usb: gadget: f_uvc: Sanity check wMaxPacketSize for SuperSpeed
[linux/fpc-iii.git] / fs / namei.c
blobe7d125c23aa66eed9df5eee379477825439101cb
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <asm/uaccess.h>
42 #include "internal.h"
43 #include "mount.h"
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
93 * [10-Sep-98 Alan Modra] Another symlink change.
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
129 struct filename *result;
130 char *kname;
131 int len;
133 result = audit_reusename(filename);
134 if (result)
135 return result;
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
145 kname = (char *)result->iname;
146 result->name = kname;
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
205 struct filename *
206 getname(const char __user * filename)
208 return getname_flags(filename, 0, NULL);
211 struct filename *
212 getname_kernel(const char * filename)
214 struct filename *result;
215 int len = strlen(filename) + 1;
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
243 return result;
246 void putname(struct filename *name)
248 BUG_ON(name->refcnt <= 0);
250 if (--name->refcnt > 0)
251 return;
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
260 static int check_acl(struct inode *inode, int mask)
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
283 #endif
285 return -EAGAIN;
289 * This does the basic permission checking
291 static int acl_permission_check(struct inode *inode, int mask)
293 unsigned int mode = inode->i_mode;
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
309 * If the DACs are ok we don't need any capability check.
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
330 int generic_permission(struct inode *inode, int mask)
332 int ret;
335 * Do the basic permission checks.
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 return 0;
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 return -EACCES;
352 * Read/write DACs are always overridable.
353 * Executable DACs are overridable when there is
354 * at least one exec bit set.
356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 return 0;
361 * Searching includes executable on directories, else just read.
363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 if (mask == MAY_READ)
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 return 0;
368 return -EACCES;
370 EXPORT_SYMBOL(generic_permission);
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
378 static inline int do_inode_permission(struct inode *inode, int mask)
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
389 return generic_permission(inode, mask);
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397 * Check for read/write/execute permissions on an inode.
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
404 int __inode_permission(struct inode *inode, int mask)
406 int retval;
408 if (unlikely(mask & MAY_WRITE)) {
410 * Nobody gets write access to an immutable file.
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
432 return security_inode_permission(inode, mask);
434 EXPORT_SYMBOL(__inode_permission);
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 * Separate out file-system wide checks from inode-specific permission checks.
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
454 return 0;
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468 int inode_permission(struct inode *inode, int mask)
470 int retval;
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
477 EXPORT_SYMBOL(inode_permission);
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
483 * Given a path increment the reference count to the dentry and the vfsmount.
485 void path_get(const struct path *path)
487 mntget(path->mnt);
488 dget(path->dentry);
490 EXPORT_SYMBOL(path_get);
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
496 * Given a path decrement the reference count to the dentry and the vfsmount.
498 void path_put(const struct path *path)
500 dput(path->dentry);
501 mntput(path->mnt);
503 EXPORT_SYMBOL(path_put);
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
540 static void restore_nameidata(void)
542 struct nameidata *now = current->nameidata, *old = now->saved;
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
551 static int __nd_alloc_stack(struct nameidata *nd)
553 struct saved *p;
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
578 static bool path_connected(const struct path *path)
580 struct vfsmount *mnt = path->mnt;
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
586 return is_subdir(path->dentry, mnt->mnt_root);
589 static inline int nd_alloc_stack(struct nameidata *nd)
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
598 static void drop_links(struct nameidata *nd)
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
608 static void terminate_walk(struct nameidata *nd)
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
626 nd->depth = 0;
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 static bool legitimize_links(struct nameidata *nd)
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
658 return true;
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * @dentry: child of nd->path.dentry or NULL
676 * @seq: seq number to check dentry against
677 * Returns: 0 on success, -ECHILD on failure
679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
681 * @nd or NULL. Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
687 struct dentry *parent = nd->path.dentry;
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 goto out2;
696 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 goto out1;
700 * For a negative lookup, the lookup sequence point is the parents
701 * sequence point, and it only needs to revalidate the parent dentry.
703 * For a positive lookup, we need to move both the parent and the
704 * dentry from the RCU domain to be properly refcounted. And the
705 * sequence number in the dentry validates *both* dentry counters,
706 * since we checked the sequence number of the parent after we got
707 * the child sequence number. So we know the parent must still
708 * be valid if the child sequence number is still valid.
710 if (!dentry) {
711 if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 goto out;
713 BUG_ON(nd->inode != parent->d_inode);
714 } else {
715 if (!lockref_get_not_dead(&dentry->d_lockref))
716 goto out;
717 if (read_seqcount_retry(&dentry->d_seq, seq))
718 goto drop_dentry;
722 * Sequence counts matched. Now make sure that the root is
723 * still valid and get it if required.
725 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 rcu_read_unlock();
728 dput(dentry);
729 return -ECHILD;
733 rcu_read_unlock();
734 return 0;
736 drop_dentry:
737 rcu_read_unlock();
738 dput(dentry);
739 goto drop_root_mnt;
740 out2:
741 nd->path.mnt = NULL;
742 out1:
743 nd->path.dentry = NULL;
744 out:
745 rcu_read_unlock();
746 drop_root_mnt:
747 if (!(nd->flags & LOOKUP_ROOT))
748 nd->root.mnt = NULL;
749 return -ECHILD;
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
754 if (unlikely(!legitimize_path(nd, link, seq))) {
755 drop_links(nd);
756 nd->depth = 0;
757 nd->flags &= ~LOOKUP_RCU;
758 nd->path.mnt = NULL;
759 nd->path.dentry = NULL;
760 if (!(nd->flags & LOOKUP_ROOT))
761 nd->root.mnt = NULL;
762 rcu_read_unlock();
763 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 return 0;
766 path_put(link);
767 return -ECHILD;
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
772 return dentry->d_op->d_revalidate(dentry, flags);
776 * complete_walk - successful completion of path walk
777 * @nd: pointer nameidata
779 * If we had been in RCU mode, drop out of it and legitimize nd->path.
780 * Revalidate the final result, unless we'd already done that during
781 * the path walk or the filesystem doesn't ask for it. Return 0 on
782 * success, -error on failure. In case of failure caller does not
783 * need to drop nd->path.
785 static int complete_walk(struct nameidata *nd)
787 struct dentry *dentry = nd->path.dentry;
788 int status;
790 if (nd->flags & LOOKUP_RCU) {
791 if (!(nd->flags & LOOKUP_ROOT))
792 nd->root.mnt = NULL;
793 if (unlikely(unlazy_walk(nd, NULL, 0)))
794 return -ECHILD;
797 if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 return 0;
800 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 return 0;
803 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 if (status > 0)
805 return 0;
807 if (!status)
808 status = -ESTALE;
810 return status;
813 static void set_root(struct nameidata *nd)
815 struct fs_struct *fs = current->fs;
817 if (nd->flags & LOOKUP_RCU) {
818 unsigned seq;
820 do {
821 seq = read_seqcount_begin(&fs->seq);
822 nd->root = fs->root;
823 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 } while (read_seqcount_retry(&fs->seq, seq));
825 } else {
826 get_fs_root(fs, &nd->root);
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
832 dput(path->dentry);
833 if (path->mnt != nd->path.mnt)
834 mntput(path->mnt);
837 static inline void path_to_nameidata(const struct path *path,
838 struct nameidata *nd)
840 if (!(nd->flags & LOOKUP_RCU)) {
841 dput(nd->path.dentry);
842 if (nd->path.mnt != path->mnt)
843 mntput(nd->path.mnt);
845 nd->path.mnt = path->mnt;
846 nd->path.dentry = path->dentry;
849 static int nd_jump_root(struct nameidata *nd)
851 if (nd->flags & LOOKUP_RCU) {
852 struct dentry *d;
853 nd->path = nd->root;
854 d = nd->path.dentry;
855 nd->inode = d->d_inode;
856 nd->seq = nd->root_seq;
857 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 return -ECHILD;
859 } else {
860 path_put(&nd->path);
861 nd->path = nd->root;
862 path_get(&nd->path);
863 nd->inode = nd->path.dentry->d_inode;
865 nd->flags |= LOOKUP_JUMPED;
866 return 0;
870 * Helper to directly jump to a known parsed path from ->get_link,
871 * caller must have taken a reference to path beforehand.
873 void nd_jump_link(struct path *path)
875 struct nameidata *nd = current->nameidata;
876 path_put(&nd->path);
878 nd->path = *path;
879 nd->inode = nd->path.dentry->d_inode;
880 nd->flags |= LOOKUP_JUMPED;
883 static inline void put_link(struct nameidata *nd)
885 struct saved *last = nd->stack + --nd->depth;
886 do_delayed_call(&last->done);
887 if (!(nd->flags & LOOKUP_RCU))
888 path_put(&last->link);
891 int sysctl_protected_symlinks __read_mostly = 0;
892 int sysctl_protected_hardlinks __read_mostly = 0;
895 * may_follow_link - Check symlink following for unsafe situations
896 * @nd: nameidata pathwalk data
898 * In the case of the sysctl_protected_symlinks sysctl being enabled,
899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900 * in a sticky world-writable directory. This is to protect privileged
901 * processes from failing races against path names that may change out
902 * from under them by way of other users creating malicious symlinks.
903 * It will permit symlinks to be followed only when outside a sticky
904 * world-writable directory, or when the uid of the symlink and follower
905 * match, or when the directory owner matches the symlink's owner.
907 * Returns 0 if following the symlink is allowed, -ve on error.
909 static inline int may_follow_link(struct nameidata *nd)
911 const struct inode *inode;
912 const struct inode *parent;
913 kuid_t puid;
915 if (!sysctl_protected_symlinks)
916 return 0;
918 /* Allowed if owner and follower match. */
919 inode = nd->link_inode;
920 if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 return 0;
923 /* Allowed if parent directory not sticky and world-writable. */
924 parent = nd->inode;
925 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 return 0;
928 /* Allowed if parent directory and link owner match. */
929 puid = parent->i_uid;
930 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 return 0;
933 if (nd->flags & LOOKUP_RCU)
934 return -ECHILD;
936 audit_log_link_denied("follow_link", &nd->stack[0].link);
937 return -EACCES;
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
950 * Otherwise returns true.
952 static bool safe_hardlink_source(struct inode *inode)
954 umode_t mode = inode->i_mode;
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
972 return true;
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
985 * Returns 0 if successful, -ve on error.
987 static int may_linkat(struct path *link)
989 struct inode *inode;
991 if (!sysctl_protected_hardlinks)
992 return 0;
994 inode = link->dentry->d_inode;
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
999 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 return 0;
1002 audit_log_link_denied("linkat", link);
1003 return -EPERM;
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update_rcu(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1042 } else {
1043 res = get(dentry, inode, &last->done);
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1056 if (!*res)
1057 res = NULL;
1058 return res;
1062 * follow_up - Find the mountpoint of path's vfsmount
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1071 int follow_up(struct path *path)
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1092 EXPORT_SYMBOL(follow_up);
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1102 struct vfsmount *mnt;
1103 int err;
1105 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 return -EREMOTE;
1108 /* We don't want to mount if someone's just doing a stat -
1109 * unless they're stat'ing a directory and appended a '/' to
1110 * the name.
1112 * We do, however, want to mount if someone wants to open or
1113 * create a file of any type under the mountpoint, wants to
1114 * traverse through the mountpoint or wants to open the
1115 * mounted directory. Also, autofs may mark negative dentries
1116 * as being automount points. These will need the attentions
1117 * of the daemon to instantiate them before they can be used.
1119 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 path->dentry->d_inode)
1122 return -EISDIR;
1124 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1125 return -EACCES;
1127 nd->total_link_count++;
1128 if (nd->total_link_count >= 40)
1129 return -ELOOP;
1131 mnt = path->dentry->d_op->d_automount(path);
1132 if (IS_ERR(mnt)) {
1134 * The filesystem is allowed to return -EISDIR here to indicate
1135 * it doesn't want to automount. For instance, autofs would do
1136 * this so that its userspace daemon can mount on this dentry.
1138 * However, we can only permit this if it's a terminal point in
1139 * the path being looked up; if it wasn't then the remainder of
1140 * the path is inaccessible and we should say so.
1142 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1143 return -EREMOTE;
1144 return PTR_ERR(mnt);
1147 if (!mnt) /* mount collision */
1148 return 0;
1150 if (!*need_mntput) {
1151 /* lock_mount() may release path->mnt on error */
1152 mntget(path->mnt);
1153 *need_mntput = true;
1155 err = finish_automount(mnt, path);
1157 switch (err) {
1158 case -EBUSY:
1159 /* Someone else made a mount here whilst we were busy */
1160 return 0;
1161 case 0:
1162 path_put(path);
1163 path->mnt = mnt;
1164 path->dentry = dget(mnt->mnt_root);
1165 return 0;
1166 default:
1167 return err;
1173 * Handle a dentry that is managed in some way.
1174 * - Flagged for transit management (autofs)
1175 * - Flagged as mountpoint
1176 * - Flagged as automount point
1178 * This may only be called in refwalk mode.
1180 * Serialization is taken care of in namespace.c
1182 static int follow_managed(struct path *path, struct nameidata *nd)
1184 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1185 unsigned managed;
1186 bool need_mntput = false;
1187 int ret = 0;
1189 /* Given that we're not holding a lock here, we retain the value in a
1190 * local variable for each dentry as we look at it so that we don't see
1191 * the components of that value change under us */
1192 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1193 managed &= DCACHE_MANAGED_DENTRY,
1194 unlikely(managed != 0)) {
1195 /* Allow the filesystem to manage the transit without i_mutex
1196 * being held. */
1197 if (managed & DCACHE_MANAGE_TRANSIT) {
1198 BUG_ON(!path->dentry->d_op);
1199 BUG_ON(!path->dentry->d_op->d_manage);
1200 ret = path->dentry->d_op->d_manage(path->dentry, false);
1201 if (ret < 0)
1202 break;
1205 /* Transit to a mounted filesystem. */
1206 if (managed & DCACHE_MOUNTED) {
1207 struct vfsmount *mounted = lookup_mnt(path);
1208 if (mounted) {
1209 dput(path->dentry);
1210 if (need_mntput)
1211 mntput(path->mnt);
1212 path->mnt = mounted;
1213 path->dentry = dget(mounted->mnt_root);
1214 need_mntput = true;
1215 continue;
1218 /* Something is mounted on this dentry in another
1219 * namespace and/or whatever was mounted there in this
1220 * namespace got unmounted before lookup_mnt() could
1221 * get it */
1224 /* Handle an automount point */
1225 if (managed & DCACHE_NEED_AUTOMOUNT) {
1226 ret = follow_automount(path, nd, &need_mntput);
1227 if (ret < 0)
1228 break;
1229 continue;
1232 /* We didn't change the current path point */
1233 break;
1236 if (need_mntput && path->mnt == mnt)
1237 mntput(path->mnt);
1238 if (ret == -EISDIR || !ret)
1239 ret = 1;
1240 if (need_mntput)
1241 nd->flags |= LOOKUP_JUMPED;
1242 if (unlikely(ret < 0))
1243 path_put_conditional(path, nd);
1244 return ret;
1247 int follow_down_one(struct path *path)
1249 struct vfsmount *mounted;
1251 mounted = lookup_mnt(path);
1252 if (mounted) {
1253 dput(path->dentry);
1254 mntput(path->mnt);
1255 path->mnt = mounted;
1256 path->dentry = dget(mounted->mnt_root);
1257 return 1;
1259 return 0;
1261 EXPORT_SYMBOL(follow_down_one);
1263 static inline int managed_dentry_rcu(struct dentry *dentry)
1265 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1266 dentry->d_op->d_manage(dentry, true) : 0;
1270 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1271 * we meet a managed dentry that would need blocking.
1273 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1274 struct inode **inode, unsigned *seqp)
1276 for (;;) {
1277 struct mount *mounted;
1279 * Don't forget we might have a non-mountpoint managed dentry
1280 * that wants to block transit.
1282 switch (managed_dentry_rcu(path->dentry)) {
1283 case -ECHILD:
1284 default:
1285 return false;
1286 case -EISDIR:
1287 return true;
1288 case 0:
1289 break;
1292 if (!d_mountpoint(path->dentry))
1293 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1295 mounted = __lookup_mnt(path->mnt, path->dentry);
1296 if (!mounted)
1297 break;
1298 path->mnt = &mounted->mnt;
1299 path->dentry = mounted->mnt.mnt_root;
1300 nd->flags |= LOOKUP_JUMPED;
1301 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1303 * Update the inode too. We don't need to re-check the
1304 * dentry sequence number here after this d_inode read,
1305 * because a mount-point is always pinned.
1307 *inode = path->dentry->d_inode;
1309 return !read_seqretry(&mount_lock, nd->m_seq) &&
1310 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1313 static int follow_dotdot_rcu(struct nameidata *nd)
1315 struct inode *inode = nd->inode;
1317 while (1) {
1318 if (path_equal(&nd->path, &nd->root))
1319 break;
1320 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1321 struct dentry *old = nd->path.dentry;
1322 struct dentry *parent = old->d_parent;
1323 unsigned seq;
1325 inode = parent->d_inode;
1326 seq = read_seqcount_begin(&parent->d_seq);
1327 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1328 return -ECHILD;
1329 nd->path.dentry = parent;
1330 nd->seq = seq;
1331 if (unlikely(!path_connected(&nd->path)))
1332 return -ENOENT;
1333 break;
1334 } else {
1335 struct mount *mnt = real_mount(nd->path.mnt);
1336 struct mount *mparent = mnt->mnt_parent;
1337 struct dentry *mountpoint = mnt->mnt_mountpoint;
1338 struct inode *inode2 = mountpoint->d_inode;
1339 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (&mparent->mnt == nd->path.mnt)
1343 break;
1344 /* we know that mountpoint was pinned */
1345 nd->path.dentry = mountpoint;
1346 nd->path.mnt = &mparent->mnt;
1347 inode = inode2;
1348 nd->seq = seq;
1351 while (unlikely(d_mountpoint(nd->path.dentry))) {
1352 struct mount *mounted;
1353 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1354 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1355 return -ECHILD;
1356 if (!mounted)
1357 break;
1358 nd->path.mnt = &mounted->mnt;
1359 nd->path.dentry = mounted->mnt.mnt_root;
1360 inode = nd->path.dentry->d_inode;
1361 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1363 nd->inode = inode;
1364 return 0;
1368 * Follow down to the covering mount currently visible to userspace. At each
1369 * point, the filesystem owning that dentry may be queried as to whether the
1370 * caller is permitted to proceed or not.
1372 int follow_down(struct path *path)
1374 unsigned managed;
1375 int ret;
1377 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1378 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1379 /* Allow the filesystem to manage the transit without i_mutex
1380 * being held.
1382 * We indicate to the filesystem if someone is trying to mount
1383 * something here. This gives autofs the chance to deny anyone
1384 * other than its daemon the right to mount on its
1385 * superstructure.
1387 * The filesystem may sleep at this point.
1389 if (managed & DCACHE_MANAGE_TRANSIT) {
1390 BUG_ON(!path->dentry->d_op);
1391 BUG_ON(!path->dentry->d_op->d_manage);
1392 ret = path->dentry->d_op->d_manage(
1393 path->dentry, false);
1394 if (ret < 0)
1395 return ret == -EISDIR ? 0 : ret;
1398 /* Transit to a mounted filesystem. */
1399 if (managed & DCACHE_MOUNTED) {
1400 struct vfsmount *mounted = lookup_mnt(path);
1401 if (!mounted)
1402 break;
1403 dput(path->dentry);
1404 mntput(path->mnt);
1405 path->mnt = mounted;
1406 path->dentry = dget(mounted->mnt_root);
1407 continue;
1410 /* Don't handle automount points here */
1411 break;
1413 return 0;
1415 EXPORT_SYMBOL(follow_down);
1418 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1420 static void follow_mount(struct path *path)
1422 while (d_mountpoint(path->dentry)) {
1423 struct vfsmount *mounted = lookup_mnt(path);
1424 if (!mounted)
1425 break;
1426 dput(path->dentry);
1427 mntput(path->mnt);
1428 path->mnt = mounted;
1429 path->dentry = dget(mounted->mnt_root);
1433 static int path_parent_directory(struct path *path)
1435 struct dentry *old = path->dentry;
1436 /* rare case of legitimate dget_parent()... */
1437 path->dentry = dget_parent(path->dentry);
1438 dput(old);
1439 if (unlikely(!path_connected(path)))
1440 return -ENOENT;
1441 return 0;
1444 static int follow_dotdot(struct nameidata *nd)
1446 while(1) {
1447 if (nd->path.dentry == nd->root.dentry &&
1448 nd->path.mnt == nd->root.mnt) {
1449 break;
1451 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1452 int ret = path_parent_directory(&nd->path);
1453 if (ret)
1454 return ret;
1455 break;
1457 if (!follow_up(&nd->path))
1458 break;
1460 follow_mount(&nd->path);
1461 nd->inode = nd->path.dentry->d_inode;
1462 return 0;
1466 * This looks up the name in dcache and possibly revalidates the found dentry.
1467 * NULL is returned if the dentry does not exist in the cache.
1469 static struct dentry *lookup_dcache(const struct qstr *name,
1470 struct dentry *dir,
1471 unsigned int flags)
1473 struct dentry *dentry;
1474 int error;
1476 dentry = d_lookup(dir, name);
1477 if (dentry) {
1478 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1479 error = d_revalidate(dentry, flags);
1480 if (unlikely(error <= 0)) {
1481 if (!error)
1482 d_invalidate(dentry);
1483 dput(dentry);
1484 return ERR_PTR(error);
1488 return dentry;
1492 * Call i_op->lookup on the dentry. The dentry must be negative and
1493 * unhashed.
1495 * dir->d_inode->i_mutex must be held
1497 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1498 unsigned int flags)
1500 struct dentry *old;
1502 /* Don't create child dentry for a dead directory. */
1503 if (unlikely(IS_DEADDIR(dir))) {
1504 dput(dentry);
1505 return ERR_PTR(-ENOENT);
1508 old = dir->i_op->lookup(dir, dentry, flags);
1509 if (unlikely(old)) {
1510 dput(dentry);
1511 dentry = old;
1513 return dentry;
1516 static struct dentry *__lookup_hash(const struct qstr *name,
1517 struct dentry *base, unsigned int flags)
1519 struct dentry *dentry = lookup_dcache(name, base, flags);
1521 if (dentry)
1522 return dentry;
1524 dentry = d_alloc(base, name);
1525 if (unlikely(!dentry))
1526 return ERR_PTR(-ENOMEM);
1528 return lookup_real(base->d_inode, dentry, flags);
1531 static int lookup_fast(struct nameidata *nd,
1532 struct path *path, struct inode **inode,
1533 unsigned *seqp)
1535 struct vfsmount *mnt = nd->path.mnt;
1536 struct dentry *dentry, *parent = nd->path.dentry;
1537 int status = 1;
1538 int err;
1541 * Rename seqlock is not required here because in the off chance
1542 * of a false negative due to a concurrent rename, the caller is
1543 * going to fall back to non-racy lookup.
1545 if (nd->flags & LOOKUP_RCU) {
1546 unsigned seq;
1547 bool negative;
1548 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1549 if (unlikely(!dentry)) {
1550 if (unlazy_walk(nd, NULL, 0))
1551 return -ECHILD;
1552 return 0;
1556 * This sequence count validates that the inode matches
1557 * the dentry name information from lookup.
1559 *inode = d_backing_inode(dentry);
1560 negative = d_is_negative(dentry);
1561 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1562 return -ECHILD;
1565 * This sequence count validates that the parent had no
1566 * changes while we did the lookup of the dentry above.
1568 * The memory barrier in read_seqcount_begin of child is
1569 * enough, we can use __read_seqcount_retry here.
1571 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1572 return -ECHILD;
1574 *seqp = seq;
1575 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1576 status = d_revalidate(dentry, nd->flags);
1577 if (unlikely(status <= 0)) {
1578 if (unlazy_walk(nd, dentry, seq))
1579 return -ECHILD;
1580 if (status == -ECHILD)
1581 status = d_revalidate(dentry, nd->flags);
1582 } else {
1584 * Note: do negative dentry check after revalidation in
1585 * case that drops it.
1587 if (unlikely(negative))
1588 return -ENOENT;
1589 path->mnt = mnt;
1590 path->dentry = dentry;
1591 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1592 return 1;
1593 if (unlazy_walk(nd, dentry, seq))
1594 return -ECHILD;
1596 } else {
1597 dentry = __d_lookup(parent, &nd->last);
1598 if (unlikely(!dentry))
1599 return 0;
1600 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1601 status = d_revalidate(dentry, nd->flags);
1603 if (unlikely(status <= 0)) {
1604 if (!status)
1605 d_invalidate(dentry);
1606 dput(dentry);
1607 return status;
1609 if (unlikely(d_is_negative(dentry))) {
1610 dput(dentry);
1611 return -ENOENT;
1614 path->mnt = mnt;
1615 path->dentry = dentry;
1616 err = follow_managed(path, nd);
1617 if (likely(err > 0))
1618 *inode = d_backing_inode(path->dentry);
1619 return err;
1622 /* Fast lookup failed, do it the slow way */
1623 static struct dentry *lookup_slow(const struct qstr *name,
1624 struct dentry *dir,
1625 unsigned int flags)
1627 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1628 struct inode *inode = dir->d_inode;
1629 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1631 inode_lock_shared(inode);
1632 /* Don't go there if it's already dead */
1633 if (unlikely(IS_DEADDIR(inode)))
1634 goto out;
1635 again:
1636 dentry = d_alloc_parallel(dir, name, &wq);
1637 if (IS_ERR(dentry))
1638 goto out;
1639 if (unlikely(!d_in_lookup(dentry))) {
1640 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1641 !(flags & LOOKUP_NO_REVAL)) {
1642 int error = d_revalidate(dentry, flags);
1643 if (unlikely(error <= 0)) {
1644 if (!error) {
1645 d_invalidate(dentry);
1646 dput(dentry);
1647 goto again;
1649 dput(dentry);
1650 dentry = ERR_PTR(error);
1653 } else {
1654 old = inode->i_op->lookup(inode, dentry, flags);
1655 d_lookup_done(dentry);
1656 if (unlikely(old)) {
1657 dput(dentry);
1658 dentry = old;
1661 out:
1662 inode_unlock_shared(inode);
1663 return dentry;
1666 static inline int may_lookup(struct nameidata *nd)
1668 if (nd->flags & LOOKUP_RCU) {
1669 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1670 if (err != -ECHILD)
1671 return err;
1672 if (unlazy_walk(nd, NULL, 0))
1673 return -ECHILD;
1675 return inode_permission(nd->inode, MAY_EXEC);
1678 static inline int handle_dots(struct nameidata *nd, int type)
1680 if (type == LAST_DOTDOT) {
1681 if (!nd->root.mnt)
1682 set_root(nd);
1683 if (nd->flags & LOOKUP_RCU) {
1684 return follow_dotdot_rcu(nd);
1685 } else
1686 return follow_dotdot(nd);
1688 return 0;
1691 static int pick_link(struct nameidata *nd, struct path *link,
1692 struct inode *inode, unsigned seq)
1694 int error;
1695 struct saved *last;
1696 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1697 path_to_nameidata(link, nd);
1698 return -ELOOP;
1700 if (!(nd->flags & LOOKUP_RCU)) {
1701 if (link->mnt == nd->path.mnt)
1702 mntget(link->mnt);
1704 error = nd_alloc_stack(nd);
1705 if (unlikely(error)) {
1706 if (error == -ECHILD) {
1707 if (unlikely(unlazy_link(nd, link, seq)))
1708 return -ECHILD;
1709 error = nd_alloc_stack(nd);
1711 if (error) {
1712 path_put(link);
1713 return error;
1717 last = nd->stack + nd->depth++;
1718 last->link = *link;
1719 clear_delayed_call(&last->done);
1720 nd->link_inode = inode;
1721 last->seq = seq;
1722 return 1;
1726 * Do we need to follow links? We _really_ want to be able
1727 * to do this check without having to look at inode->i_op,
1728 * so we keep a cache of "no, this doesn't need follow_link"
1729 * for the common case.
1731 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1732 int follow,
1733 struct inode *inode, unsigned seq)
1735 if (likely(!d_is_symlink(link->dentry)))
1736 return 0;
1737 if (!follow)
1738 return 0;
1739 /* make sure that d_is_symlink above matches inode */
1740 if (nd->flags & LOOKUP_RCU) {
1741 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1742 return -ECHILD;
1744 return pick_link(nd, link, inode, seq);
1747 enum {WALK_GET = 1, WALK_PUT = 2};
1749 static int walk_component(struct nameidata *nd, int flags)
1751 struct path path;
1752 struct inode *inode;
1753 unsigned seq;
1754 int err;
1756 * "." and ".." are special - ".." especially so because it has
1757 * to be able to know about the current root directory and
1758 * parent relationships.
1760 if (unlikely(nd->last_type != LAST_NORM)) {
1761 err = handle_dots(nd, nd->last_type);
1762 if (flags & WALK_PUT)
1763 put_link(nd);
1764 return err;
1766 err = lookup_fast(nd, &path, &inode, &seq);
1767 if (unlikely(err <= 0)) {
1768 if (err < 0)
1769 return err;
1770 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1771 nd->flags);
1772 if (IS_ERR(path.dentry))
1773 return PTR_ERR(path.dentry);
1775 path.mnt = nd->path.mnt;
1776 err = follow_managed(&path, nd);
1777 if (unlikely(err < 0))
1778 return err;
1780 if (unlikely(d_is_negative(path.dentry))) {
1781 path_to_nameidata(&path, nd);
1782 return -ENOENT;
1785 seq = 0; /* we are already out of RCU mode */
1786 inode = d_backing_inode(path.dentry);
1789 if (flags & WALK_PUT)
1790 put_link(nd);
1791 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1792 if (unlikely(err))
1793 return err;
1794 path_to_nameidata(&path, nd);
1795 nd->inode = inode;
1796 nd->seq = seq;
1797 return 0;
1801 * We can do the critical dentry name comparison and hashing
1802 * operations one word at a time, but we are limited to:
1804 * - Architectures with fast unaligned word accesses. We could
1805 * do a "get_unaligned()" if this helps and is sufficiently
1806 * fast.
1808 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1809 * do not trap on the (extremely unlikely) case of a page
1810 * crossing operation.
1812 * - Furthermore, we need an efficient 64-bit compile for the
1813 * 64-bit case in order to generate the "number of bytes in
1814 * the final mask". Again, that could be replaced with a
1815 * efficient population count instruction or similar.
1817 #ifdef CONFIG_DCACHE_WORD_ACCESS
1819 #include <asm/word-at-a-time.h>
1821 #ifdef HASH_MIX
1823 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1825 #elif defined(CONFIG_64BIT)
1827 * Register pressure in the mixing function is an issue, particularly
1828 * on 32-bit x86, but almost any function requires one state value and
1829 * one temporary. Instead, use a function designed for two state values
1830 * and no temporaries.
1832 * This function cannot create a collision in only two iterations, so
1833 * we have two iterations to achieve avalanche. In those two iterations,
1834 * we have six layers of mixing, which is enough to spread one bit's
1835 * influence out to 2^6 = 64 state bits.
1837 * Rotate constants are scored by considering either 64 one-bit input
1838 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1839 * probability of that delta causing a change to each of the 128 output
1840 * bits, using a sample of random initial states.
1842 * The Shannon entropy of the computed probabilities is then summed
1843 * to produce a score. Ideally, any input change has a 50% chance of
1844 * toggling any given output bit.
1846 * Mixing scores (in bits) for (12,45):
1847 * Input delta: 1-bit 2-bit
1848 * 1 round: 713.3 42542.6
1849 * 2 rounds: 2753.7 140389.8
1850 * 3 rounds: 5954.1 233458.2
1851 * 4 rounds: 7862.6 256672.2
1852 * Perfect: 8192 258048
1853 * (64*128) (64*63/2 * 128)
1855 #define HASH_MIX(x, y, a) \
1856 ( x ^= (a), \
1857 y ^= x, x = rol64(x,12),\
1858 x += y, y = rol64(y,45),\
1859 y *= 9 )
1862 * Fold two longs into one 32-bit hash value. This must be fast, but
1863 * latency isn't quite as critical, as there is a fair bit of additional
1864 * work done before the hash value is used.
1866 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1868 y ^= x * GOLDEN_RATIO_64;
1869 y *= GOLDEN_RATIO_64;
1870 return y >> 32;
1873 #else /* 32-bit case */
1876 * Mixing scores (in bits) for (7,20):
1877 * Input delta: 1-bit 2-bit
1878 * 1 round: 330.3 9201.6
1879 * 2 rounds: 1246.4 25475.4
1880 * 3 rounds: 1907.1 31295.1
1881 * 4 rounds: 2042.3 31718.6
1882 * Perfect: 2048 31744
1883 * (32*64) (32*31/2 * 64)
1885 #define HASH_MIX(x, y, a) \
1886 ( x ^= (a), \
1887 y ^= x, x = rol32(x, 7),\
1888 x += y, y = rol32(y,20),\
1889 y *= 9 )
1891 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1893 /* Use arch-optimized multiply if one exists */
1894 return __hash_32(y ^ __hash_32(x));
1897 #endif
1900 * Return the hash of a string of known length. This is carfully
1901 * designed to match hash_name(), which is the more critical function.
1902 * In particular, we must end by hashing a final word containing 0..7
1903 * payload bytes, to match the way that hash_name() iterates until it
1904 * finds the delimiter after the name.
1906 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1908 unsigned long a, x = 0, y = (unsigned long)salt;
1910 for (;;) {
1911 if (!len)
1912 goto done;
1913 a = load_unaligned_zeropad(name);
1914 if (len < sizeof(unsigned long))
1915 break;
1916 HASH_MIX(x, y, a);
1917 name += sizeof(unsigned long);
1918 len -= sizeof(unsigned long);
1920 x ^= a & bytemask_from_count(len);
1921 done:
1922 return fold_hash(x, y);
1924 EXPORT_SYMBOL(full_name_hash);
1926 /* Return the "hash_len" (hash and length) of a null-terminated string */
1927 u64 hashlen_string(const void *salt, const char *name)
1929 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1930 unsigned long adata, mask, len;
1931 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1933 len = 0;
1934 goto inside;
1936 do {
1937 HASH_MIX(x, y, a);
1938 len += sizeof(unsigned long);
1939 inside:
1940 a = load_unaligned_zeropad(name+len);
1941 } while (!has_zero(a, &adata, &constants));
1943 adata = prep_zero_mask(a, adata, &constants);
1944 mask = create_zero_mask(adata);
1945 x ^= a & zero_bytemask(mask);
1947 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1949 EXPORT_SYMBOL(hashlen_string);
1952 * Calculate the length and hash of the path component, and
1953 * return the "hash_len" as the result.
1955 static inline u64 hash_name(const void *salt, const char *name)
1957 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1958 unsigned long adata, bdata, mask, len;
1959 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1961 len = 0;
1962 goto inside;
1964 do {
1965 HASH_MIX(x, y, a);
1966 len += sizeof(unsigned long);
1967 inside:
1968 a = load_unaligned_zeropad(name+len);
1969 b = a ^ REPEAT_BYTE('/');
1970 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1972 adata = prep_zero_mask(a, adata, &constants);
1973 bdata = prep_zero_mask(b, bdata, &constants);
1974 mask = create_zero_mask(adata | bdata);
1975 x ^= a & zero_bytemask(mask);
1977 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1980 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1982 /* Return the hash of a string of known length */
1983 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1985 unsigned long hash = init_name_hash(salt);
1986 while (len--)
1987 hash = partial_name_hash((unsigned char)*name++, hash);
1988 return end_name_hash(hash);
1990 EXPORT_SYMBOL(full_name_hash);
1992 /* Return the "hash_len" (hash and length) of a null-terminated string */
1993 u64 hashlen_string(const void *salt, const char *name)
1995 unsigned long hash = init_name_hash(salt);
1996 unsigned long len = 0, c;
1998 c = (unsigned char)*name;
1999 while (c) {
2000 len++;
2001 hash = partial_name_hash(c, hash);
2002 c = (unsigned char)name[len];
2004 return hashlen_create(end_name_hash(hash), len);
2006 EXPORT_SYMBOL(hashlen_string);
2009 * We know there's a real path component here of at least
2010 * one character.
2012 static inline u64 hash_name(const void *salt, const char *name)
2014 unsigned long hash = init_name_hash(salt);
2015 unsigned long len = 0, c;
2017 c = (unsigned char)*name;
2018 do {
2019 len++;
2020 hash = partial_name_hash(c, hash);
2021 c = (unsigned char)name[len];
2022 } while (c && c != '/');
2023 return hashlen_create(end_name_hash(hash), len);
2026 #endif
2029 * Name resolution.
2030 * This is the basic name resolution function, turning a pathname into
2031 * the final dentry. We expect 'base' to be positive and a directory.
2033 * Returns 0 and nd will have valid dentry and mnt on success.
2034 * Returns error and drops reference to input namei data on failure.
2036 static int link_path_walk(const char *name, struct nameidata *nd)
2038 int err;
2040 while (*name=='/')
2041 name++;
2042 if (!*name)
2043 return 0;
2045 /* At this point we know we have a real path component. */
2046 for(;;) {
2047 u64 hash_len;
2048 int type;
2050 err = may_lookup(nd);
2051 if (err)
2052 return err;
2054 hash_len = hash_name(nd->path.dentry, name);
2056 type = LAST_NORM;
2057 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2058 case 2:
2059 if (name[1] == '.') {
2060 type = LAST_DOTDOT;
2061 nd->flags |= LOOKUP_JUMPED;
2063 break;
2064 case 1:
2065 type = LAST_DOT;
2067 if (likely(type == LAST_NORM)) {
2068 struct dentry *parent = nd->path.dentry;
2069 nd->flags &= ~LOOKUP_JUMPED;
2070 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2071 struct qstr this = { { .hash_len = hash_len }, .name = name };
2072 err = parent->d_op->d_hash(parent, &this);
2073 if (err < 0)
2074 return err;
2075 hash_len = this.hash_len;
2076 name = this.name;
2080 nd->last.hash_len = hash_len;
2081 nd->last.name = name;
2082 nd->last_type = type;
2084 name += hashlen_len(hash_len);
2085 if (!*name)
2086 goto OK;
2088 * If it wasn't NUL, we know it was '/'. Skip that
2089 * slash, and continue until no more slashes.
2091 do {
2092 name++;
2093 } while (unlikely(*name == '/'));
2094 if (unlikely(!*name)) {
2096 /* pathname body, done */
2097 if (!nd->depth)
2098 return 0;
2099 name = nd->stack[nd->depth - 1].name;
2100 /* trailing symlink, done */
2101 if (!name)
2102 return 0;
2103 /* last component of nested symlink */
2104 err = walk_component(nd, WALK_GET | WALK_PUT);
2105 } else {
2106 err = walk_component(nd, WALK_GET);
2108 if (err < 0)
2109 return err;
2111 if (err) {
2112 const char *s = get_link(nd);
2114 if (IS_ERR(s))
2115 return PTR_ERR(s);
2116 err = 0;
2117 if (unlikely(!s)) {
2118 /* jumped */
2119 put_link(nd);
2120 } else {
2121 nd->stack[nd->depth - 1].name = name;
2122 name = s;
2123 continue;
2126 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2127 if (nd->flags & LOOKUP_RCU) {
2128 if (unlazy_walk(nd, NULL, 0))
2129 return -ECHILD;
2131 return -ENOTDIR;
2136 static const char *path_init(struct nameidata *nd, unsigned flags)
2138 int retval = 0;
2139 const char *s = nd->name->name;
2141 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2142 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2143 nd->depth = 0;
2144 if (flags & LOOKUP_ROOT) {
2145 struct dentry *root = nd->root.dentry;
2146 struct inode *inode = root->d_inode;
2147 if (*s) {
2148 if (!d_can_lookup(root))
2149 return ERR_PTR(-ENOTDIR);
2150 retval = inode_permission(inode, MAY_EXEC);
2151 if (retval)
2152 return ERR_PTR(retval);
2154 nd->path = nd->root;
2155 nd->inode = inode;
2156 if (flags & LOOKUP_RCU) {
2157 rcu_read_lock();
2158 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2159 nd->root_seq = nd->seq;
2160 nd->m_seq = read_seqbegin(&mount_lock);
2161 } else {
2162 path_get(&nd->path);
2164 return s;
2167 nd->root.mnt = NULL;
2168 nd->path.mnt = NULL;
2169 nd->path.dentry = NULL;
2171 nd->m_seq = read_seqbegin(&mount_lock);
2172 if (*s == '/') {
2173 if (flags & LOOKUP_RCU)
2174 rcu_read_lock();
2175 set_root(nd);
2176 if (likely(!nd_jump_root(nd)))
2177 return s;
2178 nd->root.mnt = NULL;
2179 rcu_read_unlock();
2180 return ERR_PTR(-ECHILD);
2181 } else if (nd->dfd == AT_FDCWD) {
2182 if (flags & LOOKUP_RCU) {
2183 struct fs_struct *fs = current->fs;
2184 unsigned seq;
2186 rcu_read_lock();
2188 do {
2189 seq = read_seqcount_begin(&fs->seq);
2190 nd->path = fs->pwd;
2191 nd->inode = nd->path.dentry->d_inode;
2192 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2193 } while (read_seqcount_retry(&fs->seq, seq));
2194 } else {
2195 get_fs_pwd(current->fs, &nd->path);
2196 nd->inode = nd->path.dentry->d_inode;
2198 return s;
2199 } else {
2200 /* Caller must check execute permissions on the starting path component */
2201 struct fd f = fdget_raw(nd->dfd);
2202 struct dentry *dentry;
2204 if (!f.file)
2205 return ERR_PTR(-EBADF);
2207 dentry = f.file->f_path.dentry;
2209 if (*s) {
2210 if (!d_can_lookup(dentry)) {
2211 fdput(f);
2212 return ERR_PTR(-ENOTDIR);
2216 nd->path = f.file->f_path;
2217 if (flags & LOOKUP_RCU) {
2218 rcu_read_lock();
2219 nd->inode = nd->path.dentry->d_inode;
2220 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2221 } else {
2222 path_get(&nd->path);
2223 nd->inode = nd->path.dentry->d_inode;
2225 fdput(f);
2226 return s;
2230 static const char *trailing_symlink(struct nameidata *nd)
2232 const char *s;
2233 int error = may_follow_link(nd);
2234 if (unlikely(error))
2235 return ERR_PTR(error);
2236 nd->flags |= LOOKUP_PARENT;
2237 nd->stack[0].name = NULL;
2238 s = get_link(nd);
2239 return s ? s : "";
2242 static inline int lookup_last(struct nameidata *nd)
2244 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2245 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2247 nd->flags &= ~LOOKUP_PARENT;
2248 return walk_component(nd,
2249 nd->flags & LOOKUP_FOLLOW
2250 ? nd->depth
2251 ? WALK_PUT | WALK_GET
2252 : WALK_GET
2253 : 0);
2256 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2257 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2259 const char *s = path_init(nd, flags);
2260 int err;
2262 if (IS_ERR(s))
2263 return PTR_ERR(s);
2264 while (!(err = link_path_walk(s, nd))
2265 && ((err = lookup_last(nd)) > 0)) {
2266 s = trailing_symlink(nd);
2267 if (IS_ERR(s)) {
2268 err = PTR_ERR(s);
2269 break;
2272 if (!err)
2273 err = complete_walk(nd);
2275 if (!err && nd->flags & LOOKUP_DIRECTORY)
2276 if (!d_can_lookup(nd->path.dentry))
2277 err = -ENOTDIR;
2278 if (!err) {
2279 *path = nd->path;
2280 nd->path.mnt = NULL;
2281 nd->path.dentry = NULL;
2283 terminate_walk(nd);
2284 return err;
2287 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2288 struct path *path, struct path *root)
2290 int retval;
2291 struct nameidata nd;
2292 if (IS_ERR(name))
2293 return PTR_ERR(name);
2294 if (unlikely(root)) {
2295 nd.root = *root;
2296 flags |= LOOKUP_ROOT;
2298 set_nameidata(&nd, dfd, name);
2299 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2300 if (unlikely(retval == -ECHILD))
2301 retval = path_lookupat(&nd, flags, path);
2302 if (unlikely(retval == -ESTALE))
2303 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2305 if (likely(!retval))
2306 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2307 restore_nameidata();
2308 putname(name);
2309 return retval;
2312 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2313 static int path_parentat(struct nameidata *nd, unsigned flags,
2314 struct path *parent)
2316 const char *s = path_init(nd, flags);
2317 int err;
2318 if (IS_ERR(s))
2319 return PTR_ERR(s);
2320 err = link_path_walk(s, nd);
2321 if (!err)
2322 err = complete_walk(nd);
2323 if (!err) {
2324 *parent = nd->path;
2325 nd->path.mnt = NULL;
2326 nd->path.dentry = NULL;
2328 terminate_walk(nd);
2329 return err;
2332 static struct filename *filename_parentat(int dfd, struct filename *name,
2333 unsigned int flags, struct path *parent,
2334 struct qstr *last, int *type)
2336 int retval;
2337 struct nameidata nd;
2339 if (IS_ERR(name))
2340 return name;
2341 set_nameidata(&nd, dfd, name);
2342 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2343 if (unlikely(retval == -ECHILD))
2344 retval = path_parentat(&nd, flags, parent);
2345 if (unlikely(retval == -ESTALE))
2346 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2347 if (likely(!retval)) {
2348 *last = nd.last;
2349 *type = nd.last_type;
2350 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2351 } else {
2352 putname(name);
2353 name = ERR_PTR(retval);
2355 restore_nameidata();
2356 return name;
2359 /* does lookup, returns the object with parent locked */
2360 struct dentry *kern_path_locked(const char *name, struct path *path)
2362 struct filename *filename;
2363 struct dentry *d;
2364 struct qstr last;
2365 int type;
2367 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2368 &last, &type);
2369 if (IS_ERR(filename))
2370 return ERR_CAST(filename);
2371 if (unlikely(type != LAST_NORM)) {
2372 path_put(path);
2373 putname(filename);
2374 return ERR_PTR(-EINVAL);
2376 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2377 d = __lookup_hash(&last, path->dentry, 0);
2378 if (IS_ERR(d)) {
2379 inode_unlock(path->dentry->d_inode);
2380 path_put(path);
2382 putname(filename);
2383 return d;
2386 int kern_path(const char *name, unsigned int flags, struct path *path)
2388 return filename_lookup(AT_FDCWD, getname_kernel(name),
2389 flags, path, NULL);
2391 EXPORT_SYMBOL(kern_path);
2394 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2395 * @dentry: pointer to dentry of the base directory
2396 * @mnt: pointer to vfs mount of the base directory
2397 * @name: pointer to file name
2398 * @flags: lookup flags
2399 * @path: pointer to struct path to fill
2401 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2402 const char *name, unsigned int flags,
2403 struct path *path)
2405 struct path root = {.mnt = mnt, .dentry = dentry};
2406 /* the first argument of filename_lookup() is ignored with root */
2407 return filename_lookup(AT_FDCWD, getname_kernel(name),
2408 flags , path, &root);
2410 EXPORT_SYMBOL(vfs_path_lookup);
2413 * lookup_one_len - filesystem helper to lookup single pathname component
2414 * @name: pathname component to lookup
2415 * @base: base directory to lookup from
2416 * @len: maximum length @len should be interpreted to
2418 * Note that this routine is purely a helper for filesystem usage and should
2419 * not be called by generic code.
2421 * The caller must hold base->i_mutex.
2423 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2425 struct qstr this;
2426 unsigned int c;
2427 int err;
2429 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2431 this.name = name;
2432 this.len = len;
2433 this.hash = full_name_hash(base, name, len);
2434 if (!len)
2435 return ERR_PTR(-EACCES);
2437 if (unlikely(name[0] == '.')) {
2438 if (len < 2 || (len == 2 && name[1] == '.'))
2439 return ERR_PTR(-EACCES);
2442 while (len--) {
2443 c = *(const unsigned char *)name++;
2444 if (c == '/' || c == '\0')
2445 return ERR_PTR(-EACCES);
2448 * See if the low-level filesystem might want
2449 * to use its own hash..
2451 if (base->d_flags & DCACHE_OP_HASH) {
2452 int err = base->d_op->d_hash(base, &this);
2453 if (err < 0)
2454 return ERR_PTR(err);
2457 err = inode_permission(base->d_inode, MAY_EXEC);
2458 if (err)
2459 return ERR_PTR(err);
2461 return __lookup_hash(&this, base, 0);
2463 EXPORT_SYMBOL(lookup_one_len);
2466 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2467 * @name: pathname component to lookup
2468 * @base: base directory to lookup from
2469 * @len: maximum length @len should be interpreted to
2471 * Note that this routine is purely a helper for filesystem usage and should
2472 * not be called by generic code.
2474 * Unlike lookup_one_len, it should be called without the parent
2475 * i_mutex held, and will take the i_mutex itself if necessary.
2477 struct dentry *lookup_one_len_unlocked(const char *name,
2478 struct dentry *base, int len)
2480 struct qstr this;
2481 unsigned int c;
2482 int err;
2483 struct dentry *ret;
2485 this.name = name;
2486 this.len = len;
2487 this.hash = full_name_hash(base, name, len);
2488 if (!len)
2489 return ERR_PTR(-EACCES);
2491 if (unlikely(name[0] == '.')) {
2492 if (len < 2 || (len == 2 && name[1] == '.'))
2493 return ERR_PTR(-EACCES);
2496 while (len--) {
2497 c = *(const unsigned char *)name++;
2498 if (c == '/' || c == '\0')
2499 return ERR_PTR(-EACCES);
2502 * See if the low-level filesystem might want
2503 * to use its own hash..
2505 if (base->d_flags & DCACHE_OP_HASH) {
2506 int err = base->d_op->d_hash(base, &this);
2507 if (err < 0)
2508 return ERR_PTR(err);
2511 err = inode_permission(base->d_inode, MAY_EXEC);
2512 if (err)
2513 return ERR_PTR(err);
2515 ret = lookup_dcache(&this, base, 0);
2516 if (!ret)
2517 ret = lookup_slow(&this, base, 0);
2518 return ret;
2520 EXPORT_SYMBOL(lookup_one_len_unlocked);
2522 #ifdef CONFIG_UNIX98_PTYS
2523 int path_pts(struct path *path)
2525 /* Find something mounted on "pts" in the same directory as
2526 * the input path.
2528 struct dentry *child, *parent;
2529 struct qstr this;
2530 int ret;
2532 ret = path_parent_directory(path);
2533 if (ret)
2534 return ret;
2536 parent = path->dentry;
2537 this.name = "pts";
2538 this.len = 3;
2539 child = d_hash_and_lookup(parent, &this);
2540 if (!child)
2541 return -ENOENT;
2543 path->dentry = child;
2544 dput(parent);
2545 follow_mount(path);
2546 return 0;
2548 #endif
2550 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2551 struct path *path, int *empty)
2553 return filename_lookup(dfd, getname_flags(name, flags, empty),
2554 flags, path, NULL);
2556 EXPORT_SYMBOL(user_path_at_empty);
2559 * NB: most callers don't do anything directly with the reference to the
2560 * to struct filename, but the nd->last pointer points into the name string
2561 * allocated by getname. So we must hold the reference to it until all
2562 * path-walking is complete.
2564 static inline struct filename *
2565 user_path_parent(int dfd, const char __user *path,
2566 struct path *parent,
2567 struct qstr *last,
2568 int *type,
2569 unsigned int flags)
2571 /* only LOOKUP_REVAL is allowed in extra flags */
2572 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2573 parent, last, type);
2577 * mountpoint_last - look up last component for umount
2578 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2579 * @path: pointer to container for result
2581 * This is a special lookup_last function just for umount. In this case, we
2582 * need to resolve the path without doing any revalidation.
2584 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2585 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2586 * in almost all cases, this lookup will be served out of the dcache. The only
2587 * cases where it won't are if nd->last refers to a symlink or the path is
2588 * bogus and it doesn't exist.
2590 * Returns:
2591 * -error: if there was an error during lookup. This includes -ENOENT if the
2592 * lookup found a negative dentry. The nd->path reference will also be
2593 * put in this case.
2595 * 0: if we successfully resolved nd->path and found it to not to be a
2596 * symlink that needs to be followed. "path" will also be populated.
2597 * The nd->path reference will also be put.
2599 * 1: if we successfully resolved nd->last and found it to be a symlink
2600 * that needs to be followed. "path" will be populated with the path
2601 * to the link, and nd->path will *not* be put.
2603 static int
2604 mountpoint_last(struct nameidata *nd, struct path *path)
2606 int error = 0;
2607 struct dentry *dentry;
2608 struct dentry *dir = nd->path.dentry;
2610 /* If we're in rcuwalk, drop out of it to handle last component */
2611 if (nd->flags & LOOKUP_RCU) {
2612 if (unlazy_walk(nd, NULL, 0))
2613 return -ECHILD;
2616 nd->flags &= ~LOOKUP_PARENT;
2618 if (unlikely(nd->last_type != LAST_NORM)) {
2619 error = handle_dots(nd, nd->last_type);
2620 if (error)
2621 return error;
2622 dentry = dget(nd->path.dentry);
2623 } else {
2624 dentry = d_lookup(dir, &nd->last);
2625 if (!dentry) {
2627 * No cached dentry. Mounted dentries are pinned in the
2628 * cache, so that means that this dentry is probably
2629 * a symlink or the path doesn't actually point
2630 * to a mounted dentry.
2632 dentry = lookup_slow(&nd->last, dir,
2633 nd->flags | LOOKUP_NO_REVAL);
2634 if (IS_ERR(dentry))
2635 return PTR_ERR(dentry);
2638 if (d_is_negative(dentry)) {
2639 dput(dentry);
2640 return -ENOENT;
2642 if (nd->depth)
2643 put_link(nd);
2644 path->dentry = dentry;
2645 path->mnt = nd->path.mnt;
2646 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2647 d_backing_inode(dentry), 0);
2648 if (unlikely(error))
2649 return error;
2650 mntget(path->mnt);
2651 follow_mount(path);
2652 return 0;
2656 * path_mountpoint - look up a path to be umounted
2657 * @nd: lookup context
2658 * @flags: lookup flags
2659 * @path: pointer to container for result
2661 * Look up the given name, but don't attempt to revalidate the last component.
2662 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2664 static int
2665 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2667 const char *s = path_init(nd, flags);
2668 int err;
2669 if (IS_ERR(s))
2670 return PTR_ERR(s);
2671 while (!(err = link_path_walk(s, nd)) &&
2672 (err = mountpoint_last(nd, path)) > 0) {
2673 s = trailing_symlink(nd);
2674 if (IS_ERR(s)) {
2675 err = PTR_ERR(s);
2676 break;
2679 terminate_walk(nd);
2680 return err;
2683 static int
2684 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2685 unsigned int flags)
2687 struct nameidata nd;
2688 int error;
2689 if (IS_ERR(name))
2690 return PTR_ERR(name);
2691 set_nameidata(&nd, dfd, name);
2692 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2693 if (unlikely(error == -ECHILD))
2694 error = path_mountpoint(&nd, flags, path);
2695 if (unlikely(error == -ESTALE))
2696 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2697 if (likely(!error))
2698 audit_inode(name, path->dentry, 0);
2699 restore_nameidata();
2700 putname(name);
2701 return error;
2705 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2706 * @dfd: directory file descriptor
2707 * @name: pathname from userland
2708 * @flags: lookup flags
2709 * @path: pointer to container to hold result
2711 * A umount is a special case for path walking. We're not actually interested
2712 * in the inode in this situation, and ESTALE errors can be a problem. We
2713 * simply want track down the dentry and vfsmount attached at the mountpoint
2714 * and avoid revalidating the last component.
2716 * Returns 0 and populates "path" on success.
2719 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2720 struct path *path)
2722 return filename_mountpoint(dfd, getname(name), path, flags);
2726 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2727 unsigned int flags)
2729 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2731 EXPORT_SYMBOL(kern_path_mountpoint);
2733 int __check_sticky(struct inode *dir, struct inode *inode)
2735 kuid_t fsuid = current_fsuid();
2737 if (uid_eq(inode->i_uid, fsuid))
2738 return 0;
2739 if (uid_eq(dir->i_uid, fsuid))
2740 return 0;
2741 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2743 EXPORT_SYMBOL(__check_sticky);
2746 * Check whether we can remove a link victim from directory dir, check
2747 * whether the type of victim is right.
2748 * 1. We can't do it if dir is read-only (done in permission())
2749 * 2. We should have write and exec permissions on dir
2750 * 3. We can't remove anything from append-only dir
2751 * 4. We can't do anything with immutable dir (done in permission())
2752 * 5. If the sticky bit on dir is set we should either
2753 * a. be owner of dir, or
2754 * b. be owner of victim, or
2755 * c. have CAP_FOWNER capability
2756 * 6. If the victim is append-only or immutable we can't do antyhing with
2757 * links pointing to it.
2758 * 7. If the victim has an unknown uid or gid we can't change the inode.
2759 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2760 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2761 * 10. We can't remove a root or mountpoint.
2762 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2763 * nfs_async_unlink().
2765 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2767 struct inode *inode = d_backing_inode(victim);
2768 int error;
2770 if (d_is_negative(victim))
2771 return -ENOENT;
2772 BUG_ON(!inode);
2774 BUG_ON(victim->d_parent->d_inode != dir);
2775 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2777 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2778 if (error)
2779 return error;
2780 if (IS_APPEND(dir))
2781 return -EPERM;
2783 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2784 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2785 return -EPERM;
2786 if (isdir) {
2787 if (!d_is_dir(victim))
2788 return -ENOTDIR;
2789 if (IS_ROOT(victim))
2790 return -EBUSY;
2791 } else if (d_is_dir(victim))
2792 return -EISDIR;
2793 if (IS_DEADDIR(dir))
2794 return -ENOENT;
2795 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2796 return -EBUSY;
2797 return 0;
2800 /* Check whether we can create an object with dentry child in directory
2801 * dir.
2802 * 1. We can't do it if child already exists (open has special treatment for
2803 * this case, but since we are inlined it's OK)
2804 * 2. We can't do it if dir is read-only (done in permission())
2805 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2806 * 4. We should have write and exec permissions on dir
2807 * 5. We can't do it if dir is immutable (done in permission())
2809 static inline int may_create(struct inode *dir, struct dentry *child)
2811 struct user_namespace *s_user_ns;
2812 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2813 if (child->d_inode)
2814 return -EEXIST;
2815 if (IS_DEADDIR(dir))
2816 return -ENOENT;
2817 s_user_ns = dir->i_sb->s_user_ns;
2818 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2819 !kgid_has_mapping(s_user_ns, current_fsgid()))
2820 return -EOVERFLOW;
2821 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2825 * p1 and p2 should be directories on the same fs.
2827 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2829 struct dentry *p;
2831 if (p1 == p2) {
2832 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2833 return NULL;
2836 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2838 p = d_ancestor(p2, p1);
2839 if (p) {
2840 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2841 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2842 return p;
2845 p = d_ancestor(p1, p2);
2846 if (p) {
2847 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2848 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2849 return p;
2852 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2854 return NULL;
2856 EXPORT_SYMBOL(lock_rename);
2858 void unlock_rename(struct dentry *p1, struct dentry *p2)
2860 inode_unlock(p1->d_inode);
2861 if (p1 != p2) {
2862 inode_unlock(p2->d_inode);
2863 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2866 EXPORT_SYMBOL(unlock_rename);
2868 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2869 bool want_excl)
2871 int error = may_create(dir, dentry);
2872 if (error)
2873 return error;
2875 if (!dir->i_op->create)
2876 return -EACCES; /* shouldn't it be ENOSYS? */
2877 mode &= S_IALLUGO;
2878 mode |= S_IFREG;
2879 error = security_inode_create(dir, dentry, mode);
2880 if (error)
2881 return error;
2882 error = dir->i_op->create(dir, dentry, mode, want_excl);
2883 if (!error)
2884 fsnotify_create(dir, dentry);
2885 return error;
2887 EXPORT_SYMBOL(vfs_create);
2889 bool may_open_dev(const struct path *path)
2891 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2892 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2895 static int may_open(struct path *path, int acc_mode, int flag)
2897 struct dentry *dentry = path->dentry;
2898 struct inode *inode = dentry->d_inode;
2899 int error;
2901 if (!inode)
2902 return -ENOENT;
2904 switch (inode->i_mode & S_IFMT) {
2905 case S_IFLNK:
2906 return -ELOOP;
2907 case S_IFDIR:
2908 if (acc_mode & MAY_WRITE)
2909 return -EISDIR;
2910 break;
2911 case S_IFBLK:
2912 case S_IFCHR:
2913 if (!may_open_dev(path))
2914 return -EACCES;
2915 /*FALLTHRU*/
2916 case S_IFIFO:
2917 case S_IFSOCK:
2918 flag &= ~O_TRUNC;
2919 break;
2922 error = inode_permission(inode, MAY_OPEN | acc_mode);
2923 if (error)
2924 return error;
2927 * An append-only file must be opened in append mode for writing.
2929 if (IS_APPEND(inode)) {
2930 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2931 return -EPERM;
2932 if (flag & O_TRUNC)
2933 return -EPERM;
2936 /* O_NOATIME can only be set by the owner or superuser */
2937 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2938 return -EPERM;
2940 return 0;
2943 static int handle_truncate(struct file *filp)
2945 struct path *path = &filp->f_path;
2946 struct inode *inode = path->dentry->d_inode;
2947 int error = get_write_access(inode);
2948 if (error)
2949 return error;
2951 * Refuse to truncate files with mandatory locks held on them.
2953 error = locks_verify_locked(filp);
2954 if (!error)
2955 error = security_path_truncate(path);
2956 if (!error) {
2957 error = do_truncate(path->dentry, 0,
2958 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2959 filp);
2961 put_write_access(inode);
2962 return error;
2965 static inline int open_to_namei_flags(int flag)
2967 if ((flag & O_ACCMODE) == 3)
2968 flag--;
2969 return flag;
2972 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2974 struct user_namespace *s_user_ns;
2975 int error = security_path_mknod(dir, dentry, mode, 0);
2976 if (error)
2977 return error;
2979 s_user_ns = dir->dentry->d_sb->s_user_ns;
2980 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2981 !kgid_has_mapping(s_user_ns, current_fsgid()))
2982 return -EOVERFLOW;
2984 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2985 if (error)
2986 return error;
2988 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2992 * Attempt to atomically look up, create and open a file from a negative
2993 * dentry.
2995 * Returns 0 if successful. The file will have been created and attached to
2996 * @file by the filesystem calling finish_open().
2998 * Returns 1 if the file was looked up only or didn't need creating. The
2999 * caller will need to perform the open themselves. @path will have been
3000 * updated to point to the new dentry. This may be negative.
3002 * Returns an error code otherwise.
3004 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3005 struct path *path, struct file *file,
3006 const struct open_flags *op,
3007 int open_flag, umode_t mode,
3008 int *opened)
3010 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3011 struct inode *dir = nd->path.dentry->d_inode;
3012 int error;
3014 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3015 open_flag &= ~O_TRUNC;
3017 if (nd->flags & LOOKUP_DIRECTORY)
3018 open_flag |= O_DIRECTORY;
3020 file->f_path.dentry = DENTRY_NOT_SET;
3021 file->f_path.mnt = nd->path.mnt;
3022 error = dir->i_op->atomic_open(dir, dentry, file,
3023 open_to_namei_flags(open_flag),
3024 mode, opened);
3025 d_lookup_done(dentry);
3026 if (!error) {
3028 * We didn't have the inode before the open, so check open
3029 * permission here.
3031 int acc_mode = op->acc_mode;
3032 if (*opened & FILE_CREATED) {
3033 WARN_ON(!(open_flag & O_CREAT));
3034 fsnotify_create(dir, dentry);
3035 acc_mode = 0;
3037 error = may_open(&file->f_path, acc_mode, open_flag);
3038 if (WARN_ON(error > 0))
3039 error = -EINVAL;
3040 } else if (error > 0) {
3041 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3042 error = -EIO;
3043 } else {
3044 if (file->f_path.dentry) {
3045 dput(dentry);
3046 dentry = file->f_path.dentry;
3048 if (*opened & FILE_CREATED)
3049 fsnotify_create(dir, dentry);
3050 if (unlikely(d_is_negative(dentry))) {
3051 error = -ENOENT;
3052 } else {
3053 path->dentry = dentry;
3054 path->mnt = nd->path.mnt;
3055 return 1;
3059 dput(dentry);
3060 return error;
3064 * Look up and maybe create and open the last component.
3066 * Must be called with i_mutex held on parent.
3068 * Returns 0 if the file was successfully atomically created (if necessary) and
3069 * opened. In this case the file will be returned attached to @file.
3071 * Returns 1 if the file was not completely opened at this time, though lookups
3072 * and creations will have been performed and the dentry returned in @path will
3073 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3074 * specified then a negative dentry may be returned.
3076 * An error code is returned otherwise.
3078 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3079 * cleared otherwise prior to returning.
3081 static int lookup_open(struct nameidata *nd, struct path *path,
3082 struct file *file,
3083 const struct open_flags *op,
3084 bool got_write, int *opened)
3086 struct dentry *dir = nd->path.dentry;
3087 struct inode *dir_inode = dir->d_inode;
3088 int open_flag = op->open_flag;
3089 struct dentry *dentry;
3090 int error, create_error = 0;
3091 umode_t mode = op->mode;
3092 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3094 if (unlikely(IS_DEADDIR(dir_inode)))
3095 return -ENOENT;
3097 *opened &= ~FILE_CREATED;
3098 dentry = d_lookup(dir, &nd->last);
3099 for (;;) {
3100 if (!dentry) {
3101 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3102 if (IS_ERR(dentry))
3103 return PTR_ERR(dentry);
3105 if (d_in_lookup(dentry))
3106 break;
3108 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3109 break;
3111 error = d_revalidate(dentry, nd->flags);
3112 if (likely(error > 0))
3113 break;
3114 if (error)
3115 goto out_dput;
3116 d_invalidate(dentry);
3117 dput(dentry);
3118 dentry = NULL;
3120 if (dentry->d_inode) {
3121 /* Cached positive dentry: will open in f_op->open */
3122 goto out_no_open;
3126 * Checking write permission is tricky, bacuse we don't know if we are
3127 * going to actually need it: O_CREAT opens should work as long as the
3128 * file exists. But checking existence breaks atomicity. The trick is
3129 * to check access and if not granted clear O_CREAT from the flags.
3131 * Another problem is returing the "right" error value (e.g. for an
3132 * O_EXCL open we want to return EEXIST not EROFS).
3134 if (open_flag & O_CREAT) {
3135 if (!IS_POSIXACL(dir->d_inode))
3136 mode &= ~current_umask();
3137 if (unlikely(!got_write)) {
3138 create_error = -EROFS;
3139 open_flag &= ~O_CREAT;
3140 if (open_flag & (O_EXCL | O_TRUNC))
3141 goto no_open;
3142 /* No side effects, safe to clear O_CREAT */
3143 } else {
3144 create_error = may_o_create(&nd->path, dentry, mode);
3145 if (create_error) {
3146 open_flag &= ~O_CREAT;
3147 if (open_flag & O_EXCL)
3148 goto no_open;
3151 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3152 unlikely(!got_write)) {
3154 * No O_CREATE -> atomicity not a requirement -> fall
3155 * back to lookup + open
3157 goto no_open;
3160 if (dir_inode->i_op->atomic_open) {
3161 error = atomic_open(nd, dentry, path, file, op, open_flag,
3162 mode, opened);
3163 if (unlikely(error == -ENOENT) && create_error)
3164 error = create_error;
3165 return error;
3168 no_open:
3169 if (d_in_lookup(dentry)) {
3170 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3171 nd->flags);
3172 d_lookup_done(dentry);
3173 if (unlikely(res)) {
3174 if (IS_ERR(res)) {
3175 error = PTR_ERR(res);
3176 goto out_dput;
3178 dput(dentry);
3179 dentry = res;
3183 /* Negative dentry, just create the file */
3184 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3185 *opened |= FILE_CREATED;
3186 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3187 if (!dir_inode->i_op->create) {
3188 error = -EACCES;
3189 goto out_dput;
3191 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3192 open_flag & O_EXCL);
3193 if (error)
3194 goto out_dput;
3195 fsnotify_create(dir_inode, dentry);
3197 if (unlikely(create_error) && !dentry->d_inode) {
3198 error = create_error;
3199 goto out_dput;
3201 out_no_open:
3202 path->dentry = dentry;
3203 path->mnt = nd->path.mnt;
3204 return 1;
3206 out_dput:
3207 dput(dentry);
3208 return error;
3212 * Handle the last step of open()
3214 static int do_last(struct nameidata *nd,
3215 struct file *file, const struct open_flags *op,
3216 int *opened)
3218 struct dentry *dir = nd->path.dentry;
3219 int open_flag = op->open_flag;
3220 bool will_truncate = (open_flag & O_TRUNC) != 0;
3221 bool got_write = false;
3222 int acc_mode = op->acc_mode;
3223 unsigned seq;
3224 struct inode *inode;
3225 struct path path;
3226 int error;
3228 nd->flags &= ~LOOKUP_PARENT;
3229 nd->flags |= op->intent;
3231 if (nd->last_type != LAST_NORM) {
3232 error = handle_dots(nd, nd->last_type);
3233 if (unlikely(error))
3234 return error;
3235 goto finish_open;
3238 if (!(open_flag & O_CREAT)) {
3239 if (nd->last.name[nd->last.len])
3240 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3241 /* we _can_ be in RCU mode here */
3242 error = lookup_fast(nd, &path, &inode, &seq);
3243 if (likely(error > 0))
3244 goto finish_lookup;
3246 if (error < 0)
3247 return error;
3249 BUG_ON(nd->inode != dir->d_inode);
3250 BUG_ON(nd->flags & LOOKUP_RCU);
3251 } else {
3252 /* create side of things */
3254 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3255 * has been cleared when we got to the last component we are
3256 * about to look up
3258 error = complete_walk(nd);
3259 if (error)
3260 return error;
3262 audit_inode(nd->name, dir, LOOKUP_PARENT);
3263 /* trailing slashes? */
3264 if (unlikely(nd->last.name[nd->last.len]))
3265 return -EISDIR;
3268 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3269 error = mnt_want_write(nd->path.mnt);
3270 if (!error)
3271 got_write = true;
3273 * do _not_ fail yet - we might not need that or fail with
3274 * a different error; let lookup_open() decide; we'll be
3275 * dropping this one anyway.
3278 if (open_flag & O_CREAT)
3279 inode_lock(dir->d_inode);
3280 else
3281 inode_lock_shared(dir->d_inode);
3282 error = lookup_open(nd, &path, file, op, got_write, opened);
3283 if (open_flag & O_CREAT)
3284 inode_unlock(dir->d_inode);
3285 else
3286 inode_unlock_shared(dir->d_inode);
3288 if (error <= 0) {
3289 if (error)
3290 goto out;
3292 if ((*opened & FILE_CREATED) ||
3293 !S_ISREG(file_inode(file)->i_mode))
3294 will_truncate = false;
3296 audit_inode(nd->name, file->f_path.dentry, 0);
3297 goto opened;
3300 if (*opened & FILE_CREATED) {
3301 /* Don't check for write permission, don't truncate */
3302 open_flag &= ~O_TRUNC;
3303 will_truncate = false;
3304 acc_mode = 0;
3305 path_to_nameidata(&path, nd);
3306 goto finish_open_created;
3310 * If atomic_open() acquired write access it is dropped now due to
3311 * possible mount and symlink following (this might be optimized away if
3312 * necessary...)
3314 if (got_write) {
3315 mnt_drop_write(nd->path.mnt);
3316 got_write = false;
3319 error = follow_managed(&path, nd);
3320 if (unlikely(error < 0))
3321 return error;
3323 if (unlikely(d_is_negative(path.dentry))) {
3324 path_to_nameidata(&path, nd);
3325 return -ENOENT;
3329 * create/update audit record if it already exists.
3331 audit_inode(nd->name, path.dentry, 0);
3333 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3334 path_to_nameidata(&path, nd);
3335 return -EEXIST;
3338 seq = 0; /* out of RCU mode, so the value doesn't matter */
3339 inode = d_backing_inode(path.dentry);
3340 finish_lookup:
3341 if (nd->depth)
3342 put_link(nd);
3343 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3344 inode, seq);
3345 if (unlikely(error))
3346 return error;
3348 path_to_nameidata(&path, nd);
3349 nd->inode = inode;
3350 nd->seq = seq;
3351 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3352 finish_open:
3353 error = complete_walk(nd);
3354 if (error)
3355 return error;
3356 audit_inode(nd->name, nd->path.dentry, 0);
3357 error = -EISDIR;
3358 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3359 goto out;
3360 error = -ENOTDIR;
3361 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3362 goto out;
3363 if (!d_is_reg(nd->path.dentry))
3364 will_truncate = false;
3366 if (will_truncate) {
3367 error = mnt_want_write(nd->path.mnt);
3368 if (error)
3369 goto out;
3370 got_write = true;
3372 finish_open_created:
3373 error = may_open(&nd->path, acc_mode, open_flag);
3374 if (error)
3375 goto out;
3376 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3377 error = vfs_open(&nd->path, file, current_cred());
3378 if (error)
3379 goto out;
3380 *opened |= FILE_OPENED;
3381 opened:
3382 error = open_check_o_direct(file);
3383 if (!error)
3384 error = ima_file_check(file, op->acc_mode, *opened);
3385 if (!error && will_truncate)
3386 error = handle_truncate(file);
3387 out:
3388 if (unlikely(error) && (*opened & FILE_OPENED))
3389 fput(file);
3390 if (unlikely(error > 0)) {
3391 WARN_ON(1);
3392 error = -EINVAL;
3394 if (got_write)
3395 mnt_drop_write(nd->path.mnt);
3396 return error;
3399 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3400 const struct open_flags *op,
3401 struct file *file, int *opened)
3403 static const struct qstr name = QSTR_INIT("/", 1);
3404 struct dentry *child;
3405 struct inode *dir;
3406 struct path path;
3407 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3408 if (unlikely(error))
3409 return error;
3410 error = mnt_want_write(path.mnt);
3411 if (unlikely(error))
3412 goto out;
3413 dir = path.dentry->d_inode;
3414 /* we want directory to be writable */
3415 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3416 if (error)
3417 goto out2;
3418 if (!dir->i_op->tmpfile) {
3419 error = -EOPNOTSUPP;
3420 goto out2;
3422 child = d_alloc(path.dentry, &name);
3423 if (unlikely(!child)) {
3424 error = -ENOMEM;
3425 goto out2;
3427 dput(path.dentry);
3428 path.dentry = child;
3429 error = dir->i_op->tmpfile(dir, child, op->mode);
3430 if (error)
3431 goto out2;
3432 audit_inode(nd->name, child, 0);
3433 /* Don't check for other permissions, the inode was just created */
3434 error = may_open(&path, 0, op->open_flag);
3435 if (error)
3436 goto out2;
3437 file->f_path.mnt = path.mnt;
3438 error = finish_open(file, child, NULL, opened);
3439 if (error)
3440 goto out2;
3441 error = open_check_o_direct(file);
3442 if (error) {
3443 fput(file);
3444 } else if (!(op->open_flag & O_EXCL)) {
3445 struct inode *inode = file_inode(file);
3446 spin_lock(&inode->i_lock);
3447 inode->i_state |= I_LINKABLE;
3448 spin_unlock(&inode->i_lock);
3450 out2:
3451 mnt_drop_write(path.mnt);
3452 out:
3453 path_put(&path);
3454 return error;
3457 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3459 struct path path;
3460 int error = path_lookupat(nd, flags, &path);
3461 if (!error) {
3462 audit_inode(nd->name, path.dentry, 0);
3463 error = vfs_open(&path, file, current_cred());
3464 path_put(&path);
3466 return error;
3469 static struct file *path_openat(struct nameidata *nd,
3470 const struct open_flags *op, unsigned flags)
3472 const char *s;
3473 struct file *file;
3474 int opened = 0;
3475 int error;
3477 file = get_empty_filp();
3478 if (IS_ERR(file))
3479 return file;
3481 file->f_flags = op->open_flag;
3483 if (unlikely(file->f_flags & __O_TMPFILE)) {
3484 error = do_tmpfile(nd, flags, op, file, &opened);
3485 goto out2;
3488 if (unlikely(file->f_flags & O_PATH)) {
3489 error = do_o_path(nd, flags, file);
3490 if (!error)
3491 opened |= FILE_OPENED;
3492 goto out2;
3495 s = path_init(nd, flags);
3496 if (IS_ERR(s)) {
3497 put_filp(file);
3498 return ERR_CAST(s);
3500 while (!(error = link_path_walk(s, nd)) &&
3501 (error = do_last(nd, file, op, &opened)) > 0) {
3502 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3503 s = trailing_symlink(nd);
3504 if (IS_ERR(s)) {
3505 error = PTR_ERR(s);
3506 break;
3509 terminate_walk(nd);
3510 out2:
3511 if (!(opened & FILE_OPENED)) {
3512 BUG_ON(!error);
3513 put_filp(file);
3515 if (unlikely(error)) {
3516 if (error == -EOPENSTALE) {
3517 if (flags & LOOKUP_RCU)
3518 error = -ECHILD;
3519 else
3520 error = -ESTALE;
3522 file = ERR_PTR(error);
3524 return file;
3527 struct file *do_filp_open(int dfd, struct filename *pathname,
3528 const struct open_flags *op)
3530 struct nameidata nd;
3531 int flags = op->lookup_flags;
3532 struct file *filp;
3534 set_nameidata(&nd, dfd, pathname);
3535 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3536 if (unlikely(filp == ERR_PTR(-ECHILD)))
3537 filp = path_openat(&nd, op, flags);
3538 if (unlikely(filp == ERR_PTR(-ESTALE)))
3539 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3540 restore_nameidata();
3541 return filp;
3544 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3545 const char *name, const struct open_flags *op)
3547 struct nameidata nd;
3548 struct file *file;
3549 struct filename *filename;
3550 int flags = op->lookup_flags | LOOKUP_ROOT;
3552 nd.root.mnt = mnt;
3553 nd.root.dentry = dentry;
3555 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3556 return ERR_PTR(-ELOOP);
3558 filename = getname_kernel(name);
3559 if (IS_ERR(filename))
3560 return ERR_CAST(filename);
3562 set_nameidata(&nd, -1, filename);
3563 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3564 if (unlikely(file == ERR_PTR(-ECHILD)))
3565 file = path_openat(&nd, op, flags);
3566 if (unlikely(file == ERR_PTR(-ESTALE)))
3567 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3568 restore_nameidata();
3569 putname(filename);
3570 return file;
3573 static struct dentry *filename_create(int dfd, struct filename *name,
3574 struct path *path, unsigned int lookup_flags)
3576 struct dentry *dentry = ERR_PTR(-EEXIST);
3577 struct qstr last;
3578 int type;
3579 int err2;
3580 int error;
3581 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3584 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3585 * other flags passed in are ignored!
3587 lookup_flags &= LOOKUP_REVAL;
3589 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3590 if (IS_ERR(name))
3591 return ERR_CAST(name);
3594 * Yucky last component or no last component at all?
3595 * (foo/., foo/.., /////)
3597 if (unlikely(type != LAST_NORM))
3598 goto out;
3600 /* don't fail immediately if it's r/o, at least try to report other errors */
3601 err2 = mnt_want_write(path->mnt);
3603 * Do the final lookup.
3605 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3606 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3607 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3608 if (IS_ERR(dentry))
3609 goto unlock;
3611 error = -EEXIST;
3612 if (d_is_positive(dentry))
3613 goto fail;
3616 * Special case - lookup gave negative, but... we had foo/bar/
3617 * From the vfs_mknod() POV we just have a negative dentry -
3618 * all is fine. Let's be bastards - you had / on the end, you've
3619 * been asking for (non-existent) directory. -ENOENT for you.
3621 if (unlikely(!is_dir && last.name[last.len])) {
3622 error = -ENOENT;
3623 goto fail;
3625 if (unlikely(err2)) {
3626 error = err2;
3627 goto fail;
3629 putname(name);
3630 return dentry;
3631 fail:
3632 dput(dentry);
3633 dentry = ERR_PTR(error);
3634 unlock:
3635 inode_unlock(path->dentry->d_inode);
3636 if (!err2)
3637 mnt_drop_write(path->mnt);
3638 out:
3639 path_put(path);
3640 putname(name);
3641 return dentry;
3644 struct dentry *kern_path_create(int dfd, const char *pathname,
3645 struct path *path, unsigned int lookup_flags)
3647 return filename_create(dfd, getname_kernel(pathname),
3648 path, lookup_flags);
3650 EXPORT_SYMBOL(kern_path_create);
3652 void done_path_create(struct path *path, struct dentry *dentry)
3654 dput(dentry);
3655 inode_unlock(path->dentry->d_inode);
3656 mnt_drop_write(path->mnt);
3657 path_put(path);
3659 EXPORT_SYMBOL(done_path_create);
3661 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3662 struct path *path, unsigned int lookup_flags)
3664 return filename_create(dfd, getname(pathname), path, lookup_flags);
3666 EXPORT_SYMBOL(user_path_create);
3668 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3670 int error = may_create(dir, dentry);
3672 if (error)
3673 return error;
3675 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3676 return -EPERM;
3678 if (!dir->i_op->mknod)
3679 return -EPERM;
3681 error = devcgroup_inode_mknod(mode, dev);
3682 if (error)
3683 return error;
3685 error = security_inode_mknod(dir, dentry, mode, dev);
3686 if (error)
3687 return error;
3689 error = dir->i_op->mknod(dir, dentry, mode, dev);
3690 if (!error)
3691 fsnotify_create(dir, dentry);
3692 return error;
3694 EXPORT_SYMBOL(vfs_mknod);
3696 static int may_mknod(umode_t mode)
3698 switch (mode & S_IFMT) {
3699 case S_IFREG:
3700 case S_IFCHR:
3701 case S_IFBLK:
3702 case S_IFIFO:
3703 case S_IFSOCK:
3704 case 0: /* zero mode translates to S_IFREG */
3705 return 0;
3706 case S_IFDIR:
3707 return -EPERM;
3708 default:
3709 return -EINVAL;
3713 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3714 unsigned, dev)
3716 struct dentry *dentry;
3717 struct path path;
3718 int error;
3719 unsigned int lookup_flags = 0;
3721 error = may_mknod(mode);
3722 if (error)
3723 return error;
3724 retry:
3725 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3726 if (IS_ERR(dentry))
3727 return PTR_ERR(dentry);
3729 if (!IS_POSIXACL(path.dentry->d_inode))
3730 mode &= ~current_umask();
3731 error = security_path_mknod(&path, dentry, mode, dev);
3732 if (error)
3733 goto out;
3734 switch (mode & S_IFMT) {
3735 case 0: case S_IFREG:
3736 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3737 if (!error)
3738 ima_post_path_mknod(dentry);
3739 break;
3740 case S_IFCHR: case S_IFBLK:
3741 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3742 new_decode_dev(dev));
3743 break;
3744 case S_IFIFO: case S_IFSOCK:
3745 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3746 break;
3748 out:
3749 done_path_create(&path, dentry);
3750 if (retry_estale(error, lookup_flags)) {
3751 lookup_flags |= LOOKUP_REVAL;
3752 goto retry;
3754 return error;
3757 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3759 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3762 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3764 int error = may_create(dir, dentry);
3765 unsigned max_links = dir->i_sb->s_max_links;
3767 if (error)
3768 return error;
3770 if (!dir->i_op->mkdir)
3771 return -EPERM;
3773 mode &= (S_IRWXUGO|S_ISVTX);
3774 error = security_inode_mkdir(dir, dentry, mode);
3775 if (error)
3776 return error;
3778 if (max_links && dir->i_nlink >= max_links)
3779 return -EMLINK;
3781 error = dir->i_op->mkdir(dir, dentry, mode);
3782 if (!error)
3783 fsnotify_mkdir(dir, dentry);
3784 return error;
3786 EXPORT_SYMBOL(vfs_mkdir);
3788 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3790 struct dentry *dentry;
3791 struct path path;
3792 int error;
3793 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3795 retry:
3796 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3797 if (IS_ERR(dentry))
3798 return PTR_ERR(dentry);
3800 if (!IS_POSIXACL(path.dentry->d_inode))
3801 mode &= ~current_umask();
3802 error = security_path_mkdir(&path, dentry, mode);
3803 if (!error)
3804 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3805 done_path_create(&path, dentry);
3806 if (retry_estale(error, lookup_flags)) {
3807 lookup_flags |= LOOKUP_REVAL;
3808 goto retry;
3810 return error;
3813 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3815 return sys_mkdirat(AT_FDCWD, pathname, mode);
3818 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3820 int error = may_delete(dir, dentry, 1);
3822 if (error)
3823 return error;
3825 if (!dir->i_op->rmdir)
3826 return -EPERM;
3828 dget(dentry);
3829 inode_lock(dentry->d_inode);
3831 error = -EBUSY;
3832 if (is_local_mountpoint(dentry))
3833 goto out;
3835 error = security_inode_rmdir(dir, dentry);
3836 if (error)
3837 goto out;
3839 shrink_dcache_parent(dentry);
3840 error = dir->i_op->rmdir(dir, dentry);
3841 if (error)
3842 goto out;
3844 dentry->d_inode->i_flags |= S_DEAD;
3845 dont_mount(dentry);
3846 detach_mounts(dentry);
3848 out:
3849 inode_unlock(dentry->d_inode);
3850 dput(dentry);
3851 if (!error)
3852 d_delete(dentry);
3853 return error;
3855 EXPORT_SYMBOL(vfs_rmdir);
3857 static long do_rmdir(int dfd, const char __user *pathname)
3859 int error = 0;
3860 struct filename *name;
3861 struct dentry *dentry;
3862 struct path path;
3863 struct qstr last;
3864 int type;
3865 unsigned int lookup_flags = 0;
3866 retry:
3867 name = user_path_parent(dfd, pathname,
3868 &path, &last, &type, lookup_flags);
3869 if (IS_ERR(name))
3870 return PTR_ERR(name);
3872 switch (type) {
3873 case LAST_DOTDOT:
3874 error = -ENOTEMPTY;
3875 goto exit1;
3876 case LAST_DOT:
3877 error = -EINVAL;
3878 goto exit1;
3879 case LAST_ROOT:
3880 error = -EBUSY;
3881 goto exit1;
3884 error = mnt_want_write(path.mnt);
3885 if (error)
3886 goto exit1;
3888 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3889 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3890 error = PTR_ERR(dentry);
3891 if (IS_ERR(dentry))
3892 goto exit2;
3893 if (!dentry->d_inode) {
3894 error = -ENOENT;
3895 goto exit3;
3897 error = security_path_rmdir(&path, dentry);
3898 if (error)
3899 goto exit3;
3900 error = vfs_rmdir(path.dentry->d_inode, dentry);
3901 exit3:
3902 dput(dentry);
3903 exit2:
3904 inode_unlock(path.dentry->d_inode);
3905 mnt_drop_write(path.mnt);
3906 exit1:
3907 path_put(&path);
3908 putname(name);
3909 if (retry_estale(error, lookup_flags)) {
3910 lookup_flags |= LOOKUP_REVAL;
3911 goto retry;
3913 return error;
3916 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3918 return do_rmdir(AT_FDCWD, pathname);
3922 * vfs_unlink - unlink a filesystem object
3923 * @dir: parent directory
3924 * @dentry: victim
3925 * @delegated_inode: returns victim inode, if the inode is delegated.
3927 * The caller must hold dir->i_mutex.
3929 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3930 * return a reference to the inode in delegated_inode. The caller
3931 * should then break the delegation on that inode and retry. Because
3932 * breaking a delegation may take a long time, the caller should drop
3933 * dir->i_mutex before doing so.
3935 * Alternatively, a caller may pass NULL for delegated_inode. This may
3936 * be appropriate for callers that expect the underlying filesystem not
3937 * to be NFS exported.
3939 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3941 struct inode *target = dentry->d_inode;
3942 int error = may_delete(dir, dentry, 0);
3944 if (error)
3945 return error;
3947 if (!dir->i_op->unlink)
3948 return -EPERM;
3950 inode_lock(target);
3951 if (is_local_mountpoint(dentry))
3952 error = -EBUSY;
3953 else {
3954 error = security_inode_unlink(dir, dentry);
3955 if (!error) {
3956 error = try_break_deleg(target, delegated_inode);
3957 if (error)
3958 goto out;
3959 error = dir->i_op->unlink(dir, dentry);
3960 if (!error) {
3961 dont_mount(dentry);
3962 detach_mounts(dentry);
3966 out:
3967 inode_unlock(target);
3969 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3970 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3971 fsnotify_link_count(target);
3972 d_delete(dentry);
3975 return error;
3977 EXPORT_SYMBOL(vfs_unlink);
3980 * Make sure that the actual truncation of the file will occur outside its
3981 * directory's i_mutex. Truncate can take a long time if there is a lot of
3982 * writeout happening, and we don't want to prevent access to the directory
3983 * while waiting on the I/O.
3985 static long do_unlinkat(int dfd, const char __user *pathname)
3987 int error;
3988 struct filename *name;
3989 struct dentry *dentry;
3990 struct path path;
3991 struct qstr last;
3992 int type;
3993 struct inode *inode = NULL;
3994 struct inode *delegated_inode = NULL;
3995 unsigned int lookup_flags = 0;
3996 retry:
3997 name = user_path_parent(dfd, pathname,
3998 &path, &last, &type, lookup_flags);
3999 if (IS_ERR(name))
4000 return PTR_ERR(name);
4002 error = -EISDIR;
4003 if (type != LAST_NORM)
4004 goto exit1;
4006 error = mnt_want_write(path.mnt);
4007 if (error)
4008 goto exit1;
4009 retry_deleg:
4010 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4011 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4012 error = PTR_ERR(dentry);
4013 if (!IS_ERR(dentry)) {
4014 /* Why not before? Because we want correct error value */
4015 if (last.name[last.len])
4016 goto slashes;
4017 inode = dentry->d_inode;
4018 if (d_is_negative(dentry))
4019 goto slashes;
4020 ihold(inode);
4021 error = security_path_unlink(&path, dentry);
4022 if (error)
4023 goto exit2;
4024 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4025 exit2:
4026 dput(dentry);
4028 inode_unlock(path.dentry->d_inode);
4029 if (inode)
4030 iput(inode); /* truncate the inode here */
4031 inode = NULL;
4032 if (delegated_inode) {
4033 error = break_deleg_wait(&delegated_inode);
4034 if (!error)
4035 goto retry_deleg;
4037 mnt_drop_write(path.mnt);
4038 exit1:
4039 path_put(&path);
4040 putname(name);
4041 if (retry_estale(error, lookup_flags)) {
4042 lookup_flags |= LOOKUP_REVAL;
4043 inode = NULL;
4044 goto retry;
4046 return error;
4048 slashes:
4049 if (d_is_negative(dentry))
4050 error = -ENOENT;
4051 else if (d_is_dir(dentry))
4052 error = -EISDIR;
4053 else
4054 error = -ENOTDIR;
4055 goto exit2;
4058 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4060 if ((flag & ~AT_REMOVEDIR) != 0)
4061 return -EINVAL;
4063 if (flag & AT_REMOVEDIR)
4064 return do_rmdir(dfd, pathname);
4066 return do_unlinkat(dfd, pathname);
4069 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4071 return do_unlinkat(AT_FDCWD, pathname);
4074 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4076 int error = may_create(dir, dentry);
4078 if (error)
4079 return error;
4081 if (!dir->i_op->symlink)
4082 return -EPERM;
4084 error = security_inode_symlink(dir, dentry, oldname);
4085 if (error)
4086 return error;
4088 error = dir->i_op->symlink(dir, dentry, oldname);
4089 if (!error)
4090 fsnotify_create(dir, dentry);
4091 return error;
4093 EXPORT_SYMBOL(vfs_symlink);
4095 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4096 int, newdfd, const char __user *, newname)
4098 int error;
4099 struct filename *from;
4100 struct dentry *dentry;
4101 struct path path;
4102 unsigned int lookup_flags = 0;
4104 from = getname(oldname);
4105 if (IS_ERR(from))
4106 return PTR_ERR(from);
4107 retry:
4108 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4109 error = PTR_ERR(dentry);
4110 if (IS_ERR(dentry))
4111 goto out_putname;
4113 error = security_path_symlink(&path, dentry, from->name);
4114 if (!error)
4115 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4116 done_path_create(&path, dentry);
4117 if (retry_estale(error, lookup_flags)) {
4118 lookup_flags |= LOOKUP_REVAL;
4119 goto retry;
4121 out_putname:
4122 putname(from);
4123 return error;
4126 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4128 return sys_symlinkat(oldname, AT_FDCWD, newname);
4132 * vfs_link - create a new link
4133 * @old_dentry: object to be linked
4134 * @dir: new parent
4135 * @new_dentry: where to create the new link
4136 * @delegated_inode: returns inode needing a delegation break
4138 * The caller must hold dir->i_mutex
4140 * If vfs_link discovers a delegation on the to-be-linked file in need
4141 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4142 * inode in delegated_inode. The caller should then break the delegation
4143 * and retry. Because breaking a delegation may take a long time, the
4144 * caller should drop the i_mutex before doing so.
4146 * Alternatively, a caller may pass NULL for delegated_inode. This may
4147 * be appropriate for callers that expect the underlying filesystem not
4148 * to be NFS exported.
4150 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4152 struct inode *inode = old_dentry->d_inode;
4153 unsigned max_links = dir->i_sb->s_max_links;
4154 int error;
4156 if (!inode)
4157 return -ENOENT;
4159 error = may_create(dir, new_dentry);
4160 if (error)
4161 return error;
4163 if (dir->i_sb != inode->i_sb)
4164 return -EXDEV;
4167 * A link to an append-only or immutable file cannot be created.
4169 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4170 return -EPERM;
4172 * Updating the link count will likely cause i_uid and i_gid to
4173 * be writen back improperly if their true value is unknown to
4174 * the vfs.
4176 if (HAS_UNMAPPED_ID(inode))
4177 return -EPERM;
4178 if (!dir->i_op->link)
4179 return -EPERM;
4180 if (S_ISDIR(inode->i_mode))
4181 return -EPERM;
4183 error = security_inode_link(old_dentry, dir, new_dentry);
4184 if (error)
4185 return error;
4187 inode_lock(inode);
4188 /* Make sure we don't allow creating hardlink to an unlinked file */
4189 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4190 error = -ENOENT;
4191 else if (max_links && inode->i_nlink >= max_links)
4192 error = -EMLINK;
4193 else {
4194 error = try_break_deleg(inode, delegated_inode);
4195 if (!error)
4196 error = dir->i_op->link(old_dentry, dir, new_dentry);
4199 if (!error && (inode->i_state & I_LINKABLE)) {
4200 spin_lock(&inode->i_lock);
4201 inode->i_state &= ~I_LINKABLE;
4202 spin_unlock(&inode->i_lock);
4204 inode_unlock(inode);
4205 if (!error)
4206 fsnotify_link(dir, inode, new_dentry);
4207 return error;
4209 EXPORT_SYMBOL(vfs_link);
4212 * Hardlinks are often used in delicate situations. We avoid
4213 * security-related surprises by not following symlinks on the
4214 * newname. --KAB
4216 * We don't follow them on the oldname either to be compatible
4217 * with linux 2.0, and to avoid hard-linking to directories
4218 * and other special files. --ADM
4220 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4221 int, newdfd, const char __user *, newname, int, flags)
4223 struct dentry *new_dentry;
4224 struct path old_path, new_path;
4225 struct inode *delegated_inode = NULL;
4226 int how = 0;
4227 int error;
4229 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4230 return -EINVAL;
4232 * To use null names we require CAP_DAC_READ_SEARCH
4233 * This ensures that not everyone will be able to create
4234 * handlink using the passed filedescriptor.
4236 if (flags & AT_EMPTY_PATH) {
4237 if (!capable(CAP_DAC_READ_SEARCH))
4238 return -ENOENT;
4239 how = LOOKUP_EMPTY;
4242 if (flags & AT_SYMLINK_FOLLOW)
4243 how |= LOOKUP_FOLLOW;
4244 retry:
4245 error = user_path_at(olddfd, oldname, how, &old_path);
4246 if (error)
4247 return error;
4249 new_dentry = user_path_create(newdfd, newname, &new_path,
4250 (how & LOOKUP_REVAL));
4251 error = PTR_ERR(new_dentry);
4252 if (IS_ERR(new_dentry))
4253 goto out;
4255 error = -EXDEV;
4256 if (old_path.mnt != new_path.mnt)
4257 goto out_dput;
4258 error = may_linkat(&old_path);
4259 if (unlikely(error))
4260 goto out_dput;
4261 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4262 if (error)
4263 goto out_dput;
4264 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4265 out_dput:
4266 done_path_create(&new_path, new_dentry);
4267 if (delegated_inode) {
4268 error = break_deleg_wait(&delegated_inode);
4269 if (!error) {
4270 path_put(&old_path);
4271 goto retry;
4274 if (retry_estale(error, how)) {
4275 path_put(&old_path);
4276 how |= LOOKUP_REVAL;
4277 goto retry;
4279 out:
4280 path_put(&old_path);
4282 return error;
4285 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4287 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4291 * vfs_rename - rename a filesystem object
4292 * @old_dir: parent of source
4293 * @old_dentry: source
4294 * @new_dir: parent of destination
4295 * @new_dentry: destination
4296 * @delegated_inode: returns an inode needing a delegation break
4297 * @flags: rename flags
4299 * The caller must hold multiple mutexes--see lock_rename()).
4301 * If vfs_rename discovers a delegation in need of breaking at either
4302 * the source or destination, it will return -EWOULDBLOCK and return a
4303 * reference to the inode in delegated_inode. The caller should then
4304 * break the delegation and retry. Because breaking a delegation may
4305 * take a long time, the caller should drop all locks before doing
4306 * so.
4308 * Alternatively, a caller may pass NULL for delegated_inode. This may
4309 * be appropriate for callers that expect the underlying filesystem not
4310 * to be NFS exported.
4312 * The worst of all namespace operations - renaming directory. "Perverted"
4313 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4314 * Problems:
4315 * a) we can get into loop creation.
4316 * b) race potential - two innocent renames can create a loop together.
4317 * That's where 4.4 screws up. Current fix: serialization on
4318 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4319 * story.
4320 * c) we have to lock _four_ objects - parents and victim (if it exists),
4321 * and source (if it is not a directory).
4322 * And that - after we got ->i_mutex on parents (until then we don't know
4323 * whether the target exists). Solution: try to be smart with locking
4324 * order for inodes. We rely on the fact that tree topology may change
4325 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4326 * move will be locked. Thus we can rank directories by the tree
4327 * (ancestors first) and rank all non-directories after them.
4328 * That works since everybody except rename does "lock parent, lookup,
4329 * lock child" and rename is under ->s_vfs_rename_mutex.
4330 * HOWEVER, it relies on the assumption that any object with ->lookup()
4331 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4332 * we'd better make sure that there's no link(2) for them.
4333 * d) conversion from fhandle to dentry may come in the wrong moment - when
4334 * we are removing the target. Solution: we will have to grab ->i_mutex
4335 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4336 * ->i_mutex on parents, which works but leads to some truly excessive
4337 * locking].
4339 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4340 struct inode *new_dir, struct dentry *new_dentry,
4341 struct inode **delegated_inode, unsigned int flags)
4343 int error;
4344 bool is_dir = d_is_dir(old_dentry);
4345 struct inode *source = old_dentry->d_inode;
4346 struct inode *target = new_dentry->d_inode;
4347 bool new_is_dir = false;
4348 unsigned max_links = new_dir->i_sb->s_max_links;
4349 struct name_snapshot old_name;
4352 * Check source == target.
4353 * On overlayfs need to look at underlying inodes.
4355 if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4356 return 0;
4358 error = may_delete(old_dir, old_dentry, is_dir);
4359 if (error)
4360 return error;
4362 if (!target) {
4363 error = may_create(new_dir, new_dentry);
4364 } else {
4365 new_is_dir = d_is_dir(new_dentry);
4367 if (!(flags & RENAME_EXCHANGE))
4368 error = may_delete(new_dir, new_dentry, is_dir);
4369 else
4370 error = may_delete(new_dir, new_dentry, new_is_dir);
4372 if (error)
4373 return error;
4375 if (!old_dir->i_op->rename)
4376 return -EPERM;
4379 * If we are going to change the parent - check write permissions,
4380 * we'll need to flip '..'.
4382 if (new_dir != old_dir) {
4383 if (is_dir) {
4384 error = inode_permission(source, MAY_WRITE);
4385 if (error)
4386 return error;
4388 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4389 error = inode_permission(target, MAY_WRITE);
4390 if (error)
4391 return error;
4395 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4396 flags);
4397 if (error)
4398 return error;
4400 take_dentry_name_snapshot(&old_name, old_dentry);
4401 dget(new_dentry);
4402 if (!is_dir || (flags & RENAME_EXCHANGE))
4403 lock_two_nondirectories(source, target);
4404 else if (target)
4405 inode_lock(target);
4407 error = -EBUSY;
4408 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4409 goto out;
4411 if (max_links && new_dir != old_dir) {
4412 error = -EMLINK;
4413 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4414 goto out;
4415 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4416 old_dir->i_nlink >= max_links)
4417 goto out;
4419 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4420 shrink_dcache_parent(new_dentry);
4421 if (!is_dir) {
4422 error = try_break_deleg(source, delegated_inode);
4423 if (error)
4424 goto out;
4426 if (target && !new_is_dir) {
4427 error = try_break_deleg(target, delegated_inode);
4428 if (error)
4429 goto out;
4431 error = old_dir->i_op->rename(old_dir, old_dentry,
4432 new_dir, new_dentry, flags);
4433 if (error)
4434 goto out;
4436 if (!(flags & RENAME_EXCHANGE) && target) {
4437 if (is_dir)
4438 target->i_flags |= S_DEAD;
4439 dont_mount(new_dentry);
4440 detach_mounts(new_dentry);
4442 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4443 if (!(flags & RENAME_EXCHANGE))
4444 d_move(old_dentry, new_dentry);
4445 else
4446 d_exchange(old_dentry, new_dentry);
4448 out:
4449 if (!is_dir || (flags & RENAME_EXCHANGE))
4450 unlock_two_nondirectories(source, target);
4451 else if (target)
4452 inode_unlock(target);
4453 dput(new_dentry);
4454 if (!error) {
4455 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4456 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4457 if (flags & RENAME_EXCHANGE) {
4458 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4459 new_is_dir, NULL, new_dentry);
4462 release_dentry_name_snapshot(&old_name);
4464 return error;
4466 EXPORT_SYMBOL(vfs_rename);
4468 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4469 int, newdfd, const char __user *, newname, unsigned int, flags)
4471 struct dentry *old_dentry, *new_dentry;
4472 struct dentry *trap;
4473 struct path old_path, new_path;
4474 struct qstr old_last, new_last;
4475 int old_type, new_type;
4476 struct inode *delegated_inode = NULL;
4477 struct filename *from;
4478 struct filename *to;
4479 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4480 bool should_retry = false;
4481 int error;
4483 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4484 return -EINVAL;
4486 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4487 (flags & RENAME_EXCHANGE))
4488 return -EINVAL;
4490 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4491 return -EPERM;
4493 if (flags & RENAME_EXCHANGE)
4494 target_flags = 0;
4496 retry:
4497 from = user_path_parent(olddfd, oldname,
4498 &old_path, &old_last, &old_type, lookup_flags);
4499 if (IS_ERR(from)) {
4500 error = PTR_ERR(from);
4501 goto exit;
4504 to = user_path_parent(newdfd, newname,
4505 &new_path, &new_last, &new_type, lookup_flags);
4506 if (IS_ERR(to)) {
4507 error = PTR_ERR(to);
4508 goto exit1;
4511 error = -EXDEV;
4512 if (old_path.mnt != new_path.mnt)
4513 goto exit2;
4515 error = -EBUSY;
4516 if (old_type != LAST_NORM)
4517 goto exit2;
4519 if (flags & RENAME_NOREPLACE)
4520 error = -EEXIST;
4521 if (new_type != LAST_NORM)
4522 goto exit2;
4524 error = mnt_want_write(old_path.mnt);
4525 if (error)
4526 goto exit2;
4528 retry_deleg:
4529 trap = lock_rename(new_path.dentry, old_path.dentry);
4531 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4532 error = PTR_ERR(old_dentry);
4533 if (IS_ERR(old_dentry))
4534 goto exit3;
4535 /* source must exist */
4536 error = -ENOENT;
4537 if (d_is_negative(old_dentry))
4538 goto exit4;
4539 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4540 error = PTR_ERR(new_dentry);
4541 if (IS_ERR(new_dentry))
4542 goto exit4;
4543 error = -EEXIST;
4544 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4545 goto exit5;
4546 if (flags & RENAME_EXCHANGE) {
4547 error = -ENOENT;
4548 if (d_is_negative(new_dentry))
4549 goto exit5;
4551 if (!d_is_dir(new_dentry)) {
4552 error = -ENOTDIR;
4553 if (new_last.name[new_last.len])
4554 goto exit5;
4557 /* unless the source is a directory trailing slashes give -ENOTDIR */
4558 if (!d_is_dir(old_dentry)) {
4559 error = -ENOTDIR;
4560 if (old_last.name[old_last.len])
4561 goto exit5;
4562 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4563 goto exit5;
4565 /* source should not be ancestor of target */
4566 error = -EINVAL;
4567 if (old_dentry == trap)
4568 goto exit5;
4569 /* target should not be an ancestor of source */
4570 if (!(flags & RENAME_EXCHANGE))
4571 error = -ENOTEMPTY;
4572 if (new_dentry == trap)
4573 goto exit5;
4575 error = security_path_rename(&old_path, old_dentry,
4576 &new_path, new_dentry, flags);
4577 if (error)
4578 goto exit5;
4579 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4580 new_path.dentry->d_inode, new_dentry,
4581 &delegated_inode, flags);
4582 exit5:
4583 dput(new_dentry);
4584 exit4:
4585 dput(old_dentry);
4586 exit3:
4587 unlock_rename(new_path.dentry, old_path.dentry);
4588 if (delegated_inode) {
4589 error = break_deleg_wait(&delegated_inode);
4590 if (!error)
4591 goto retry_deleg;
4593 mnt_drop_write(old_path.mnt);
4594 exit2:
4595 if (retry_estale(error, lookup_flags))
4596 should_retry = true;
4597 path_put(&new_path);
4598 putname(to);
4599 exit1:
4600 path_put(&old_path);
4601 putname(from);
4602 if (should_retry) {
4603 should_retry = false;
4604 lookup_flags |= LOOKUP_REVAL;
4605 goto retry;
4607 exit:
4608 return error;
4611 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4612 int, newdfd, const char __user *, newname)
4614 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4617 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4619 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4622 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4624 int error = may_create(dir, dentry);
4625 if (error)
4626 return error;
4628 if (!dir->i_op->mknod)
4629 return -EPERM;
4631 return dir->i_op->mknod(dir, dentry,
4632 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4634 EXPORT_SYMBOL(vfs_whiteout);
4636 int readlink_copy(char __user *buffer, int buflen, const char *link)
4638 int len = PTR_ERR(link);
4639 if (IS_ERR(link))
4640 goto out;
4642 len = strlen(link);
4643 if (len > (unsigned) buflen)
4644 len = buflen;
4645 if (copy_to_user(buffer, link, len))
4646 len = -EFAULT;
4647 out:
4648 return len;
4652 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4653 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4654 * for any given inode is up to filesystem.
4656 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4658 DEFINE_DELAYED_CALL(done);
4659 struct inode *inode = d_inode(dentry);
4660 const char *link = inode->i_link;
4661 int res;
4663 if (!link) {
4664 link = inode->i_op->get_link(dentry, inode, &done);
4665 if (IS_ERR(link))
4666 return PTR_ERR(link);
4668 res = readlink_copy(buffer, buflen, link);
4669 do_delayed_call(&done);
4670 return res;
4672 EXPORT_SYMBOL(generic_readlink);
4675 * vfs_get_link - get symlink body
4676 * @dentry: dentry on which to get symbolic link
4677 * @done: caller needs to free returned data with this
4679 * Calls security hook and i_op->get_link() on the supplied inode.
4681 * It does not touch atime. That's up to the caller if necessary.
4683 * Does not work on "special" symlinks like /proc/$$/fd/N
4685 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4687 const char *res = ERR_PTR(-EINVAL);
4688 struct inode *inode = d_inode(dentry);
4690 if (d_is_symlink(dentry)) {
4691 res = ERR_PTR(security_inode_readlink(dentry));
4692 if (!res)
4693 res = inode->i_op->get_link(dentry, inode, done);
4695 return res;
4697 EXPORT_SYMBOL(vfs_get_link);
4699 /* get the link contents into pagecache */
4700 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4701 struct delayed_call *callback)
4703 char *kaddr;
4704 struct page *page;
4705 struct address_space *mapping = inode->i_mapping;
4707 if (!dentry) {
4708 page = find_get_page(mapping, 0);
4709 if (!page)
4710 return ERR_PTR(-ECHILD);
4711 if (!PageUptodate(page)) {
4712 put_page(page);
4713 return ERR_PTR(-ECHILD);
4715 } else {
4716 page = read_mapping_page(mapping, 0, NULL);
4717 if (IS_ERR(page))
4718 return (char*)page;
4720 set_delayed_call(callback, page_put_link, page);
4721 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4722 kaddr = page_address(page);
4723 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4724 return kaddr;
4727 EXPORT_SYMBOL(page_get_link);
4729 void page_put_link(void *arg)
4731 put_page(arg);
4733 EXPORT_SYMBOL(page_put_link);
4735 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4737 DEFINE_DELAYED_CALL(done);
4738 int res = readlink_copy(buffer, buflen,
4739 page_get_link(dentry, d_inode(dentry),
4740 &done));
4741 do_delayed_call(&done);
4742 return res;
4744 EXPORT_SYMBOL(page_readlink);
4747 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4749 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4751 struct address_space *mapping = inode->i_mapping;
4752 struct page *page;
4753 void *fsdata;
4754 int err;
4755 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4756 if (nofs)
4757 flags |= AOP_FLAG_NOFS;
4759 retry:
4760 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4761 flags, &page, &fsdata);
4762 if (err)
4763 goto fail;
4765 memcpy(page_address(page), symname, len-1);
4767 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4768 page, fsdata);
4769 if (err < 0)
4770 goto fail;
4771 if (err < len-1)
4772 goto retry;
4774 mark_inode_dirty(inode);
4775 return 0;
4776 fail:
4777 return err;
4779 EXPORT_SYMBOL(__page_symlink);
4781 int page_symlink(struct inode *inode, const char *symname, int len)
4783 return __page_symlink(inode, symname, len,
4784 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4786 EXPORT_SYMBOL(page_symlink);
4788 const struct inode_operations page_symlink_inode_operations = {
4789 .readlink = generic_readlink,
4790 .get_link = page_get_link,
4792 EXPORT_SYMBOL(page_symlink_inode_operations);