rtlwifi: rtl8192ce: Change sw and LED routines for addition of rtl8192se and rtl8192de
[linux/fpc-iii.git] / drivers / net / fec.c
blob885d8baff7d5804b272c664fbc69fefa0cbf87b8
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
50 #ifndef CONFIG_ARM
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
53 #endif
55 #include "fec.h"
57 #if defined(CONFIG_ARM)
58 #define FEC_ALIGNMENT 0xf
59 #else
60 #define FEC_ALIGNMENT 0x3
61 #endif
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype[] = {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
78 { }
81 static unsigned char macaddr[ETH_ALEN];
82 module_param_array(macaddr, byte, NULL, 0);
83 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
85 #if defined(CONFIG_M5272)
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
90 #if defined(CONFIG_NETtel)
91 #define FEC_FLASHMAC 0xf0006006
92 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93 #define FEC_FLASHMAC 0xf0006000
94 #elif defined(CONFIG_CANCam)
95 #define FEC_FLASHMAC 0xf0020000
96 #elif defined (CONFIG_M5272C3)
97 #define FEC_FLASHMAC (0xffe04000 + 4)
98 #elif defined(CONFIG_MOD5272)
99 #define FEC_FLASHMAC 0xffc0406b
100 #else
101 #define FEC_FLASHMAC 0
102 #endif
103 #endif /* CONFIG_M5272 */
105 /* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
111 #define FEC_ENET_RX_PAGES 8
112 #define FEC_ENET_RX_FRSIZE 2048
113 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115 #define FEC_ENET_TX_FRSIZE 2048
116 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117 #define TX_RING_SIZE 16 /* Must be power of two */
118 #define TX_RING_MOD_MASK 15 /* for this to work */
120 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
121 #error "FEC: descriptor ring size constants too large"
122 #endif
124 /* Interrupt events/masks. */
125 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
138 /* The FEC stores dest/src/type, data, and checksum for receive packets.
140 #define PKT_MAXBUF_SIZE 1518
141 #define PKT_MINBUF_SIZE 64
142 #define PKT_MAXBLR_SIZE 1520
146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
150 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
152 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
153 #else
154 #define OPT_FRAME_SIZE 0
155 #endif
157 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
165 struct fec_enet_private {
166 /* Hardware registers of the FEC device */
167 void __iomem *hwp;
169 struct net_device *netdev;
171 struct clk *clk;
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce[TX_RING_SIZE];
175 struct sk_buff* tx_skbuff[TX_RING_SIZE];
176 struct sk_buff* rx_skbuff[RX_RING_SIZE];
177 ushort skb_cur;
178 ushort skb_dirty;
180 /* CPM dual port RAM relative addresses */
181 dma_addr_t bd_dma;
182 /* Address of Rx and Tx buffers */
183 struct bufdesc *rx_bd_base;
184 struct bufdesc *tx_bd_base;
185 /* The next free ring entry */
186 struct bufdesc *cur_rx, *cur_tx;
187 /* The ring entries to be free()ed */
188 struct bufdesc *dirty_tx;
190 uint tx_full;
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
192 spinlock_t hw_lock;
194 struct platform_device *pdev;
196 int opened;
198 /* Phylib and MDIO interface */
199 struct mii_bus *mii_bus;
200 struct phy_device *phy_dev;
201 int mii_timeout;
202 uint phy_speed;
203 phy_interface_t phy_interface;
204 int link;
205 int full_duplex;
206 struct completion mdio_done;
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST (1 << 30)
211 #define FEC_MMFR_OP_READ (2 << 28)
212 #define FEC_MMFR_OP_WRITE (1 << 28)
213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215 #define FEC_MMFR_TA (2 << 16)
216 #define FEC_MMFR_DATA(v) (v & 0xffff)
218 #define FEC_MII_TIMEOUT 1000 /* us */
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
223 static void *swap_buffer(void *bufaddr, int len)
225 int i;
226 unsigned int *buf = bufaddr;
228 for (i = 0; i < (len + 3) / 4; i++, buf++)
229 *buf = cpu_to_be32(*buf);
231 return bufaddr;
234 static netdev_tx_t
235 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
237 struct fec_enet_private *fep = netdev_priv(ndev);
238 const struct platform_device_id *id_entry =
239 platform_get_device_id(fep->pdev);
240 struct bufdesc *bdp;
241 void *bufaddr;
242 unsigned short status;
243 unsigned long flags;
245 if (!fep->link) {
246 /* Link is down or autonegotiation is in progress. */
247 return NETDEV_TX_BUSY;
250 spin_lock_irqsave(&fep->hw_lock, flags);
251 /* Fill in a Tx ring entry */
252 bdp = fep->cur_tx;
254 status = bdp->cbd_sc;
256 if (status & BD_ENET_TX_READY) {
257 /* Ooops. All transmit buffers are full. Bail out.
258 * This should not happen, since ndev->tbusy should be set.
260 printk("%s: tx queue full!.\n", ndev->name);
261 spin_unlock_irqrestore(&fep->hw_lock, flags);
262 return NETDEV_TX_BUSY;
265 /* Clear all of the status flags */
266 status &= ~BD_ENET_TX_STATS;
268 /* Set buffer length and buffer pointer */
269 bufaddr = skb->data;
270 bdp->cbd_datlen = skb->len;
273 * On some FEC implementations data must be aligned on
274 * 4-byte boundaries. Use bounce buffers to copy data
275 * and get it aligned. Ugh.
277 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
278 unsigned int index;
279 index = bdp - fep->tx_bd_base;
280 memcpy(fep->tx_bounce[index], skb->data, skb->len);
281 bufaddr = fep->tx_bounce[index];
285 * Some design made an incorrect assumption on endian mode of
286 * the system that it's running on. As the result, driver has to
287 * swap every frame going to and coming from the controller.
289 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
290 swap_buffer(bufaddr, skb->len);
292 /* Save skb pointer */
293 fep->tx_skbuff[fep->skb_cur] = skb;
295 ndev->stats.tx_bytes += skb->len;
296 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
298 /* Push the data cache so the CPM does not get stale memory
299 * data.
301 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
302 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
304 /* Send it on its way. Tell FEC it's ready, interrupt when done,
305 * it's the last BD of the frame, and to put the CRC on the end.
307 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
308 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
309 bdp->cbd_sc = status;
311 /* Trigger transmission start */
312 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
314 /* If this was the last BD in the ring, start at the beginning again. */
315 if (status & BD_ENET_TX_WRAP)
316 bdp = fep->tx_bd_base;
317 else
318 bdp++;
320 if (bdp == fep->dirty_tx) {
321 fep->tx_full = 1;
322 netif_stop_queue(ndev);
325 fep->cur_tx = bdp;
327 spin_unlock_irqrestore(&fep->hw_lock, flags);
329 return NETDEV_TX_OK;
332 /* This function is called to start or restart the FEC during a link
333 * change. This only happens when switching between half and full
334 * duplex.
336 static void
337 fec_restart(struct net_device *ndev, int duplex)
339 struct fec_enet_private *fep = netdev_priv(ndev);
340 const struct platform_device_id *id_entry =
341 platform_get_device_id(fep->pdev);
342 int i;
343 u32 temp_mac[2];
344 u32 rcntl = OPT_FRAME_SIZE | 0x04;
346 /* Whack a reset. We should wait for this. */
347 writel(1, fep->hwp + FEC_ECNTRL);
348 udelay(10);
351 * enet-mac reset will reset mac address registers too,
352 * so need to reconfigure it.
354 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
355 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
356 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
357 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
360 /* Clear any outstanding interrupt. */
361 writel(0xffc00000, fep->hwp + FEC_IEVENT);
363 /* Reset all multicast. */
364 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
365 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
366 #ifndef CONFIG_M5272
367 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
368 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
369 #endif
371 /* Set maximum receive buffer size. */
372 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
374 /* Set receive and transmit descriptor base. */
375 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
376 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
377 fep->hwp + FEC_X_DES_START);
379 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
380 fep->cur_rx = fep->rx_bd_base;
382 /* Reset SKB transmit buffers. */
383 fep->skb_cur = fep->skb_dirty = 0;
384 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
385 if (fep->tx_skbuff[i]) {
386 dev_kfree_skb_any(fep->tx_skbuff[i]);
387 fep->tx_skbuff[i] = NULL;
391 /* Enable MII mode */
392 if (duplex) {
393 /* FD enable */
394 writel(0x04, fep->hwp + FEC_X_CNTRL);
395 } else {
396 /* No Rcv on Xmit */
397 rcntl |= 0x02;
398 writel(0x0, fep->hwp + FEC_X_CNTRL);
401 fep->full_duplex = duplex;
403 /* Set MII speed */
404 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
407 * The phy interface and speed need to get configured
408 * differently on enet-mac.
410 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
411 /* Enable flow control and length check */
412 rcntl |= 0x40000000 | 0x00000020;
414 /* MII or RMII */
415 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
416 rcntl |= (1 << 8);
417 else
418 rcntl &= ~(1 << 8);
420 /* 10M or 100M */
421 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
422 rcntl &= ~(1 << 9);
423 else
424 rcntl |= (1 << 9);
426 } else {
427 #ifdef FEC_MIIGSK_ENR
428 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
429 /* disable the gasket and wait */
430 writel(0, fep->hwp + FEC_MIIGSK_ENR);
431 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
432 udelay(1);
435 * configure the gasket:
436 * RMII, 50 MHz, no loopback, no echo
438 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
440 /* re-enable the gasket */
441 writel(2, fep->hwp + FEC_MIIGSK_ENR);
443 #endif
445 writel(rcntl, fep->hwp + FEC_R_CNTRL);
447 /* And last, enable the transmit and receive processing */
448 writel(2, fep->hwp + FEC_ECNTRL);
449 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
451 /* Enable interrupts we wish to service */
452 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
455 static void
456 fec_stop(struct net_device *ndev)
458 struct fec_enet_private *fep = netdev_priv(ndev);
460 /* We cannot expect a graceful transmit stop without link !!! */
461 if (fep->link) {
462 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
463 udelay(10);
464 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
465 printk("fec_stop : Graceful transmit stop did not complete !\n");
468 /* Whack a reset. We should wait for this. */
469 writel(1, fep->hwp + FEC_ECNTRL);
470 udelay(10);
471 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
472 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
476 static void
477 fec_timeout(struct net_device *ndev)
479 struct fec_enet_private *fep = netdev_priv(ndev);
481 ndev->stats.tx_errors++;
483 fec_restart(ndev, fep->full_duplex);
484 netif_wake_queue(ndev);
487 static void
488 fec_enet_tx(struct net_device *ndev)
490 struct fec_enet_private *fep;
491 struct bufdesc *bdp;
492 unsigned short status;
493 struct sk_buff *skb;
495 fep = netdev_priv(ndev);
496 spin_lock(&fep->hw_lock);
497 bdp = fep->dirty_tx;
499 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
500 if (bdp == fep->cur_tx && fep->tx_full == 0)
501 break;
503 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
504 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
505 bdp->cbd_bufaddr = 0;
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
511 BD_ENET_TX_CSL)) {
512 ndev->stats.tx_errors++;
513 if (status & BD_ENET_TX_HB) /* No heartbeat */
514 ndev->stats.tx_heartbeat_errors++;
515 if (status & BD_ENET_TX_LC) /* Late collision */
516 ndev->stats.tx_window_errors++;
517 if (status & BD_ENET_TX_RL) /* Retrans limit */
518 ndev->stats.tx_aborted_errors++;
519 if (status & BD_ENET_TX_UN) /* Underrun */
520 ndev->stats.tx_fifo_errors++;
521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
522 ndev->stats.tx_carrier_errors++;
523 } else {
524 ndev->stats.tx_packets++;
527 if (status & BD_ENET_TX_READY)
528 printk("HEY! Enet xmit interrupt and TX_READY.\n");
530 /* Deferred means some collisions occurred during transmit,
531 * but we eventually sent the packet OK.
533 if (status & BD_ENET_TX_DEF)
534 ndev->stats.collisions++;
536 /* Free the sk buffer associated with this last transmit */
537 dev_kfree_skb_any(skb);
538 fep->tx_skbuff[fep->skb_dirty] = NULL;
539 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
541 /* Update pointer to next buffer descriptor to be transmitted */
542 if (status & BD_ENET_TX_WRAP)
543 bdp = fep->tx_bd_base;
544 else
545 bdp++;
547 /* Since we have freed up a buffer, the ring is no longer full
549 if (fep->tx_full) {
550 fep->tx_full = 0;
551 if (netif_queue_stopped(ndev))
552 netif_wake_queue(ndev);
555 fep->dirty_tx = bdp;
556 spin_unlock(&fep->hw_lock);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
565 static void
566 fec_enet_rx(struct net_device *ndev)
568 struct fec_enet_private *fep = netdev_priv(ndev);
569 const struct platform_device_id *id_entry =
570 platform_get_device_id(fep->pdev);
571 struct bufdesc *bdp;
572 unsigned short status;
573 struct sk_buff *skb;
574 ushort pkt_len;
575 __u8 *data;
577 #ifdef CONFIG_M532x
578 flush_cache_all();
579 #endif
581 spin_lock(&fep->hw_lock);
583 /* First, grab all of the stats for the incoming packet.
584 * These get messed up if we get called due to a busy condition.
586 bdp = fep->cur_rx;
588 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
590 /* Since we have allocated space to hold a complete frame,
591 * the last indicator should be set.
593 if ((status & BD_ENET_RX_LAST) == 0)
594 printk("FEC ENET: rcv is not +last\n");
596 if (!fep->opened)
597 goto rx_processing_done;
599 /* Check for errors. */
600 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
601 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
602 ndev->stats.rx_errors++;
603 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
604 /* Frame too long or too short. */
605 ndev->stats.rx_length_errors++;
607 if (status & BD_ENET_RX_NO) /* Frame alignment */
608 ndev->stats.rx_frame_errors++;
609 if (status & BD_ENET_RX_CR) /* CRC Error */
610 ndev->stats.rx_crc_errors++;
611 if (status & BD_ENET_RX_OV) /* FIFO overrun */
612 ndev->stats.rx_fifo_errors++;
615 /* Report late collisions as a frame error.
616 * On this error, the BD is closed, but we don't know what we
617 * have in the buffer. So, just drop this frame on the floor.
619 if (status & BD_ENET_RX_CL) {
620 ndev->stats.rx_errors++;
621 ndev->stats.rx_frame_errors++;
622 goto rx_processing_done;
625 /* Process the incoming frame. */
626 ndev->stats.rx_packets++;
627 pkt_len = bdp->cbd_datlen;
628 ndev->stats.rx_bytes += pkt_len;
629 data = (__u8*)__va(bdp->cbd_bufaddr);
631 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
632 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
634 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
635 swap_buffer(data, pkt_len);
637 /* This does 16 byte alignment, exactly what we need.
638 * The packet length includes FCS, but we don't want to
639 * include that when passing upstream as it messes up
640 * bridging applications.
642 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
644 if (unlikely(!skb)) {
645 printk("%s: Memory squeeze, dropping packet.\n",
646 ndev->name);
647 ndev->stats.rx_dropped++;
648 } else {
649 skb_reserve(skb, NET_IP_ALIGN);
650 skb_put(skb, pkt_len - 4); /* Make room */
651 skb_copy_to_linear_data(skb, data, pkt_len - 4);
652 skb->protocol = eth_type_trans(skb, ndev);
653 netif_rx(skb);
656 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
657 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
658 rx_processing_done:
659 /* Clear the status flags for this buffer */
660 status &= ~BD_ENET_RX_STATS;
662 /* Mark the buffer empty */
663 status |= BD_ENET_RX_EMPTY;
664 bdp->cbd_sc = status;
666 /* Update BD pointer to next entry */
667 if (status & BD_ENET_RX_WRAP)
668 bdp = fep->rx_bd_base;
669 else
670 bdp++;
671 /* Doing this here will keep the FEC running while we process
672 * incoming frames. On a heavily loaded network, we should be
673 * able to keep up at the expense of system resources.
675 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
677 fep->cur_rx = bdp;
679 spin_unlock(&fep->hw_lock);
682 static irqreturn_t
683 fec_enet_interrupt(int irq, void *dev_id)
685 struct net_device *ndev = dev_id;
686 struct fec_enet_private *fep = netdev_priv(ndev);
687 uint int_events;
688 irqreturn_t ret = IRQ_NONE;
690 do {
691 int_events = readl(fep->hwp + FEC_IEVENT);
692 writel(int_events, fep->hwp + FEC_IEVENT);
694 if (int_events & FEC_ENET_RXF) {
695 ret = IRQ_HANDLED;
696 fec_enet_rx(ndev);
699 /* Transmit OK, or non-fatal error. Update the buffer
700 * descriptors. FEC handles all errors, we just discover
701 * them as part of the transmit process.
703 if (int_events & FEC_ENET_TXF) {
704 ret = IRQ_HANDLED;
705 fec_enet_tx(ndev);
708 if (int_events & FEC_ENET_MII) {
709 ret = IRQ_HANDLED;
710 complete(&fep->mdio_done);
712 } while (int_events);
714 return ret;
719 /* ------------------------------------------------------------------------- */
720 static void __inline__ fec_get_mac(struct net_device *ndev)
722 struct fec_enet_private *fep = netdev_priv(ndev);
723 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
724 unsigned char *iap, tmpaddr[ETH_ALEN];
727 * try to get mac address in following order:
729 * 1) module parameter via kernel command line in form
730 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
732 iap = macaddr;
735 * 2) from flash or fuse (via platform data)
737 if (!is_valid_ether_addr(iap)) {
738 #ifdef CONFIG_M5272
739 if (FEC_FLASHMAC)
740 iap = (unsigned char *)FEC_FLASHMAC;
741 #else
742 if (pdata)
743 memcpy(iap, pdata->mac, ETH_ALEN);
744 #endif
748 * 3) FEC mac registers set by bootloader
750 if (!is_valid_ether_addr(iap)) {
751 *((unsigned long *) &tmpaddr[0]) =
752 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
753 *((unsigned short *) &tmpaddr[4]) =
754 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
755 iap = &tmpaddr[0];
758 memcpy(ndev->dev_addr, iap, ETH_ALEN);
760 /* Adjust MAC if using macaddr */
761 if (iap == macaddr)
762 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
765 /* ------------------------------------------------------------------------- */
768 * Phy section
770 static void fec_enet_adjust_link(struct net_device *ndev)
772 struct fec_enet_private *fep = netdev_priv(ndev);
773 struct phy_device *phy_dev = fep->phy_dev;
774 unsigned long flags;
776 int status_change = 0;
778 spin_lock_irqsave(&fep->hw_lock, flags);
780 /* Prevent a state halted on mii error */
781 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
782 phy_dev->state = PHY_RESUMING;
783 goto spin_unlock;
786 /* Duplex link change */
787 if (phy_dev->link) {
788 if (fep->full_duplex != phy_dev->duplex) {
789 fec_restart(ndev, phy_dev->duplex);
790 status_change = 1;
794 /* Link on or off change */
795 if (phy_dev->link != fep->link) {
796 fep->link = phy_dev->link;
797 if (phy_dev->link)
798 fec_restart(ndev, phy_dev->duplex);
799 else
800 fec_stop(ndev);
801 status_change = 1;
804 spin_unlock:
805 spin_unlock_irqrestore(&fep->hw_lock, flags);
807 if (status_change)
808 phy_print_status(phy_dev);
811 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
813 struct fec_enet_private *fep = bus->priv;
814 unsigned long time_left;
816 fep->mii_timeout = 0;
817 init_completion(&fep->mdio_done);
819 /* start a read op */
820 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
821 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
822 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
824 /* wait for end of transfer */
825 time_left = wait_for_completion_timeout(&fep->mdio_done,
826 usecs_to_jiffies(FEC_MII_TIMEOUT));
827 if (time_left == 0) {
828 fep->mii_timeout = 1;
829 printk(KERN_ERR "FEC: MDIO read timeout\n");
830 return -ETIMEDOUT;
833 /* return value */
834 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
837 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
838 u16 value)
840 struct fec_enet_private *fep = bus->priv;
841 unsigned long time_left;
843 fep->mii_timeout = 0;
844 init_completion(&fep->mdio_done);
846 /* start a write op */
847 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
848 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
849 FEC_MMFR_TA | FEC_MMFR_DATA(value),
850 fep->hwp + FEC_MII_DATA);
852 /* wait for end of transfer */
853 time_left = wait_for_completion_timeout(&fep->mdio_done,
854 usecs_to_jiffies(FEC_MII_TIMEOUT));
855 if (time_left == 0) {
856 fep->mii_timeout = 1;
857 printk(KERN_ERR "FEC: MDIO write timeout\n");
858 return -ETIMEDOUT;
861 return 0;
864 static int fec_enet_mdio_reset(struct mii_bus *bus)
866 return 0;
869 static int fec_enet_mii_probe(struct net_device *ndev)
871 struct fec_enet_private *fep = netdev_priv(ndev);
872 struct phy_device *phy_dev = NULL;
873 char mdio_bus_id[MII_BUS_ID_SIZE];
874 char phy_name[MII_BUS_ID_SIZE + 3];
875 int phy_id;
876 int dev_id = fep->pdev->id;
878 fep->phy_dev = NULL;
880 /* check for attached phy */
881 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
882 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
883 continue;
884 if (fep->mii_bus->phy_map[phy_id] == NULL)
885 continue;
886 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
887 continue;
888 if (dev_id--)
889 continue;
890 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
891 break;
894 if (phy_id >= PHY_MAX_ADDR) {
895 printk(KERN_INFO "%s: no PHY, assuming direct connection "
896 "to switch\n", ndev->name);
897 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
898 phy_id = 0;
901 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
902 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
903 PHY_INTERFACE_MODE_MII);
904 if (IS_ERR(phy_dev)) {
905 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
906 return PTR_ERR(phy_dev);
909 /* mask with MAC supported features */
910 phy_dev->supported &= PHY_BASIC_FEATURES;
911 phy_dev->advertising = phy_dev->supported;
913 fep->phy_dev = phy_dev;
914 fep->link = 0;
915 fep->full_duplex = 0;
917 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
918 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
919 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
920 fep->phy_dev->irq);
922 return 0;
925 static int fec_enet_mii_init(struct platform_device *pdev)
927 static struct mii_bus *fec0_mii_bus;
928 struct net_device *ndev = platform_get_drvdata(pdev);
929 struct fec_enet_private *fep = netdev_priv(ndev);
930 const struct platform_device_id *id_entry =
931 platform_get_device_id(fep->pdev);
932 int err = -ENXIO, i;
935 * The dual fec interfaces are not equivalent with enet-mac.
936 * Here are the differences:
938 * - fec0 supports MII & RMII modes while fec1 only supports RMII
939 * - fec0 acts as the 1588 time master while fec1 is slave
940 * - external phys can only be configured by fec0
942 * That is to say fec1 can not work independently. It only works
943 * when fec0 is working. The reason behind this design is that the
944 * second interface is added primarily for Switch mode.
946 * Because of the last point above, both phys are attached on fec0
947 * mdio interface in board design, and need to be configured by
948 * fec0 mii_bus.
950 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
951 /* fec1 uses fec0 mii_bus */
952 fep->mii_bus = fec0_mii_bus;
953 return 0;
956 fep->mii_timeout = 0;
959 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
961 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
962 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
964 fep->mii_bus = mdiobus_alloc();
965 if (fep->mii_bus == NULL) {
966 err = -ENOMEM;
967 goto err_out;
970 fep->mii_bus->name = "fec_enet_mii_bus";
971 fep->mii_bus->read = fec_enet_mdio_read;
972 fep->mii_bus->write = fec_enet_mdio_write;
973 fep->mii_bus->reset = fec_enet_mdio_reset;
974 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
975 fep->mii_bus->priv = fep;
976 fep->mii_bus->parent = &pdev->dev;
978 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
979 if (!fep->mii_bus->irq) {
980 err = -ENOMEM;
981 goto err_out_free_mdiobus;
984 for (i = 0; i < PHY_MAX_ADDR; i++)
985 fep->mii_bus->irq[i] = PHY_POLL;
987 if (mdiobus_register(fep->mii_bus))
988 goto err_out_free_mdio_irq;
990 /* save fec0 mii_bus */
991 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
992 fec0_mii_bus = fep->mii_bus;
994 return 0;
996 err_out_free_mdio_irq:
997 kfree(fep->mii_bus->irq);
998 err_out_free_mdiobus:
999 mdiobus_free(fep->mii_bus);
1000 err_out:
1001 return err;
1004 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1006 if (fep->phy_dev)
1007 phy_disconnect(fep->phy_dev);
1008 mdiobus_unregister(fep->mii_bus);
1009 kfree(fep->mii_bus->irq);
1010 mdiobus_free(fep->mii_bus);
1013 static int fec_enet_get_settings(struct net_device *ndev,
1014 struct ethtool_cmd *cmd)
1016 struct fec_enet_private *fep = netdev_priv(ndev);
1017 struct phy_device *phydev = fep->phy_dev;
1019 if (!phydev)
1020 return -ENODEV;
1022 return phy_ethtool_gset(phydev, cmd);
1025 static int fec_enet_set_settings(struct net_device *ndev,
1026 struct ethtool_cmd *cmd)
1028 struct fec_enet_private *fep = netdev_priv(ndev);
1029 struct phy_device *phydev = fep->phy_dev;
1031 if (!phydev)
1032 return -ENODEV;
1034 return phy_ethtool_sset(phydev, cmd);
1037 static void fec_enet_get_drvinfo(struct net_device *ndev,
1038 struct ethtool_drvinfo *info)
1040 struct fec_enet_private *fep = netdev_priv(ndev);
1042 strcpy(info->driver, fep->pdev->dev.driver->name);
1043 strcpy(info->version, "Revision: 1.0");
1044 strcpy(info->bus_info, dev_name(&ndev->dev));
1047 static struct ethtool_ops fec_enet_ethtool_ops = {
1048 .get_settings = fec_enet_get_settings,
1049 .set_settings = fec_enet_set_settings,
1050 .get_drvinfo = fec_enet_get_drvinfo,
1051 .get_link = ethtool_op_get_link,
1054 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1056 struct fec_enet_private *fep = netdev_priv(ndev);
1057 struct phy_device *phydev = fep->phy_dev;
1059 if (!netif_running(ndev))
1060 return -EINVAL;
1062 if (!phydev)
1063 return -ENODEV;
1065 return phy_mii_ioctl(phydev, rq, cmd);
1068 static void fec_enet_free_buffers(struct net_device *ndev)
1070 struct fec_enet_private *fep = netdev_priv(ndev);
1071 int i;
1072 struct sk_buff *skb;
1073 struct bufdesc *bdp;
1075 bdp = fep->rx_bd_base;
1076 for (i = 0; i < RX_RING_SIZE; i++) {
1077 skb = fep->rx_skbuff[i];
1079 if (bdp->cbd_bufaddr)
1080 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1081 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1082 if (skb)
1083 dev_kfree_skb(skb);
1084 bdp++;
1087 bdp = fep->tx_bd_base;
1088 for (i = 0; i < TX_RING_SIZE; i++)
1089 kfree(fep->tx_bounce[i]);
1092 static int fec_enet_alloc_buffers(struct net_device *ndev)
1094 struct fec_enet_private *fep = netdev_priv(ndev);
1095 int i;
1096 struct sk_buff *skb;
1097 struct bufdesc *bdp;
1099 bdp = fep->rx_bd_base;
1100 for (i = 0; i < RX_RING_SIZE; i++) {
1101 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1102 if (!skb) {
1103 fec_enet_free_buffers(ndev);
1104 return -ENOMEM;
1106 fep->rx_skbuff[i] = skb;
1108 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1109 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1110 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1111 bdp++;
1114 /* Set the last buffer to wrap. */
1115 bdp--;
1116 bdp->cbd_sc |= BD_SC_WRAP;
1118 bdp = fep->tx_bd_base;
1119 for (i = 0; i < TX_RING_SIZE; i++) {
1120 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1122 bdp->cbd_sc = 0;
1123 bdp->cbd_bufaddr = 0;
1124 bdp++;
1127 /* Set the last buffer to wrap. */
1128 bdp--;
1129 bdp->cbd_sc |= BD_SC_WRAP;
1131 return 0;
1134 static int
1135 fec_enet_open(struct net_device *ndev)
1137 struct fec_enet_private *fep = netdev_priv(ndev);
1138 int ret;
1140 /* I should reset the ring buffers here, but I don't yet know
1141 * a simple way to do that.
1144 ret = fec_enet_alloc_buffers(ndev);
1145 if (ret)
1146 return ret;
1148 /* Probe and connect to PHY when open the interface */
1149 ret = fec_enet_mii_probe(ndev);
1150 if (ret) {
1151 fec_enet_free_buffers(ndev);
1152 return ret;
1154 phy_start(fep->phy_dev);
1155 netif_start_queue(ndev);
1156 fep->opened = 1;
1157 return 0;
1160 static int
1161 fec_enet_close(struct net_device *ndev)
1163 struct fec_enet_private *fep = netdev_priv(ndev);
1165 /* Don't know what to do yet. */
1166 fep->opened = 0;
1167 netif_stop_queue(ndev);
1168 fec_stop(ndev);
1170 if (fep->phy_dev) {
1171 phy_stop(fep->phy_dev);
1172 phy_disconnect(fep->phy_dev);
1175 fec_enet_free_buffers(ndev);
1177 return 0;
1180 /* Set or clear the multicast filter for this adaptor.
1181 * Skeleton taken from sunlance driver.
1182 * The CPM Ethernet implementation allows Multicast as well as individual
1183 * MAC address filtering. Some of the drivers check to make sure it is
1184 * a group multicast address, and discard those that are not. I guess I
1185 * will do the same for now, but just remove the test if you want
1186 * individual filtering as well (do the upper net layers want or support
1187 * this kind of feature?).
1190 #define HASH_BITS 6 /* #bits in hash */
1191 #define CRC32_POLY 0xEDB88320
1193 static void set_multicast_list(struct net_device *ndev)
1195 struct fec_enet_private *fep = netdev_priv(ndev);
1196 struct netdev_hw_addr *ha;
1197 unsigned int i, bit, data, crc, tmp;
1198 unsigned char hash;
1200 if (ndev->flags & IFF_PROMISC) {
1201 tmp = readl(fep->hwp + FEC_R_CNTRL);
1202 tmp |= 0x8;
1203 writel(tmp, fep->hwp + FEC_R_CNTRL);
1204 return;
1207 tmp = readl(fep->hwp + FEC_R_CNTRL);
1208 tmp &= ~0x8;
1209 writel(tmp, fep->hwp + FEC_R_CNTRL);
1211 if (ndev->flags & IFF_ALLMULTI) {
1212 /* Catch all multicast addresses, so set the
1213 * filter to all 1's
1215 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1216 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1218 return;
1221 /* Clear filter and add the addresses in hash register
1223 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1224 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1226 netdev_for_each_mc_addr(ha, ndev) {
1227 /* Only support group multicast for now */
1228 if (!(ha->addr[0] & 1))
1229 continue;
1231 /* calculate crc32 value of mac address */
1232 crc = 0xffffffff;
1234 for (i = 0; i < ndev->addr_len; i++) {
1235 data = ha->addr[i];
1236 for (bit = 0; bit < 8; bit++, data >>= 1) {
1237 crc = (crc >> 1) ^
1238 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1242 /* only upper 6 bits (HASH_BITS) are used
1243 * which point to specific bit in he hash registers
1245 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1247 if (hash > 31) {
1248 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1249 tmp |= 1 << (hash - 32);
1250 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1251 } else {
1252 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1253 tmp |= 1 << hash;
1254 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1259 /* Set a MAC change in hardware. */
1260 static int
1261 fec_set_mac_address(struct net_device *ndev, void *p)
1263 struct fec_enet_private *fep = netdev_priv(ndev);
1264 struct sockaddr *addr = p;
1266 if (!is_valid_ether_addr(addr->sa_data))
1267 return -EADDRNOTAVAIL;
1269 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1271 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1272 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1273 fep->hwp + FEC_ADDR_LOW);
1274 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1275 fep->hwp + FEC_ADDR_HIGH);
1276 return 0;
1279 static const struct net_device_ops fec_netdev_ops = {
1280 .ndo_open = fec_enet_open,
1281 .ndo_stop = fec_enet_close,
1282 .ndo_start_xmit = fec_enet_start_xmit,
1283 .ndo_set_multicast_list = set_multicast_list,
1284 .ndo_change_mtu = eth_change_mtu,
1285 .ndo_validate_addr = eth_validate_addr,
1286 .ndo_tx_timeout = fec_timeout,
1287 .ndo_set_mac_address = fec_set_mac_address,
1288 .ndo_do_ioctl = fec_enet_ioctl,
1292 * XXX: We need to clean up on failure exits here.
1295 static int fec_enet_init(struct net_device *ndev)
1297 struct fec_enet_private *fep = netdev_priv(ndev);
1298 struct bufdesc *cbd_base;
1299 struct bufdesc *bdp;
1300 int i;
1302 /* Allocate memory for buffer descriptors. */
1303 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1304 GFP_KERNEL);
1305 if (!cbd_base) {
1306 printk("FEC: allocate descriptor memory failed?\n");
1307 return -ENOMEM;
1310 spin_lock_init(&fep->hw_lock);
1312 fep->netdev = ndev;
1314 /* Get the Ethernet address */
1315 fec_get_mac(ndev);
1317 /* Set receive and transmit descriptor base. */
1318 fep->rx_bd_base = cbd_base;
1319 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1321 /* The FEC Ethernet specific entries in the device structure */
1322 ndev->watchdog_timeo = TX_TIMEOUT;
1323 ndev->netdev_ops = &fec_netdev_ops;
1324 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1326 /* Initialize the receive buffer descriptors. */
1327 bdp = fep->rx_bd_base;
1328 for (i = 0; i < RX_RING_SIZE; i++) {
1330 /* Initialize the BD for every fragment in the page. */
1331 bdp->cbd_sc = 0;
1332 bdp++;
1335 /* Set the last buffer to wrap */
1336 bdp--;
1337 bdp->cbd_sc |= BD_SC_WRAP;
1339 /* ...and the same for transmit */
1340 bdp = fep->tx_bd_base;
1341 for (i = 0; i < TX_RING_SIZE; i++) {
1343 /* Initialize the BD for every fragment in the page. */
1344 bdp->cbd_sc = 0;
1345 bdp->cbd_bufaddr = 0;
1346 bdp++;
1349 /* Set the last buffer to wrap */
1350 bdp--;
1351 bdp->cbd_sc |= BD_SC_WRAP;
1353 fec_restart(ndev, 0);
1355 return 0;
1358 static int __devinit
1359 fec_probe(struct platform_device *pdev)
1361 struct fec_enet_private *fep;
1362 struct fec_platform_data *pdata;
1363 struct net_device *ndev;
1364 int i, irq, ret = 0;
1365 struct resource *r;
1367 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1368 if (!r)
1369 return -ENXIO;
1371 r = request_mem_region(r->start, resource_size(r), pdev->name);
1372 if (!r)
1373 return -EBUSY;
1375 /* Init network device */
1376 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1377 if (!ndev) {
1378 ret = -ENOMEM;
1379 goto failed_alloc_etherdev;
1382 SET_NETDEV_DEV(ndev, &pdev->dev);
1384 /* setup board info structure */
1385 fep = netdev_priv(ndev);
1387 fep->hwp = ioremap(r->start, resource_size(r));
1388 fep->pdev = pdev;
1390 if (!fep->hwp) {
1391 ret = -ENOMEM;
1392 goto failed_ioremap;
1395 platform_set_drvdata(pdev, ndev);
1397 pdata = pdev->dev.platform_data;
1398 if (pdata)
1399 fep->phy_interface = pdata->phy;
1401 /* This device has up to three irqs on some platforms */
1402 for (i = 0; i < 3; i++) {
1403 irq = platform_get_irq(pdev, i);
1404 if (i && irq < 0)
1405 break;
1406 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1407 if (ret) {
1408 while (--i >= 0) {
1409 irq = platform_get_irq(pdev, i);
1410 free_irq(irq, ndev);
1412 goto failed_irq;
1416 fep->clk = clk_get(&pdev->dev, "fec_clk");
1417 if (IS_ERR(fep->clk)) {
1418 ret = PTR_ERR(fep->clk);
1419 goto failed_clk;
1421 clk_enable(fep->clk);
1423 ret = fec_enet_init(ndev);
1424 if (ret)
1425 goto failed_init;
1427 ret = fec_enet_mii_init(pdev);
1428 if (ret)
1429 goto failed_mii_init;
1431 /* Carrier starts down, phylib will bring it up */
1432 netif_carrier_off(ndev);
1434 ret = register_netdev(ndev);
1435 if (ret)
1436 goto failed_register;
1438 return 0;
1440 failed_register:
1441 fec_enet_mii_remove(fep);
1442 failed_mii_init:
1443 failed_init:
1444 clk_disable(fep->clk);
1445 clk_put(fep->clk);
1446 failed_clk:
1447 for (i = 0; i < 3; i++) {
1448 irq = platform_get_irq(pdev, i);
1449 if (irq > 0)
1450 free_irq(irq, ndev);
1452 failed_irq:
1453 iounmap(fep->hwp);
1454 failed_ioremap:
1455 free_netdev(ndev);
1456 failed_alloc_etherdev:
1457 release_mem_region(r->start, resource_size(r));
1459 return ret;
1462 static int __devexit
1463 fec_drv_remove(struct platform_device *pdev)
1465 struct net_device *ndev = platform_get_drvdata(pdev);
1466 struct fec_enet_private *fep = netdev_priv(ndev);
1467 struct resource *r;
1469 fec_stop(ndev);
1470 fec_enet_mii_remove(fep);
1471 clk_disable(fep->clk);
1472 clk_put(fep->clk);
1473 iounmap(fep->hwp);
1474 unregister_netdev(ndev);
1475 free_netdev(ndev);
1477 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1478 BUG_ON(!r);
1479 release_mem_region(r->start, resource_size(r));
1481 platform_set_drvdata(pdev, NULL);
1483 return 0;
1486 #ifdef CONFIG_PM
1487 static int
1488 fec_suspend(struct device *dev)
1490 struct net_device *ndev = dev_get_drvdata(dev);
1491 struct fec_enet_private *fep = netdev_priv(ndev);
1493 if (netif_running(ndev)) {
1494 fec_stop(ndev);
1495 netif_device_detach(ndev);
1497 clk_disable(fep->clk);
1499 return 0;
1502 static int
1503 fec_resume(struct device *dev)
1505 struct net_device *ndev = dev_get_drvdata(dev);
1506 struct fec_enet_private *fep = netdev_priv(ndev);
1508 clk_enable(fep->clk);
1509 if (netif_running(ndev)) {
1510 fec_restart(ndev, fep->full_duplex);
1511 netif_device_attach(ndev);
1514 return 0;
1517 static const struct dev_pm_ops fec_pm_ops = {
1518 .suspend = fec_suspend,
1519 .resume = fec_resume,
1520 .freeze = fec_suspend,
1521 .thaw = fec_resume,
1522 .poweroff = fec_suspend,
1523 .restore = fec_resume,
1525 #endif
1527 static struct platform_driver fec_driver = {
1528 .driver = {
1529 .name = DRIVER_NAME,
1530 .owner = THIS_MODULE,
1531 #ifdef CONFIG_PM
1532 .pm = &fec_pm_ops,
1533 #endif
1535 .id_table = fec_devtype,
1536 .probe = fec_probe,
1537 .remove = __devexit_p(fec_drv_remove),
1540 static int __init
1541 fec_enet_module_init(void)
1543 printk(KERN_INFO "FEC Ethernet Driver\n");
1545 return platform_driver_register(&fec_driver);
1548 static void __exit
1549 fec_enet_cleanup(void)
1551 platform_driver_unregister(&fec_driver);
1554 module_exit(fec_enet_cleanup);
1555 module_init(fec_enet_module_init);
1557 MODULE_LICENSE("GPL");