops
= 0; ; loops
++) {
6647 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
6648 extent_key
->objectid
);
6650 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
6657 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6658 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
6661 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
6662 BUG_ON(!found_root
);
6664 * for reference counted tree, only process reference paths
6665 * rooted at the latest committed root.
6667 if (found_root
->ref_cows
&&
6668 ref_path
->root_generation
!= found_root
->root_key
.offset
)
6671 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6674 * copy data extents to new locations
6676 u64 group_start
= group
->key
.objectid
;
6677 ret
= relocate_data_extent(reloc_inode
,
6686 level
= ref_path
->owner_objectid
;
6689 if (prev_block
!= ref_path
->nodes
[level
]) {
6690 struct extent_buffer
*eb
;
6691 u64 block_start
= ref_path
->nodes
[level
];
6692 u64 block_size
= btrfs_level_size(found_root
, level
);
6694 eb
= read_tree_block(found_root
, block_start
,
6696 btrfs_tree_lock(eb
);
6697 BUG_ON(level
!= btrfs_header_level(eb
));
6700 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
6702 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
6704 btrfs_tree_unlock(eb
);
6705 free_extent_buffer(eb
);
6706 prev_block
= block_start
;
6709 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
6710 btrfs_record_root_in_trans(found_root
);
6711 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
6712 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
6714 * try to update data extent references while
6715 * keeping metadata shared between snapshots.
6718 ret
= relocate_one_path(trans
, found_root
,
6719 path
, &first_key
, ref_path
,
6720 group
, reloc_inode
);
6726 * use fallback method to process the remaining
6730 u64 group_start
= group
->key
.objectid
;
6731 new_extents
= kmalloc(sizeof(*new_extents
),
6734 ret
= get_new_locations(reloc_inode
,
6742 ret
= replace_one_extent(trans
, found_root
,
6744 &first_key
, ref_path
,
6745 new_extents
, nr_extents
);
6747 ret
= relocate_tree_block(trans
, found_root
, path
,
6748 &first_key
, ref_path
);
6755 btrfs_end_transaction(trans
, extent_root
);
6762 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
6765 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
6766 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
6768 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
6769 if (num_devices
== 1) {
6770 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6771 stripped
= flags
& ~stripped
;
6773 /* turn raid0 into single device chunks */
6774 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6777 /* turn mirroring into duplication */
6778 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6779 BTRFS_BLOCK_GROUP_RAID10
))
6780 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
6783 /* they already had raid on here, just return */
6784 if (flags
& stripped
)
6787 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6788 stripped
= flags
& ~stripped
;
6790 /* switch duplicated blocks with raid1 */
6791 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6792 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
6794 /* turn single device chunks into raid0 */
6795 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
6800 static int __alloc_chunk_for_shrink(struct btrfs_root
*root
,
6801 struct btrfs_block_group_cache
*shrink_block_group
,
6804 struct btrfs_trans_handle
*trans
;
6805 u64 new_alloc_flags
;
6808 spin_lock(&shrink_block_group
->lock
);
6809 if (btrfs_block_group_used(&shrink_block_group
->item
) +
6810 shrink_block_group
->reserved
> 0) {
6811 spin_unlock(&shrink_block_group
->lock
);
6813 trans
= btrfs_start_transaction(root
, 1);
6814 spin_lock(&shrink_block_group
->lock
);
6816 new_alloc_flags
= update_block_group_flags(root
,
6817 shrink_block_group
->flags
);
6818 if (new_alloc_flags
!= shrink_block_group
->flags
) {
6820 btrfs_block_group_used(&shrink_block_group
->item
);
6822 calc
= shrink_block_group
->key
.offset
;
6824 spin_unlock(&shrink_block_group
->lock
);
6826 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
6827 calc
+ 2 * 1024 * 1024, new_alloc_flags
, force
);
6829 btrfs_end_transaction(trans
, root
);
6831 spin_unlock(&shrink_block_group
->lock
);
6836 int btrfs_prepare_block_group_relocation(struct btrfs_root
*root
,
6837 struct btrfs_block_group_cache
*group
)
6840 __alloc_chunk_for_shrink(root
, group
, 1);
6841 set_block_group_readonly(group
);
6846 static int __insert_orphan_inode(struct btrfs_trans_handle
*trans
,
6847 struct btrfs_root
*root
,
6848 u64 objectid
, u64 size
)
6850 struct btrfs_path
*path
;
6851 struct btrfs_inode_item
*item
;
6852 struct extent_buffer
*leaf
;
6855 path
= btrfs_alloc_path();
6859 path
->leave_spinning
= 1;
6860 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
6864 leaf
= path
->nodes
[0];
6865 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_inode_item
);
6866 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
6867 btrfs_set_inode_generation(leaf
, item
, 1);
6868 btrfs_set_inode_size(leaf
, item
, size
);
6869 btrfs_set_inode_mode(leaf
, item
, S_IFREG
| 0600);
6870 btrfs_set_inode_flags(leaf
, item
, BTRFS_INODE_NOCOMPRESS
);
6871 btrfs_mark_buffer_dirty(leaf
);
6872 btrfs_release_path(root
, path
);
6874 btrfs_free_path(path
);
6878 static noinline
struct inode
*create_reloc_inode(struct btrfs_fs_info
*fs_info
,
6879 struct btrfs_block_group_cache
*group
)
6881 struct inode
*inode
= NULL
;
6882 struct btrfs_trans_handle
*trans
;
6883 struct btrfs_root
*root
;
6884 struct btrfs_key root_key
;
6885 u64 objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6888 root_key
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
6889 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
6890 root_key
.offset
= (u64
)-1;
6891 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
6893 return ERR_CAST(root
);
6895 trans
= btrfs_start_transaction(root
, 1);
6898 err
= btrfs_find_free_objectid(trans
, root
, objectid
, &objectid
);
6902 err
= __insert_orphan_inode(trans
, root
, objectid
, group
->key
.offset
);
6905 err
= btrfs_insert_file_extent(trans
, root
, objectid
, 0, 0, 0,
6906 group
->key
.offset
, 0, group
->key
.offset
,
6910 inode
= btrfs_iget_locked(root
->fs_info
->sb
, objectid
, root
);
6911 if (inode
->i_state
& I_NEW
) {
6912 BTRFS_I(inode
)->root
= root
;
6913 BTRFS_I(inode
)->location
.objectid
= objectid
;
6914 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
6915 BTRFS_I(inode
)->location
.offset
= 0;
6916 btrfs_read_locked_inode(inode
);
6917 unlock_new_inode(inode
);
6918 BUG_ON(is_bad_inode(inode
));
6922 BTRFS_I(inode
)->index_cnt
= group
->key
.objectid
;
6924 err
= btrfs_orphan_add(trans
, inode
);
6926 btrfs_end_transaction(trans
, root
);
6930 inode
= ERR_PTR(err
);
6935 int btrfs_reloc_clone_csums(struct inode
*inode
, u64 file_pos
, u64 len
)
6938 struct btrfs_ordered_sum
*sums
;
6939 struct btrfs_sector_sum
*sector_sum
;
6940 struct btrfs_ordered_extent
*ordered
;
6941 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6942 struct list_head list
;
6947 INIT_LIST_HEAD(&list
);
6949 ordered
= btrfs_lookup_ordered_extent(inode
, file_pos
);
6950 BUG_ON(ordered
->file_offset
!= file_pos
|| ordered
->len
!= len
);
6952 disk_bytenr
= file_pos
+ BTRFS_I(inode
)->index_cnt
;
6953 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, disk_bytenr
,
6954 disk_bytenr
+ len
- 1, &list
);
6956 while (!list_empty(&list
)) {
6957 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
6958 list_del_init(&sums
->list
);
6960 sector_sum
= sums
->sums
;
6961 sums
->bytenr
= ordered
->start
;
6964 while (offset
< sums
->len
) {
6965 sector_sum
->bytenr
+= ordered
->start
- disk_bytenr
;
6967 offset
+= root
->sectorsize
;
6970 btrfs_add_ordered_sum(inode
, ordered
, sums
);
6972 btrfs_put_ordered_extent(ordered
);
6976 int btrfs_relocate_block_group(struct btrfs_root
*root
, u64 group_start
)
6978 struct btrfs_trans_handle
*trans
;
6979 struct btrfs_path
*path
;
6980 struct btrfs_fs_info
*info
= root
->fs_info
;
6981 struct extent_buffer
*leaf
;
6982 struct inode
*reloc_inode
;
6983 struct btrfs_block_group_cache
*block_group
;
6984 struct btrfs_key key
;
6993 root
= root
->fs_info
->extent_root
;
6995 block_group
= btrfs_lookup_block_group(info
, group_start
);
6996 BUG_ON(!block_group
);
6998 printk(KERN_INFO
"btrfs relocating block group %llu flags %llu\n",
6999 (unsigned long long)block_group
->key
.objectid
,
7000 (unsigned long long)block_group
->flags
);
7002 path
= btrfs_alloc_path();
7005 reloc_inode
= create_reloc_inode(info
, block_group
);
7006 BUG_ON(IS_ERR(reloc_inode
));
7008 __alloc_chunk_for_shrink(root
, block_group
, 1);
7009 set_block_group_readonly(block_group
);
7011 btrfs_start_delalloc_inodes(info
->tree_root
);
7012 btrfs_wait_ordered_extents(info
->tree_root
, 0);
7017 key
.objectid
= block_group
->key
.objectid
;
7020 cur_byte
= key
.objectid
;
7022 trans
= btrfs_start_transaction(info
->tree_root
, 1);
7023 btrfs_commit_transaction(trans
, info
->tree_root
);
7025 mutex_lock(&root
->fs_info
->cleaner_mutex
);
7026 btrfs_clean_old_snapshots(info
->tree_root
);
7027 btrfs_remove_leaf_refs(info
->tree_root
, (u64
)-1, 1);
7028 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
7030 trans
= btrfs_start_transaction(info
->tree_root
, 1);
7031 btrfs_commit_transaction(trans
, info
->tree_root
);
7034 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7038 leaf
= path
->nodes
[0];
7039 nritems
= btrfs_header_nritems(leaf
);
7040 if (path
->slots
[0] >= nritems
) {
7041 ret
= btrfs_next_leaf(root
, path
);
7048 leaf
= path
->nodes
[0];
7049 nritems
= btrfs_header_nritems(leaf
);
7052 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
7054 if (key
.objectid
>= block_group
->key
.objectid
+
7055 block_group
->key
.offset
)
7058 if (progress
&& need_resched()) {
7059 btrfs_release_path(root
, path
);
7066 if (btrfs_key_type(&key
) != BTRFS_EXTENT_ITEM_KEY
||
7067 key
.objectid
+ key
.offset
<= cur_byte
) {
7073 cur_byte
= key
.objectid
+ key
.offset
;
7074 btrfs_release_path(root
, path
);
7076 __alloc_chunk_for_shrink(root
, block_group
, 0);
7077 ret
= relocate_one_extent(root
, path
, &key
, block_group
,
7083 key
.objectid
= cur_byte
;
7088 btrfs_release_path(root
, path
);
7091 btrfs_wait_ordered_range(reloc_inode
, 0, (u64
)-1);
7092 invalidate_mapping_pages(reloc_inode
->i_mapping
, 0, -1);
7095 if (total_found
> 0) {
7096 printk(KERN_INFO
"btrfs found %llu extents in pass %d\n",
7097 (unsigned long long)total_found
, pass
);
7099 if (total_found
== skipped
&& pass
> 2) {
7101 reloc_inode
= create_reloc_inode(info
, block_group
);
7107 /* delete reloc_inode */
7110 /* unpin extents in this range */
7111 trans
= btrfs_start_transaction(info
->tree_root
, 1);
7112 btrfs_commit_transaction(trans
, info
->tree_root
);
7114 spin_lock(&block_group
->lock
);
7115 WARN_ON(block_group
->pinned
> 0);
7116 WARN_ON(block_group
->reserved
> 0);
7117 WARN_ON(btrfs_block_group_used(&block_group
->item
) > 0);
7118 spin_unlock(&block_group
->lock
);
7119 btrfs_put_block_group(block_group
);
7122 btrfs_free_path(path
);
7127 static int find_first_block_group(struct btrfs_root
*root
,
7128 struct btrfs_path
*path
, struct btrfs_key
*key
)
7131 struct btrfs_key found_key
;
7132 struct extent_buffer
*leaf
;
7135 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7140 slot
= path
->slots
[0];
7141 leaf
= path
->nodes
[0];
7142 if (slot
>= btrfs_header_nritems(leaf
)) {
7143 ret
= btrfs_next_leaf(root
, path
);
7150 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7152 if (found_key
.objectid
>= key
->objectid
&&
7153 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7164 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7166 struct btrfs_block_group_cache
*block_group
;
7167 struct btrfs_space_info
*space_info
;
7170 spin_lock(&info
->block_group_cache_lock
);
7171 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7172 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7174 rb_erase(&block_group
->cache_node
,
7175 &info
->block_group_cache_tree
);
7176 spin_unlock(&info
->block_group_cache_lock
);
7178 down_write(&block_group
->space_info
->groups_sem
);
7179 list_del(&block_group
->list
);
7180 up_write(&block_group
->space_info
->groups_sem
);
7182 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7183 wait_event(block_group
->caching_q
,
7184 block_group_cache_done(block_group
));
7186 btrfs_remove_free_space_cache(block_group
);
7188 WARN_ON(atomic_read(&block_group
->count
) != 1);
7191 spin_lock(&info
->block_group_cache_lock
);
7193 spin_unlock(&info
->block_group_cache_lock
);
7195 /* now that all the block groups are freed, go through and
7196 * free all the space_info structs. This is only called during
7197 * the final stages of unmount, and so we know nobody is
7198 * using them. We call synchronize_rcu() once before we start,
7199 * just to be on the safe side.
7203 while(!list_empty(&info
->space_info
)) {
7204 space_info
= list_entry(info
->space_info
.next
,
7205 struct btrfs_space_info
,
7208 list_del(&space_info
->list
);
7214 int btrfs_read_block_groups(struct btrfs_root
*root
)
7216 struct btrfs_path
*path
;
7218 struct btrfs_block_group_cache
*cache
;
7219 struct btrfs_fs_info
*info
= root
->fs_info
;
7220 struct btrfs_space_info
*space_info
;
7221 struct btrfs_key key
;
7222 struct btrfs_key found_key
;
7223 struct extent_buffer
*leaf
;
7225 root
= info
->extent_root
;
7228 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7229 path
= btrfs_alloc_path();
7234 ret
= find_first_block_group(root
, path
, &key
);
7242 leaf
= path
->nodes
[0];
7243 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7244 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7250 atomic_set(&cache
->count
, 1);
7251 spin_lock_init(&cache
->lock
);
7252 spin_lock_init(&cache
->tree_lock
);
7253 cache
->fs_info
= info
;
7254 init_waitqueue_head(&cache
->caching_q
);
7255 INIT_LIST_HEAD(&cache
->list
);
7256 INIT_LIST_HEAD(&cache
->cluster_list
);
7259 * we only want to have 32k of ram per block group for keeping
7260 * track of free space, and if we pass 1/2 of that we want to
7261 * start converting things over to using bitmaps
7263 cache
->extents_thresh
= ((1024 * 32) / 2) /
7264 sizeof(struct btrfs_free_space
);
7266 read_extent_buffer(leaf
, &cache
->item
,
7267 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7268 sizeof(cache
->item
));
7269 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7271 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7272 btrfs_release_path(root
, path
);
7273 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7274 cache
->sectorsize
= root
->sectorsize
;
7276 remove_sb_from_cache(root
, cache
);
7279 * check for two cases, either we are full, and therefore
7280 * don't need to bother with the caching work since we won't
7281 * find any space, or we are empty, and we can just add all
7282 * the space in and be done with it. This saves us _alot_ of
7283 * time, particularly in the full case.
7285 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7286 cache
->cached
= BTRFS_CACHE_FINISHED
;
7287 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7288 cache
->cached
= BTRFS_CACHE_FINISHED
;
7289 add_new_free_space(cache
, root
->fs_info
,
7291 found_key
.objectid
+
7295 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7296 btrfs_block_group_used(&cache
->item
),
7299 cache
->space_info
= space_info
;
7300 down_write(&space_info
->groups_sem
);
7301 list_add_tail(&cache
->list
, &space_info
->block_groups
);
7302 up_write(&space_info
->groups_sem
);
7304 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7307 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7308 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7309 set_block_group_readonly(cache
);
7313 btrfs_free_path(path
);
7317 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7318 struct btrfs_root
*root
, u64 bytes_used
,
7319 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7323 struct btrfs_root
*extent_root
;
7324 struct btrfs_block_group_cache
*cache
;
7326 extent_root
= root
->fs_info
->extent_root
;
7328 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7330 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7334 cache
->key
.objectid
= chunk_offset
;
7335 cache
->key
.offset
= size
;
7336 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7337 cache
->sectorsize
= root
->sectorsize
;
7340 * we only want to have 32k of ram per block group for keeping track
7341 * of free space, and if we pass 1/2 of that we want to start
7342 * converting things over to using bitmaps
7344 cache
->extents_thresh
= ((1024 * 32) / 2) /
7345 sizeof(struct btrfs_free_space
);
7346 atomic_set(&cache
->count
, 1);
7347 spin_lock_init(&cache
->lock
);
7348 spin_lock_init(&cache
->tree_lock
);
7349 init_waitqueue_head(&cache
->caching_q
);
7350 INIT_LIST_HEAD(&cache
->list
);
7351 INIT_LIST_HEAD(&cache
->cluster_list
);
7353 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7354 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7355 cache
->flags
= type
;
7356 btrfs_set_block_group_flags(&cache
->item
, type
);
7358 cache
->cached
= BTRFS_CACHE_FINISHED
;
7359 remove_sb_from_cache(root
, cache
);
7361 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7362 chunk_offset
+ size
);
7364 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7365 &cache
->space_info
);
7367 down_write(&cache
->space_info
->groups_sem
);
7368 list_add_tail(&cache
->list
, &cache
->space_info
->block_groups
);
7369 up_write(&cache
->space_info
->groups_sem
);
7371 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7374 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7375 sizeof(cache
->item
));
7378 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7383 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7384 struct btrfs_root
*root
, u64 group_start
)
7386 struct btrfs_path
*path
;
7387 struct btrfs_block_group_cache
*block_group
;
7388 struct btrfs_free_cluster
*cluster
;
7389 struct btrfs_key key
;
7392 root
= root
->fs_info
->extent_root
;
7394 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7395 BUG_ON(!block_group
);
7396 BUG_ON(!block_group
->ro
);
7398 memcpy(&key
, &block_group
->key
, sizeof(key
));
7400 /* make sure this block group isn't part of an allocation cluster */
7401 cluster
= &root
->fs_info
->data_alloc_cluster
;
7402 spin_lock(&cluster
->refill_lock
);
7403 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7404 spin_unlock(&cluster
->refill_lock
);
7407 * make sure this block group isn't part of a metadata
7408 * allocation cluster
7410 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7411 spin_lock(&cluster
->refill_lock
);
7412 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7413 spin_unlock(&cluster
->refill_lock
);
7415 path
= btrfs_alloc_path();
7418 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7419 rb_erase(&block_group
->cache_node
,
7420 &root
->fs_info
->block_group_cache_tree
);
7421 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7423 down_write(&block_group
->space_info
->groups_sem
);
7425 * we must use list_del_init so people can check to see if they
7426 * are still on the list after taking the semaphore
7428 list_del_init(&block_group
->list
);
7429 up_write(&block_group
->space_info
->groups_sem
);
7431 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7432 wait_event(block_group
->caching_q
,
7433 block_group_cache_done(block_group
));
7435 btrfs_remove_free_space_cache(block_group
);
7437 spin_lock(&block_group
->space_info
->lock
);
7438 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7439 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7440 spin_unlock(&block_group
->space_info
->lock
);
7442 btrfs_clear_space_info_full(root
->fs_info
);
7444 btrfs_put_block_group(block_group
);
7445 btrfs_put_block_group(block_group
);
7447 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7453 ret
= btrfs_del_item(trans
, root
, path
);
7455 btrfs_free_path(path
);