Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / fs / buffer.c
blob90a98865b0ccc38bc74d62a46d7243e683d9fe50
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
56 static int sync_buffer(void *word)
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
89 void __wait_on_buffer(struct buffer_head * bh)
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 static void
95 __clear_page_buffers(struct page *page)
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
103 static int quiet_error(struct buffer_head *bh)
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
111 static void buffer_io_error(struct buffer_head *bh)
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
135 unlock_buffer(bh);
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
144 __end_buffer_read_notouch(bh, uptodate);
145 put_bh(bh);
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
150 char b[BDEVNAME_SIZE];
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
164 unlock_buffer(bh);
165 put_bh(bh);
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * private_lock.
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct page *page;
189 int all_mapped = 1;
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
193 if (!page)
194 goto out;
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
198 goto out_unlock;
199 head = page_buffers(page);
200 bh = head;
201 do {
202 if (!buffer_mapped(bh))
203 all_mapped = 0;
204 else if (bh->b_blocknr == block) {
205 ret = bh;
206 get_bh(bh);
207 goto out_unlock;
209 bh = bh->b_this_page;
210 } while (bh != head);
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
217 if (all_mapped) {
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
226 out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229 out:
230 return ret;
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
236 by the user.
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
267 struct address_space *mapping = bdev->bd_inode->i_mapping;
269 if (mapping->nrpages == 0)
270 return;
272 invalidate_bh_lrus();
273 invalidate_mapping_pages(mapping, 0, -1);
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
279 static void free_more_memory(void)
281 struct zone *zone;
282 int nid;
284 wakeup_flusher_threads(1024);
285 yield();
287 for_each_online_node(nid) {
288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
290 &zone);
291 if (zone)
292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 GFP_NOFS, NULL);
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
303 unsigned long flags;
304 struct buffer_head *first;
305 struct buffer_head *tmp;
306 struct page *page;
307 int page_uptodate = 1;
309 BUG_ON(!buffer_async_read(bh));
311 page = bh->b_page;
312 if (uptodate) {
313 set_buffer_uptodate(bh);
314 } else {
315 clear_buffer_uptodate(bh);
316 if (!quiet_error(bh))
317 buffer_io_error(bh);
318 SetPageError(page);
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 clear_buffer_async_read(bh);
330 unlock_buffer(bh);
331 tmp = bh;
332 do {
333 if (!buffer_uptodate(tmp))
334 page_uptodate = 0;
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
337 goto still_busy;
339 tmp = tmp->b_this_page;
340 } while (tmp != bh);
341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
350 unlock_page(page);
351 return;
353 still_busy:
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
356 return;
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
363 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
365 char b[BDEVNAME_SIZE];
366 unsigned long flags;
367 struct buffer_head *first;
368 struct buffer_head *tmp;
369 struct page *page;
371 BUG_ON(!buffer_async_write(bh));
373 page = bh->b_page;
374 if (uptodate) {
375 set_buffer_uptodate(bh);
376 } else {
377 if (!quiet_error(bh)) {
378 buffer_io_error(bh);
379 printk(KERN_WARNING "lost page write due to "
380 "I/O error on %s\n",
381 bdevname(bh->b_bdev, b));
383 set_bit(AS_EIO, &page->mapping->flags);
384 set_buffer_write_io_error(bh);
385 clear_buffer_uptodate(bh);
386 SetPageError(page);
389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
393 clear_buffer_async_write(bh);
394 unlock_buffer(bh);
395 tmp = bh->b_this_page;
396 while (tmp != bh) {
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
399 goto still_busy;
401 tmp = tmp->b_this_page;
403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
405 end_page_writeback(page);
406 return;
408 still_busy:
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
411 return;
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
435 static void mark_buffer_async_read(struct buffer_head *bh)
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
441 void mark_buffer_async_write_endio(struct buffer_head *bh,
442 bh_end_io_t *handler)
444 bh->b_end_io = handler;
445 set_buffer_async_write(bh);
448 void mark_buffer_async_write(struct buffer_head *bh)
450 mark_buffer_async_write_endio(bh, end_buffer_async_write);
452 EXPORT_SYMBOL(mark_buffer_async_write);
456 * fs/buffer.c contains helper functions for buffer-backed address space's
457 * fsync functions. A common requirement for buffer-based filesystems is
458 * that certain data from the backing blockdev needs to be written out for
459 * a successful fsync(). For example, ext2 indirect blocks need to be
460 * written back and waited upon before fsync() returns.
462 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
463 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
464 * management of a list of dependent buffers at ->i_mapping->private_list.
466 * Locking is a little subtle: try_to_free_buffers() will remove buffers
467 * from their controlling inode's queue when they are being freed. But
468 * try_to_free_buffers() will be operating against the *blockdev* mapping
469 * at the time, not against the S_ISREG file which depends on those buffers.
470 * So the locking for private_list is via the private_lock in the address_space
471 * which backs the buffers. Which is different from the address_space
472 * against which the buffers are listed. So for a particular address_space,
473 * mapping->private_lock does *not* protect mapping->private_list! In fact,
474 * mapping->private_list will always be protected by the backing blockdev's
475 * ->private_lock.
477 * Which introduces a requirement: all buffers on an address_space's
478 * ->private_list must be from the same address_space: the blockdev's.
480 * address_spaces which do not place buffers at ->private_list via these
481 * utility functions are free to use private_lock and private_list for
482 * whatever they want. The only requirement is that list_empty(private_list)
483 * be true at clear_inode() time.
485 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
486 * filesystems should do that. invalidate_inode_buffers() should just go
487 * BUG_ON(!list_empty).
489 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
490 * take an address_space, not an inode. And it should be called
491 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
492 * queued up.
494 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
495 * list if it is already on a list. Because if the buffer is on a list,
496 * it *must* already be on the right one. If not, the filesystem is being
497 * silly. This will save a ton of locking. But first we have to ensure
498 * that buffers are taken *off* the old inode's list when they are freed
499 * (presumably in truncate). That requires careful auditing of all
500 * filesystems (do it inside bforget()). It could also be done by bringing
501 * b_inode back.
505 * The buffer's backing address_space's private_lock must be held
507 static void __remove_assoc_queue(struct buffer_head *bh)
509 list_del_init(&bh->b_assoc_buffers);
510 WARN_ON(!bh->b_assoc_map);
511 if (buffer_write_io_error(bh))
512 set_bit(AS_EIO, &bh->b_assoc_map->flags);
513 bh->b_assoc_map = NULL;
516 int inode_has_buffers(struct inode *inode)
518 return !list_empty(&inode->i_data.private_list);
522 * osync is designed to support O_SYNC io. It waits synchronously for
523 * all already-submitted IO to complete, but does not queue any new
524 * writes to the disk.
526 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
527 * you dirty the buffers, and then use osync_inode_buffers to wait for
528 * completion. Any other dirty buffers which are not yet queued for
529 * write will not be flushed to disk by the osync.
531 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 struct buffer_head *bh;
534 struct list_head *p;
535 int err = 0;
537 spin_lock(lock);
538 repeat:
539 list_for_each_prev(p, list) {
540 bh = BH_ENTRY(p);
541 if (buffer_locked(bh)) {
542 get_bh(bh);
543 spin_unlock(lock);
544 wait_on_buffer(bh);
545 if (!buffer_uptodate(bh))
546 err = -EIO;
547 brelse(bh);
548 spin_lock(lock);
549 goto repeat;
552 spin_unlock(lock);
553 return err;
556 void do_thaw_all(struct work_struct *work)
558 struct super_block *sb;
559 char b[BDEVNAME_SIZE];
561 spin_lock(&sb_lock);
562 restart:
563 list_for_each_entry(sb, &super_blocks, s_list) {
564 sb->s_count++;
565 spin_unlock(&sb_lock);
566 down_read(&sb->s_umount);
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570 up_read(&sb->s_umount);
571 spin_lock(&sb_lock);
572 if (__put_super_and_need_restart(sb))
573 goto restart;
575 spin_unlock(&sb_lock);
576 kfree(work);
577 printk(KERN_WARNING "Emergency Thaw complete\n");
581 * emergency_thaw_all -- forcibly thaw every frozen filesystem
583 * Used for emergency unfreeze of all filesystems via SysRq
585 void emergency_thaw_all(void)
587 struct work_struct *work;
589 work = kmalloc(sizeof(*work), GFP_ATOMIC);
590 if (work) {
591 INIT_WORK(work, do_thaw_all);
592 schedule_work(work);
597 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
598 * @mapping: the mapping which wants those buffers written
600 * Starts I/O against the buffers at mapping->private_list, and waits upon
601 * that I/O.
603 * Basically, this is a convenience function for fsync().
604 * @mapping is a file or directory which needs those buffers to be written for
605 * a successful fsync().
607 int sync_mapping_buffers(struct address_space *mapping)
609 struct address_space *buffer_mapping = mapping->assoc_mapping;
611 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
612 return 0;
614 return fsync_buffers_list(&buffer_mapping->private_lock,
615 &mapping->private_list);
617 EXPORT_SYMBOL(sync_mapping_buffers);
620 * Called when we've recently written block `bblock', and it is known that
621 * `bblock' was for a buffer_boundary() buffer. This means that the block at
622 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
623 * dirty, schedule it for IO. So that indirects merge nicely with their data.
625 void write_boundary_block(struct block_device *bdev,
626 sector_t bblock, unsigned blocksize)
628 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
629 if (bh) {
630 if (buffer_dirty(bh))
631 ll_rw_block(WRITE, 1, &bh);
632 put_bh(bh);
636 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
638 struct address_space *mapping = inode->i_mapping;
639 struct address_space *buffer_mapping = bh->b_page->mapping;
641 mark_buffer_dirty(bh);
642 if (!mapping->assoc_mapping) {
643 mapping->assoc_mapping = buffer_mapping;
644 } else {
645 BUG_ON(mapping->assoc_mapping != buffer_mapping);
647 if (!bh->b_assoc_map) {
648 spin_lock(&buffer_mapping->private_lock);
649 list_move_tail(&bh->b_assoc_buffers,
650 &mapping->private_list);
651 bh->b_assoc_map = mapping;
652 spin_unlock(&buffer_mapping->private_lock);
655 EXPORT_SYMBOL(mark_buffer_dirty_inode);
658 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
659 * dirty.
661 * If warn is true, then emit a warning if the page is not uptodate and has
662 * not been truncated.
664 static void __set_page_dirty(struct page *page,
665 struct address_space *mapping, int warn)
667 spin_lock_irq(&mapping->tree_lock);
668 if (page->mapping) { /* Race with truncate? */
669 WARN_ON_ONCE(warn && !PageUptodate(page));
670 account_page_dirtied(page, mapping);
671 radix_tree_tag_set(&mapping->page_tree,
672 page_index(page), PAGECACHE_TAG_DIRTY);
674 spin_unlock_irq(&mapping->tree_lock);
675 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
679 * Add a page to the dirty page list.
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
687 * dirty.
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
703 int __set_page_dirty_buffers(struct page *page)
705 int newly_dirty;
706 struct address_space *mapping = page_mapping(page);
708 if (unlikely(!mapping))
709 return !TestSetPageDirty(page);
711 spin_lock(&mapping->private_lock);
712 if (page_has_buffers(page)) {
713 struct buffer_head *head = page_buffers(page);
714 struct buffer_head *bh = head;
716 do {
717 set_buffer_dirty(bh);
718 bh = bh->b_this_page;
719 } while (bh != head);
721 newly_dirty = !TestSetPageDirty(page);
722 spin_unlock(&mapping->private_lock);
724 if (newly_dirty)
725 __set_page_dirty(page, mapping, 1);
726 return newly_dirty;
728 EXPORT_SYMBOL(__set_page_dirty_buffers);
731 * Write out and wait upon a list of buffers.
733 * We have conflicting pressures: we want to make sure that all
734 * initially dirty buffers get waited on, but that any subsequently
735 * dirtied buffers don't. After all, we don't want fsync to last
736 * forever if somebody is actively writing to the file.
738 * Do this in two main stages: first we copy dirty buffers to a
739 * temporary inode list, queueing the writes as we go. Then we clean
740 * up, waiting for those writes to complete.
742 * During this second stage, any subsequent updates to the file may end
743 * up refiling the buffer on the original inode's dirty list again, so
744 * there is a chance we will end up with a buffer queued for write but
745 * not yet completed on that list. So, as a final cleanup we go through
746 * the osync code to catch these locked, dirty buffers without requeuing
747 * any newly dirty buffers for write.
749 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
751 struct buffer_head *bh;
752 struct list_head tmp;
753 struct address_space *mapping, *prev_mapping = NULL;
754 int err = 0, err2;
756 INIT_LIST_HEAD(&tmp);
758 spin_lock(lock);
759 while (!list_empty(list)) {
760 bh = BH_ENTRY(list->next);
761 mapping = bh->b_assoc_map;
762 __remove_assoc_queue(bh);
763 /* Avoid race with mark_buffer_dirty_inode() which does
764 * a lockless check and we rely on seeing the dirty bit */
765 smp_mb();
766 if (buffer_dirty(bh) || buffer_locked(bh)) {
767 list_add(&bh->b_assoc_buffers, &tmp);
768 bh->b_assoc_map = mapping;
769 if (buffer_dirty(bh)) {
770 get_bh(bh);
771 spin_unlock(lock);
773 * Ensure any pending I/O completes so that
774 * ll_rw_block() actually writes the current
775 * contents - it is a noop if I/O is still in
776 * flight on potentially older contents.
778 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
781 * Kick off IO for the previous mapping. Note
782 * that we will not run the very last mapping,
783 * wait_on_buffer() will do that for us
784 * through sync_buffer().
786 if (prev_mapping && prev_mapping != mapping)
787 blk_run_address_space(prev_mapping);
788 prev_mapping = mapping;
790 brelse(bh);
791 spin_lock(lock);
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
798 get_bh(bh);
799 mapping = bh->b_assoc_map;
800 __remove_assoc_queue(bh);
801 /* Avoid race with mark_buffer_dirty_inode() which does
802 * a lockless check and we rely on seeing the dirty bit */
803 smp_mb();
804 if (buffer_dirty(bh)) {
805 list_add(&bh->b_assoc_buffers,
806 &mapping->private_list);
807 bh->b_assoc_map = mapping;
809 spin_unlock(lock);
810 wait_on_buffer(bh);
811 if (!buffer_uptodate(bh))
812 err = -EIO;
813 brelse(bh);
814 spin_lock(lock);
817 spin_unlock(lock);
818 err2 = osync_buffers_list(lock, list);
819 if (err)
820 return err;
821 else
822 return err2;
826 * Invalidate any and all dirty buffers on a given inode. We are
827 * probably unmounting the fs, but that doesn't mean we have already
828 * done a sync(). Just drop the buffers from the inode list.
830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
831 * assumes that all the buffers are against the blockdev. Not true
832 * for reiserfs.
834 void invalidate_inode_buffers(struct inode *inode)
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->assoc_mapping;
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list))
843 __remove_assoc_queue(BH_ENTRY(list->next));
844 spin_unlock(&buffer_mapping->private_lock);
847 EXPORT_SYMBOL(invalidate_inode_buffers);
850 * Remove any clean buffers from the inode's buffer list. This is called
851 * when we're trying to free the inode itself. Those buffers can pin it.
853 * Returns true if all buffers were removed.
855 int remove_inode_buffers(struct inode *inode)
857 int ret = 1;
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->private_list;
862 struct address_space *buffer_mapping = mapping->assoc_mapping;
864 spin_lock(&buffer_mapping->private_lock);
865 while (!list_empty(list)) {
866 struct buffer_head *bh = BH_ENTRY(list->next);
867 if (buffer_dirty(bh)) {
868 ret = 0;
869 break;
871 __remove_assoc_queue(bh);
873 spin_unlock(&buffer_mapping->private_lock);
875 return ret;
879 * Create the appropriate buffers when given a page for data area and
880 * the size of each buffer.. Use the bh->b_this_page linked list to
881 * follow the buffers created. Return NULL if unable to create more
882 * buffers.
884 * The retry flag is used to differentiate async IO (paging, swapping)
885 * which may not fail from ordinary buffer allocations.
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 int retry)
890 struct buffer_head *bh, *head;
891 long offset;
893 try_again:
894 head = NULL;
895 offset = PAGE_SIZE;
896 while ((offset -= size) >= 0) {
897 bh = alloc_buffer_head(GFP_NOFS);
898 if (!bh)
899 goto no_grow;
901 bh->b_bdev = NULL;
902 bh->b_this_page = head;
903 bh->b_blocknr = -1;
904 head = bh;
906 bh->b_state = 0;
907 atomic_set(&bh->b_count, 0);
908 bh->b_private = NULL;
909 bh->b_size = size;
911 /* Link the buffer to its page */
912 set_bh_page(bh, page, offset);
914 init_buffer(bh, NULL, NULL);
916 return head;
918 * In case anything failed, we just free everything we got.
920 no_grow:
921 if (head) {
922 do {
923 bh = head;
924 head = head->b_this_page;
925 free_buffer_head(bh);
926 } while (head);
930 * Return failure for non-async IO requests. Async IO requests
931 * are not allowed to fail, so we have to wait until buffer heads
932 * become available. But we don't want tasks sleeping with
933 * partially complete buffers, so all were released above.
935 if (!retry)
936 return NULL;
938 /* We're _really_ low on memory. Now we just
939 * wait for old buffer heads to become free due to
940 * finishing IO. Since this is an async request and
941 * the reserve list is empty, we're sure there are
942 * async buffer heads in use.
944 free_more_memory();
945 goto try_again;
947 EXPORT_SYMBOL_GPL(alloc_page_buffers);
949 static inline void
950 link_dev_buffers(struct page *page, struct buffer_head *head)
952 struct buffer_head *bh, *tail;
954 bh = head;
955 do {
956 tail = bh;
957 bh = bh->b_this_page;
958 } while (bh);
959 tail->b_this_page = head;
960 attach_page_buffers(page, head);
964 * Initialise the state of a blockdev page's buffers.
966 static void
967 init_page_buffers(struct page *page, struct block_device *bdev,
968 sector_t block, int size)
970 struct buffer_head *head = page_buffers(page);
971 struct buffer_head *bh = head;
972 int uptodate = PageUptodate(page);
974 do {
975 if (!buffer_mapped(bh)) {
976 init_buffer(bh, NULL, NULL);
977 bh->b_bdev = bdev;
978 bh->b_blocknr = block;
979 if (uptodate)
980 set_buffer_uptodate(bh);
981 set_buffer_mapped(bh);
983 block++;
984 bh = bh->b_this_page;
985 } while (bh != head);
989 * Create the page-cache page that contains the requested block.
991 * This is user purely for blockdev mappings.
993 static struct page *
994 grow_dev_page(struct block_device *bdev, sector_t block,
995 pgoff_t index, int size)
997 struct inode *inode = bdev->bd_inode;
998 struct page *page;
999 struct buffer_head *bh;
1001 page = find_or_create_page(inode->i_mapping, index,
1002 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1003 if (!page)
1004 return NULL;
1006 BUG_ON(!PageLocked(page));
1008 if (page_has_buffers(page)) {
1009 bh = page_buffers(page);
1010 if (bh->b_size == size) {
1011 init_page_buffers(page, bdev, block, size);
1012 return page;
1014 if (!try_to_free_buffers(page))
1015 goto failed;
1019 * Allocate some buffers for this page
1021 bh = alloc_page_buffers(page, size, 0);
1022 if (!bh)
1023 goto failed;
1026 * Link the page to the buffers and initialise them. Take the
1027 * lock to be atomic wrt __find_get_block(), which does not
1028 * run under the page lock.
1030 spin_lock(&inode->i_mapping->private_lock);
1031 link_dev_buffers(page, bh);
1032 init_page_buffers(page, bdev, block, size);
1033 spin_unlock(&inode->i_mapping->private_lock);
1034 return page;
1036 failed:
1037 BUG();
1038 unlock_page(page);
1039 page_cache_release(page);
1040 return NULL;
1044 * Create buffers for the specified block device block's page. If
1045 * that page was dirty, the buffers are set dirty also.
1047 static int
1048 grow_buffers(struct block_device *bdev, sector_t block, int size)
1050 struct page *page;
1051 pgoff_t index;
1052 int sizebits;
1054 sizebits = -1;
1055 do {
1056 sizebits++;
1057 } while ((size << sizebits) < PAGE_SIZE);
1059 index = block >> sizebits;
1062 * Check for a block which wants to lie outside our maximum possible
1063 * pagecache index. (this comparison is done using sector_t types).
1065 if (unlikely(index != block >> sizebits)) {
1066 char b[BDEVNAME_SIZE];
1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 "device %s\n",
1070 __func__, (unsigned long long)block,
1071 bdevname(bdev, b));
1072 return -EIO;
1074 block = index << sizebits;
1075 /* Create a page with the proper size buffers.. */
1076 page = grow_dev_page(bdev, block, index, size);
1077 if (!page)
1078 return 0;
1079 unlock_page(page);
1080 page_cache_release(page);
1081 return 1;
1084 static struct buffer_head *
1085 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1087 /* Size must be multiple of hard sectorsize */
1088 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089 (size < 512 || size > PAGE_SIZE))) {
1090 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091 size);
1092 printk(KERN_ERR "logical block size: %d\n",
1093 bdev_logical_block_size(bdev));
1095 dump_stack();
1096 return NULL;
1099 for (;;) {
1100 struct buffer_head * bh;
1101 int ret;
1103 bh = __find_get_block(bdev, block, size);
1104 if (bh)
1105 return bh;
1107 ret = grow_buffers(bdev, block, size);
1108 if (ret < 0)
1109 return NULL;
1110 if (ret == 0)
1111 free_more_memory();
1116 * The relationship between dirty buffers and dirty pages:
1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119 * the page is tagged dirty in its radix tree.
1121 * At all times, the dirtiness of the buffers represents the dirtiness of
1122 * subsections of the page. If the page has buffers, the page dirty bit is
1123 * merely a hint about the true dirty state.
1125 * When a page is set dirty in its entirety, all its buffers are marked dirty
1126 * (if the page has buffers).
1128 * When a buffer is marked dirty, its page is dirtied, but the page's other
1129 * buffers are not.
1131 * Also. When blockdev buffers are explicitly read with bread(), they
1132 * individually become uptodate. But their backing page remains not
1133 * uptodate - even if all of its buffers are uptodate. A subsequent
1134 * block_read_full_page() against that page will discover all the uptodate
1135 * buffers, will set the page uptodate and will perform no I/O.
1139 * mark_buffer_dirty - mark a buffer_head as needing writeout
1140 * @bh: the buffer_head to mark dirty
1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143 * backing page dirty, then tag the page as dirty in its address_space's radix
1144 * tree and then attach the address_space's inode to its superblock's dirty
1145 * inode list.
1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1148 * mapping->tree_lock and the global inode_lock.
1150 void mark_buffer_dirty(struct buffer_head *bh)
1152 WARN_ON_ONCE(!buffer_uptodate(bh));
1155 * Very *carefully* optimize the it-is-already-dirty case.
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1160 if (buffer_dirty(bh)) {
1161 smp_mb();
1162 if (buffer_dirty(bh))
1163 return;
1166 if (!test_set_buffer_dirty(bh)) {
1167 struct page *page = bh->b_page;
1168 if (!TestSetPageDirty(page)) {
1169 struct address_space *mapping = page_mapping(page);
1170 if (mapping)
1171 __set_page_dirty(page, mapping, 0);
1177 * Decrement a buffer_head's reference count. If all buffers against a page
1178 * have zero reference count, are clean and unlocked, and if the page is clean
1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181 * a page but it ends up not being freed, and buffers may later be reattached).
1183 void __brelse(struct buffer_head * buf)
1185 if (atomic_read(&buf->b_count)) {
1186 put_bh(buf);
1187 return;
1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1193 * bforget() is like brelse(), except it discards any
1194 * potentially dirty data.
1196 void __bforget(struct buffer_head *bh)
1198 clear_buffer_dirty(bh);
1199 if (bh->b_assoc_map) {
1200 struct address_space *buffer_mapping = bh->b_page->mapping;
1202 spin_lock(&buffer_mapping->private_lock);
1203 list_del_init(&bh->b_assoc_buffers);
1204 bh->b_assoc_map = NULL;
1205 spin_unlock(&buffer_mapping->private_lock);
1207 __brelse(bh);
1210 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 lock_buffer(bh);
1213 if (buffer_uptodate(bh)) {
1214 unlock_buffer(bh);
1215 return bh;
1216 } else {
1217 get_bh(bh);
1218 bh->b_end_io = end_buffer_read_sync;
1219 submit_bh(READ, bh);
1220 wait_on_buffer(bh);
1221 if (buffer_uptodate(bh))
1222 return bh;
1224 brelse(bh);
1225 return NULL;
1229 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1230 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1231 * refcount elevated by one when they're in an LRU. A buffer can only appear
1232 * once in a particular CPU's LRU. A single buffer can be present in multiple
1233 * CPU's LRUs at the same time.
1235 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1236 * sb_find_get_block().
1238 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1239 * a local interrupt disable for that.
1242 #define BH_LRU_SIZE 8
1244 struct bh_lru {
1245 struct buffer_head *bhs[BH_LRU_SIZE];
1248 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250 #ifdef CONFIG_SMP
1251 #define bh_lru_lock() local_irq_disable()
1252 #define bh_lru_unlock() local_irq_enable()
1253 #else
1254 #define bh_lru_lock() preempt_disable()
1255 #define bh_lru_unlock() preempt_enable()
1256 #endif
1258 static inline void check_irqs_on(void)
1260 #ifdef irqs_disabled
1261 BUG_ON(irqs_disabled());
1262 #endif
1266 * The LRU management algorithm is dopey-but-simple. Sorry.
1268 static void bh_lru_install(struct buffer_head *bh)
1270 struct buffer_head *evictee = NULL;
1271 struct bh_lru *lru;
1273 check_irqs_on();
1274 bh_lru_lock();
1275 lru = &__get_cpu_var(bh_lrus);
1276 if (lru->bhs[0] != bh) {
1277 struct buffer_head *bhs[BH_LRU_SIZE];
1278 int in;
1279 int out = 0;
1281 get_bh(bh);
1282 bhs[out++] = bh;
1283 for (in = 0; in < BH_LRU_SIZE; in++) {
1284 struct buffer_head *bh2 = lru->bhs[in];
1286 if (bh2 == bh) {
1287 __brelse(bh2);
1288 } else {
1289 if (out >= BH_LRU_SIZE) {
1290 BUG_ON(evictee != NULL);
1291 evictee = bh2;
1292 } else {
1293 bhs[out++] = bh2;
1297 while (out < BH_LRU_SIZE)
1298 bhs[out++] = NULL;
1299 memcpy(lru->bhs, bhs, sizeof(bhs));
1301 bh_lru_unlock();
1303 if (evictee)
1304 __brelse(evictee);
1308 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1310 static struct buffer_head *
1311 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1313 struct buffer_head *ret = NULL;
1314 struct bh_lru *lru;
1315 unsigned int i;
1317 check_irqs_on();
1318 bh_lru_lock();
1319 lru = &__get_cpu_var(bh_lrus);
1320 for (i = 0; i < BH_LRU_SIZE; i++) {
1321 struct buffer_head *bh = lru->bhs[i];
1323 if (bh && bh->b_bdev == bdev &&
1324 bh->b_blocknr == block && bh->b_size == size) {
1325 if (i) {
1326 while (i) {
1327 lru->bhs[i] = lru->bhs[i - 1];
1328 i--;
1330 lru->bhs[0] = bh;
1332 get_bh(bh);
1333 ret = bh;
1334 break;
1337 bh_lru_unlock();
1338 return ret;
1342 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1343 * it in the LRU and mark it as accessed. If it is not present then return
1344 * NULL
1346 struct buffer_head *
1347 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1349 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1351 if (bh == NULL) {
1352 bh = __find_get_block_slow(bdev, block);
1353 if (bh)
1354 bh_lru_install(bh);
1356 if (bh)
1357 touch_buffer(bh);
1358 return bh;
1360 EXPORT_SYMBOL(__find_get_block);
1363 * __getblk will locate (and, if necessary, create) the buffer_head
1364 * which corresponds to the passed block_device, block and size. The
1365 * returned buffer has its reference count incremented.
1367 * __getblk() cannot fail - it just keeps trying. If you pass it an
1368 * illegal block number, __getblk() will happily return a buffer_head
1369 * which represents the non-existent block. Very weird.
1371 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1372 * attempt is failing. FIXME, perhaps?
1374 struct buffer_head *
1375 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1377 struct buffer_head *bh = __find_get_block(bdev, block, size);
1379 might_sleep();
1380 if (bh == NULL)
1381 bh = __getblk_slow(bdev, block, size);
1382 return bh;
1384 EXPORT_SYMBOL(__getblk);
1387 * Do async read-ahead on a buffer..
1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 struct buffer_head *bh = __getblk(bdev, block, size);
1392 if (likely(bh)) {
1393 ll_rw_block(READA, 1, &bh);
1394 brelse(bh);
1397 EXPORT_SYMBOL(__breadahead);
1400 * __bread() - reads a specified block and returns the bh
1401 * @bdev: the block_device to read from
1402 * @block: number of block
1403 * @size: size (in bytes) to read
1405 * Reads a specified block, and returns buffer head that contains it.
1406 * It returns NULL if the block was unreadable.
1408 struct buffer_head *
1409 __bread(struct block_device *bdev, sector_t block, unsigned size)
1411 struct buffer_head *bh = __getblk(bdev, block, size);
1413 if (likely(bh) && !buffer_uptodate(bh))
1414 bh = __bread_slow(bh);
1415 return bh;
1417 EXPORT_SYMBOL(__bread);
1420 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1421 * This doesn't race because it runs in each cpu either in irq
1422 * or with preempt disabled.
1424 static void invalidate_bh_lru(void *arg)
1426 struct bh_lru *b = &get_cpu_var(bh_lrus);
1427 int i;
1429 for (i = 0; i < BH_LRU_SIZE; i++) {
1430 brelse(b->bhs[i]);
1431 b->bhs[i] = NULL;
1433 put_cpu_var(bh_lrus);
1436 void invalidate_bh_lrus(void)
1438 on_each_cpu(invalidate_bh_lru, NULL, 1);
1440 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442 void set_bh_page(struct buffer_head *bh,
1443 struct page *page, unsigned long offset)
1445 bh->b_page = page;
1446 BUG_ON(offset >= PAGE_SIZE);
1447 if (PageHighMem(page))
1449 * This catches illegal uses and preserves the offset:
1451 bh->b_data = (char *)(0 + offset);
1452 else
1453 bh->b_data = page_address(page) + offset;
1455 EXPORT_SYMBOL(set_bh_page);
1458 * Called when truncating a buffer on a page completely.
1460 static void discard_buffer(struct buffer_head * bh)
1462 lock_buffer(bh);
1463 clear_buffer_dirty(bh);
1464 bh->b_bdev = NULL;
1465 clear_buffer_mapped(bh);
1466 clear_buffer_req(bh);
1467 clear_buffer_new(bh);
1468 clear_buffer_delay(bh);
1469 clear_buffer_unwritten(bh);
1470 unlock_buffer(bh);
1474 * block_invalidatepage - invalidate part of all of a buffer-backed page
1476 * @page: the page which is affected
1477 * @offset: the index of the truncation point
1479 * block_invalidatepage() is called when all or part of the page has become
1480 * invalidatedby a truncate operation.
1482 * block_invalidatepage() does not have to release all buffers, but it must
1483 * ensure that no dirty buffer is left outside @offset and that no I/O
1484 * is underway against any of the blocks which are outside the truncation
1485 * point. Because the caller is about to free (and possibly reuse) those
1486 * blocks on-disk.
1488 void block_invalidatepage(struct page *page, unsigned long offset)
1490 struct buffer_head *head, *bh, *next;
1491 unsigned int curr_off = 0;
1493 BUG_ON(!PageLocked(page));
1494 if (!page_has_buffers(page))
1495 goto out;
1497 head = page_buffers(page);
1498 bh = head;
1499 do {
1500 unsigned int next_off = curr_off + bh->b_size;
1501 next = bh->b_this_page;
1504 * is this block fully invalidated?
1506 if (offset <= curr_off)
1507 discard_buffer(bh);
1508 curr_off = next_off;
1509 bh = next;
1510 } while (bh != head);
1513 * We release buffers only if the entire page is being invalidated.
1514 * The get_block cached value has been unconditionally invalidated,
1515 * so real IO is not possible anymore.
1517 if (offset == 0)
1518 try_to_release_page(page, 0);
1519 out:
1520 return;
1522 EXPORT_SYMBOL(block_invalidatepage);
1525 * We attach and possibly dirty the buffers atomically wrt
1526 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1527 * is already excluded via the page lock.
1529 void create_empty_buffers(struct page *page,
1530 unsigned long blocksize, unsigned long b_state)
1532 struct buffer_head *bh, *head, *tail;
1534 head = alloc_page_buffers(page, blocksize, 1);
1535 bh = head;
1536 do {
1537 bh->b_state |= b_state;
1538 tail = bh;
1539 bh = bh->b_this_page;
1540 } while (bh);
1541 tail->b_this_page = head;
1543 spin_lock(&page->mapping->private_lock);
1544 if (PageUptodate(page) || PageDirty(page)) {
1545 bh = head;
1546 do {
1547 if (PageDirty(page))
1548 set_buffer_dirty(bh);
1549 if (PageUptodate(page))
1550 set_buffer_uptodate(bh);
1551 bh = bh->b_this_page;
1552 } while (bh != head);
1554 attach_page_buffers(page, head);
1555 spin_unlock(&page->mapping->private_lock);
1557 EXPORT_SYMBOL(create_empty_buffers);
1560 * We are taking a block for data and we don't want any output from any
1561 * buffer-cache aliases starting from return from that function and
1562 * until the moment when something will explicitly mark the buffer
1563 * dirty (hopefully that will not happen until we will free that block ;-)
1564 * We don't even need to mark it not-uptodate - nobody can expect
1565 * anything from a newly allocated buffer anyway. We used to used
1566 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1567 * don't want to mark the alias unmapped, for example - it would confuse
1568 * anyone who might pick it with bread() afterwards...
1570 * Also.. Note that bforget() doesn't lock the buffer. So there can
1571 * be writeout I/O going on against recently-freed buffers. We don't
1572 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1573 * only if we really need to. That happens here.
1575 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1577 struct buffer_head *old_bh;
1579 might_sleep();
1581 old_bh = __find_get_block_slow(bdev, block);
1582 if (old_bh) {
1583 clear_buffer_dirty(old_bh);
1584 wait_on_buffer(old_bh);
1585 clear_buffer_req(old_bh);
1586 __brelse(old_bh);
1589 EXPORT_SYMBOL(unmap_underlying_metadata);
1592 * NOTE! All mapped/uptodate combinations are valid:
1594 * Mapped Uptodate Meaning
1596 * No No "unknown" - must do get_block()
1597 * No Yes "hole" - zero-filled
1598 * Yes No "allocated" - allocated on disk, not read in
1599 * Yes Yes "valid" - allocated and up-to-date in memory.
1601 * "Dirty" is valid only with the last case (mapped+uptodate).
1605 * While block_write_full_page is writing back the dirty buffers under
1606 * the page lock, whoever dirtied the buffers may decide to clean them
1607 * again at any time. We handle that by only looking at the buffer
1608 * state inside lock_buffer().
1610 * If block_write_full_page() is called for regular writeback
1611 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1612 * locked buffer. This only can happen if someone has written the buffer
1613 * directly, with submit_bh(). At the address_space level PageWriteback
1614 * prevents this contention from occurring.
1616 * If block_write_full_page() is called with wbc->sync_mode ==
1617 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1618 * causes the writes to be flagged as synchronous writes, but the
1619 * block device queue will NOT be unplugged, since usually many pages
1620 * will be pushed to the out before the higher-level caller actually
1621 * waits for the writes to be completed. The various wait functions,
1622 * such as wait_on_writeback_range() will ultimately call sync_page()
1623 * which will ultimately call blk_run_backing_dev(), which will end up
1624 * unplugging the device queue.
1626 static int __block_write_full_page(struct inode *inode, struct page *page,
1627 get_block_t *get_block, struct writeback_control *wbc,
1628 bh_end_io_t *handler)
1630 int err;
1631 sector_t block;
1632 sector_t last_block;
1633 struct buffer_head *bh, *head;
1634 const unsigned blocksize = 1 << inode->i_blkbits;
1635 int nr_underway = 0;
1636 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1637 WRITE_SYNC_PLUG : WRITE);
1639 BUG_ON(!PageLocked(page));
1641 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1643 if (!page_has_buffers(page)) {
1644 create_empty_buffers(page, blocksize,
1645 (1 << BH_Dirty)|(1 << BH_Uptodate));
1649 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1650 * here, and the (potentially unmapped) buffers may become dirty at
1651 * any time. If a buffer becomes dirty here after we've inspected it
1652 * then we just miss that fact, and the page stays dirty.
1654 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1655 * handle that here by just cleaning them.
1658 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1659 head = page_buffers(page);
1660 bh = head;
1663 * Get all the dirty buffers mapped to disk addresses and
1664 * handle any aliases from the underlying blockdev's mapping.
1666 do {
1667 if (block > last_block) {
1669 * mapped buffers outside i_size will occur, because
1670 * this page can be outside i_size when there is a
1671 * truncate in progress.
1674 * The buffer was zeroed by block_write_full_page()
1676 clear_buffer_dirty(bh);
1677 set_buffer_uptodate(bh);
1678 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1679 buffer_dirty(bh)) {
1680 WARN_ON(bh->b_size != blocksize);
1681 err = get_block(inode, block, bh, 1);
1682 if (err)
1683 goto recover;
1684 clear_buffer_delay(bh);
1685 if (buffer_new(bh)) {
1686 /* blockdev mappings never come here */
1687 clear_buffer_new(bh);
1688 unmap_underlying_metadata(bh->b_bdev,
1689 bh->b_blocknr);
1692 bh = bh->b_this_page;
1693 block++;
1694 } while (bh != head);
1696 do {
1697 if (!buffer_mapped(bh))
1698 continue;
1700 * If it's a fully non-blocking write attempt and we cannot
1701 * lock the buffer then redirty the page. Note that this can
1702 * potentially cause a busy-wait loop from pdflush and kswapd
1703 * activity, but those code paths have their own higher-level
1704 * throttling.
1706 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1707 lock_buffer(bh);
1708 } else if (!trylock_buffer(bh)) {
1709 redirty_page_for_writepage(wbc, page);
1710 continue;
1712 if (test_clear_buffer_dirty(bh)) {
1713 mark_buffer_async_write_endio(bh, handler);
1714 } else {
1715 unlock_buffer(bh);
1717 } while ((bh = bh->b_this_page) != head);
1720 * The page and its buffers are protected by PageWriteback(), so we can
1721 * drop the bh refcounts early.
1723 BUG_ON(PageWriteback(page));
1724 set_page_writeback(page);
1726 do {
1727 struct buffer_head *next = bh->b_this_page;
1728 if (buffer_async_write(bh)) {
1729 submit_bh(write_op, bh);
1730 nr_underway++;
1732 bh = next;
1733 } while (bh != head);
1734 unlock_page(page);
1736 err = 0;
1737 done:
1738 if (nr_underway == 0) {
1740 * The page was marked dirty, but the buffers were
1741 * clean. Someone wrote them back by hand with
1742 * ll_rw_block/submit_bh. A rare case.
1744 end_page_writeback(page);
1747 * The page and buffer_heads can be released at any time from
1748 * here on.
1751 return err;
1753 recover:
1755 * ENOSPC, or some other error. We may already have added some
1756 * blocks to the file, so we need to write these out to avoid
1757 * exposing stale data.
1758 * The page is currently locked and not marked for writeback
1760 bh = head;
1761 /* Recovery: lock and submit the mapped buffers */
1762 do {
1763 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1764 !buffer_delay(bh)) {
1765 lock_buffer(bh);
1766 mark_buffer_async_write_endio(bh, handler);
1767 } else {
1769 * The buffer may have been set dirty during
1770 * attachment to a dirty page.
1772 clear_buffer_dirty(bh);
1774 } while ((bh = bh->b_this_page) != head);
1775 SetPageError(page);
1776 BUG_ON(PageWriteback(page));
1777 mapping_set_error(page->mapping, err);
1778 set_page_writeback(page);
1779 do {
1780 struct buffer_head *next = bh->b_this_page;
1781 if (buffer_async_write(bh)) {
1782 clear_buffer_dirty(bh);
1783 submit_bh(write_op, bh);
1784 nr_underway++;
1786 bh = next;
1787 } while (bh != head);
1788 unlock_page(page);
1789 goto done;
1793 * If a page has any new buffers, zero them out here, and mark them uptodate
1794 * and dirty so they'll be written out (in order to prevent uninitialised
1795 * block data from leaking). And clear the new bit.
1797 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1799 unsigned int block_start, block_end;
1800 struct buffer_head *head, *bh;
1802 BUG_ON(!PageLocked(page));
1803 if (!page_has_buffers(page))
1804 return;
1806 bh = head = page_buffers(page);
1807 block_start = 0;
1808 do {
1809 block_end = block_start + bh->b_size;
1811 if (buffer_new(bh)) {
1812 if (block_end > from && block_start < to) {
1813 if (!PageUptodate(page)) {
1814 unsigned start, size;
1816 start = max(from, block_start);
1817 size = min(to, block_end) - start;
1819 zero_user(page, start, size);
1820 set_buffer_uptodate(bh);
1823 clear_buffer_new(bh);
1824 mark_buffer_dirty(bh);
1828 block_start = block_end;
1829 bh = bh->b_this_page;
1830 } while (bh != head);
1832 EXPORT_SYMBOL(page_zero_new_buffers);
1834 static int __block_prepare_write(struct inode *inode, struct page *page,
1835 unsigned from, unsigned to, get_block_t *get_block)
1837 unsigned block_start, block_end;
1838 sector_t block;
1839 int err = 0;
1840 unsigned blocksize, bbits;
1841 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1843 BUG_ON(!PageLocked(page));
1844 BUG_ON(from > PAGE_CACHE_SIZE);
1845 BUG_ON(to > PAGE_CACHE_SIZE);
1846 BUG_ON(from > to);
1848 blocksize = 1 << inode->i_blkbits;
1849 if (!page_has_buffers(page))
1850 create_empty_buffers(page, blocksize, 0);
1851 head = page_buffers(page);
1853 bbits = inode->i_blkbits;
1854 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1856 for(bh = head, block_start = 0; bh != head || !block_start;
1857 block++, block_start=block_end, bh = bh->b_this_page) {
1858 block_end = block_start + blocksize;
1859 if (block_end <= from || block_start >= to) {
1860 if (PageUptodate(page)) {
1861 if (!buffer_uptodate(bh))
1862 set_buffer_uptodate(bh);
1864 continue;
1866 if (buffer_new(bh))
1867 clear_buffer_new(bh);
1868 if (!buffer_mapped(bh)) {
1869 WARN_ON(bh->b_size != blocksize);
1870 err = get_block(inode, block, bh, 1);
1871 if (err)
1872 break;
1873 if (buffer_new(bh)) {
1874 unmap_underlying_metadata(bh->b_bdev,
1875 bh->b_blocknr);
1876 if (PageUptodate(page)) {
1877 clear_buffer_new(bh);
1878 set_buffer_uptodate(bh);
1879 mark_buffer_dirty(bh);
1880 continue;
1882 if (block_end > to || block_start < from)
1883 zero_user_segments(page,
1884 to, block_end,
1885 block_start, from);
1886 continue;
1889 if (PageUptodate(page)) {
1890 if (!buffer_uptodate(bh))
1891 set_buffer_uptodate(bh);
1892 continue;
1894 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1895 !buffer_unwritten(bh) &&
1896 (block_start < from || block_end > to)) {
1897 ll_rw_block(READ, 1, &bh);
1898 *wait_bh++=bh;
1902 * If we issued read requests - let them complete.
1904 while(wait_bh > wait) {
1905 wait_on_buffer(*--wait_bh);
1906 if (!buffer_uptodate(*wait_bh))
1907 err = -EIO;
1909 if (unlikely(err))
1910 page_zero_new_buffers(page, from, to);
1911 return err;
1914 static int __block_commit_write(struct inode *inode, struct page *page,
1915 unsigned from, unsigned to)
1917 unsigned block_start, block_end;
1918 int partial = 0;
1919 unsigned blocksize;
1920 struct buffer_head *bh, *head;
1922 blocksize = 1 << inode->i_blkbits;
1924 for(bh = head = page_buffers(page), block_start = 0;
1925 bh != head || !block_start;
1926 block_start=block_end, bh = bh->b_this_page) {
1927 block_end = block_start + blocksize;
1928 if (block_end <= from || block_start >= to) {
1929 if (!buffer_uptodate(bh))
1930 partial = 1;
1931 } else {
1932 set_buffer_uptodate(bh);
1933 mark_buffer_dirty(bh);
1935 clear_buffer_new(bh);
1939 * If this is a partial write which happened to make all buffers
1940 * uptodate then we can optimize away a bogus readpage() for
1941 * the next read(). Here we 'discover' whether the page went
1942 * uptodate as a result of this (potentially partial) write.
1944 if (!partial)
1945 SetPageUptodate(page);
1946 return 0;
1950 * block_write_begin takes care of the basic task of block allocation and
1951 * bringing partial write blocks uptodate first.
1953 * If *pagep is not NULL, then block_write_begin uses the locked page
1954 * at *pagep rather than allocating its own. In this case, the page will
1955 * not be unlocked or deallocated on failure.
1957 int block_write_begin(struct file *file, struct address_space *mapping,
1958 loff_t pos, unsigned len, unsigned flags,
1959 struct page **pagep, void **fsdata,
1960 get_block_t *get_block)
1962 struct inode *inode = mapping->host;
1963 int status = 0;
1964 struct page *page;
1965 pgoff_t index;
1966 unsigned start, end;
1967 int ownpage = 0;
1969 index = pos >> PAGE_CACHE_SHIFT;
1970 start = pos & (PAGE_CACHE_SIZE - 1);
1971 end = start + len;
1973 page = *pagep;
1974 if (page == NULL) {
1975 ownpage = 1;
1976 page = grab_cache_page_write_begin(mapping, index, flags);
1977 if (!page) {
1978 status = -ENOMEM;
1979 goto out;
1981 *pagep = page;
1982 } else
1983 BUG_ON(!PageLocked(page));
1985 status = __block_prepare_write(inode, page, start, end, get_block);
1986 if (unlikely(status)) {
1987 ClearPageUptodate(page);
1989 if (ownpage) {
1990 unlock_page(page);
1991 page_cache_release(page);
1992 *pagep = NULL;
1995 * prepare_write() may have instantiated a few blocks
1996 * outside i_size. Trim these off again. Don't need
1997 * i_size_read because we hold i_mutex.
1999 if (pos + len > inode->i_size)
2000 vmtruncate(inode, inode->i_size);
2004 out:
2005 return status;
2007 EXPORT_SYMBOL(block_write_begin);
2009 int block_write_end(struct file *file, struct address_space *mapping,
2010 loff_t pos, unsigned len, unsigned copied,
2011 struct page *page, void *fsdata)
2013 struct inode *inode = mapping->host;
2014 unsigned start;
2016 start = pos & (PAGE_CACHE_SIZE - 1);
2018 if (unlikely(copied < len)) {
2020 * The buffers that were written will now be uptodate, so we
2021 * don't have to worry about a readpage reading them and
2022 * overwriting a partial write. However if we have encountered
2023 * a short write and only partially written into a buffer, it
2024 * will not be marked uptodate, so a readpage might come in and
2025 * destroy our partial write.
2027 * Do the simplest thing, and just treat any short write to a
2028 * non uptodate page as a zero-length write, and force the
2029 * caller to redo the whole thing.
2031 if (!PageUptodate(page))
2032 copied = 0;
2034 page_zero_new_buffers(page, start+copied, start+len);
2036 flush_dcache_page(page);
2038 /* This could be a short (even 0-length) commit */
2039 __block_commit_write(inode, page, start, start+copied);
2041 return copied;
2043 EXPORT_SYMBOL(block_write_end);
2045 int generic_write_end(struct file *file, struct address_space *mapping,
2046 loff_t pos, unsigned len, unsigned copied,
2047 struct page *page, void *fsdata)
2049 struct inode *inode = mapping->host;
2050 int i_size_changed = 0;
2052 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2055 * No need to use i_size_read() here, the i_size
2056 * cannot change under us because we hold i_mutex.
2058 * But it's important to update i_size while still holding page lock:
2059 * page writeout could otherwise come in and zero beyond i_size.
2061 if (pos+copied > inode->i_size) {
2062 i_size_write(inode, pos+copied);
2063 i_size_changed = 1;
2066 unlock_page(page);
2067 page_cache_release(page);
2070 * Don't mark the inode dirty under page lock. First, it unnecessarily
2071 * makes the holding time of page lock longer. Second, it forces lock
2072 * ordering of page lock and transaction start for journaling
2073 * filesystems.
2075 if (i_size_changed)
2076 mark_inode_dirty(inode);
2078 return copied;
2080 EXPORT_SYMBOL(generic_write_end);
2083 * block_is_partially_uptodate checks whether buffers within a page are
2084 * uptodate or not.
2086 * Returns true if all buffers which correspond to a file portion
2087 * we want to read are uptodate.
2089 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2090 unsigned long from)
2092 struct inode *inode = page->mapping->host;
2093 unsigned block_start, block_end, blocksize;
2094 unsigned to;
2095 struct buffer_head *bh, *head;
2096 int ret = 1;
2098 if (!page_has_buffers(page))
2099 return 0;
2101 blocksize = 1 << inode->i_blkbits;
2102 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2103 to = from + to;
2104 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2105 return 0;
2107 head = page_buffers(page);
2108 bh = head;
2109 block_start = 0;
2110 do {
2111 block_end = block_start + blocksize;
2112 if (block_end > from && block_start < to) {
2113 if (!buffer_uptodate(bh)) {
2114 ret = 0;
2115 break;
2117 if (block_end >= to)
2118 break;
2120 block_start = block_end;
2121 bh = bh->b_this_page;
2122 } while (bh != head);
2124 return ret;
2126 EXPORT_SYMBOL(block_is_partially_uptodate);
2129 * Generic "read page" function for block devices that have the normal
2130 * get_block functionality. This is most of the block device filesystems.
2131 * Reads the page asynchronously --- the unlock_buffer() and
2132 * set/clear_buffer_uptodate() functions propagate buffer state into the
2133 * page struct once IO has completed.
2135 int block_read_full_page(struct page *page, get_block_t *get_block)
2137 struct inode *inode = page->mapping->host;
2138 sector_t iblock, lblock;
2139 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2140 unsigned int blocksize;
2141 int nr, i;
2142 int fully_mapped = 1;
2144 BUG_ON(!PageLocked(page));
2145 blocksize = 1 << inode->i_blkbits;
2146 if (!page_has_buffers(page))
2147 create_empty_buffers(page, blocksize, 0);
2148 head = page_buffers(page);
2150 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2151 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2152 bh = head;
2153 nr = 0;
2154 i = 0;
2156 do {
2157 if (buffer_uptodate(bh))
2158 continue;
2160 if (!buffer_mapped(bh)) {
2161 int err = 0;
2163 fully_mapped = 0;
2164 if (iblock < lblock) {
2165 WARN_ON(bh->b_size != blocksize);
2166 err = get_block(inode, iblock, bh, 0);
2167 if (err)
2168 SetPageError(page);
2170 if (!buffer_mapped(bh)) {
2171 zero_user(page, i * blocksize, blocksize);
2172 if (!err)
2173 set_buffer_uptodate(bh);
2174 continue;
2177 * get_block() might have updated the buffer
2178 * synchronously
2180 if (buffer_uptodate(bh))
2181 continue;
2183 arr[nr++] = bh;
2184 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2186 if (fully_mapped)
2187 SetPageMappedToDisk(page);
2189 if (!nr) {
2191 * All buffers are uptodate - we can set the page uptodate
2192 * as well. But not if get_block() returned an error.
2194 if (!PageError(page))
2195 SetPageUptodate(page);
2196 unlock_page(page);
2197 return 0;
2200 /* Stage two: lock the buffers */
2201 for (i = 0; i < nr; i++) {
2202 bh = arr[i];
2203 lock_buffer(bh);
2204 mark_buffer_async_read(bh);
2208 * Stage 3: start the IO. Check for uptodateness
2209 * inside the buffer lock in case another process reading
2210 * the underlying blockdev brought it uptodate (the sct fix).
2212 for (i = 0; i < nr; i++) {
2213 bh = arr[i];
2214 if (buffer_uptodate(bh))
2215 end_buffer_async_read(bh, 1);
2216 else
2217 submit_bh(READ, bh);
2219 return 0;
2222 /* utility function for filesystems that need to do work on expanding
2223 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2224 * deal with the hole.
2226 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2228 struct address_space *mapping = inode->i_mapping;
2229 struct page *page;
2230 void *fsdata;
2231 unsigned long limit;
2232 int err;
2234 err = -EFBIG;
2235 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2236 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2237 send_sig(SIGXFSZ, current, 0);
2238 goto out;
2240 if (size > inode->i_sb->s_maxbytes)
2241 goto out;
2243 err = pagecache_write_begin(NULL, mapping, size, 0,
2244 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2245 &page, &fsdata);
2246 if (err)
2247 goto out;
2249 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2250 BUG_ON(err > 0);
2252 out:
2253 return err;
2256 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2257 loff_t pos, loff_t *bytes)
2259 struct inode *inode = mapping->host;
2260 unsigned blocksize = 1 << inode->i_blkbits;
2261 struct page *page;
2262 void *fsdata;
2263 pgoff_t index, curidx;
2264 loff_t curpos;
2265 unsigned zerofrom, offset, len;
2266 int err = 0;
2268 index = pos >> PAGE_CACHE_SHIFT;
2269 offset = pos & ~PAGE_CACHE_MASK;
2271 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2272 zerofrom = curpos & ~PAGE_CACHE_MASK;
2273 if (zerofrom & (blocksize-1)) {
2274 *bytes |= (blocksize-1);
2275 (*bytes)++;
2277 len = PAGE_CACHE_SIZE - zerofrom;
2279 err = pagecache_write_begin(file, mapping, curpos, len,
2280 AOP_FLAG_UNINTERRUPTIBLE,
2281 &page, &fsdata);
2282 if (err)
2283 goto out;
2284 zero_user(page, zerofrom, len);
2285 err = pagecache_write_end(file, mapping, curpos, len, len,
2286 page, fsdata);
2287 if (err < 0)
2288 goto out;
2289 BUG_ON(err != len);
2290 err = 0;
2292 balance_dirty_pages_ratelimited(mapping);
2295 /* page covers the boundary, find the boundary offset */
2296 if (index == curidx) {
2297 zerofrom = curpos & ~PAGE_CACHE_MASK;
2298 /* if we will expand the thing last block will be filled */
2299 if (offset <= zerofrom) {
2300 goto out;
2302 if (zerofrom & (blocksize-1)) {
2303 *bytes |= (blocksize-1);
2304 (*bytes)++;
2306 len = offset - zerofrom;
2308 err = pagecache_write_begin(file, mapping, curpos, len,
2309 AOP_FLAG_UNINTERRUPTIBLE,
2310 &page, &fsdata);
2311 if (err)
2312 goto out;
2313 zero_user(page, zerofrom, len);
2314 err = pagecache_write_end(file, mapping, curpos, len, len,
2315 page, fsdata);
2316 if (err < 0)
2317 goto out;
2318 BUG_ON(err != len);
2319 err = 0;
2321 out:
2322 return err;
2326 * For moronic filesystems that do not allow holes in file.
2327 * We may have to extend the file.
2329 int cont_write_begin(struct file *file, struct address_space *mapping,
2330 loff_t pos, unsigned len, unsigned flags,
2331 struct page **pagep, void **fsdata,
2332 get_block_t *get_block, loff_t *bytes)
2334 struct inode *inode = mapping->host;
2335 unsigned blocksize = 1 << inode->i_blkbits;
2336 unsigned zerofrom;
2337 int err;
2339 err = cont_expand_zero(file, mapping, pos, bytes);
2340 if (err)
2341 goto out;
2343 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2344 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2345 *bytes |= (blocksize-1);
2346 (*bytes)++;
2349 *pagep = NULL;
2350 err = block_write_begin(file, mapping, pos, len,
2351 flags, pagep, fsdata, get_block);
2352 out:
2353 return err;
2356 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2357 get_block_t *get_block)
2359 struct inode *inode = page->mapping->host;
2360 int err = __block_prepare_write(inode, page, from, to, get_block);
2361 if (err)
2362 ClearPageUptodate(page);
2363 return err;
2366 int block_commit_write(struct page *page, unsigned from, unsigned to)
2368 struct inode *inode = page->mapping->host;
2369 __block_commit_write(inode,page,from,to);
2370 return 0;
2374 * block_page_mkwrite() is not allowed to change the file size as it gets
2375 * called from a page fault handler when a page is first dirtied. Hence we must
2376 * be careful to check for EOF conditions here. We set the page up correctly
2377 * for a written page which means we get ENOSPC checking when writing into
2378 * holes and correct delalloc and unwritten extent mapping on filesystems that
2379 * support these features.
2381 * We are not allowed to take the i_mutex here so we have to play games to
2382 * protect against truncate races as the page could now be beyond EOF. Because
2383 * vmtruncate() writes the inode size before removing pages, once we have the
2384 * page lock we can determine safely if the page is beyond EOF. If it is not
2385 * beyond EOF, then the page is guaranteed safe against truncation until we
2386 * unlock the page.
2389 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2390 get_block_t get_block)
2392 struct page *page = vmf->page;
2393 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2394 unsigned long end;
2395 loff_t size;
2396 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2398 lock_page(page);
2399 size = i_size_read(inode);
2400 if ((page->mapping != inode->i_mapping) ||
2401 (page_offset(page) > size)) {
2402 /* page got truncated out from underneath us */
2403 unlock_page(page);
2404 goto out;
2407 /* page is wholly or partially inside EOF */
2408 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2409 end = size & ~PAGE_CACHE_MASK;
2410 else
2411 end = PAGE_CACHE_SIZE;
2413 ret = block_prepare_write(page, 0, end, get_block);
2414 if (!ret)
2415 ret = block_commit_write(page, 0, end);
2417 if (unlikely(ret)) {
2418 unlock_page(page);
2419 if (ret == -ENOMEM)
2420 ret = VM_FAULT_OOM;
2421 else /* -ENOSPC, -EIO, etc */
2422 ret = VM_FAULT_SIGBUS;
2423 } else
2424 ret = VM_FAULT_LOCKED;
2426 out:
2427 return ret;
2431 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2432 * immediately, while under the page lock. So it needs a special end_io
2433 * handler which does not touch the bh after unlocking it.
2435 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2437 __end_buffer_read_notouch(bh, uptodate);
2441 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2442 * the page (converting it to circular linked list and taking care of page
2443 * dirty races).
2445 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2447 struct buffer_head *bh;
2449 BUG_ON(!PageLocked(page));
2451 spin_lock(&page->mapping->private_lock);
2452 bh = head;
2453 do {
2454 if (PageDirty(page))
2455 set_buffer_dirty(bh);
2456 if (!bh->b_this_page)
2457 bh->b_this_page = head;
2458 bh = bh->b_this_page;
2459 } while (bh != head);
2460 attach_page_buffers(page, head);
2461 spin_unlock(&page->mapping->private_lock);
2465 * On entry, the page is fully not uptodate.
2466 * On exit the page is fully uptodate in the areas outside (from,to)
2468 int nobh_write_begin(struct file *file, struct address_space *mapping,
2469 loff_t pos, unsigned len, unsigned flags,
2470 struct page **pagep, void **fsdata,
2471 get_block_t *get_block)
2473 struct inode *inode = mapping->host;
2474 const unsigned blkbits = inode->i_blkbits;
2475 const unsigned blocksize = 1 << blkbits;
2476 struct buffer_head *head, *bh;
2477 struct page *page;
2478 pgoff_t index;
2479 unsigned from, to;
2480 unsigned block_in_page;
2481 unsigned block_start, block_end;
2482 sector_t block_in_file;
2483 int nr_reads = 0;
2484 int ret = 0;
2485 int is_mapped_to_disk = 1;
2487 index = pos >> PAGE_CACHE_SHIFT;
2488 from = pos & (PAGE_CACHE_SIZE - 1);
2489 to = from + len;
2491 page = grab_cache_page_write_begin(mapping, index, flags);
2492 if (!page)
2493 return -ENOMEM;
2494 *pagep = page;
2495 *fsdata = NULL;
2497 if (page_has_buffers(page)) {
2498 unlock_page(page);
2499 page_cache_release(page);
2500 *pagep = NULL;
2501 return block_write_begin(file, mapping, pos, len, flags, pagep,
2502 fsdata, get_block);
2505 if (PageMappedToDisk(page))
2506 return 0;
2509 * Allocate buffers so that we can keep track of state, and potentially
2510 * attach them to the page if an error occurs. In the common case of
2511 * no error, they will just be freed again without ever being attached
2512 * to the page (which is all OK, because we're under the page lock).
2514 * Be careful: the buffer linked list is a NULL terminated one, rather
2515 * than the circular one we're used to.
2517 head = alloc_page_buffers(page, blocksize, 0);
2518 if (!head) {
2519 ret = -ENOMEM;
2520 goto out_release;
2523 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2526 * We loop across all blocks in the page, whether or not they are
2527 * part of the affected region. This is so we can discover if the
2528 * page is fully mapped-to-disk.
2530 for (block_start = 0, block_in_page = 0, bh = head;
2531 block_start < PAGE_CACHE_SIZE;
2532 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2533 int create;
2535 block_end = block_start + blocksize;
2536 bh->b_state = 0;
2537 create = 1;
2538 if (block_start >= to)
2539 create = 0;
2540 ret = get_block(inode, block_in_file + block_in_page,
2541 bh, create);
2542 if (ret)
2543 goto failed;
2544 if (!buffer_mapped(bh))
2545 is_mapped_to_disk = 0;
2546 if (buffer_new(bh))
2547 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2548 if (PageUptodate(page)) {
2549 set_buffer_uptodate(bh);
2550 continue;
2552 if (buffer_new(bh) || !buffer_mapped(bh)) {
2553 zero_user_segments(page, block_start, from,
2554 to, block_end);
2555 continue;
2557 if (buffer_uptodate(bh))
2558 continue; /* reiserfs does this */
2559 if (block_start < from || block_end > to) {
2560 lock_buffer(bh);
2561 bh->b_end_io = end_buffer_read_nobh;
2562 submit_bh(READ, bh);
2563 nr_reads++;
2567 if (nr_reads) {
2569 * The page is locked, so these buffers are protected from
2570 * any VM or truncate activity. Hence we don't need to care
2571 * for the buffer_head refcounts.
2573 for (bh = head; bh; bh = bh->b_this_page) {
2574 wait_on_buffer(bh);
2575 if (!buffer_uptodate(bh))
2576 ret = -EIO;
2578 if (ret)
2579 goto failed;
2582 if (is_mapped_to_disk)
2583 SetPageMappedToDisk(page);
2585 *fsdata = head; /* to be released by nobh_write_end */
2587 return 0;
2589 failed:
2590 BUG_ON(!ret);
2592 * Error recovery is a bit difficult. We need to zero out blocks that
2593 * were newly allocated, and dirty them to ensure they get written out.
2594 * Buffers need to be attached to the page at this point, otherwise
2595 * the handling of potential IO errors during writeout would be hard
2596 * (could try doing synchronous writeout, but what if that fails too?)
2598 attach_nobh_buffers(page, head);
2599 page_zero_new_buffers(page, from, to);
2601 out_release:
2602 unlock_page(page);
2603 page_cache_release(page);
2604 *pagep = NULL;
2606 if (pos + len > inode->i_size)
2607 vmtruncate(inode, inode->i_size);
2609 return ret;
2611 EXPORT_SYMBOL(nobh_write_begin);
2613 int nobh_write_end(struct file *file, struct address_space *mapping,
2614 loff_t pos, unsigned len, unsigned copied,
2615 struct page *page, void *fsdata)
2617 struct inode *inode = page->mapping->host;
2618 struct buffer_head *head = fsdata;
2619 struct buffer_head *bh;
2620 BUG_ON(fsdata != NULL && page_has_buffers(page));
2622 if (unlikely(copied < len) && head)
2623 attach_nobh_buffers(page, head);
2624 if (page_has_buffers(page))
2625 return generic_write_end(file, mapping, pos, len,
2626 copied, page, fsdata);
2628 SetPageUptodate(page);
2629 set_page_dirty(page);
2630 if (pos+copied > inode->i_size) {
2631 i_size_write(inode, pos+copied);
2632 mark_inode_dirty(inode);
2635 unlock_page(page);
2636 page_cache_release(page);
2638 while (head) {
2639 bh = head;
2640 head = head->b_this_page;
2641 free_buffer_head(bh);
2644 return copied;
2646 EXPORT_SYMBOL(nobh_write_end);
2649 * nobh_writepage() - based on block_full_write_page() except
2650 * that it tries to operate without attaching bufferheads to
2651 * the page.
2653 int nobh_writepage(struct page *page, get_block_t *get_block,
2654 struct writeback_control *wbc)
2656 struct inode * const inode = page->mapping->host;
2657 loff_t i_size = i_size_read(inode);
2658 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2659 unsigned offset;
2660 int ret;
2662 /* Is the page fully inside i_size? */
2663 if (page->index < end_index)
2664 goto out;
2666 /* Is the page fully outside i_size? (truncate in progress) */
2667 offset = i_size & (PAGE_CACHE_SIZE-1);
2668 if (page->index >= end_index+1 || !offset) {
2670 * The page may have dirty, unmapped buffers. For example,
2671 * they may have been added in ext3_writepage(). Make them
2672 * freeable here, so the page does not leak.
2674 #if 0
2675 /* Not really sure about this - do we need this ? */
2676 if (page->mapping->a_ops->invalidatepage)
2677 page->mapping->a_ops->invalidatepage(page, offset);
2678 #endif
2679 unlock_page(page);
2680 return 0; /* don't care */
2684 * The page straddles i_size. It must be zeroed out on each and every
2685 * writepage invocation because it may be mmapped. "A file is mapped
2686 * in multiples of the page size. For a file that is not a multiple of
2687 * the page size, the remaining memory is zeroed when mapped, and
2688 * writes to that region are not written out to the file."
2690 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2691 out:
2692 ret = mpage_writepage(page, get_block, wbc);
2693 if (ret == -EAGAIN)
2694 ret = __block_write_full_page(inode, page, get_block, wbc,
2695 end_buffer_async_write);
2696 return ret;
2698 EXPORT_SYMBOL(nobh_writepage);
2700 int nobh_truncate_page(struct address_space *mapping,
2701 loff_t from, get_block_t *get_block)
2703 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2704 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2705 unsigned blocksize;
2706 sector_t iblock;
2707 unsigned length, pos;
2708 struct inode *inode = mapping->host;
2709 struct page *page;
2710 struct buffer_head map_bh;
2711 int err;
2713 blocksize = 1 << inode->i_blkbits;
2714 length = offset & (blocksize - 1);
2716 /* Block boundary? Nothing to do */
2717 if (!length)
2718 return 0;
2720 length = blocksize - length;
2721 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2723 page = grab_cache_page(mapping, index);
2724 err = -ENOMEM;
2725 if (!page)
2726 goto out;
2728 if (page_has_buffers(page)) {
2729 has_buffers:
2730 unlock_page(page);
2731 page_cache_release(page);
2732 return block_truncate_page(mapping, from, get_block);
2735 /* Find the buffer that contains "offset" */
2736 pos = blocksize;
2737 while (offset >= pos) {
2738 iblock++;
2739 pos += blocksize;
2742 map_bh.b_size = blocksize;
2743 map_bh.b_state = 0;
2744 err = get_block(inode, iblock, &map_bh, 0);
2745 if (err)
2746 goto unlock;
2747 /* unmapped? It's a hole - nothing to do */
2748 if (!buffer_mapped(&map_bh))
2749 goto unlock;
2751 /* Ok, it's mapped. Make sure it's up-to-date */
2752 if (!PageUptodate(page)) {
2753 err = mapping->a_ops->readpage(NULL, page);
2754 if (err) {
2755 page_cache_release(page);
2756 goto out;
2758 lock_page(page);
2759 if (!PageUptodate(page)) {
2760 err = -EIO;
2761 goto unlock;
2763 if (page_has_buffers(page))
2764 goto has_buffers;
2766 zero_user(page, offset, length);
2767 set_page_dirty(page);
2768 err = 0;
2770 unlock:
2771 unlock_page(page);
2772 page_cache_release(page);
2773 out:
2774 return err;
2776 EXPORT_SYMBOL(nobh_truncate_page);
2778 int block_truncate_page(struct address_space *mapping,
2779 loff_t from, get_block_t *get_block)
2781 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2782 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2783 unsigned blocksize;
2784 sector_t iblock;
2785 unsigned length, pos;
2786 struct inode *inode = mapping->host;
2787 struct page *page;
2788 struct buffer_head *bh;
2789 int err;
2791 blocksize = 1 << inode->i_blkbits;
2792 length = offset & (blocksize - 1);
2794 /* Block boundary? Nothing to do */
2795 if (!length)
2796 return 0;
2798 length = blocksize - length;
2799 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2801 page = grab_cache_page(mapping, index);
2802 err = -ENOMEM;
2803 if (!page)
2804 goto out;
2806 if (!page_has_buffers(page))
2807 create_empty_buffers(page, blocksize, 0);
2809 /* Find the buffer that contains "offset" */
2810 bh = page_buffers(page);
2811 pos = blocksize;
2812 while (offset >= pos) {
2813 bh = bh->b_this_page;
2814 iblock++;
2815 pos += blocksize;
2818 err = 0;
2819 if (!buffer_mapped(bh)) {
2820 WARN_ON(bh->b_size != blocksize);
2821 err = get_block(inode, iblock, bh, 0);
2822 if (err)
2823 goto unlock;
2824 /* unmapped? It's a hole - nothing to do */
2825 if (!buffer_mapped(bh))
2826 goto unlock;
2829 /* Ok, it's mapped. Make sure it's up-to-date */
2830 if (PageUptodate(page))
2831 set_buffer_uptodate(bh);
2833 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2834 err = -EIO;
2835 ll_rw_block(READ, 1, &bh);
2836 wait_on_buffer(bh);
2837 /* Uhhuh. Read error. Complain and punt. */
2838 if (!buffer_uptodate(bh))
2839 goto unlock;
2842 zero_user(page, offset, length);
2843 mark_buffer_dirty(bh);
2844 err = 0;
2846 unlock:
2847 unlock_page(page);
2848 page_cache_release(page);
2849 out:
2850 return err;
2854 * The generic ->writepage function for buffer-backed address_spaces
2855 * this form passes in the end_io handler used to finish the IO.
2857 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2858 struct writeback_control *wbc, bh_end_io_t *handler)
2860 struct inode * const inode = page->mapping->host;
2861 loff_t i_size = i_size_read(inode);
2862 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2863 unsigned offset;
2865 /* Is the page fully inside i_size? */
2866 if (page->index < end_index)
2867 return __block_write_full_page(inode, page, get_block, wbc,
2868 handler);
2870 /* Is the page fully outside i_size? (truncate in progress) */
2871 offset = i_size & (PAGE_CACHE_SIZE-1);
2872 if (page->index >= end_index+1 || !offset) {
2874 * The page may have dirty, unmapped buffers. For example,
2875 * they may have been added in ext3_writepage(). Make them
2876 * freeable here, so the page does not leak.
2878 do_invalidatepage(page, 0);
2879 unlock_page(page);
2880 return 0; /* don't care */
2884 * The page straddles i_size. It must be zeroed out on each and every
2885 * writepage invokation because it may be mmapped. "A file is mapped
2886 * in multiples of the page size. For a file that is not a multiple of
2887 * the page size, the remaining memory is zeroed when mapped, and
2888 * writes to that region are not written out to the file."
2890 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2891 return __block_write_full_page(inode, page, get_block, wbc, handler);
2895 * The generic ->writepage function for buffer-backed address_spaces
2897 int block_write_full_page(struct page *page, get_block_t *get_block,
2898 struct writeback_control *wbc)
2900 return block_write_full_page_endio(page, get_block, wbc,
2901 end_buffer_async_write);
2905 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2906 get_block_t *get_block)
2908 struct buffer_head tmp;
2909 struct inode *inode = mapping->host;
2910 tmp.b_state = 0;
2911 tmp.b_blocknr = 0;
2912 tmp.b_size = 1 << inode->i_blkbits;
2913 get_block(inode, block, &tmp, 0);
2914 return tmp.b_blocknr;
2917 static void end_bio_bh_io_sync(struct bio *bio, int err)
2919 struct buffer_head *bh = bio->bi_private;
2921 if (err == -EOPNOTSUPP) {
2922 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2923 set_bit(BH_Eopnotsupp, &bh->b_state);
2926 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2927 set_bit(BH_Quiet, &bh->b_state);
2929 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2930 bio_put(bio);
2933 int submit_bh(int rw, struct buffer_head * bh)
2935 struct bio *bio;
2936 int ret = 0;
2938 BUG_ON(!buffer_locked(bh));
2939 BUG_ON(!buffer_mapped(bh));
2940 BUG_ON(!bh->b_end_io);
2941 BUG_ON(buffer_delay(bh));
2942 BUG_ON(buffer_unwritten(bh));
2945 * Mask in barrier bit for a write (could be either a WRITE or a
2946 * WRITE_SYNC
2948 if (buffer_ordered(bh) && (rw & WRITE))
2949 rw |= WRITE_BARRIER;
2952 * Only clear out a write error when rewriting
2954 if (test_set_buffer_req(bh) && (rw & WRITE))
2955 clear_buffer_write_io_error(bh);
2958 * from here on down, it's all bio -- do the initial mapping,
2959 * submit_bio -> generic_make_request may further map this bio around
2961 bio = bio_alloc(GFP_NOIO, 1);
2963 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2964 bio->bi_bdev = bh->b_bdev;
2965 bio->bi_io_vec[0].bv_page = bh->b_page;
2966 bio->bi_io_vec[0].bv_len = bh->b_size;
2967 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2969 bio->bi_vcnt = 1;
2970 bio->bi_idx = 0;
2971 bio->bi_size = bh->b_size;
2973 bio->bi_end_io = end_bio_bh_io_sync;
2974 bio->bi_private = bh;
2976 bio_get(bio);
2977 submit_bio(rw, bio);
2979 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2980 ret = -EOPNOTSUPP;
2982 bio_put(bio);
2983 return ret;
2987 * ll_rw_block: low-level access to block devices (DEPRECATED)
2988 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2989 * @nr: number of &struct buffer_heads in the array
2990 * @bhs: array of pointers to &struct buffer_head
2992 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2993 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2994 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2995 * are sent to disk. The fourth %READA option is described in the documentation
2996 * for generic_make_request() which ll_rw_block() calls.
2998 * This function drops any buffer that it cannot get a lock on (with the
2999 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3000 * clean when doing a write request, and any buffer that appears to be
3001 * up-to-date when doing read request. Further it marks as clean buffers that
3002 * are processed for writing (the buffer cache won't assume that they are
3003 * actually clean until the buffer gets unlocked).
3005 * ll_rw_block sets b_end_io to simple completion handler that marks
3006 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3007 * any waiters.
3009 * All of the buffers must be for the same device, and must also be a
3010 * multiple of the current approved size for the device.
3012 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3014 int i;
3016 for (i = 0; i < nr; i++) {
3017 struct buffer_head *bh = bhs[i];
3019 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3020 lock_buffer(bh);
3021 else if (!trylock_buffer(bh))
3022 continue;
3024 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3025 rw == SWRITE_SYNC_PLUG) {
3026 if (test_clear_buffer_dirty(bh)) {
3027 bh->b_end_io = end_buffer_write_sync;
3028 get_bh(bh);
3029 if (rw == SWRITE_SYNC)
3030 submit_bh(WRITE_SYNC, bh);
3031 else
3032 submit_bh(WRITE, bh);
3033 continue;
3035 } else {
3036 if (!buffer_uptodate(bh)) {
3037 bh->b_end_io = end_buffer_read_sync;
3038 get_bh(bh);
3039 submit_bh(rw, bh);
3040 continue;
3043 unlock_buffer(bh);
3048 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3049 * and then start new I/O and then wait upon it. The caller must have a ref on
3050 * the buffer_head.
3052 int sync_dirty_buffer(struct buffer_head *bh)
3054 int ret = 0;
3056 WARN_ON(atomic_read(&bh->b_count) < 1);
3057 lock_buffer(bh);
3058 if (test_clear_buffer_dirty(bh)) {
3059 get_bh(bh);
3060 bh->b_end_io = end_buffer_write_sync;
3061 ret = submit_bh(WRITE_SYNC, bh);
3062 wait_on_buffer(bh);
3063 if (buffer_eopnotsupp(bh)) {
3064 clear_buffer_eopnotsupp(bh);
3065 ret = -EOPNOTSUPP;
3067 if (!ret && !buffer_uptodate(bh))
3068 ret = -EIO;
3069 } else {
3070 unlock_buffer(bh);
3072 return ret;
3076 * try_to_free_buffers() checks if all the buffers on this particular page
3077 * are unused, and releases them if so.
3079 * Exclusion against try_to_free_buffers may be obtained by either
3080 * locking the page or by holding its mapping's private_lock.
3082 * If the page is dirty but all the buffers are clean then we need to
3083 * be sure to mark the page clean as well. This is because the page
3084 * may be against a block device, and a later reattachment of buffers
3085 * to a dirty page will set *all* buffers dirty. Which would corrupt
3086 * filesystem data on the same device.
3088 * The same applies to regular filesystem pages: if all the buffers are
3089 * clean then we set the page clean and proceed. To do that, we require
3090 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3091 * private_lock.
3093 * try_to_free_buffers() is non-blocking.
3095 static inline int buffer_busy(struct buffer_head *bh)
3097 return atomic_read(&bh->b_count) |
3098 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3101 static int
3102 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3104 struct buffer_head *head = page_buffers(page);
3105 struct buffer_head *bh;
3107 bh = head;
3108 do {
3109 if (buffer_write_io_error(bh) && page->mapping)
3110 set_bit(AS_EIO, &page->mapping->flags);
3111 if (buffer_busy(bh))
3112 goto failed;
3113 bh = bh->b_this_page;
3114 } while (bh != head);
3116 do {
3117 struct buffer_head *next = bh->b_this_page;
3119 if (bh->b_assoc_map)
3120 __remove_assoc_queue(bh);
3121 bh = next;
3122 } while (bh != head);
3123 *buffers_to_free = head;
3124 __clear_page_buffers(page);
3125 return 1;
3126 failed:
3127 return 0;
3130 int try_to_free_buffers(struct page *page)
3132 struct address_space * const mapping = page->mapping;
3133 struct buffer_head *buffers_to_free = NULL;
3134 int ret = 0;
3136 BUG_ON(!PageLocked(page));
3137 if (PageWriteback(page))
3138 return 0;
3140 if (mapping == NULL) { /* can this still happen? */
3141 ret = drop_buffers(page, &buffers_to_free);
3142 goto out;
3145 spin_lock(&mapping->private_lock);
3146 ret = drop_buffers(page, &buffers_to_free);
3149 * If the filesystem writes its buffers by hand (eg ext3)
3150 * then we can have clean buffers against a dirty page. We
3151 * clean the page here; otherwise the VM will never notice
3152 * that the filesystem did any IO at all.
3154 * Also, during truncate, discard_buffer will have marked all
3155 * the page's buffers clean. We discover that here and clean
3156 * the page also.
3158 * private_lock must be held over this entire operation in order
3159 * to synchronise against __set_page_dirty_buffers and prevent the
3160 * dirty bit from being lost.
3162 if (ret)
3163 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3164 spin_unlock(&mapping->private_lock);
3165 out:
3166 if (buffers_to_free) {
3167 struct buffer_head *bh = buffers_to_free;
3169 do {
3170 struct buffer_head *next = bh->b_this_page;
3171 free_buffer_head(bh);
3172 bh = next;
3173 } while (bh != buffers_to_free);
3175 return ret;
3177 EXPORT_SYMBOL(try_to_free_buffers);
3179 void block_sync_page(struct page *page)
3181 struct address_space *mapping;
3183 smp_mb();
3184 mapping = page_mapping(page);
3185 if (mapping)
3186 blk_run_backing_dev(mapping->backing_dev_info, page);
3190 * There are no bdflush tunables left. But distributions are
3191 * still running obsolete flush daemons, so we terminate them here.
3193 * Use of bdflush() is deprecated and will be removed in a future kernel.
3194 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3196 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3198 static int msg_count;
3200 if (!capable(CAP_SYS_ADMIN))
3201 return -EPERM;
3203 if (msg_count < 5) {
3204 msg_count++;
3205 printk(KERN_INFO
3206 "warning: process `%s' used the obsolete bdflush"
3207 " system call\n", current->comm);
3208 printk(KERN_INFO "Fix your initscripts?\n");
3211 if (func == 1)
3212 do_exit(0);
3213 return 0;
3217 * Buffer-head allocation
3219 static struct kmem_cache *bh_cachep;
3222 * Once the number of bh's in the machine exceeds this level, we start
3223 * stripping them in writeback.
3225 static int max_buffer_heads;
3227 int buffer_heads_over_limit;
3229 struct bh_accounting {
3230 int nr; /* Number of live bh's */
3231 int ratelimit; /* Limit cacheline bouncing */
3234 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3236 static void recalc_bh_state(void)
3238 int i;
3239 int tot = 0;
3241 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3242 return;
3243 __get_cpu_var(bh_accounting).ratelimit = 0;
3244 for_each_online_cpu(i)
3245 tot += per_cpu(bh_accounting, i).nr;
3246 buffer_heads_over_limit = (tot > max_buffer_heads);
3249 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3251 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3252 if (ret) {
3253 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3254 get_cpu_var(bh_accounting).nr++;
3255 recalc_bh_state();
3256 put_cpu_var(bh_accounting);
3258 return ret;
3260 EXPORT_SYMBOL(alloc_buffer_head);
3262 void free_buffer_head(struct buffer_head *bh)
3264 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3265 kmem_cache_free(bh_cachep, bh);
3266 get_cpu_var(bh_accounting).nr--;
3267 recalc_bh_state();
3268 put_cpu_var(bh_accounting);
3270 EXPORT_SYMBOL(free_buffer_head);
3272 static void buffer_exit_cpu(int cpu)
3274 int i;
3275 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3277 for (i = 0; i < BH_LRU_SIZE; i++) {
3278 brelse(b->bhs[i]);
3279 b->bhs[i] = NULL;
3281 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3282 per_cpu(bh_accounting, cpu).nr = 0;
3283 put_cpu_var(bh_accounting);
3286 static int buffer_cpu_notify(struct notifier_block *self,
3287 unsigned long action, void *hcpu)
3289 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3290 buffer_exit_cpu((unsigned long)hcpu);
3291 return NOTIFY_OK;
3295 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3296 * @bh: struct buffer_head
3298 * Return true if the buffer is up-to-date and false,
3299 * with the buffer locked, if not.
3301 int bh_uptodate_or_lock(struct buffer_head *bh)
3303 if (!buffer_uptodate(bh)) {
3304 lock_buffer(bh);
3305 if (!buffer_uptodate(bh))
3306 return 0;
3307 unlock_buffer(bh);
3309 return 1;
3311 EXPORT_SYMBOL(bh_uptodate_or_lock);
3314 * bh_submit_read - Submit a locked buffer for reading
3315 * @bh: struct buffer_head
3317 * Returns zero on success and -EIO on error.
3319 int bh_submit_read(struct buffer_head *bh)
3321 BUG_ON(!buffer_locked(bh));
3323 if (buffer_uptodate(bh)) {
3324 unlock_buffer(bh);
3325 return 0;
3328 get_bh(bh);
3329 bh->b_end_io = end_buffer_read_sync;
3330 submit_bh(READ, bh);
3331 wait_on_buffer(bh);
3332 if (buffer_uptodate(bh))
3333 return 0;
3334 return -EIO;
3336 EXPORT_SYMBOL(bh_submit_read);
3338 static void
3339 init_buffer_head(void *data)
3341 struct buffer_head *bh = data;
3343 memset(bh, 0, sizeof(*bh));
3344 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3347 void __init buffer_init(void)
3349 int nrpages;
3351 bh_cachep = kmem_cache_create("buffer_head",
3352 sizeof(struct buffer_head), 0,
3353 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3354 SLAB_MEM_SPREAD),
3355 init_buffer_head);
3358 * Limit the bh occupancy to 10% of ZONE_NORMAL
3360 nrpages = (nr_free_buffer_pages() * 10) / 100;
3361 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3362 hotcpu_notifier(buffer_cpu_notify, 0);
3365 EXPORT_SYMBOL(__bforget);
3366 EXPORT_SYMBOL(__brelse);
3367 EXPORT_SYMBOL(__wait_on_buffer);
3368 EXPORT_SYMBOL(block_commit_write);
3369 EXPORT_SYMBOL(block_prepare_write);
3370 EXPORT_SYMBOL(block_page_mkwrite);
3371 EXPORT_SYMBOL(block_read_full_page);
3372 EXPORT_SYMBOL(block_sync_page);
3373 EXPORT_SYMBOL(block_truncate_page);
3374 EXPORT_SYMBOL(block_write_full_page);
3375 EXPORT_SYMBOL(block_write_full_page_endio);
3376 EXPORT_SYMBOL(cont_write_begin);
3377 EXPORT_SYMBOL(end_buffer_read_sync);
3378 EXPORT_SYMBOL(end_buffer_write_sync);
3379 EXPORT_SYMBOL(end_buffer_async_write);
3380 EXPORT_SYMBOL(file_fsync);
3381 EXPORT_SYMBOL(generic_block_bmap);
3382 EXPORT_SYMBOL(generic_cont_expand_simple);
3383 EXPORT_SYMBOL(init_buffer);
3384 EXPORT_SYMBOL(invalidate_bdev);
3385 EXPORT_SYMBOL(ll_rw_block);
3386 EXPORT_SYMBOL(mark_buffer_dirty);
3387 EXPORT_SYMBOL(submit_bh);
3388 EXPORT_SYMBOL(sync_dirty_buffer);
3389 EXPORT_SYMBOL(unlock_buffer);