Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
[linux/fpc-iii.git] / fs / reiserfs / stree.c
blobd036ee5b1c81a8bd43d8f8836fbd78b68c462acb
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
12 * This file contains functions dealing with S+tree
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
51 #include <linux/time.h>
52 #include <linux/string.h>
53 #include <linux/pagemap.h>
54 #include <linux/reiserfs_fs.h>
55 #include <linux/buffer_head.h>
56 #include <linux/quotaops.h>
58 /* Does the buffer contain a disk block which is in the tree. */
59 inline int B_IS_IN_TREE(const struct buffer_head *bh)
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
65 return (B_LEVEL(bh) != FREE_LEVEL);
69 // to gets item head in le form
71 inline void copy_item_head(struct item_head *to,
72 const struct item_head *from)
74 memcpy(to, from, IH_SIZE);
77 /* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83 inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
100 /* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105 static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
108 int retval;
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
120 if (cpu_key->key_length == 3)
121 return 0;
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
132 return 0;
135 inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
138 __u32 *k1_u32, *k2_u32;
139 int key_length = REISERFS_SHORT_KEY_LEN;
141 k1_u32 = (__u32 *) key1;
142 k2_u32 = (__u32 *) key2;
143 for (; key_length--; ++k1_u32, ++k2_u32) {
144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 return -1;
146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 return 1;
149 return 0;
152 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
165 // this does not say which one is bigger, it only returns 1 if keys
166 // are not equal, 0 otherwise
167 inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
173 /**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *pos = number of the searched element if found, else the *
178 * number of the first element that is larger than key. *
179 **************************************************************************/
180 /* For those not familiar with binary search: lbound is the leftmost item that it
181 could be, rbound the rightmost item that it could be. We examine the item
182 halfway between lbound and rbound, and that tells us either that we can increase
183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187 static inline int bin_search(const void *key, /* Key to search for. */
188 const void *base, /* First item in the array. */
189 int num, /* Number of items in the array. */
190 int width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, width
196 is actually the item header size not
197 the item size. */
198 int *pos /* Number of the searched for element. */
201 int rbound, lbound, j;
203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 lbound <= rbound; j = (rbound + lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)base + j * width),
207 (struct cpu_key *)key)) {
208 case -1:
209 lbound = j + 1;
210 continue;
211 case 1:
212 rbound = j - 1;
213 continue;
214 case 0:
215 *pos = j;
216 return ITEM_FOUND; /* Key found in the array. */
219 /* bin_search did not find given key, it returns position of key,
220 that is minimal and greater than the given one. */
221 *pos = lbound;
222 return ITEM_NOT_FOUND;
225 #ifdef CONFIG_REISERFS_CHECK
226 extern struct tree_balance *cur_tb;
227 #endif
229 /* Minimal possible key. It is never in the tree. */
230 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
232 /* Maximal possible key. It is never in the tree. */
233 static const struct reiserfs_key MAX_KEY = {
234 __constant_cpu_to_le32(0xffffffff),
235 __constant_cpu_to_le32(0xffffffff),
236 {{__constant_cpu_to_le32(0xffffffff),
237 __constant_cpu_to_le32(0xffffffff)},}
240 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
241 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
242 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
243 case we return a special key, either MIN_KEY or MAX_KEY. */
244 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
245 const struct super_block *sb)
247 int position, path_offset = chk_path->path_length;
248 struct buffer_head *parent;
250 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
251 "PAP-5010: invalid offset in the path");
253 /* While not higher in path than first element. */
254 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
256 RFALSE(!buffer_uptodate
257 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
258 "PAP-5020: parent is not uptodate");
260 /* Parent at the path is not in the tree now. */
261 if (!B_IS_IN_TREE
262 (parent =
263 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
264 return &MAX_KEY;
265 /* Check whether position in the parent is correct. */
266 if ((position =
267 PATH_OFFSET_POSITION(chk_path,
268 path_offset)) >
269 B_NR_ITEMS(parent))
270 return &MAX_KEY;
271 /* Check whether parent at the path really points to the child. */
272 if (B_N_CHILD_NUM(parent, position) !=
273 PATH_OFFSET_PBUFFER(chk_path,
274 path_offset + 1)->b_blocknr)
275 return &MAX_KEY;
276 /* Return delimiting key if position in the parent is not equal to zero. */
277 if (position)
278 return B_N_PDELIM_KEY(parent, position - 1);
280 /* Return MIN_KEY if we are in the root of the buffer tree. */
281 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
282 b_blocknr == SB_ROOT_BLOCK(sb))
283 return &MIN_KEY;
284 return &MAX_KEY;
287 /* Get delimiting key of the buffer at the path and its right neighbor. */
288 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
289 const struct super_block *sb)
291 int position, path_offset = chk_path->path_length;
292 struct buffer_head *parent;
294 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
295 "PAP-5030: invalid offset in the path");
297 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
299 RFALSE(!buffer_uptodate
300 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
301 "PAP-5040: parent is not uptodate");
303 /* Parent at the path is not in the tree now. */
304 if (!B_IS_IN_TREE
305 (parent =
306 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
307 return &MIN_KEY;
308 /* Check whether position in the parent is correct. */
309 if ((position =
310 PATH_OFFSET_POSITION(chk_path,
311 path_offset)) >
312 B_NR_ITEMS(parent))
313 return &MIN_KEY;
314 /* Check whether parent at the path really points to the child. */
315 if (B_N_CHILD_NUM(parent, position) !=
316 PATH_OFFSET_PBUFFER(chk_path,
317 path_offset + 1)->b_blocknr)
318 return &MIN_KEY;
319 /* Return delimiting key if position in the parent is not the last one. */
320 if (position != B_NR_ITEMS(parent))
321 return B_N_PDELIM_KEY(parent, position);
323 /* Return MAX_KEY if we are in the root of the buffer tree. */
324 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
325 b_blocknr == SB_ROOT_BLOCK(sb))
326 return &MAX_KEY;
327 return &MIN_KEY;
330 /* Check whether a key is contained in the tree rooted from a buffer at a path. */
331 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
332 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
333 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
334 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
335 static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */
336 const struct cpu_key *key, /* Key which should be checked. */
337 struct super_block *sb
341 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
342 || chk_path->path_length > MAX_HEIGHT,
343 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
344 key, chk_path->path_length);
345 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
346 "PAP-5060: device must not be NODEV");
348 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
349 /* left delimiting key is bigger, that the key we look for */
350 return 0;
351 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
352 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
353 /* key must be less than right delimitiing key */
354 return 0;
355 return 1;
358 int reiserfs_check_path(struct treepath *p)
360 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
361 "path not properly relsed");
362 return 0;
365 /* Drop the reference to each buffer in a path and restore
366 * dirty bits clean when preparing the buffer for the log.
367 * This version should only be called from fix_nodes() */
368 void pathrelse_and_restore(struct super_block *sb,
369 struct treepath *search_path)
371 int path_offset = search_path->path_length;
373 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
374 "clm-4000: invalid path offset");
376 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
377 struct buffer_head *bh;
378 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
379 reiserfs_restore_prepared_buffer(sb, bh);
380 brelse(bh);
382 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
385 /* Drop the reference to each buffer in a path */
386 void pathrelse(struct treepath *search_path)
388 int path_offset = search_path->path_length;
390 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
391 "PAP-5090: invalid path offset");
393 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
394 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
396 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
399 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
401 struct block_head *blkh;
402 struct item_head *ih;
403 int used_space;
404 int prev_location;
405 int i;
406 int nr;
408 blkh = (struct block_head *)buf;
409 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
410 reiserfs_warning(NULL, "reiserfs-5080",
411 "this should be caught earlier");
412 return 0;
415 nr = blkh_nr_item(blkh);
416 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
417 /* item number is too big or too small */
418 reiserfs_warning(NULL, "reiserfs-5081",
419 "nr_item seems wrong: %z", bh);
420 return 0;
422 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
423 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
424 if (used_space != blocksize - blkh_free_space(blkh)) {
425 /* free space does not match to calculated amount of use space */
426 reiserfs_warning(NULL, "reiserfs-5082",
427 "free space seems wrong: %z", bh);
428 return 0;
430 // FIXME: it is_leaf will hit performance too much - we may have
431 // return 1 here
433 /* check tables of item heads */
434 ih = (struct item_head *)(buf + BLKH_SIZE);
435 prev_location = blocksize;
436 for (i = 0; i < nr; i++, ih++) {
437 if (le_ih_k_type(ih) == TYPE_ANY) {
438 reiserfs_warning(NULL, "reiserfs-5083",
439 "wrong item type for item %h",
440 ih);
441 return 0;
443 if (ih_location(ih) >= blocksize
444 || ih_location(ih) < IH_SIZE * nr) {
445 reiserfs_warning(NULL, "reiserfs-5084",
446 "item location seems wrong: %h",
447 ih);
448 return 0;
450 if (ih_item_len(ih) < 1
451 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
452 reiserfs_warning(NULL, "reiserfs-5085",
453 "item length seems wrong: %h",
454 ih);
455 return 0;
457 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
458 reiserfs_warning(NULL, "reiserfs-5086",
459 "item location seems wrong "
460 "(second one): %h", ih);
461 return 0;
463 prev_location = ih_location(ih);
466 // one may imagine much more checks
467 return 1;
470 /* returns 1 if buf looks like an internal node, 0 otherwise */
471 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
473 struct block_head *blkh;
474 int nr;
475 int used_space;
477 blkh = (struct block_head *)buf;
478 nr = blkh_level(blkh);
479 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
480 /* this level is not possible for internal nodes */
481 reiserfs_warning(NULL, "reiserfs-5087",
482 "this should be caught earlier");
483 return 0;
486 nr = blkh_nr_item(blkh);
487 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
488 /* for internal which is not root we might check min number of keys */
489 reiserfs_warning(NULL, "reiserfs-5088",
490 "number of key seems wrong: %z", bh);
491 return 0;
494 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
495 if (used_space != blocksize - blkh_free_space(blkh)) {
496 reiserfs_warning(NULL, "reiserfs-5089",
497 "free space seems wrong: %z", bh);
498 return 0;
500 // one may imagine much more checks
501 return 1;
504 // make sure that bh contains formatted node of reiserfs tree of
505 // 'level'-th level
506 static int is_tree_node(struct buffer_head *bh, int level)
508 if (B_LEVEL(bh) != level) {
509 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
510 "not match to the expected one %d",
511 B_LEVEL(bh), level);
512 return 0;
514 if (level == DISK_LEAF_NODE_LEVEL)
515 return is_leaf(bh->b_data, bh->b_size, bh);
517 return is_internal(bh->b_data, bh->b_size, bh);
520 #define SEARCH_BY_KEY_READA 16
522 /* The function is NOT SCHEDULE-SAFE! */
523 static void search_by_key_reada(struct super_block *s,
524 struct buffer_head **bh,
525 b_blocknr_t *b, int num)
527 int i, j;
529 for (i = 0; i < num; i++) {
530 bh[i] = sb_getblk(s, b[i]);
532 for (j = 0; j < i; j++) {
534 * note, this needs attention if we are getting rid of the BKL
535 * you have to make sure the prepared bit isn't set on this buffer
537 if (!buffer_uptodate(bh[j]))
538 ll_rw_block(READA, 1, bh + j);
539 brelse(bh[j]);
543 /**************************************************************************
544 * Algorithm SearchByKey *
545 * look for item in the Disk S+Tree by its key *
546 * Input: sb - super block *
547 * key - pointer to the key to search *
548 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
549 * search_path - path from the root to the needed leaf *
550 **************************************************************************/
552 /* This function fills up the path from the root to the leaf as it
553 descends the tree looking for the key. It uses reiserfs_bread to
554 try to find buffers in the cache given their block number. If it
555 does not find them in the cache it reads them from disk. For each
556 node search_by_key finds using reiserfs_bread it then uses
557 bin_search to look through that node. bin_search will find the
558 position of the block_number of the next node if it is looking
559 through an internal node. If it is looking through a leaf node
560 bin_search will find the position of the item which has key either
561 equal to given key, or which is the maximal key less than the given
562 key. search_by_key returns a path that must be checked for the
563 correctness of the top of the path but need not be checked for the
564 correctness of the bottom of the path */
565 /* The function is NOT SCHEDULE-SAFE! */
566 int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */
567 struct treepath *search_path,/* This structure was
568 allocated and initialized
569 by the calling
570 function. It is filled up
571 by this function. */
572 int stop_level /* How far down the tree to search. To
573 stop at leaf level - set to
574 DISK_LEAF_NODE_LEVEL */
577 b_blocknr_t block_number;
578 int expected_level;
579 struct buffer_head *bh;
580 struct path_element *last_element;
581 int node_level, retval;
582 int right_neighbor_of_leaf_node;
583 int fs_gen;
584 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
585 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
586 int reada_count = 0;
588 #ifdef CONFIG_REISERFS_CHECK
589 int repeat_counter = 0;
590 #endif
592 PROC_INFO_INC(sb, search_by_key);
594 /* As we add each node to a path we increase its count. This means that
595 we must be careful to release all nodes in a path before we either
596 discard the path struct or re-use the path struct, as we do here. */
598 pathrelse(search_path);
600 right_neighbor_of_leaf_node = 0;
602 /* With each iteration of this loop we search through the items in the
603 current node, and calculate the next current node(next path element)
604 for the next iteration of this loop.. */
605 block_number = SB_ROOT_BLOCK(sb);
606 expected_level = -1;
607 while (1) {
609 #ifdef CONFIG_REISERFS_CHECK
610 if (!(++repeat_counter % 50000))
611 reiserfs_warning(sb, "PAP-5100",
612 "%s: there were %d iterations of "
613 "while loop looking for key %K",
614 current->comm, repeat_counter,
615 key);
616 #endif
618 /* prep path to have another element added to it. */
619 last_element =
620 PATH_OFFSET_PELEMENT(search_path,
621 ++search_path->path_length);
622 fs_gen = get_generation(sb);
624 /* Read the next tree node, and set the last element in the path to
625 have a pointer to it. */
626 if ((bh = last_element->pe_buffer =
627 sb_getblk(sb, block_number))) {
628 if (!buffer_uptodate(bh) && reada_count > 1)
629 search_by_key_reada(sb, reada_bh,
630 reada_blocks, reada_count);
631 ll_rw_block(READ, 1, &bh);
632 wait_on_buffer(bh);
633 if (!buffer_uptodate(bh))
634 goto io_error;
635 } else {
636 io_error:
637 search_path->path_length--;
638 pathrelse(search_path);
639 return IO_ERROR;
641 reada_count = 0;
642 if (expected_level == -1)
643 expected_level = SB_TREE_HEIGHT(sb);
644 expected_level--;
646 /* It is possible that schedule occurred. We must check whether the key
647 to search is still in the tree rooted from the current buffer. If
648 not then repeat search from the root. */
649 if (fs_changed(fs_gen, sb) &&
650 (!B_IS_IN_TREE(bh) ||
651 B_LEVEL(bh) != expected_level ||
652 !key_in_buffer(search_path, key, sb))) {
653 PROC_INFO_INC(sb, search_by_key_fs_changed);
654 PROC_INFO_INC(sb, search_by_key_restarted);
655 PROC_INFO_INC(sb,
656 sbk_restarted[expected_level - 1]);
657 pathrelse(search_path);
659 /* Get the root block number so that we can repeat the search
660 starting from the root. */
661 block_number = SB_ROOT_BLOCK(sb);
662 expected_level = -1;
663 right_neighbor_of_leaf_node = 0;
665 /* repeat search from the root */
666 continue;
669 /* only check that the key is in the buffer if key is not
670 equal to the MAX_KEY. Latter case is only possible in
671 "finish_unfinished()" processing during mount. */
672 RFALSE(comp_keys(&MAX_KEY, key) &&
673 !key_in_buffer(search_path, key, sb),
674 "PAP-5130: key is not in the buffer");
675 #ifdef CONFIG_REISERFS_CHECK
676 if (cur_tb) {
677 print_cur_tb("5140");
678 reiserfs_panic(sb, "PAP-5140",
679 "schedule occurred in do_balance!");
681 #endif
683 // make sure, that the node contents look like a node of
684 // certain level
685 if (!is_tree_node(bh, expected_level)) {
686 reiserfs_error(sb, "vs-5150",
687 "invalid format found in block %ld. "
688 "Fsck?", bh->b_blocknr);
689 pathrelse(search_path);
690 return IO_ERROR;
693 /* ok, we have acquired next formatted node in the tree */
694 node_level = B_LEVEL(bh);
696 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
698 RFALSE(node_level < stop_level,
699 "vs-5152: tree level (%d) is less than stop level (%d)",
700 node_level, stop_level);
702 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
703 B_NR_ITEMS(bh),
704 (node_level ==
705 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
706 KEY_SIZE,
707 &(last_element->pe_position));
708 if (node_level == stop_level) {
709 return retval;
712 /* we are not in the stop level */
713 if (retval == ITEM_FOUND)
714 /* item has been found, so we choose the pointer which is to the right of the found one */
715 last_element->pe_position++;
717 /* if item was not found we choose the position which is to
718 the left of the found item. This requires no code,
719 bin_search did it already. */
721 /* So we have chosen a position in the current node which is
722 an internal node. Now we calculate child block number by
723 position in the node. */
724 block_number =
725 B_N_CHILD_NUM(bh, last_element->pe_position);
727 /* if we are going to read leaf nodes, try for read ahead as well */
728 if ((search_path->reada & PATH_READA) &&
729 node_level == DISK_LEAF_NODE_LEVEL + 1) {
730 int pos = last_element->pe_position;
731 int limit = B_NR_ITEMS(bh);
732 struct reiserfs_key *le_key;
734 if (search_path->reada & PATH_READA_BACK)
735 limit = 0;
736 while (reada_count < SEARCH_BY_KEY_READA) {
737 if (pos == limit)
738 break;
739 reada_blocks[reada_count++] =
740 B_N_CHILD_NUM(bh, pos);
741 if (search_path->reada & PATH_READA_BACK)
742 pos--;
743 else
744 pos++;
747 * check to make sure we're in the same object
749 le_key = B_N_PDELIM_KEY(bh, pos);
750 if (le32_to_cpu(le_key->k_objectid) !=
751 key->on_disk_key.k_objectid) {
752 break;
759 /* Form the path to an item and position in this item which contains
760 file byte defined by key. If there is no such item
761 corresponding to the key, we point the path to the item with
762 maximal key less than key, and *pos_in_item is set to one
763 past the last entry/byte in the item. If searching for entry in a
764 directory item, and it is not found, *pos_in_item is set to one
765 entry more than the entry with maximal key which is less than the
766 sought key.
768 Note that if there is no entry in this same node which is one more,
769 then we point to an imaginary entry. for direct items, the
770 position is in units of bytes, for indirect items the position is
771 in units of blocknr entries, for directory items the position is in
772 units of directory entries. */
774 /* The function is NOT SCHEDULE-SAFE! */
775 int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
776 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
777 struct treepath *search_path /* Filled up by this function. */
780 struct item_head *p_le_ih; /* pointer to on-disk structure */
781 int blk_size;
782 loff_t item_offset, offset;
783 struct reiserfs_dir_entry de;
784 int retval;
786 /* If searching for directory entry. */
787 if (is_direntry_cpu_key(p_cpu_key))
788 return search_by_entry_key(sb, p_cpu_key, search_path,
789 &de);
791 /* If not searching for directory entry. */
793 /* If item is found. */
794 retval = search_item(sb, p_cpu_key, search_path);
795 if (retval == IO_ERROR)
796 return retval;
797 if (retval == ITEM_FOUND) {
799 RFALSE(!ih_item_len
800 (B_N_PITEM_HEAD
801 (PATH_PLAST_BUFFER(search_path),
802 PATH_LAST_POSITION(search_path))),
803 "PAP-5165: item length equals zero");
805 pos_in_item(search_path) = 0;
806 return POSITION_FOUND;
809 RFALSE(!PATH_LAST_POSITION(search_path),
810 "PAP-5170: position equals zero");
812 /* Item is not found. Set path to the previous item. */
813 p_le_ih =
814 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
815 --PATH_LAST_POSITION(search_path));
816 blk_size = sb->s_blocksize;
818 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
819 return FILE_NOT_FOUND;
821 // FIXME: quite ugly this far
823 item_offset = le_ih_k_offset(p_le_ih);
824 offset = cpu_key_k_offset(p_cpu_key);
826 /* Needed byte is contained in the item pointed to by the path. */
827 if (item_offset <= offset &&
828 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
829 pos_in_item(search_path) = offset - item_offset;
830 if (is_indirect_le_ih(p_le_ih)) {
831 pos_in_item(search_path) /= blk_size;
833 return POSITION_FOUND;
836 /* Needed byte is not contained in the item pointed to by the
837 path. Set pos_in_item out of the item. */
838 if (is_indirect_le_ih(p_le_ih))
839 pos_in_item(search_path) =
840 ih_item_len(p_le_ih) / UNFM_P_SIZE;
841 else
842 pos_in_item(search_path) = ih_item_len(p_le_ih);
844 return POSITION_NOT_FOUND;
847 /* Compare given item and item pointed to by the path. */
848 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
850 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
851 struct item_head *ih;
853 /* Last buffer at the path is not in the tree. */
854 if (!B_IS_IN_TREE(bh))
855 return 1;
857 /* Last path position is invalid. */
858 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
859 return 1;
861 /* we need only to know, whether it is the same item */
862 ih = get_ih(path);
863 return memcmp(stored_ih, ih, IH_SIZE);
866 /* unformatted nodes are not logged anymore, ever. This is safe
867 ** now
869 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
871 // block can not be forgotten as it is in I/O or held by someone
872 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
874 // prepare for delete or cut of direct item
875 static inline int prepare_for_direct_item(struct treepath *path,
876 struct item_head *le_ih,
877 struct inode *inode,
878 loff_t new_file_length, int *cut_size)
880 loff_t round_len;
882 if (new_file_length == max_reiserfs_offset(inode)) {
883 /* item has to be deleted */
884 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
885 return M_DELETE;
887 // new file gets truncated
888 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
890 round_len = ROUND_UP(new_file_length);
891 /* this was new_file_length < le_ih ... */
892 if (round_len < le_ih_k_offset(le_ih)) {
893 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
894 return M_DELETE; /* Delete this item. */
896 /* Calculate first position and size for cutting from item. */
897 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
898 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
900 return M_CUT; /* Cut from this item. */
903 // old file: items may have any length
905 if (new_file_length < le_ih_k_offset(le_ih)) {
906 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
907 return M_DELETE; /* Delete this item. */
909 /* Calculate first position and size for cutting from item. */
910 *cut_size = -(ih_item_len(le_ih) -
911 (pos_in_item(path) =
912 new_file_length + 1 - le_ih_k_offset(le_ih)));
913 return M_CUT; /* Cut from this item. */
916 static inline int prepare_for_direntry_item(struct treepath *path,
917 struct item_head *le_ih,
918 struct inode *inode,
919 loff_t new_file_length,
920 int *cut_size)
922 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
923 new_file_length == max_reiserfs_offset(inode)) {
924 RFALSE(ih_entry_count(le_ih) != 2,
925 "PAP-5220: incorrect empty directory item (%h)", le_ih);
926 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
927 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
930 if (ih_entry_count(le_ih) == 1) {
931 /* Delete the directory item such as there is one record only
932 in this item */
933 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
934 return M_DELETE;
937 /* Cut one record from the directory item. */
938 *cut_size =
939 -(DEH_SIZE +
940 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
941 return M_CUT;
944 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
946 /* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
947 If the path points to an indirect item, remove some number of its unformatted nodes.
948 In case of file truncate calculate whether this item must be deleted/truncated or last
949 unformatted node of this item will be converted to a direct item.
950 This function returns a determination of what balance mode the calling function should employ. */
951 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed
952 from end of the file. */
953 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */
956 struct super_block *sb = inode->i_sb;
957 struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
958 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
960 BUG_ON(!th->t_trans_id);
962 /* Stat_data item. */
963 if (is_statdata_le_ih(p_le_ih)) {
965 RFALSE(new_file_length != max_reiserfs_offset(inode),
966 "PAP-5210: mode must be M_DELETE");
968 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
969 return M_DELETE;
972 /* Directory item. */
973 if (is_direntry_le_ih(p_le_ih))
974 return prepare_for_direntry_item(path, p_le_ih, inode,
975 new_file_length,
976 cut_size);
978 /* Direct item. */
979 if (is_direct_le_ih(p_le_ih))
980 return prepare_for_direct_item(path, p_le_ih, inode,
981 new_file_length, cut_size);
983 /* Case of an indirect item. */
985 int blk_size = sb->s_blocksize;
986 struct item_head s_ih;
987 int need_re_search;
988 int delete = 0;
989 int result = M_CUT;
990 int pos = 0;
992 if ( new_file_length == max_reiserfs_offset (inode) ) {
993 /* prepare_for_delete_or_cut() is called by
994 * reiserfs_delete_item() */
995 new_file_length = 0;
996 delete = 1;
999 do {
1000 need_re_search = 0;
1001 *cut_size = 0;
1002 bh = PATH_PLAST_BUFFER(path);
1003 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1004 pos = I_UNFM_NUM(&s_ih);
1006 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1007 __le32 *unfm;
1008 __u32 block;
1010 /* Each unformatted block deletion may involve one additional
1011 * bitmap block into the transaction, thereby the initial
1012 * journal space reservation might not be enough. */
1013 if (!delete && (*cut_size) != 0 &&
1014 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1015 break;
1017 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1018 block = get_block_num(unfm, 0);
1020 if (block != 0) {
1021 reiserfs_prepare_for_journal(sb, bh, 1);
1022 put_block_num(unfm, 0, 0);
1023 journal_mark_dirty(th, sb, bh);
1024 reiserfs_free_block(th, inode, block, 1);
1027 cond_resched();
1029 if (item_moved (&s_ih, path)) {
1030 need_re_search = 1;
1031 break;
1034 pos --;
1035 (*removed)++;
1036 (*cut_size) -= UNFM_P_SIZE;
1038 if (pos == 0) {
1039 (*cut_size) -= IH_SIZE;
1040 result = M_DELETE;
1041 break;
1044 /* a trick. If the buffer has been logged, this will do nothing. If
1045 ** we've broken the loop without logging it, it will restore the
1046 ** buffer */
1047 reiserfs_restore_prepared_buffer(sb, bh);
1048 } while (need_re_search &&
1049 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1050 pos_in_item(path) = pos * UNFM_P_SIZE;
1052 if (*cut_size == 0) {
1053 /* Nothing were cut. maybe convert last unformatted node to the
1054 * direct item? */
1055 result = M_CONVERT;
1057 return result;
1061 /* Calculate number of bytes which will be deleted or cut during balance */
1062 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1064 int del_size;
1065 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1067 if (is_statdata_le_ih(p_le_ih))
1068 return 0;
1070 del_size =
1071 (mode ==
1072 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1073 if (is_direntry_le_ih(p_le_ih)) {
1074 /* return EMPTY_DIR_SIZE; We delete emty directoris only.
1075 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1076 * empty size. ick. FIXME, is this right? */
1077 return del_size;
1080 if (is_indirect_le_ih(p_le_ih))
1081 del_size = (del_size / UNFM_P_SIZE) *
1082 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1083 return del_size;
1086 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1087 struct tree_balance *tb,
1088 struct super_block *sb,
1089 struct treepath *path, int size)
1092 BUG_ON(!th->t_trans_id);
1094 memset(tb, '\0', sizeof(struct tree_balance));
1095 tb->transaction_handle = th;
1096 tb->tb_sb = sb;
1097 tb->tb_path = path;
1098 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1099 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1100 tb->insert_size[0] = size;
1103 void padd_item(char *item, int total_length, int length)
1105 int i;
1107 for (i = total_length; i > length;)
1108 item[--i] = 0;
1111 #ifdef REISERQUOTA_DEBUG
1112 char key2type(struct reiserfs_key *ih)
1114 if (is_direntry_le_key(2, ih))
1115 return 'd';
1116 if (is_direct_le_key(2, ih))
1117 return 'D';
1118 if (is_indirect_le_key(2, ih))
1119 return 'i';
1120 if (is_statdata_le_key(2, ih))
1121 return 's';
1122 return 'u';
1125 char head2type(struct item_head *ih)
1127 if (is_direntry_le_ih(ih))
1128 return 'd';
1129 if (is_direct_le_ih(ih))
1130 return 'D';
1131 if (is_indirect_le_ih(ih))
1132 return 'i';
1133 if (is_statdata_le_ih(ih))
1134 return 's';
1135 return 'u';
1137 #endif
1139 /* Delete object item.
1140 * th - active transaction handle
1141 * path - path to the deleted item
1142 * item_key - key to search for the deleted item
1143 * indode - used for updating i_blocks and quotas
1144 * un_bh - NULL or unformatted node pointer
1146 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1147 struct treepath *path, const struct cpu_key *item_key,
1148 struct inode *inode, struct buffer_head *un_bh)
1150 struct super_block *sb = inode->i_sb;
1151 struct tree_balance s_del_balance;
1152 struct item_head s_ih;
1153 struct item_head *q_ih;
1154 int quota_cut_bytes;
1155 int ret_value, del_size, removed;
1157 #ifdef CONFIG_REISERFS_CHECK
1158 char mode;
1159 int iter = 0;
1160 #endif
1162 BUG_ON(!th->t_trans_id);
1164 init_tb_struct(th, &s_del_balance, sb, path,
1165 0 /*size is unknown */ );
1167 while (1) {
1168 removed = 0;
1170 #ifdef CONFIG_REISERFS_CHECK
1171 iter++;
1172 mode =
1173 #endif
1174 prepare_for_delete_or_cut(th, inode, path,
1175 item_key, &removed,
1176 &del_size,
1177 max_reiserfs_offset(inode));
1179 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1181 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1182 s_del_balance.insert_size[0] = del_size;
1184 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1185 if (ret_value != REPEAT_SEARCH)
1186 break;
1188 PROC_INFO_INC(sb, delete_item_restarted);
1190 // file system changed, repeat search
1191 ret_value =
1192 search_for_position_by_key(sb, item_key, path);
1193 if (ret_value == IO_ERROR)
1194 break;
1195 if (ret_value == FILE_NOT_FOUND) {
1196 reiserfs_warning(sb, "vs-5340",
1197 "no items of the file %K found",
1198 item_key);
1199 break;
1201 } /* while (1) */
1203 if (ret_value != CARRY_ON) {
1204 unfix_nodes(&s_del_balance);
1205 return 0;
1207 // reiserfs_delete_item returns item length when success
1208 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1209 q_ih = get_ih(path);
1210 quota_cut_bytes = ih_item_len(q_ih);
1212 /* hack so the quota code doesn't have to guess if the file
1213 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1214 ** We test the offset because the tail might have been
1215 ** split into multiple items, and we only want to decrement for
1216 ** the unfm node once
1218 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1219 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1220 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1221 } else {
1222 quota_cut_bytes = 0;
1226 if (un_bh) {
1227 int off;
1228 char *data;
1230 /* We are in direct2indirect conversion, so move tail contents
1231 to the unformatted node */
1232 /* note, we do the copy before preparing the buffer because we
1233 ** don't care about the contents of the unformatted node yet.
1234 ** the only thing we really care about is the direct item's data
1235 ** is in the unformatted node.
1237 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1238 ** the unformatted node, which might schedule, meaning we'd have to
1239 ** loop all the way back up to the start of the while loop.
1241 ** The unformatted node must be dirtied later on. We can't be
1242 ** sure here if the entire tail has been deleted yet.
1244 ** un_bh is from the page cache (all unformatted nodes are
1245 ** from the page cache) and might be a highmem page. So, we
1246 ** can't use un_bh->b_data.
1247 ** -clm
1250 data = kmap_atomic(un_bh->b_page, KM_USER0);
1251 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1252 memcpy(data + off,
1253 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1254 ret_value);
1255 kunmap_atomic(data, KM_USER0);
1257 /* Perform balancing after all resources have been collected at once. */
1258 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1260 #ifdef REISERQUOTA_DEBUG
1261 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1262 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1263 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1264 #endif
1265 vfs_dq_free_space_nodirty(inode, quota_cut_bytes);
1267 /* Return deleted body length */
1268 return ret_value;
1271 /* Summary Of Mechanisms For Handling Collisions Between Processes:
1273 deletion of the body of the object is performed by iput(), with the
1274 result that if multiple processes are operating on a file, the
1275 deletion of the body of the file is deferred until the last process
1276 that has an open inode performs its iput().
1278 writes and truncates are protected from collisions by use of
1279 semaphores.
1281 creates, linking, and mknod are protected from collisions with other
1282 processes by making the reiserfs_add_entry() the last step in the
1283 creation, and then rolling back all changes if there was a collision.
1284 - Hans
1287 /* this deletes item which never gets split */
1288 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1289 struct inode *inode, struct reiserfs_key *key)
1291 struct tree_balance tb;
1292 INITIALIZE_PATH(path);
1293 int item_len = 0;
1294 int tb_init = 0;
1295 struct cpu_key cpu_key;
1296 int retval;
1297 int quota_cut_bytes = 0;
1299 BUG_ON(!th->t_trans_id);
1301 le_key2cpu_key(&cpu_key, key);
1303 while (1) {
1304 retval = search_item(th->t_super, &cpu_key, &path);
1305 if (retval == IO_ERROR) {
1306 reiserfs_error(th->t_super, "vs-5350",
1307 "i/o failure occurred trying "
1308 "to delete %K", &cpu_key);
1309 break;
1311 if (retval != ITEM_FOUND) {
1312 pathrelse(&path);
1313 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1314 if (!
1315 ((unsigned long long)
1316 GET_HASH_VALUE(le_key_k_offset
1317 (le_key_version(key), key)) == 0
1318 && (unsigned long long)
1319 GET_GENERATION_NUMBER(le_key_k_offset
1320 (le_key_version(key),
1321 key)) == 1))
1322 reiserfs_warning(th->t_super, "vs-5355",
1323 "%k not found", key);
1324 break;
1326 if (!tb_init) {
1327 tb_init = 1;
1328 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1329 init_tb_struct(th, &tb, th->t_super, &path,
1330 -(IH_SIZE + item_len));
1332 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1334 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1335 if (retval == REPEAT_SEARCH) {
1336 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1337 continue;
1340 if (retval == CARRY_ON) {
1341 do_balance(&tb, NULL, NULL, M_DELETE);
1342 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1343 #ifdef REISERQUOTA_DEBUG
1344 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1345 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1346 quota_cut_bytes, inode->i_uid,
1347 key2type(key));
1348 #endif
1349 vfs_dq_free_space_nodirty(inode,
1350 quota_cut_bytes);
1352 break;
1354 // IO_ERROR, NO_DISK_SPACE, etc
1355 reiserfs_warning(th->t_super, "vs-5360",
1356 "could not delete %K due to fix_nodes failure",
1357 &cpu_key);
1358 unfix_nodes(&tb);
1359 break;
1362 reiserfs_check_path(&path);
1365 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1366 struct inode *inode)
1368 int err;
1369 inode->i_size = 0;
1370 BUG_ON(!th->t_trans_id);
1372 /* for directory this deletes item containing "." and ".." */
1373 err =
1374 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1375 if (err)
1376 return err;
1378 #if defined( USE_INODE_GENERATION_COUNTER )
1379 if (!old_format_only(th->t_super)) {
1380 __le32 *inode_generation;
1382 inode_generation =
1383 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1384 le32_add_cpu(inode_generation, 1);
1386 /* USE_INODE_GENERATION_COUNTER */
1387 #endif
1388 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1390 return err;
1393 static void unmap_buffers(struct page *page, loff_t pos)
1395 struct buffer_head *bh;
1396 struct buffer_head *head;
1397 struct buffer_head *next;
1398 unsigned long tail_index;
1399 unsigned long cur_index;
1401 if (page) {
1402 if (page_has_buffers(page)) {
1403 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1404 cur_index = 0;
1405 head = page_buffers(page);
1406 bh = head;
1407 do {
1408 next = bh->b_this_page;
1410 /* we want to unmap the buffers that contain the tail, and
1411 ** all the buffers after it (since the tail must be at the
1412 ** end of the file). We don't want to unmap file data
1413 ** before the tail, since it might be dirty and waiting to
1414 ** reach disk
1416 cur_index += bh->b_size;
1417 if (cur_index > tail_index) {
1418 reiserfs_unmap_buffer(bh);
1420 bh = next;
1421 } while (bh != head);
1426 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1427 struct inode *inode,
1428 struct page *page,
1429 struct treepath *path,
1430 const struct cpu_key *item_key,
1431 loff_t new_file_size, char *mode)
1433 struct super_block *sb = inode->i_sb;
1434 int block_size = sb->s_blocksize;
1435 int cut_bytes;
1436 BUG_ON(!th->t_trans_id);
1437 BUG_ON(new_file_size != inode->i_size);
1439 /* the page being sent in could be NULL if there was an i/o error
1440 ** reading in the last block. The user will hit problems trying to
1441 ** read the file, but for now we just skip the indirect2direct
1443 if (atomic_read(&inode->i_count) > 1 ||
1444 !tail_has_to_be_packed(inode) ||
1445 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1446 /* leave tail in an unformatted node */
1447 *mode = M_SKIP_BALANCING;
1448 cut_bytes =
1449 block_size - (new_file_size & (block_size - 1));
1450 pathrelse(path);
1451 return cut_bytes;
1453 /* Perform the conversion to a direct_item. */
1454 /* return indirect_to_direct(inode, path, item_key,
1455 new_file_size, mode); */
1456 return indirect2direct(th, inode, page, path, item_key,
1457 new_file_size, mode);
1460 /* we did indirect_to_direct conversion. And we have inserted direct
1461 item successesfully, but there were no disk space to cut unfm
1462 pointer being converted. Therefore we have to delete inserted
1463 direct item(s) */
1464 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1465 struct inode *inode, struct treepath *path)
1467 struct cpu_key tail_key;
1468 int tail_len;
1469 int removed;
1470 BUG_ON(!th->t_trans_id);
1472 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1473 tail_key.key_length = 4;
1475 tail_len =
1476 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1477 while (tail_len) {
1478 /* look for the last byte of the tail */
1479 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1480 POSITION_NOT_FOUND)
1481 reiserfs_panic(inode->i_sb, "vs-5615",
1482 "found invalid item");
1483 RFALSE(path->pos_in_item !=
1484 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1485 "vs-5616: appended bytes found");
1486 PATH_LAST_POSITION(path)--;
1488 removed =
1489 reiserfs_delete_item(th, path, &tail_key, inode,
1490 NULL /*unbh not needed */ );
1491 RFALSE(removed <= 0
1492 || removed > tail_len,
1493 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1494 tail_len, removed);
1495 tail_len -= removed;
1496 set_cpu_key_k_offset(&tail_key,
1497 cpu_key_k_offset(&tail_key) - removed);
1499 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1500 "conversion has been rolled back due to "
1501 "lack of disk space");
1502 //mark_file_without_tail (inode);
1503 mark_inode_dirty(inode);
1506 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1507 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1508 struct treepath *path,
1509 struct cpu_key *item_key,
1510 struct inode *inode,
1511 struct page *page, loff_t new_file_size)
1513 struct super_block *sb = inode->i_sb;
1514 /* Every function which is going to call do_balance must first
1515 create a tree_balance structure. Then it must fill up this
1516 structure by using the init_tb_struct and fix_nodes functions.
1517 After that we can make tree balancing. */
1518 struct tree_balance s_cut_balance;
1519 struct item_head *p_le_ih;
1520 int cut_size = 0, /* Amount to be cut. */
1521 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */
1522 is_inode_locked = 0;
1523 char mode; /* Mode of the balance. */
1524 int retval2 = -1;
1525 int quota_cut_bytes;
1526 loff_t tail_pos = 0;
1528 BUG_ON(!th->t_trans_id);
1530 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1531 cut_size);
1533 /* Repeat this loop until we either cut the item without needing
1534 to balance, or we fix_nodes without schedule occurring */
1535 while (1) {
1536 /* Determine the balance mode, position of the first byte to
1537 be cut, and size to be cut. In case of the indirect item
1538 free unformatted nodes which are pointed to by the cut
1539 pointers. */
1541 mode =
1542 prepare_for_delete_or_cut(th, inode, path,
1543 item_key, &removed,
1544 &cut_size, new_file_size);
1545 if (mode == M_CONVERT) {
1546 /* convert last unformatted node to direct item or leave
1547 tail in the unformatted node */
1548 RFALSE(ret_value != CARRY_ON,
1549 "PAP-5570: can not convert twice");
1551 ret_value =
1552 maybe_indirect_to_direct(th, inode, page,
1553 path, item_key,
1554 new_file_size, &mode);
1555 if (mode == M_SKIP_BALANCING)
1556 /* tail has been left in the unformatted node */
1557 return ret_value;
1559 is_inode_locked = 1;
1561 /* removing of last unformatted node will change value we
1562 have to return to truncate. Save it */
1563 retval2 = ret_value;
1564 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1566 /* So, we have performed the first part of the conversion:
1567 inserting the new direct item. Now we are removing the
1568 last unformatted node pointer. Set key to search for
1569 it. */
1570 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1571 item_key->key_length = 4;
1572 new_file_size -=
1573 (new_file_size & (sb->s_blocksize - 1));
1574 tail_pos = new_file_size;
1575 set_cpu_key_k_offset(item_key, new_file_size + 1);
1576 if (search_for_position_by_key
1577 (sb, item_key,
1578 path) == POSITION_NOT_FOUND) {
1579 print_block(PATH_PLAST_BUFFER(path), 3,
1580 PATH_LAST_POSITION(path) - 1,
1581 PATH_LAST_POSITION(path) + 1);
1582 reiserfs_panic(sb, "PAP-5580", "item to "
1583 "convert does not exist (%K)",
1584 item_key);
1586 continue;
1588 if (cut_size == 0) {
1589 pathrelse(path);
1590 return 0;
1593 s_cut_balance.insert_size[0] = cut_size;
1595 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1596 if (ret_value != REPEAT_SEARCH)
1597 break;
1599 PROC_INFO_INC(sb, cut_from_item_restarted);
1601 ret_value =
1602 search_for_position_by_key(sb, item_key, path);
1603 if (ret_value == POSITION_FOUND)
1604 continue;
1606 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1607 item_key);
1608 unfix_nodes(&s_cut_balance);
1609 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1610 } /* while */
1612 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1613 if (ret_value != CARRY_ON) {
1614 if (is_inode_locked) {
1615 // FIXME: this seems to be not needed: we are always able
1616 // to cut item
1617 indirect_to_direct_roll_back(th, inode, path);
1619 if (ret_value == NO_DISK_SPACE)
1620 reiserfs_warning(sb, "reiserfs-5092",
1621 "NO_DISK_SPACE");
1622 unfix_nodes(&s_cut_balance);
1623 return -EIO;
1626 /* go ahead and perform balancing */
1628 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1630 /* Calculate number of bytes that need to be cut from the item. */
1631 quota_cut_bytes =
1632 (mode ==
1633 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1634 insert_size[0];
1635 if (retval2 == -1)
1636 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1637 else
1638 ret_value = retval2;
1640 /* For direct items, we only change the quota when deleting the last
1641 ** item.
1643 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1644 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1645 if (mode == M_DELETE &&
1646 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1647 1) {
1648 // FIXME: this is to keep 3.5 happy
1649 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1650 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1651 } else {
1652 quota_cut_bytes = 0;
1655 #ifdef CONFIG_REISERFS_CHECK
1656 if (is_inode_locked) {
1657 struct item_head *le_ih =
1658 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1659 /* we are going to complete indirect2direct conversion. Make
1660 sure, that we exactly remove last unformatted node pointer
1661 of the item */
1662 if (!is_indirect_le_ih(le_ih))
1663 reiserfs_panic(sb, "vs-5652",
1664 "item must be indirect %h", le_ih);
1666 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1667 reiserfs_panic(sb, "vs-5653", "completing "
1668 "indirect2direct conversion indirect "
1669 "item %h being deleted must be of "
1670 "4 byte long", le_ih);
1672 if (mode == M_CUT
1673 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1674 reiserfs_panic(sb, "vs-5654", "can not complete "
1675 "indirect2direct conversion of %h "
1676 "(CUT, insert_size==%d)",
1677 le_ih, s_cut_balance.insert_size[0]);
1679 /* it would be useful to make sure, that right neighboring
1680 item is direct item of this file */
1682 #endif
1684 do_balance(&s_cut_balance, NULL, NULL, mode);
1685 if (is_inode_locked) {
1686 /* we've done an indirect->direct conversion. when the data block
1687 ** was freed, it was removed from the list of blocks that must
1688 ** be flushed before the transaction commits, make sure to
1689 ** unmap and invalidate it
1691 unmap_buffers(page, tail_pos);
1692 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1694 #ifdef REISERQUOTA_DEBUG
1695 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1696 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1697 quota_cut_bytes, inode->i_uid, '?');
1698 #endif
1699 vfs_dq_free_space_nodirty(inode, quota_cut_bytes);
1700 return ret_value;
1703 static void truncate_directory(struct reiserfs_transaction_handle *th,
1704 struct inode *inode)
1706 BUG_ON(!th->t_trans_id);
1707 if (inode->i_nlink)
1708 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1710 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1711 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1712 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1713 reiserfs_update_sd(th, inode);
1714 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1715 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1718 /* Truncate file to the new size. Note, this must be called with a transaction
1719 already started */
1720 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1721 struct inode *inode, /* ->i_size contains new size */
1722 struct page *page, /* up to date for last block */
1723 int update_timestamps /* when it is called by
1724 file_release to convert
1725 the tail - no timestamps
1726 should be updated */
1729 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1730 struct item_head *p_le_ih; /* Pointer to an item header. */
1731 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1732 loff_t file_size, /* Old file size. */
1733 new_file_size; /* New file size. */
1734 int deleted; /* Number of deleted or truncated bytes. */
1735 int retval;
1736 int err = 0;
1738 BUG_ON(!th->t_trans_id);
1739 if (!
1740 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1741 || S_ISLNK(inode->i_mode)))
1742 return 0;
1744 if (S_ISDIR(inode->i_mode)) {
1745 // deletion of directory - no need to update timestamps
1746 truncate_directory(th, inode);
1747 return 0;
1750 /* Get new file size. */
1751 new_file_size = inode->i_size;
1753 // FIXME: note, that key type is unimportant here
1754 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1755 TYPE_DIRECT, 3);
1757 retval =
1758 search_for_position_by_key(inode->i_sb, &s_item_key,
1759 &s_search_path);
1760 if (retval == IO_ERROR) {
1761 reiserfs_error(inode->i_sb, "vs-5657",
1762 "i/o failure occurred trying to truncate %K",
1763 &s_item_key);
1764 err = -EIO;
1765 goto out;
1767 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1768 reiserfs_error(inode->i_sb, "PAP-5660",
1769 "wrong result %d of search for %K", retval,
1770 &s_item_key);
1772 err = -EIO;
1773 goto out;
1776 s_search_path.pos_in_item--;
1778 /* Get real file size (total length of all file items) */
1779 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1780 if (is_statdata_le_ih(p_le_ih))
1781 file_size = 0;
1782 else {
1783 loff_t offset = le_ih_k_offset(p_le_ih);
1784 int bytes =
1785 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1787 /* this may mismatch with real file size: if last direct item
1788 had no padding zeros and last unformatted node had no free
1789 space, this file would have this file size */
1790 file_size = offset + bytes - 1;
1793 * are we doing a full truncate or delete, if so
1794 * kick in the reada code
1796 if (new_file_size == 0)
1797 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1799 if (file_size == 0 || file_size < new_file_size) {
1800 goto update_and_out;
1803 /* Update key to search for the last file item. */
1804 set_cpu_key_k_offset(&s_item_key, file_size);
1806 do {
1807 /* Cut or delete file item. */
1808 deleted =
1809 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1810 inode, page, new_file_size);
1811 if (deleted < 0) {
1812 reiserfs_warning(inode->i_sb, "vs-5665",
1813 "reiserfs_cut_from_item failed");
1814 reiserfs_check_path(&s_search_path);
1815 return 0;
1818 RFALSE(deleted > file_size,
1819 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1820 deleted, file_size, &s_item_key);
1822 /* Change key to search the last file item. */
1823 file_size -= deleted;
1825 set_cpu_key_k_offset(&s_item_key, file_size);
1827 /* While there are bytes to truncate and previous file item is presented in the tree. */
1830 ** This loop could take a really long time, and could log
1831 ** many more blocks than a transaction can hold. So, we do a polite
1832 ** journal end here, and if the transaction needs ending, we make
1833 ** sure the file is consistent before ending the current trans
1834 ** and starting a new one
1836 if (journal_transaction_should_end(th, 0) ||
1837 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1838 int orig_len_alloc = th->t_blocks_allocated;
1839 pathrelse(&s_search_path);
1841 if (update_timestamps) {
1842 inode->i_mtime = CURRENT_TIME_SEC;
1843 inode->i_ctime = CURRENT_TIME_SEC;
1845 reiserfs_update_sd(th, inode);
1847 err = journal_end(th, inode->i_sb, orig_len_alloc);
1848 if (err)
1849 goto out;
1850 err = journal_begin(th, inode->i_sb,
1851 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1852 if (err)
1853 goto out;
1854 reiserfs_update_inode_transaction(inode);
1856 } while (file_size > ROUND_UP(new_file_size) &&
1857 search_for_position_by_key(inode->i_sb, &s_item_key,
1858 &s_search_path) == POSITION_FOUND);
1860 RFALSE(file_size > ROUND_UP(new_file_size),
1861 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1862 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1864 update_and_out:
1865 if (update_timestamps) {
1866 // this is truncate, not file closing
1867 inode->i_mtime = CURRENT_TIME_SEC;
1868 inode->i_ctime = CURRENT_TIME_SEC;
1870 reiserfs_update_sd(th, inode);
1872 out:
1873 pathrelse(&s_search_path);
1874 return err;
1877 #ifdef CONFIG_REISERFS_CHECK
1878 // this makes sure, that we __append__, not overwrite or add holes
1879 static void check_research_for_paste(struct treepath *path,
1880 const struct cpu_key *key)
1882 struct item_head *found_ih = get_ih(path);
1884 if (is_direct_le_ih(found_ih)) {
1885 if (le_ih_k_offset(found_ih) +
1886 op_bytes_number(found_ih,
1887 get_last_bh(path)->b_size) !=
1888 cpu_key_k_offset(key)
1889 || op_bytes_number(found_ih,
1890 get_last_bh(path)->b_size) !=
1891 pos_in_item(path))
1892 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1893 "%h or position (%d) does not match "
1894 "to key %K", found_ih,
1895 pos_in_item(path), key);
1897 if (is_indirect_le_ih(found_ih)) {
1898 if (le_ih_k_offset(found_ih) +
1899 op_bytes_number(found_ih,
1900 get_last_bh(path)->b_size) !=
1901 cpu_key_k_offset(key)
1902 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1903 || get_ih_free_space(found_ih) != 0)
1904 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1905 "item (%h) or position (%d) does not "
1906 "match to key (%K)",
1907 found_ih, pos_in_item(path), key);
1910 #endif /* config reiserfs check */
1912 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1913 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */
1914 const struct cpu_key *key, /* Key to search for the needed item. */
1915 struct inode *inode, /* Inode item belongs to */
1916 const char *body, /* Pointer to the bytes to paste. */
1917 int pasted_size)
1918 { /* Size of pasted bytes. */
1919 struct tree_balance s_paste_balance;
1920 int retval;
1921 int fs_gen;
1923 BUG_ON(!th->t_trans_id);
1925 fs_gen = get_generation(inode->i_sb);
1927 #ifdef REISERQUOTA_DEBUG
1928 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1929 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1930 pasted_size, inode->i_uid,
1931 key2type(&(key->on_disk_key)));
1932 #endif
1934 if (vfs_dq_alloc_space_nodirty(inode, pasted_size)) {
1935 pathrelse(search_path);
1936 return -EDQUOT;
1938 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1939 pasted_size);
1940 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1941 s_paste_balance.key = key->on_disk_key;
1942 #endif
1944 /* DQUOT_* can schedule, must check before the fix_nodes */
1945 if (fs_changed(fs_gen, inode->i_sb)) {
1946 goto search_again;
1949 while ((retval =
1950 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1951 body)) == REPEAT_SEARCH) {
1952 search_again:
1953 /* file system changed while we were in the fix_nodes */
1954 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1955 retval =
1956 search_for_position_by_key(th->t_super, key,
1957 search_path);
1958 if (retval == IO_ERROR) {
1959 retval = -EIO;
1960 goto error_out;
1962 if (retval == POSITION_FOUND) {
1963 reiserfs_warning(inode->i_sb, "PAP-5710",
1964 "entry or pasted byte (%K) exists",
1965 key);
1966 retval = -EEXIST;
1967 goto error_out;
1969 #ifdef CONFIG_REISERFS_CHECK
1970 check_research_for_paste(search_path, key);
1971 #endif
1974 /* Perform balancing after all resources are collected by fix_nodes, and
1975 accessing them will not risk triggering schedule. */
1976 if (retval == CARRY_ON) {
1977 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
1978 return 0;
1980 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
1981 error_out:
1982 /* this also releases the path */
1983 unfix_nodes(&s_paste_balance);
1984 #ifdef REISERQUOTA_DEBUG
1985 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1986 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
1987 pasted_size, inode->i_uid,
1988 key2type(&(key->on_disk_key)));
1989 #endif
1990 vfs_dq_free_space_nodirty(inode, pasted_size);
1991 return retval;
1994 /* Insert new item into the buffer at the path.
1995 * th - active transaction handle
1996 * path - path to the inserted item
1997 * ih - pointer to the item header to insert
1998 * body - pointer to the bytes to insert
2000 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2001 struct treepath *path, const struct cpu_key *key,
2002 struct item_head *ih, struct inode *inode,
2003 const char *body)
2005 struct tree_balance s_ins_balance;
2006 int retval;
2007 int fs_gen = 0;
2008 int quota_bytes = 0;
2010 BUG_ON(!th->t_trans_id);
2012 if (inode) { /* Do we count quotas for item? */
2013 fs_gen = get_generation(inode->i_sb);
2014 quota_bytes = ih_item_len(ih);
2016 /* hack so the quota code doesn't have to guess if the file has
2017 ** a tail, links are always tails, so there's no guessing needed
2019 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2020 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2021 #ifdef REISERQUOTA_DEBUG
2022 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2023 "reiserquota insert_item(): allocating %u id=%u type=%c",
2024 quota_bytes, inode->i_uid, head2type(ih));
2025 #endif
2026 /* We can't dirty inode here. It would be immediately written but
2027 * appropriate stat item isn't inserted yet... */
2028 if (vfs_dq_alloc_space_nodirty(inode, quota_bytes)) {
2029 pathrelse(path);
2030 return -EDQUOT;
2033 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2034 IH_SIZE + ih_item_len(ih));
2035 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2036 s_ins_balance.key = key->on_disk_key;
2037 #endif
2038 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2039 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2040 goto search_again;
2043 while ((retval =
2044 fix_nodes(M_INSERT, &s_ins_balance, ih,
2045 body)) == REPEAT_SEARCH) {
2046 search_again:
2047 /* file system changed while we were in the fix_nodes */
2048 PROC_INFO_INC(th->t_super, insert_item_restarted);
2049 retval = search_item(th->t_super, key, path);
2050 if (retval == IO_ERROR) {
2051 retval = -EIO;
2052 goto error_out;
2054 if (retval == ITEM_FOUND) {
2055 reiserfs_warning(th->t_super, "PAP-5760",
2056 "key %K already exists in the tree",
2057 key);
2058 retval = -EEXIST;
2059 goto error_out;
2063 /* make balancing after all resources will be collected at a time */
2064 if (retval == CARRY_ON) {
2065 do_balance(&s_ins_balance, ih, body, M_INSERT);
2066 return 0;
2069 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2070 error_out:
2071 /* also releases the path */
2072 unfix_nodes(&s_ins_balance);
2073 #ifdef REISERQUOTA_DEBUG
2074 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2075 "reiserquota insert_item(): freeing %u id=%u type=%c",
2076 quota_bytes, inode->i_uid, head2type(ih));
2077 #endif
2078 if (inode)
2079 vfs_dq_free_space_nodirty(inode, quota_bytes);
2080 return retval;