2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <asm/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
54 struct hstate
*hstate
;
58 struct hugetlbfs_inode_info
{
59 struct shared_policy policy
;
60 struct inode vfs_inode
;
63 static inline struct hugetlbfs_inode_info
*HUGETLBFS_I(struct inode
*inode
)
65 return container_of(inode
, struct hugetlbfs_inode_info
, vfs_inode
);
68 int sysctl_hugetlb_shm_group
;
71 Opt_size
, Opt_nr_inodes
,
72 Opt_mode
, Opt_uid
, Opt_gid
,
73 Opt_pagesize
, Opt_min_size
,
77 static const match_table_t tokens
= {
78 {Opt_size
, "size=%s"},
79 {Opt_nr_inodes
, "nr_inodes=%s"},
80 {Opt_mode
, "mode=%o"},
83 {Opt_pagesize
, "pagesize=%s"},
84 {Opt_min_size
, "min_size=%s"},
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
90 struct inode
*inode
, pgoff_t index
)
92 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
98 mpol_cond_put(vma
->vm_policy
);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
102 struct inode
*inode
, pgoff_t index
)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
111 static void huge_pagevec_release(struct pagevec
*pvec
)
115 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
116 put_page(pvec
->pages
[i
]);
118 pagevec_reinit(pvec
);
121 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
123 struct inode
*inode
= file_inode(file
);
126 struct hstate
*h
= hstate_file(file
);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
137 vma
->vm_ops
= &hugetlb_vm_ops
;
139 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
142 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
148 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
150 if (hugetlb_reserve_pages(inode
,
151 vma
->vm_pgoff
>> huge_page_order(h
),
152 len
>> huge_page_shift(h
), vma
,
157 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
166 * Called under down_write(mmap_sem).
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
171 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
172 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
174 struct mm_struct
*mm
= current
->mm
;
175 struct vm_area_struct
*vma
;
176 struct hstate
*h
= hstate_file(file
);
177 struct vm_unmapped_area_info info
;
179 if (len
& ~huge_page_mask(h
))
184 if (flags
& MAP_FIXED
) {
185 if (prepare_hugepage_range(file
, addr
, len
))
191 addr
= ALIGN(addr
, huge_page_size(h
));
192 vma
= find_vma(mm
, addr
);
193 if (TASK_SIZE
- len
>= addr
&&
194 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
200 info
.low_limit
= TASK_UNMAPPED_BASE
;
201 info
.high_limit
= TASK_SIZE
;
202 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
203 info
.align_offset
= 0;
204 return vm_unmapped_area(&info
);
209 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
210 struct iov_iter
*to
, unsigned long size
)
215 /* Find which 4k chunk and offset with in that chunk */
216 i
= offset
>> PAGE_SHIFT
;
217 offset
= offset
& ~PAGE_MASK
;
221 chunksize
= PAGE_SIZE
;
224 if (chunksize
> size
)
226 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
238 * Support for read() - Find the page attached to f_mapping and copy out the
239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240 * since it has PAGE_SIZE assumptions.
242 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
244 struct file
*file
= iocb
->ki_filp
;
245 struct hstate
*h
= hstate_file(file
);
246 struct address_space
*mapping
= file
->f_mapping
;
247 struct inode
*inode
= mapping
->host
;
248 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
249 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
250 unsigned long end_index
;
254 while (iov_iter_count(to
)) {
258 /* nr is the maximum number of bytes to copy from this page */
259 nr
= huge_page_size(h
);
260 isize
= i_size_read(inode
);
263 end_index
= (isize
- 1) >> huge_page_shift(h
);
264 if (index
> end_index
)
266 if (index
== end_index
) {
267 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
274 page
= find_lock_page(mapping
, index
);
275 if (unlikely(page
== NULL
)) {
277 * We have a HOLE, zero out the user-buffer for the
278 * length of the hole or request.
280 copied
= iov_iter_zero(nr
, to
);
285 * We have the page, copy it to user space buffer.
287 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
292 if (copied
!= nr
&& iov_iter_count(to
)) {
297 index
+= offset
>> huge_page_shift(h
);
298 offset
&= ~huge_page_mask(h
);
300 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
304 static int hugetlbfs_write_begin(struct file
*file
,
305 struct address_space
*mapping
,
306 loff_t pos
, unsigned len
, unsigned flags
,
307 struct page
**pagep
, void **fsdata
)
312 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
313 loff_t pos
, unsigned len
, unsigned copied
,
314 struct page
*page
, void *fsdata
)
320 static void remove_huge_page(struct page
*page
)
322 ClearPageDirty(page
);
323 ClearPageUptodate(page
);
324 delete_from_page_cache(page
);
328 hugetlb_vmdelete_list(struct rb_root
*root
, pgoff_t start
, pgoff_t end
)
330 struct vm_area_struct
*vma
;
333 * end == 0 indicates that the entire range after
334 * start should be unmapped.
336 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
337 unsigned long v_offset
;
341 * Can the expression below overflow on 32-bit arches?
342 * No, because the interval tree returns us only those vmas
343 * which overlap the truncated area starting at pgoff,
344 * and no vma on a 32-bit arch can span beyond the 4GB.
346 if (vma
->vm_pgoff
< start
)
347 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
354 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
356 if (v_end
> vma
->vm_end
)
360 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
366 * remove_inode_hugepages handles two distinct cases: truncation and hole
367 * punch. There are subtle differences in operation for each case.
369 * truncation is indicated by end of range being LLONG_MAX
370 * In this case, we first scan the range and release found pages.
371 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
372 * maps and global counts. Page faults can not race with truncation
373 * in this routine. hugetlb_no_page() prevents page faults in the
374 * truncated range. It checks i_size before allocation, and again after
375 * with the page table lock for the page held. The same lock must be
376 * acquired to unmap a page.
377 * hole punch is indicated if end is not LLONG_MAX
378 * In the hole punch case we scan the range and release found pages.
379 * Only when releasing a page is the associated region/reserv map
380 * deleted. The region/reserv map for ranges without associated
381 * pages are not modified. Page faults can race with hole punch.
382 * This is indicated if we find a mapped page.
383 * Note: If the passed end of range value is beyond the end of file, but
384 * not LLONG_MAX this routine still performs a hole punch operation.
386 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
389 struct hstate
*h
= hstate_inode(inode
);
390 struct address_space
*mapping
= &inode
->i_data
;
391 const pgoff_t start
= lstart
>> huge_page_shift(h
);
392 const pgoff_t end
= lend
>> huge_page_shift(h
);
393 struct vm_area_struct pseudo_vma
;
397 long lookup_nr
= PAGEVEC_SIZE
;
398 bool truncate_op
= (lend
== LLONG_MAX
);
400 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
401 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
402 pagevec_init(&pvec
, 0);
406 * Don't grab more pages than the number left in the range.
408 if (end
- next
< lookup_nr
)
409 lookup_nr
= end
- next
;
412 * When no more pages are found, we are done.
414 if (!pagevec_lookup(&pvec
, mapping
, next
, lookup_nr
))
417 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
418 struct page
*page
= pvec
.pages
[i
];
422 * The page (index) could be beyond end. This is
423 * only possible in the punch hole case as end is
424 * max page offset in the truncate case.
430 hash
= hugetlb_fault_mutex_hash(h
, current
->mm
,
433 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
436 * If page is mapped, it was faulted in after being
437 * unmapped in caller. Unmap (again) now after taking
438 * the fault mutex. The mutex will prevent faults
439 * until we finish removing the page.
441 * This race can only happen in the hole punch case.
442 * Getting here in a truncate operation is a bug.
444 if (unlikely(page_mapped(page
))) {
447 i_mmap_lock_write(mapping
);
448 hugetlb_vmdelete_list(&mapping
->i_mmap
,
449 next
* pages_per_huge_page(h
),
450 (next
+ 1) * pages_per_huge_page(h
));
451 i_mmap_unlock_write(mapping
);
456 * We must free the huge page and remove from page
457 * cache (remove_huge_page) BEFORE removing the
458 * region/reserve map (hugetlb_unreserve_pages). In
459 * rare out of memory conditions, removal of the
460 * region/reserve map could fail. Correspondingly,
461 * the subpool and global reserve usage count can need
464 VM_BUG_ON(PagePrivate(page
));
465 remove_huge_page(page
);
468 if (unlikely(hugetlb_unreserve_pages(inode
,
470 hugetlb_fix_reserve_counts(inode
);
474 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
477 huge_pagevec_release(&pvec
);
482 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
485 static void hugetlbfs_evict_inode(struct inode
*inode
)
487 struct resv_map
*resv_map
;
489 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
490 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
491 /* root inode doesn't have the resv_map, so we should check it */
493 resv_map_release(&resv_map
->refs
);
497 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
500 struct address_space
*mapping
= inode
->i_mapping
;
501 struct hstate
*h
= hstate_inode(inode
);
503 BUG_ON(offset
& ~huge_page_mask(h
));
504 pgoff
= offset
>> PAGE_SHIFT
;
506 i_size_write(inode
, offset
);
507 i_mmap_lock_write(mapping
);
508 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
509 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
510 i_mmap_unlock_write(mapping
);
511 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
515 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
517 struct hstate
*h
= hstate_inode(inode
);
518 loff_t hpage_size
= huge_page_size(h
);
519 loff_t hole_start
, hole_end
;
522 * For hole punch round up the beginning offset of the hole and
523 * round down the end.
525 hole_start
= round_up(offset
, hpage_size
);
526 hole_end
= round_down(offset
+ len
, hpage_size
);
528 if (hole_end
> hole_start
) {
529 struct address_space
*mapping
= inode
->i_mapping
;
532 i_mmap_lock_write(mapping
);
533 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
534 hugetlb_vmdelete_list(&mapping
->i_mmap
,
535 hole_start
>> PAGE_SHIFT
,
536 hole_end
>> PAGE_SHIFT
);
537 i_mmap_unlock_write(mapping
);
538 remove_inode_hugepages(inode
, hole_start
, hole_end
);
545 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
548 struct inode
*inode
= file_inode(file
);
549 struct address_space
*mapping
= inode
->i_mapping
;
550 struct hstate
*h
= hstate_inode(inode
);
551 struct vm_area_struct pseudo_vma
;
552 struct mm_struct
*mm
= current
->mm
;
553 loff_t hpage_size
= huge_page_size(h
);
554 unsigned long hpage_shift
= huge_page_shift(h
);
555 pgoff_t start
, index
, end
;
559 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
562 if (mode
& FALLOC_FL_PUNCH_HOLE
)
563 return hugetlbfs_punch_hole(inode
, offset
, len
);
566 * Default preallocate case.
567 * For this range, start is rounded down and end is rounded up
568 * as well as being converted to page offsets.
570 start
= offset
>> hpage_shift
;
571 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
575 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
576 error
= inode_newsize_ok(inode
, offset
+ len
);
581 * Initialize a pseudo vma as this is required by the huge page
582 * allocation routines. If NUMA is configured, use page index
583 * as input to create an allocation policy.
585 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
586 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
587 pseudo_vma
.vm_file
= file
;
589 for (index
= start
; index
< end
; index
++) {
591 * This is supposed to be the vaddr where the page is being
592 * faulted in, but we have no vaddr here.
596 int avoid_reserve
= 0;
601 * fallocate(2) manpage permits EINTR; we may have been
602 * interrupted because we are using up too much memory.
604 if (signal_pending(current
)) {
609 /* Set numa allocation policy based on index */
610 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
612 /* addr is the offset within the file (zero based) */
613 addr
= index
* hpage_size
;
615 /* mutex taken here, fault path and hole punch */
616 hash
= hugetlb_fault_mutex_hash(h
, mm
, &pseudo_vma
, mapping
,
618 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
620 /* See if already present in mapping to avoid alloc/free */
621 page
= find_get_page(mapping
, index
);
624 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
625 hugetlb_drop_vma_policy(&pseudo_vma
);
629 /* Allocate page and add to page cache */
630 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
631 hugetlb_drop_vma_policy(&pseudo_vma
);
633 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
634 error
= PTR_ERR(page
);
637 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
638 __SetPageUptodate(page
);
639 error
= huge_add_to_page_cache(page
, mapping
, index
);
640 if (unlikely(error
)) {
642 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
646 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
649 * page_put due to reference from alloc_huge_page()
650 * unlock_page because locked by add_to_page_cache()
656 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
657 i_size_write(inode
, offset
+ len
);
658 inode
->i_ctime
= current_time(inode
);
664 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
666 struct inode
*inode
= d_inode(dentry
);
667 struct hstate
*h
= hstate_inode(inode
);
669 unsigned int ia_valid
= attr
->ia_valid
;
673 error
= setattr_prepare(dentry
, attr
);
677 if (ia_valid
& ATTR_SIZE
) {
679 if (attr
->ia_size
& ~huge_page_mask(h
))
681 error
= hugetlb_vmtruncate(inode
, attr
->ia_size
);
686 setattr_copy(inode
, attr
);
687 mark_inode_dirty(inode
);
691 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
692 struct hugetlbfs_config
*config
)
696 inode
= new_inode(sb
);
698 inode
->i_ino
= get_next_ino();
699 inode
->i_mode
= S_IFDIR
| config
->mode
;
700 inode
->i_uid
= config
->uid
;
701 inode
->i_gid
= config
->gid
;
702 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
703 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
704 inode
->i_fop
= &simple_dir_operations
;
705 /* directory inodes start off with i_nlink == 2 (for "." entry) */
707 lockdep_annotate_inode_mutex_key(inode
);
713 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
714 * be taken from reclaim -- unlike regular filesystems. This needs an
715 * annotation because huge_pmd_share() does an allocation under hugetlb's
718 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
720 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
722 umode_t mode
, dev_t dev
)
725 struct resv_map
*resv_map
;
727 resv_map
= resv_map_alloc();
731 inode
= new_inode(sb
);
733 inode
->i_ino
= get_next_ino();
734 inode_init_owner(inode
, dir
, mode
);
735 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
736 &hugetlbfs_i_mmap_rwsem_key
);
737 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
738 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
739 inode
->i_mapping
->private_data
= resv_map
;
740 switch (mode
& S_IFMT
) {
742 init_special_inode(inode
, mode
, dev
);
745 inode
->i_op
= &hugetlbfs_inode_operations
;
746 inode
->i_fop
= &hugetlbfs_file_operations
;
749 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
750 inode
->i_fop
= &simple_dir_operations
;
752 /* directory inodes start off with i_nlink == 2 (for "." entry) */
756 inode
->i_op
= &page_symlink_inode_operations
;
757 inode_nohighmem(inode
);
760 lockdep_annotate_inode_mutex_key(inode
);
762 kref_put(&resv_map
->refs
, resv_map_release
);
768 * File creation. Allocate an inode, and we're done..
770 static int hugetlbfs_mknod(struct inode
*dir
,
771 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
776 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
778 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
779 d_instantiate(dentry
, inode
);
780 dget(dentry
); /* Extra count - pin the dentry in core */
786 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
788 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
794 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
796 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
799 static int hugetlbfs_symlink(struct inode
*dir
,
800 struct dentry
*dentry
, const char *symname
)
805 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
807 int l
= strlen(symname
)+1;
808 error
= page_symlink(inode
, symname
, l
);
810 d_instantiate(dentry
, inode
);
815 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
821 * mark the head page dirty
823 static int hugetlbfs_set_page_dirty(struct page
*page
)
825 struct page
*head
= compound_head(page
);
831 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
832 struct page
*newpage
, struct page
*page
,
833 enum migrate_mode mode
)
837 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
838 if (rc
!= MIGRATEPAGE_SUCCESS
)
840 migrate_page_copy(newpage
, page
);
842 return MIGRATEPAGE_SUCCESS
;
845 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
847 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
848 struct hstate
*h
= hstate_inode(d_inode(dentry
));
850 buf
->f_type
= HUGETLBFS_MAGIC
;
851 buf
->f_bsize
= huge_page_size(h
);
853 spin_lock(&sbinfo
->stat_lock
);
854 /* If no limits set, just report 0 for max/free/used
855 * blocks, like simple_statfs() */
859 spin_lock(&sbinfo
->spool
->lock
);
860 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
861 free_pages
= sbinfo
->spool
->max_hpages
862 - sbinfo
->spool
->used_hpages
;
863 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
864 spin_unlock(&sbinfo
->spool
->lock
);
865 buf
->f_files
= sbinfo
->max_inodes
;
866 buf
->f_ffree
= sbinfo
->free_inodes
;
868 spin_unlock(&sbinfo
->stat_lock
);
870 buf
->f_namelen
= NAME_MAX
;
874 static void hugetlbfs_put_super(struct super_block
*sb
)
876 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
879 sb
->s_fs_info
= NULL
;
882 hugepage_put_subpool(sbi
->spool
);
888 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
890 if (sbinfo
->free_inodes
>= 0) {
891 spin_lock(&sbinfo
->stat_lock
);
892 if (unlikely(!sbinfo
->free_inodes
)) {
893 spin_unlock(&sbinfo
->stat_lock
);
896 sbinfo
->free_inodes
--;
897 spin_unlock(&sbinfo
->stat_lock
);
903 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
905 if (sbinfo
->free_inodes
>= 0) {
906 spin_lock(&sbinfo
->stat_lock
);
907 sbinfo
->free_inodes
++;
908 spin_unlock(&sbinfo
->stat_lock
);
913 static struct kmem_cache
*hugetlbfs_inode_cachep
;
915 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
917 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
918 struct hugetlbfs_inode_info
*p
;
920 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
922 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
924 hugetlbfs_inc_free_inodes(sbinfo
);
929 * Any time after allocation, hugetlbfs_destroy_inode can be called
930 * for the inode. mpol_free_shared_policy is unconditionally called
931 * as part of hugetlbfs_destroy_inode. So, initialize policy here
932 * in case of a quick call to destroy.
934 * Note that the policy is initialized even if we are creating a
935 * private inode. This simplifies hugetlbfs_destroy_inode.
937 mpol_shared_policy_init(&p
->policy
, NULL
);
939 return &p
->vfs_inode
;
942 static void hugetlbfs_i_callback(struct rcu_head
*head
)
944 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
945 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
948 static void hugetlbfs_destroy_inode(struct inode
*inode
)
950 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
951 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
952 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
955 static const struct address_space_operations hugetlbfs_aops
= {
956 .write_begin
= hugetlbfs_write_begin
,
957 .write_end
= hugetlbfs_write_end
,
958 .set_page_dirty
= hugetlbfs_set_page_dirty
,
959 .migratepage
= hugetlbfs_migrate_page
,
963 static void init_once(void *foo
)
965 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
967 inode_init_once(&ei
->vfs_inode
);
970 const struct file_operations hugetlbfs_file_operations
= {
971 .read_iter
= hugetlbfs_read_iter
,
972 .mmap
= hugetlbfs_file_mmap
,
974 .get_unmapped_area
= hugetlb_get_unmapped_area
,
975 .llseek
= default_llseek
,
976 .fallocate
= hugetlbfs_fallocate
,
979 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
980 .create
= hugetlbfs_create
,
981 .lookup
= simple_lookup
,
983 .unlink
= simple_unlink
,
984 .symlink
= hugetlbfs_symlink
,
985 .mkdir
= hugetlbfs_mkdir
,
986 .rmdir
= simple_rmdir
,
987 .mknod
= hugetlbfs_mknod
,
988 .rename
= simple_rename
,
989 .setattr
= hugetlbfs_setattr
,
992 static const struct inode_operations hugetlbfs_inode_operations
= {
993 .setattr
= hugetlbfs_setattr
,
996 static const struct super_operations hugetlbfs_ops
= {
997 .alloc_inode
= hugetlbfs_alloc_inode
,
998 .destroy_inode
= hugetlbfs_destroy_inode
,
999 .evict_inode
= hugetlbfs_evict_inode
,
1000 .statfs
= hugetlbfs_statfs
,
1001 .put_super
= hugetlbfs_put_super
,
1002 .show_options
= generic_show_options
,
1005 enum { NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1008 * Convert size option passed from command line to number of huge pages
1009 * in the pool specified by hstate. Size option could be in bytes
1010 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1013 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1016 if (val_type
== NO_SIZE
)
1019 if (val_type
== SIZE_PERCENT
) {
1020 size_opt
<<= huge_page_shift(h
);
1021 size_opt
*= h
->max_huge_pages
;
1022 do_div(size_opt
, 100);
1025 size_opt
>>= huge_page_shift(h
);
1030 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1033 substring_t args
[MAX_OPT_ARGS
];
1035 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1036 int max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1041 while ((p
= strsep(&options
, ",")) != NULL
) {
1046 token
= match_token(p
, tokens
, args
);
1049 if (match_int(&args
[0], &option
))
1051 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1052 if (!uid_valid(pconfig
->uid
))
1057 if (match_int(&args
[0], &option
))
1059 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1060 if (!gid_valid(pconfig
->gid
))
1065 if (match_octal(&args
[0], &option
))
1067 pconfig
->mode
= option
& 01777U;
1071 /* memparse() will accept a K/M/G without a digit */
1072 if (!isdigit(*args
[0].from
))
1074 max_size_opt
= memparse(args
[0].from
, &rest
);
1075 max_val_type
= SIZE_STD
;
1077 max_val_type
= SIZE_PERCENT
;
1082 /* memparse() will accept a K/M/G without a digit */
1083 if (!isdigit(*args
[0].from
))
1085 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1088 case Opt_pagesize
: {
1090 ps
= memparse(args
[0].from
, &rest
);
1091 pconfig
->hstate
= size_to_hstate(ps
);
1092 if (!pconfig
->hstate
) {
1093 pr_err("Unsupported page size %lu MB\n",
1100 case Opt_min_size
: {
1101 /* memparse() will accept a K/M/G without a digit */
1102 if (!isdigit(*args
[0].from
))
1104 min_size_opt
= memparse(args
[0].from
, &rest
);
1105 min_val_type
= SIZE_STD
;
1107 min_val_type
= SIZE_PERCENT
;
1112 pr_err("Bad mount option: \"%s\"\n", p
);
1119 * Use huge page pool size (in hstate) to convert the size
1120 * options to number of huge pages. If NO_SIZE, -1 is returned.
1122 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1123 max_size_opt
, max_val_type
);
1124 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1125 min_size_opt
, min_val_type
);
1128 * If max_size was specified, then min_size must be smaller
1130 if (max_val_type
> NO_SIZE
&&
1131 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1132 pr_err("minimum size can not be greater than maximum size\n");
1139 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1144 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1147 struct hugetlbfs_config config
;
1148 struct hugetlbfs_sb_info
*sbinfo
;
1150 save_mount_options(sb
, data
);
1152 config
.max_hpages
= -1; /* No limit on size by default */
1153 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1154 config
.uid
= current_fsuid();
1155 config
.gid
= current_fsgid();
1157 config
.hstate
= &default_hstate
;
1158 config
.min_hpages
= -1; /* No default minimum size */
1159 ret
= hugetlbfs_parse_options(data
, &config
);
1163 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1166 sb
->s_fs_info
= sbinfo
;
1167 sbinfo
->hstate
= config
.hstate
;
1168 spin_lock_init(&sbinfo
->stat_lock
);
1169 sbinfo
->max_inodes
= config
.nr_inodes
;
1170 sbinfo
->free_inodes
= config
.nr_inodes
;
1171 sbinfo
->spool
= NULL
;
1173 * Allocate and initialize subpool if maximum or minimum size is
1174 * specified. Any needed reservations (for minimim size) are taken
1175 * taken when the subpool is created.
1177 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1178 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1184 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1185 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1186 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1187 sb
->s_magic
= HUGETLBFS_MAGIC
;
1188 sb
->s_op
= &hugetlbfs_ops
;
1189 sb
->s_time_gran
= 1;
1190 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1195 kfree(sbinfo
->spool
);
1200 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1201 int flags
, const char *dev_name
, void *data
)
1203 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1206 static struct file_system_type hugetlbfs_fs_type
= {
1207 .name
= "hugetlbfs",
1208 .mount
= hugetlbfs_mount
,
1209 .kill_sb
= kill_litter_super
,
1212 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1214 static int can_do_hugetlb_shm(void)
1217 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1218 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1221 static int get_hstate_idx(int page_size_log
)
1223 struct hstate
*h
= hstate_sizelog(page_size_log
);
1230 static const struct dentry_operations anon_ops
= {
1231 .d_dname
= simple_dname
1235 * Note that size should be aligned to proper hugepage size in caller side,
1236 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1238 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1239 vm_flags_t acctflag
, struct user_struct
**user
,
1240 int creat_flags
, int page_size_log
)
1242 struct file
*file
= ERR_PTR(-ENOMEM
);
1243 struct inode
*inode
;
1245 struct super_block
*sb
;
1246 struct qstr quick_string
;
1249 hstate_idx
= get_hstate_idx(page_size_log
);
1251 return ERR_PTR(-ENODEV
);
1254 if (!hugetlbfs_vfsmount
[hstate_idx
])
1255 return ERR_PTR(-ENOENT
);
1257 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1258 *user
= current_user();
1259 if (user_shm_lock(size
, *user
)) {
1261 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1262 current
->comm
, current
->pid
);
1263 task_unlock(current
);
1266 return ERR_PTR(-EPERM
);
1270 sb
= hugetlbfs_vfsmount
[hstate_idx
]->mnt_sb
;
1271 quick_string
.name
= name
;
1272 quick_string
.len
= strlen(quick_string
.name
);
1273 quick_string
.hash
= 0;
1274 path
.dentry
= d_alloc_pseudo(sb
, &quick_string
);
1276 goto out_shm_unlock
;
1278 d_set_d_op(path
.dentry
, &anon_ops
);
1279 path
.mnt
= mntget(hugetlbfs_vfsmount
[hstate_idx
]);
1280 file
= ERR_PTR(-ENOSPC
);
1281 inode
= hugetlbfs_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1284 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1285 inode
->i_flags
|= S_PRIVATE
;
1287 file
= ERR_PTR(-ENOMEM
);
1288 if (hugetlb_reserve_pages(inode
, 0,
1289 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1293 d_instantiate(path
.dentry
, inode
);
1294 inode
->i_size
= size
;
1297 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
1298 &hugetlbfs_file_operations
);
1300 goto out_dentry
; /* inode is already attached */
1310 user_shm_unlock(size
, *user
);
1316 static int __init
init_hugetlbfs_fs(void)
1322 if (!hugepages_supported()) {
1323 pr_info("disabling because there are no supported hugepage sizes\n");
1328 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1329 sizeof(struct hugetlbfs_inode_info
),
1330 0, SLAB_ACCOUNT
, init_once
);
1331 if (hugetlbfs_inode_cachep
== NULL
)
1334 error
= register_filesystem(&hugetlbfs_fs_type
);
1339 for_each_hstate(h
) {
1341 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1343 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1344 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1347 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1348 pr_err("Cannot mount internal hugetlbfs for "
1349 "page size %uK", ps_kb
);
1350 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1351 hugetlbfs_vfsmount
[i
] = NULL
;
1355 /* Non default hstates are optional */
1356 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1360 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1364 fs_initcall(init_hugetlbfs_fs
)