MIPS: Fix bounds check virt_addr_valid
[linux/fpc-iii.git] / block / blk-iolatency.c
blob6b8396ccb5c44b70cb4205d584665bde592f15fc
1 /*
2 * Block rq-qos base io controller
4 * This works similar to wbt with a few exceptions
6 * - It's bio based, so the latency covers the whole block layer in addition to
7 * the actual io.
8 * - We will throttle all IO that comes in here if we need to.
9 * - We use the mean latency over the 100ms window. This is because writes can
10 * be particularly fast, which could give us a false sense of the impact of
11 * other workloads on our protected workload.
12 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
13 * that we can have as many outstanding bio's as we're allowed to. Only at
14 * throttle time do we pay attention to the actual queue depth.
16 * The hierarchy works like the cpu controller does, we track the latency at
17 * every configured node, and each configured node has it's own independent
18 * queue depth. This means that we only care about our latency targets at the
19 * peer level. Some group at the bottom of the hierarchy isn't going to affect
20 * a group at the end of some other path if we're only configred at leaf level.
22 * Consider the following
24 * root blkg
25 * / \
26 * fast (target=5ms) slow (target=10ms)
27 * / \ / \
28 * a b normal(15ms) unloved
30 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
31 * an average latency of 5ms. If it does then we will throttle the "slow"
32 * group. In the case of "normal", if it exceeds its 15ms target, we will
33 * throttle "unloved", but nobody else.
35 * In this example "fast", "slow", and "normal" will be the only groups actually
36 * accounting their io latencies. We have to walk up the heirarchy to the root
37 * on every submit and complete so we can do the appropriate stat recording and
38 * adjust the queue depth of ourselves if needed.
40 * There are 2 ways we throttle IO.
42 * 1) Queue depth throttling. As we throttle down we will adjust the maximum
43 * number of IO's we're allowed to have in flight. This starts at (u64)-1 down
44 * to 1. If the group is only ever submitting IO for itself then this is the
45 * only way we throttle.
47 * 2) Induced delay throttling. This is for the case that a group is generating
48 * IO that has to be issued by the root cg to avoid priority inversion. So think
49 * REQ_META or REQ_SWAP. If we are already at qd == 1 and we're getting a lot
50 * of work done for us on behalf of the root cg and are being asked to scale
51 * down more then we induce a latency at userspace return. We accumulate the
52 * total amount of time we need to be punished by doing
54 * total_time += min_lat_nsec - actual_io_completion
56 * and then at throttle time will do
58 * throttle_time = min(total_time, NSEC_PER_SEC)
60 * This induced delay will throttle back the activity that is generating the
61 * root cg issued io's, wethere that's some metadata intensive operation or the
62 * group is using so much memory that it is pushing us into swap.
64 * Copyright (C) 2018 Josef Bacik
66 #include <linux/kernel.h>
67 #include <linux/blk_types.h>
68 #include <linux/backing-dev.h>
69 #include <linux/module.h>
70 #include <linux/timer.h>
71 #include <linux/memcontrol.h>
72 #include <linux/sched/loadavg.h>
73 #include <linux/sched/signal.h>
74 #include <trace/events/block.h>
75 #include <linux/blk-mq.h>
76 #include "blk-rq-qos.h"
77 #include "blk-stat.h"
78 #include "blk.h"
80 #define DEFAULT_SCALE_COOKIE 1000000U
82 static struct blkcg_policy blkcg_policy_iolatency;
83 struct iolatency_grp;
85 struct blk_iolatency {
86 struct rq_qos rqos;
87 struct timer_list timer;
88 atomic_t enabled;
91 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
93 return container_of(rqos, struct blk_iolatency, rqos);
96 static inline bool blk_iolatency_enabled(struct blk_iolatency *blkiolat)
98 return atomic_read(&blkiolat->enabled) > 0;
101 struct child_latency_info {
102 spinlock_t lock;
104 /* Last time we adjusted the scale of everybody. */
105 u64 last_scale_event;
107 /* The latency that we missed. */
108 u64 scale_lat;
110 /* Total io's from all of our children for the last summation. */
111 u64 nr_samples;
113 /* The guy who actually changed the latency numbers. */
114 struct iolatency_grp *scale_grp;
116 /* Cookie to tell if we need to scale up or down. */
117 atomic_t scale_cookie;
120 struct iolatency_grp {
121 struct blkg_policy_data pd;
122 struct blk_rq_stat __percpu *stats;
123 struct blk_iolatency *blkiolat;
124 struct rq_depth rq_depth;
125 struct rq_wait rq_wait;
126 atomic64_t window_start;
127 atomic_t scale_cookie;
128 u64 min_lat_nsec;
129 u64 cur_win_nsec;
131 /* total running average of our io latency. */
132 u64 lat_avg;
134 /* Our current number of IO's for the last summation. */
135 u64 nr_samples;
137 struct child_latency_info child_lat;
140 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
141 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
143 * These are the constants used to fake the fixed-point moving average
144 * calculation just like load average. The call to CALC_LOAD folds
145 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg. The sampling
146 * window size is bucketed to try to approximately calculate average
147 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
148 * elapse immediately. Note, windows only elapse with IO activity. Idle
149 * periods extend the most recent window.
151 #define BLKIOLATENCY_NR_EXP_FACTORS 5
152 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
153 (BLKIOLATENCY_NR_EXP_FACTORS - 1))
154 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
155 2045, // exp(1/600) - 600 samples
156 2039, // exp(1/240) - 240 samples
157 2031, // exp(1/120) - 120 samples
158 2023, // exp(1/80) - 80 samples
159 2014, // exp(1/60) - 60 samples
162 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
164 return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
167 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
169 return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
172 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
174 return pd_to_blkg(&iolat->pd);
177 static inline bool iolatency_may_queue(struct iolatency_grp *iolat,
178 wait_queue_entry_t *wait,
179 bool first_block)
181 struct rq_wait *rqw = &iolat->rq_wait;
183 if (first_block && waitqueue_active(&rqw->wait) &&
184 rqw->wait.head.next != &wait->entry)
185 return false;
186 return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
189 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
190 struct iolatency_grp *iolat,
191 spinlock_t *lock, bool issue_as_root,
192 bool use_memdelay)
193 __releases(lock)
194 __acquires(lock)
196 struct rq_wait *rqw = &iolat->rq_wait;
197 unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
198 DEFINE_WAIT(wait);
199 bool first_block = true;
201 if (use_delay)
202 blkcg_schedule_throttle(rqos->q, use_memdelay);
205 * To avoid priority inversions we want to just take a slot if we are
206 * issuing as root. If we're being killed off there's no point in
207 * delaying things, we may have been killed by OOM so throttling may
208 * make recovery take even longer, so just let the IO's through so the
209 * task can go away.
211 if (issue_as_root || fatal_signal_pending(current)) {
212 atomic_inc(&rqw->inflight);
213 return;
216 if (iolatency_may_queue(iolat, &wait, first_block))
217 return;
219 do {
220 prepare_to_wait_exclusive(&rqw->wait, &wait,
221 TASK_UNINTERRUPTIBLE);
223 if (iolatency_may_queue(iolat, &wait, first_block))
224 break;
225 first_block = false;
227 if (lock) {
228 spin_unlock_irq(lock);
229 io_schedule();
230 spin_lock_irq(lock);
231 } else {
232 io_schedule();
234 } while (1);
236 finish_wait(&rqw->wait, &wait);
239 #define SCALE_DOWN_FACTOR 2
240 #define SCALE_UP_FACTOR 4
242 static inline unsigned long scale_amount(unsigned long qd, bool up)
244 return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
248 * We scale the qd down faster than we scale up, so we need to use this helper
249 * to adjust the scale_cookie accordingly so we don't prematurely get
250 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
252 * Each group has their own local copy of the last scale cookie they saw, so if
253 * the global scale cookie goes up or down they know which way they need to go
254 * based on their last knowledge of it.
256 static void scale_cookie_change(struct blk_iolatency *blkiolat,
257 struct child_latency_info *lat_info,
258 bool up)
260 unsigned long qd = blk_queue_depth(blkiolat->rqos.q);
261 unsigned long scale = scale_amount(qd, up);
262 unsigned long old = atomic_read(&lat_info->scale_cookie);
263 unsigned long max_scale = qd << 1;
264 unsigned long diff = 0;
266 if (old < DEFAULT_SCALE_COOKIE)
267 diff = DEFAULT_SCALE_COOKIE - old;
269 if (up) {
270 if (scale + old > DEFAULT_SCALE_COOKIE)
271 atomic_set(&lat_info->scale_cookie,
272 DEFAULT_SCALE_COOKIE);
273 else if (diff > qd)
274 atomic_inc(&lat_info->scale_cookie);
275 else
276 atomic_add(scale, &lat_info->scale_cookie);
277 } else {
279 * We don't want to dig a hole so deep that it takes us hours to
280 * dig out of it. Just enough that we don't throttle/unthrottle
281 * with jagged workloads but can still unthrottle once pressure
282 * has sufficiently dissipated.
284 if (diff > qd) {
285 if (diff < max_scale)
286 atomic_dec(&lat_info->scale_cookie);
287 } else {
288 atomic_sub(scale, &lat_info->scale_cookie);
294 * Change the queue depth of the iolatency_grp. We add/subtract 1/16th of the
295 * queue depth at a time so we don't get wild swings and hopefully dial in to
296 * fairer distribution of the overall queue depth.
298 static void scale_change(struct iolatency_grp *iolat, bool up)
300 unsigned long qd = blk_queue_depth(iolat->blkiolat->rqos.q);
301 unsigned long scale = scale_amount(qd, up);
302 unsigned long old = iolat->rq_depth.max_depth;
303 bool changed = false;
305 if (old > qd)
306 old = qd;
308 if (up) {
309 if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
310 return;
312 if (old < qd) {
313 changed = true;
314 old += scale;
315 old = min(old, qd);
316 iolat->rq_depth.max_depth = old;
317 wake_up_all(&iolat->rq_wait.wait);
319 } else if (old > 1) {
320 old >>= 1;
321 changed = true;
322 iolat->rq_depth.max_depth = max(old, 1UL);
326 /* Check our parent and see if the scale cookie has changed. */
327 static void check_scale_change(struct iolatency_grp *iolat)
329 struct iolatency_grp *parent;
330 struct child_latency_info *lat_info;
331 unsigned int cur_cookie;
332 unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
333 u64 scale_lat;
334 unsigned int old;
335 int direction = 0;
337 if (lat_to_blkg(iolat)->parent == NULL)
338 return;
340 parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
341 if (!parent)
342 return;
344 lat_info = &parent->child_lat;
345 cur_cookie = atomic_read(&lat_info->scale_cookie);
346 scale_lat = READ_ONCE(lat_info->scale_lat);
348 if (cur_cookie < our_cookie)
349 direction = -1;
350 else if (cur_cookie > our_cookie)
351 direction = 1;
352 else
353 return;
355 old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
357 /* Somebody beat us to the punch, just bail. */
358 if (old != our_cookie)
359 return;
361 if (direction < 0 && iolat->min_lat_nsec) {
362 u64 samples_thresh;
364 if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
365 return;
368 * Sometimes high priority groups are their own worst enemy, so
369 * instead of taking it out on some poor other group that did 5%
370 * or less of the IO's for the last summation just skip this
371 * scale down event.
373 samples_thresh = lat_info->nr_samples * 5;
374 samples_thresh = div64_u64(samples_thresh, 100);
375 if (iolat->nr_samples <= samples_thresh)
376 return;
379 /* We're as low as we can go. */
380 if (iolat->rq_depth.max_depth == 1 && direction < 0) {
381 blkcg_use_delay(lat_to_blkg(iolat));
382 return;
385 /* We're back to the default cookie, unthrottle all the things. */
386 if (cur_cookie == DEFAULT_SCALE_COOKIE) {
387 blkcg_clear_delay(lat_to_blkg(iolat));
388 iolat->rq_depth.max_depth = UINT_MAX;
389 wake_up_all(&iolat->rq_wait.wait);
390 return;
393 scale_change(iolat, direction > 0);
396 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio,
397 spinlock_t *lock)
399 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
400 struct blkcg *blkcg;
401 struct blkcg_gq *blkg;
402 struct request_queue *q = rqos->q;
403 bool issue_as_root = bio_issue_as_root_blkg(bio);
405 if (!blk_iolatency_enabled(blkiolat))
406 return;
408 rcu_read_lock();
409 blkcg = bio_blkcg(bio);
410 bio_associate_blkcg(bio, &blkcg->css);
411 blkg = blkg_lookup(blkcg, q);
412 if (unlikely(!blkg)) {
413 if (!lock)
414 spin_lock_irq(q->queue_lock);
415 blkg = blkg_lookup_create(blkcg, q);
416 if (IS_ERR(blkg))
417 blkg = NULL;
418 if (!lock)
419 spin_unlock_irq(q->queue_lock);
421 if (!blkg)
422 goto out;
424 bio_issue_init(&bio->bi_issue, bio_sectors(bio));
425 bio_associate_blkg(bio, blkg);
426 out:
427 rcu_read_unlock();
428 while (blkg && blkg->parent) {
429 struct iolatency_grp *iolat = blkg_to_lat(blkg);
430 if (!iolat) {
431 blkg = blkg->parent;
432 continue;
435 check_scale_change(iolat);
436 __blkcg_iolatency_throttle(rqos, iolat, lock, issue_as_root,
437 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
438 blkg = blkg->parent;
440 if (!timer_pending(&blkiolat->timer))
441 mod_timer(&blkiolat->timer, jiffies + HZ);
444 static void iolatency_record_time(struct iolatency_grp *iolat,
445 struct bio_issue *issue, u64 now,
446 bool issue_as_root)
448 struct blk_rq_stat *rq_stat;
449 u64 start = bio_issue_time(issue);
450 u64 req_time;
453 * Have to do this so we are truncated to the correct time that our
454 * issue is truncated to.
456 now = __bio_issue_time(now);
458 if (now <= start)
459 return;
461 req_time = now - start;
464 * We don't want to count issue_as_root bio's in the cgroups latency
465 * statistics as it could skew the numbers downwards.
467 if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
468 u64 sub = iolat->min_lat_nsec;
469 if (req_time < sub)
470 blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
471 return;
474 rq_stat = get_cpu_ptr(iolat->stats);
475 blk_rq_stat_add(rq_stat, req_time);
476 put_cpu_ptr(rq_stat);
479 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
480 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
482 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
484 struct blkcg_gq *blkg = lat_to_blkg(iolat);
485 struct iolatency_grp *parent;
486 struct child_latency_info *lat_info;
487 struct blk_rq_stat stat;
488 unsigned long flags;
489 int cpu, exp_idx;
491 blk_rq_stat_init(&stat);
492 preempt_disable();
493 for_each_online_cpu(cpu) {
494 struct blk_rq_stat *s;
495 s = per_cpu_ptr(iolat->stats, cpu);
496 blk_rq_stat_sum(&stat, s);
497 blk_rq_stat_init(s);
499 preempt_enable();
501 parent = blkg_to_lat(blkg->parent);
502 if (!parent)
503 return;
505 lat_info = &parent->child_lat;
508 * CALC_LOAD takes in a number stored in fixed point representation.
509 * Because we are using this for IO time in ns, the values stored
510 * are significantly larger than the FIXED_1 denominator (2048).
511 * Therefore, rounding errors in the calculation are negligible and
512 * can be ignored.
514 exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
515 div64_u64(iolat->cur_win_nsec,
516 BLKIOLATENCY_EXP_BUCKET_SIZE));
517 CALC_LOAD(iolat->lat_avg, iolatency_exp_factors[exp_idx], stat.mean);
519 /* Everything is ok and we don't need to adjust the scale. */
520 if (stat.mean <= iolat->min_lat_nsec &&
521 atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
522 return;
524 /* Somebody beat us to the punch, just bail. */
525 spin_lock_irqsave(&lat_info->lock, flags);
526 lat_info->nr_samples -= iolat->nr_samples;
527 lat_info->nr_samples += stat.nr_samples;
528 iolat->nr_samples = stat.nr_samples;
530 if ((lat_info->last_scale_event >= now ||
531 now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME) &&
532 lat_info->scale_lat <= iolat->min_lat_nsec)
533 goto out;
535 if (stat.mean <= iolat->min_lat_nsec &&
536 stat.nr_samples >= BLKIOLATENCY_MIN_GOOD_SAMPLES) {
537 if (lat_info->scale_grp == iolat) {
538 lat_info->last_scale_event = now;
539 scale_cookie_change(iolat->blkiolat, lat_info, true);
541 } else if (stat.mean > iolat->min_lat_nsec) {
542 lat_info->last_scale_event = now;
543 if (!lat_info->scale_grp ||
544 lat_info->scale_lat > iolat->min_lat_nsec) {
545 WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
546 lat_info->scale_grp = iolat;
548 scale_cookie_change(iolat->blkiolat, lat_info, false);
550 out:
551 spin_unlock_irqrestore(&lat_info->lock, flags);
554 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
556 struct blkcg_gq *blkg;
557 struct rq_wait *rqw;
558 struct iolatency_grp *iolat;
559 u64 window_start;
560 u64 now = ktime_to_ns(ktime_get());
561 bool issue_as_root = bio_issue_as_root_blkg(bio);
562 bool enabled = false;
564 blkg = bio->bi_blkg;
565 if (!blkg)
566 return;
568 iolat = blkg_to_lat(bio->bi_blkg);
569 if (!iolat)
570 return;
572 enabled = blk_iolatency_enabled(iolat->blkiolat);
573 if (!enabled)
574 return;
576 while (blkg && blkg->parent) {
577 iolat = blkg_to_lat(blkg);
578 if (!iolat) {
579 blkg = blkg->parent;
580 continue;
582 rqw = &iolat->rq_wait;
584 atomic_dec(&rqw->inflight);
585 if (iolat->min_lat_nsec == 0)
586 goto next;
587 iolatency_record_time(iolat, &bio->bi_issue, now,
588 issue_as_root);
589 window_start = atomic64_read(&iolat->window_start);
590 if (now > window_start &&
591 (now - window_start) >= iolat->cur_win_nsec) {
592 if (atomic64_cmpxchg(&iolat->window_start,
593 window_start, now) == window_start)
594 iolatency_check_latencies(iolat, now);
596 next:
597 wake_up(&rqw->wait);
598 blkg = blkg->parent;
602 static void blkcg_iolatency_cleanup(struct rq_qos *rqos, struct bio *bio)
604 struct blkcg_gq *blkg;
606 blkg = bio->bi_blkg;
607 while (blkg && blkg->parent) {
608 struct rq_wait *rqw;
609 struct iolatency_grp *iolat;
611 iolat = blkg_to_lat(blkg);
612 if (!iolat)
613 goto next;
615 rqw = &iolat->rq_wait;
616 atomic_dec(&rqw->inflight);
617 wake_up(&rqw->wait);
618 next:
619 blkg = blkg->parent;
623 static void blkcg_iolatency_exit(struct rq_qos *rqos)
625 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
627 del_timer_sync(&blkiolat->timer);
628 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
629 kfree(blkiolat);
632 static struct rq_qos_ops blkcg_iolatency_ops = {
633 .throttle = blkcg_iolatency_throttle,
634 .cleanup = blkcg_iolatency_cleanup,
635 .done_bio = blkcg_iolatency_done_bio,
636 .exit = blkcg_iolatency_exit,
639 static void blkiolatency_timer_fn(struct timer_list *t)
641 struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
642 struct blkcg_gq *blkg;
643 struct cgroup_subsys_state *pos_css;
644 u64 now = ktime_to_ns(ktime_get());
646 rcu_read_lock();
647 blkg_for_each_descendant_pre(blkg, pos_css,
648 blkiolat->rqos.q->root_blkg) {
649 struct iolatency_grp *iolat;
650 struct child_latency_info *lat_info;
651 unsigned long flags;
652 u64 cookie;
655 * We could be exiting, don't access the pd unless we have a
656 * ref on the blkg.
658 if (!blkg_try_get(blkg))
659 continue;
661 iolat = blkg_to_lat(blkg);
662 if (!iolat)
663 goto next;
665 lat_info = &iolat->child_lat;
666 cookie = atomic_read(&lat_info->scale_cookie);
668 if (cookie >= DEFAULT_SCALE_COOKIE)
669 goto next;
671 spin_lock_irqsave(&lat_info->lock, flags);
672 if (lat_info->last_scale_event >= now)
673 goto next_lock;
676 * We scaled down but don't have a scale_grp, scale up and carry
677 * on.
679 if (lat_info->scale_grp == NULL) {
680 scale_cookie_change(iolat->blkiolat, lat_info, true);
681 goto next_lock;
685 * It's been 5 seconds since our last scale event, clear the
686 * scale grp in case the group that needed the scale down isn't
687 * doing any IO currently.
689 if (now - lat_info->last_scale_event >=
690 ((u64)NSEC_PER_SEC * 5))
691 lat_info->scale_grp = NULL;
692 next_lock:
693 spin_unlock_irqrestore(&lat_info->lock, flags);
694 next:
695 blkg_put(blkg);
697 rcu_read_unlock();
700 int blk_iolatency_init(struct request_queue *q)
702 struct blk_iolatency *blkiolat;
703 struct rq_qos *rqos;
704 int ret;
706 blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
707 if (!blkiolat)
708 return -ENOMEM;
710 rqos = &blkiolat->rqos;
711 rqos->id = RQ_QOS_CGROUP;
712 rqos->ops = &blkcg_iolatency_ops;
713 rqos->q = q;
715 rq_qos_add(q, rqos);
717 ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
718 if (ret) {
719 rq_qos_del(q, rqos);
720 kfree(blkiolat);
721 return ret;
724 timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
726 return 0;
730 * return 1 for enabling iolatency, return -1 for disabling iolatency, otherwise
731 * return 0.
733 static int iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
735 struct iolatency_grp *iolat = blkg_to_lat(blkg);
736 u64 oldval = iolat->min_lat_nsec;
738 iolat->min_lat_nsec = val;
739 iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
740 iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
741 BLKIOLATENCY_MAX_WIN_SIZE);
743 if (!oldval && val)
744 return 1;
745 if (oldval && !val)
746 return -1;
747 return 0;
750 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
752 if (blkg->parent) {
753 struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
754 struct child_latency_info *lat_info;
755 if (!iolat)
756 return;
758 lat_info = &iolat->child_lat;
759 spin_lock(&lat_info->lock);
760 atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
761 lat_info->last_scale_event = 0;
762 lat_info->scale_grp = NULL;
763 lat_info->scale_lat = 0;
764 spin_unlock(&lat_info->lock);
768 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
769 size_t nbytes, loff_t off)
771 struct blkcg *blkcg = css_to_blkcg(of_css(of));
772 struct blkcg_gq *blkg;
773 struct blk_iolatency *blkiolat;
774 struct blkg_conf_ctx ctx;
775 struct iolatency_grp *iolat;
776 char *p, *tok;
777 u64 lat_val = 0;
778 u64 oldval;
779 int ret;
780 int enable = 0;
782 ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
783 if (ret)
784 return ret;
786 iolat = blkg_to_lat(ctx.blkg);
787 blkiolat = iolat->blkiolat;
788 p = ctx.body;
790 ret = -EINVAL;
791 while ((tok = strsep(&p, " "))) {
792 char key[16];
793 char val[21]; /* 18446744073709551616 */
795 if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
796 goto out;
798 if (!strcmp(key, "target")) {
799 u64 v;
801 if (!strcmp(val, "max"))
802 lat_val = 0;
803 else if (sscanf(val, "%llu", &v) == 1)
804 lat_val = v * NSEC_PER_USEC;
805 else
806 goto out;
807 } else {
808 goto out;
812 /* Walk up the tree to see if our new val is lower than it should be. */
813 blkg = ctx.blkg;
814 oldval = iolat->min_lat_nsec;
816 enable = iolatency_set_min_lat_nsec(blkg, lat_val);
817 if (enable) {
818 WARN_ON_ONCE(!blk_get_queue(blkg->q));
819 blkg_get(blkg);
822 if (oldval != iolat->min_lat_nsec) {
823 iolatency_clear_scaling(blkg);
826 ret = 0;
827 out:
828 blkg_conf_finish(&ctx);
829 if (ret == 0 && enable) {
830 struct iolatency_grp *tmp = blkg_to_lat(blkg);
831 struct blk_iolatency *blkiolat = tmp->blkiolat;
833 blk_mq_freeze_queue(blkg->q);
835 if (enable == 1)
836 atomic_inc(&blkiolat->enabled);
837 else if (enable == -1)
838 atomic_dec(&blkiolat->enabled);
839 else
840 WARN_ON_ONCE(1);
842 blk_mq_unfreeze_queue(blkg->q);
844 blkg_put(blkg);
845 blk_put_queue(blkg->q);
847 return ret ?: nbytes;
850 static u64 iolatency_prfill_limit(struct seq_file *sf,
851 struct blkg_policy_data *pd, int off)
853 struct iolatency_grp *iolat = pd_to_lat(pd);
854 const char *dname = blkg_dev_name(pd->blkg);
856 if (!dname || !iolat->min_lat_nsec)
857 return 0;
858 seq_printf(sf, "%s target=%llu\n",
859 dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
860 return 0;
863 static int iolatency_print_limit(struct seq_file *sf, void *v)
865 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
866 iolatency_prfill_limit,
867 &blkcg_policy_iolatency, seq_cft(sf)->private, false);
868 return 0;
871 static size_t iolatency_pd_stat(struct blkg_policy_data *pd, char *buf,
872 size_t size)
874 struct iolatency_grp *iolat = pd_to_lat(pd);
875 unsigned long long avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
876 unsigned long long cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
878 if (iolat->rq_depth.max_depth == UINT_MAX)
879 return scnprintf(buf, size, " depth=max avg_lat=%llu win=%llu",
880 avg_lat, cur_win);
882 return scnprintf(buf, size, " depth=%u avg_lat=%llu win=%llu",
883 iolat->rq_depth.max_depth, avg_lat, cur_win);
887 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp, int node)
889 struct iolatency_grp *iolat;
891 iolat = kzalloc_node(sizeof(*iolat), gfp, node);
892 if (!iolat)
893 return NULL;
894 iolat->stats = __alloc_percpu_gfp(sizeof(struct blk_rq_stat),
895 __alignof__(struct blk_rq_stat), gfp);
896 if (!iolat->stats) {
897 kfree(iolat);
898 return NULL;
900 return &iolat->pd;
903 static void iolatency_pd_init(struct blkg_policy_data *pd)
905 struct iolatency_grp *iolat = pd_to_lat(pd);
906 struct blkcg_gq *blkg = lat_to_blkg(iolat);
907 struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
908 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
909 u64 now = ktime_to_ns(ktime_get());
910 int cpu;
912 for_each_possible_cpu(cpu) {
913 struct blk_rq_stat *stat;
914 stat = per_cpu_ptr(iolat->stats, cpu);
915 blk_rq_stat_init(stat);
918 rq_wait_init(&iolat->rq_wait);
919 spin_lock_init(&iolat->child_lat.lock);
920 iolat->rq_depth.queue_depth = blk_queue_depth(blkg->q);
921 iolat->rq_depth.max_depth = UINT_MAX;
922 iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
923 iolat->blkiolat = blkiolat;
924 iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
925 atomic64_set(&iolat->window_start, now);
928 * We init things in list order, so the pd for the parent may not be
929 * init'ed yet for whatever reason.
931 if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
932 struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
933 atomic_set(&iolat->scale_cookie,
934 atomic_read(&parent->child_lat.scale_cookie));
935 } else {
936 atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
939 atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
942 static void iolatency_pd_offline(struct blkg_policy_data *pd)
944 struct iolatency_grp *iolat = pd_to_lat(pd);
945 struct blkcg_gq *blkg = lat_to_blkg(iolat);
946 struct blk_iolatency *blkiolat = iolat->blkiolat;
947 int ret;
949 ret = iolatency_set_min_lat_nsec(blkg, 0);
950 if (ret == 1)
951 atomic_inc(&blkiolat->enabled);
952 if (ret == -1)
953 atomic_dec(&blkiolat->enabled);
954 iolatency_clear_scaling(blkg);
957 static void iolatency_pd_free(struct blkg_policy_data *pd)
959 struct iolatency_grp *iolat = pd_to_lat(pd);
960 free_percpu(iolat->stats);
961 kfree(iolat);
964 static struct cftype iolatency_files[] = {
966 .name = "latency",
967 .flags = CFTYPE_NOT_ON_ROOT,
968 .seq_show = iolatency_print_limit,
969 .write = iolatency_set_limit,
974 static struct blkcg_policy blkcg_policy_iolatency = {
975 .dfl_cftypes = iolatency_files,
976 .pd_alloc_fn = iolatency_pd_alloc,
977 .pd_init_fn = iolatency_pd_init,
978 .pd_offline_fn = iolatency_pd_offline,
979 .pd_free_fn = iolatency_pd_free,
980 .pd_stat_fn = iolatency_pd_stat,
983 static int __init iolatency_init(void)
985 return blkcg_policy_register(&blkcg_policy_iolatency);
988 static void __exit iolatency_exit(void)
990 return blkcg_policy_unregister(&blkcg_policy_iolatency);
993 module_init(iolatency_init);
994 module_exit(iolatency_exit);