iscsi_ibft: make ISCSI_IBFT dependson ACPI instead of ISCSI_IBFT_FIND
[linux/fpc-iii.git] / mm / slab.c
blob9547f02b4af96e86b1e9d5a66ba6561e583495ab
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * struct array_cache
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
201 * Need this for bootstrapping a per node allocator.
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
232 parent->colour_next = 0;
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236 parent->num_slabs = 0;
239 #define MAKE_LIST(cachep, listp, slab, nodeid) \
240 do { \
241 INIT_LIST_HEAD(listp); \
242 list_splice(&get_node(cachep, nodeid)->slab, listp); \
243 } while (0)
245 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
246 do { \
247 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
250 } while (0)
252 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
253 #define CFLGS_OFF_SLAB (0x80000000UL)
254 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
255 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257 #define BATCHREFILL_LIMIT 16
259 * Optimization question: fewer reaps means less probability for unnessary
260 * cpucache drain/refill cycles.
262 * OTOH the cpuarrays can contain lots of objects,
263 * which could lock up otherwise freeable slabs.
265 #define REAPTIMEOUT_AC (2*HZ)
266 #define REAPTIMEOUT_NODE (4*HZ)
268 #if STATS
269 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
270 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
271 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
272 #define STATS_INC_GROWN(x) ((x)->grown++)
273 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
274 #define STATS_SET_HIGH(x) \
275 do { \
276 if ((x)->num_active > (x)->high_mark) \
277 (x)->high_mark = (x)->num_active; \
278 } while (0)
279 #define STATS_INC_ERR(x) ((x)->errors++)
280 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
281 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
282 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
283 #define STATS_SET_FREEABLE(x, i) \
284 do { \
285 if ((x)->max_freeable < i) \
286 (x)->max_freeable = i; \
287 } while (0)
288 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
289 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
290 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
291 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
292 #else
293 #define STATS_INC_ACTIVE(x) do { } while (0)
294 #define STATS_DEC_ACTIVE(x) do { } while (0)
295 #define STATS_INC_ALLOCED(x) do { } while (0)
296 #define STATS_INC_GROWN(x) do { } while (0)
297 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
298 #define STATS_SET_HIGH(x) do { } while (0)
299 #define STATS_INC_ERR(x) do { } while (0)
300 #define STATS_INC_NODEALLOCS(x) do { } while (0)
301 #define STATS_INC_NODEFREES(x) do { } while (0)
302 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
303 #define STATS_SET_FREEABLE(x, i) do { } while (0)
304 #define STATS_INC_ALLOCHIT(x) do { } while (0)
305 #define STATS_INC_ALLOCMISS(x) do { } while (0)
306 #define STATS_INC_FREEHIT(x) do { } while (0)
307 #define STATS_INC_FREEMISS(x) do { } while (0)
308 #endif
310 #if DEBUG
313 * memory layout of objects:
314 * 0 : objp
315 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
316 * the end of an object is aligned with the end of the real
317 * allocation. Catches writes behind the end of the allocation.
318 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
319 * redzone word.
320 * cachep->obj_offset: The real object.
321 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
322 * cachep->size - 1* BYTES_PER_WORD: last caller address
323 * [BYTES_PER_WORD long]
325 static int obj_offset(struct kmem_cache *cachep)
327 return cachep->obj_offset;
330 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
332 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
333 return (unsigned long long*) (objp + obj_offset(cachep) -
334 sizeof(unsigned long long));
337 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
339 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
340 if (cachep->flags & SLAB_STORE_USER)
341 return (unsigned long long *)(objp + cachep->size -
342 sizeof(unsigned long long) -
343 REDZONE_ALIGN);
344 return (unsigned long long *) (objp + cachep->size -
345 sizeof(unsigned long long));
348 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
350 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
351 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 #else
356 #define obj_offset(x) 0
357 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
361 #endif
363 #ifdef CONFIG_DEBUG_SLAB_LEAK
365 static inline bool is_store_user_clean(struct kmem_cache *cachep)
367 return atomic_read(&cachep->store_user_clean) == 1;
370 static inline void set_store_user_clean(struct kmem_cache *cachep)
372 atomic_set(&cachep->store_user_clean, 1);
375 static inline void set_store_user_dirty(struct kmem_cache *cachep)
377 if (is_store_user_clean(cachep))
378 atomic_set(&cachep->store_user_clean, 0);
381 #else
382 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384 #endif
387 * Do not go above this order unless 0 objects fit into the slab or
388 * overridden on the command line.
390 #define SLAB_MAX_ORDER_HI 1
391 #define SLAB_MAX_ORDER_LO 0
392 static int slab_max_order = SLAB_MAX_ORDER_LO;
393 static bool slab_max_order_set __initdata;
395 static inline struct kmem_cache *virt_to_cache(const void *obj)
397 struct page *page = virt_to_head_page(obj);
398 return page->slab_cache;
401 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
402 unsigned int idx)
404 return page->s_mem + cache->size * idx;
408 * We want to avoid an expensive divide : (offset / cache->size)
409 * Using the fact that size is a constant for a particular cache,
410 * we can replace (offset / cache->size) by
411 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
414 const struct page *page, void *obj)
416 u32 offset = (obj - page->s_mem);
417 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 #define BOOT_CPUCACHE_ENTRIES 1
421 /* internal cache of cache description objs */
422 static struct kmem_cache kmem_cache_boot = {
423 .batchcount = 1,
424 .limit = BOOT_CPUCACHE_ENTRIES,
425 .shared = 1,
426 .size = sizeof(struct kmem_cache),
427 .name = "kmem_cache",
430 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
432 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
434 return this_cpu_ptr(cachep->cpu_cache);
438 * Calculate the number of objects and left-over bytes for a given buffer size.
440 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
441 unsigned long flags, size_t *left_over)
443 unsigned int num;
444 size_t slab_size = PAGE_SIZE << gfporder;
447 * The slab management structure can be either off the slab or
448 * on it. For the latter case, the memory allocated for a
449 * slab is used for:
451 * - @buffer_size bytes for each object
452 * - One freelist_idx_t for each object
454 * We don't need to consider alignment of freelist because
455 * freelist will be at the end of slab page. The objects will be
456 * at the correct alignment.
458 * If the slab management structure is off the slab, then the
459 * alignment will already be calculated into the size. Because
460 * the slabs are all pages aligned, the objects will be at the
461 * correct alignment when allocated.
463 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
464 num = slab_size / buffer_size;
465 *left_over = slab_size % buffer_size;
466 } else {
467 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
468 *left_over = slab_size %
469 (buffer_size + sizeof(freelist_idx_t));
472 return num;
475 #if DEBUG
476 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478 static void __slab_error(const char *function, struct kmem_cache *cachep,
479 char *msg)
481 pr_err("slab error in %s(): cache `%s': %s\n",
482 function, cachep->name, msg);
483 dump_stack();
484 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
486 #endif
489 * By default on NUMA we use alien caches to stage the freeing of
490 * objects allocated from other nodes. This causes massive memory
491 * inefficiencies when using fake NUMA setup to split memory into a
492 * large number of small nodes, so it can be disabled on the command
493 * line
496 static int use_alien_caches __read_mostly = 1;
497 static int __init noaliencache_setup(char *s)
499 use_alien_caches = 0;
500 return 1;
502 __setup("noaliencache", noaliencache_setup);
504 static int __init slab_max_order_setup(char *str)
506 get_option(&str, &slab_max_order);
507 slab_max_order = slab_max_order < 0 ? 0 :
508 min(slab_max_order, MAX_ORDER - 1);
509 slab_max_order_set = true;
511 return 1;
513 __setup("slab_max_order=", slab_max_order_setup);
515 #ifdef CONFIG_NUMA
517 * Special reaping functions for NUMA systems called from cache_reap().
518 * These take care of doing round robin flushing of alien caches (containing
519 * objects freed on different nodes from which they were allocated) and the
520 * flushing of remote pcps by calling drain_node_pages.
522 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524 static void init_reap_node(int cpu)
526 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
527 node_online_map);
530 static void next_reap_node(void)
532 int node = __this_cpu_read(slab_reap_node);
534 node = next_node_in(node, node_online_map);
535 __this_cpu_write(slab_reap_node, node);
538 #else
539 #define init_reap_node(cpu) do { } while (0)
540 #define next_reap_node(void) do { } while (0)
541 #endif
544 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
545 * via the workqueue/eventd.
546 * Add the CPU number into the expiration time to minimize the possibility of
547 * the CPUs getting into lockstep and contending for the global cache chain
548 * lock.
550 static void start_cpu_timer(int cpu)
552 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555 * When this gets called from do_initcalls via cpucache_init(),
556 * init_workqueues() has already run, so keventd will be setup
557 * at that time.
559 if (keventd_up() && reap_work->work.func == NULL) {
560 init_reap_node(cpu);
561 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
562 schedule_delayed_work_on(cpu, reap_work,
563 __round_jiffies_relative(HZ, cpu));
567 static void init_arraycache(struct array_cache *ac, int limit, int batch)
569 if (ac) {
570 ac->avail = 0;
571 ac->limit = limit;
572 ac->batchcount = batch;
573 ac->touched = 0;
577 static struct array_cache *alloc_arraycache(int node, int entries,
578 int batchcount, gfp_t gfp)
580 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
581 struct array_cache *ac = NULL;
583 ac = kmalloc_node(memsize, gfp, node);
585 * The array_cache structures contain pointers to free object.
586 * However, when such objects are allocated or transferred to another
587 * cache the pointers are not cleared and they could be counted as
588 * valid references during a kmemleak scan. Therefore, kmemleak must
589 * not scan such objects.
591 kmemleak_no_scan(ac);
592 init_arraycache(ac, entries, batchcount);
593 return ac;
596 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
597 struct page *page, void *objp)
599 struct kmem_cache_node *n;
600 int page_node;
601 LIST_HEAD(list);
603 page_node = page_to_nid(page);
604 n = get_node(cachep, page_node);
606 spin_lock(&n->list_lock);
607 free_block(cachep, &objp, 1, page_node, &list);
608 spin_unlock(&n->list_lock);
610 slabs_destroy(cachep, &list);
614 * Transfer objects in one arraycache to another.
615 * Locking must be handled by the caller.
617 * Return the number of entries transferred.
619 static int transfer_objects(struct array_cache *to,
620 struct array_cache *from, unsigned int max)
622 /* Figure out how many entries to transfer */
623 int nr = min3(from->avail, max, to->limit - to->avail);
625 if (!nr)
626 return 0;
628 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
629 sizeof(void *) *nr);
631 from->avail -= nr;
632 to->avail += nr;
633 return nr;
636 #ifndef CONFIG_NUMA
638 #define drain_alien_cache(cachep, alien) do { } while (0)
639 #define reap_alien(cachep, n) do { } while (0)
641 static inline struct alien_cache **alloc_alien_cache(int node,
642 int limit, gfp_t gfp)
644 return NULL;
647 static inline void free_alien_cache(struct alien_cache **ac_ptr)
651 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
653 return 0;
656 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
657 gfp_t flags)
659 return NULL;
662 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
663 gfp_t flags, int nodeid)
665 return NULL;
668 static inline gfp_t gfp_exact_node(gfp_t flags)
670 return flags & ~__GFP_NOFAIL;
673 #else /* CONFIG_NUMA */
675 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
676 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678 static struct alien_cache *__alloc_alien_cache(int node, int entries,
679 int batch, gfp_t gfp)
681 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
682 struct alien_cache *alc = NULL;
684 alc = kmalloc_node(memsize, gfp, node);
685 if (alc) {
686 kmemleak_no_scan(alc);
687 init_arraycache(&alc->ac, entries, batch);
688 spin_lock_init(&alc->lock);
690 return alc;
693 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
695 struct alien_cache **alc_ptr;
696 size_t memsize = sizeof(void *) * nr_node_ids;
697 int i;
699 if (limit > 1)
700 limit = 12;
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
716 return alc_ptr;
719 static void free_alien_cache(struct alien_cache **alc_ptr)
721 int i;
723 if (!alc_ptr)
724 return;
725 for_each_node(i)
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
730 static void __drain_alien_cache(struct kmem_cache *cachep,
731 struct array_cache *ac, int node,
732 struct list_head *list)
734 struct kmem_cache_node *n = get_node(cachep, node);
736 if (ac->avail) {
737 spin_lock(&n->list_lock);
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
746 free_block(cachep, ac->entry, ac->avail, node, list);
747 ac->avail = 0;
748 spin_unlock(&n->list_lock);
753 * Called from cache_reap() to regularly drain alien caches round robin.
755 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
757 int node = __this_cpu_read(slab_reap_node);
759 if (n->alien) {
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
763 if (alc) {
764 ac = &alc->ac;
765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
766 LIST_HEAD(list);
768 __drain_alien_cache(cachep, ac, node, &list);
769 spin_unlock_irq(&alc->lock);
770 slabs_destroy(cachep, &list);
776 static void drain_alien_cache(struct kmem_cache *cachep,
777 struct alien_cache **alien)
779 int i = 0;
780 struct alien_cache *alc;
781 struct array_cache *ac;
782 unsigned long flags;
784 for_each_online_node(i) {
785 alc = alien[i];
786 if (alc) {
787 LIST_HEAD(list);
789 ac = &alc->ac;
790 spin_lock_irqsave(&alc->lock, flags);
791 __drain_alien_cache(cachep, ac, i, &list);
792 spin_unlock_irqrestore(&alc->lock, flags);
793 slabs_destroy(cachep, &list);
798 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
801 struct kmem_cache_node *n;
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
804 LIST_HEAD(list);
806 n = get_node(cachep, node);
807 STATS_INC_NODEFREES(cachep);
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
810 ac = &alien->ac;
811 spin_lock(&alien->lock);
812 if (unlikely(ac->avail == ac->limit)) {
813 STATS_INC_ACOVERFLOW(cachep);
814 __drain_alien_cache(cachep, ac, page_node, &list);
816 ac->entry[ac->avail++] = objp;
817 spin_unlock(&alien->lock);
818 slabs_destroy(cachep, &list);
819 } else {
820 n = get_node(cachep, page_node);
821 spin_lock(&n->list_lock);
822 free_block(cachep, &objp, 1, page_node, &list);
823 spin_unlock(&n->list_lock);
824 slabs_destroy(cachep, &list);
826 return 1;
829 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
837 if (likely(node == page_node))
838 return 0;
840 return __cache_free_alien(cachep, objp, node, page_node);
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
847 static inline gfp_t gfp_exact_node(gfp_t flags)
849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
851 #endif
853 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
855 struct kmem_cache_node *n;
858 * Set up the kmem_cache_node for cpu before we can
859 * begin anything. Make sure some other cpu on this
860 * node has not already allocated this
862 n = get_node(cachep, node);
863 if (n) {
864 spin_lock_irq(&n->list_lock);
865 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
866 cachep->num;
867 spin_unlock_irq(&n->list_lock);
869 return 0;
872 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
873 if (!n)
874 return -ENOMEM;
876 kmem_cache_node_init(n);
877 n->next_reap = jiffies + REAPTIMEOUT_NODE +
878 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
880 n->free_limit =
881 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
886 * protection here.
888 cachep->node[node] = n;
890 return 0;
893 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
895 * Allocates and initializes node for a node on each slab cache, used for
896 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
897 * will be allocated off-node since memory is not yet online for the new node.
898 * When hotplugging memory or a cpu, existing node are not replaced if
899 * already in use.
901 * Must hold slab_mutex.
903 static int init_cache_node_node(int node)
905 int ret;
906 struct kmem_cache *cachep;
908 list_for_each_entry(cachep, &slab_caches, list) {
909 ret = init_cache_node(cachep, node, GFP_KERNEL);
910 if (ret)
911 return ret;
914 return 0;
916 #endif
918 static int setup_kmem_cache_node(struct kmem_cache *cachep,
919 int node, gfp_t gfp, bool force_change)
921 int ret = -ENOMEM;
922 struct kmem_cache_node *n;
923 struct array_cache *old_shared = NULL;
924 struct array_cache *new_shared = NULL;
925 struct alien_cache **new_alien = NULL;
926 LIST_HEAD(list);
928 if (use_alien_caches) {
929 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
930 if (!new_alien)
931 goto fail;
934 if (cachep->shared) {
935 new_shared = alloc_arraycache(node,
936 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
937 if (!new_shared)
938 goto fail;
941 ret = init_cache_node(cachep, node, gfp);
942 if (ret)
943 goto fail;
945 n = get_node(cachep, node);
946 spin_lock_irq(&n->list_lock);
947 if (n->shared && force_change) {
948 free_block(cachep, n->shared->entry,
949 n->shared->avail, node, &list);
950 n->shared->avail = 0;
953 if (!n->shared || force_change) {
954 old_shared = n->shared;
955 n->shared = new_shared;
956 new_shared = NULL;
959 if (!n->alien) {
960 n->alien = new_alien;
961 new_alien = NULL;
964 spin_unlock_irq(&n->list_lock);
965 slabs_destroy(cachep, &list);
968 * To protect lockless access to n->shared during irq disabled context.
969 * If n->shared isn't NULL in irq disabled context, accessing to it is
970 * guaranteed to be valid until irq is re-enabled, because it will be
971 * freed after synchronize_sched().
973 if (old_shared && force_change)
974 synchronize_sched();
976 fail:
977 kfree(old_shared);
978 kfree(new_shared);
979 free_alien_cache(new_alien);
981 return ret;
984 #ifdef CONFIG_SMP
986 static void cpuup_canceled(long cpu)
988 struct kmem_cache *cachep;
989 struct kmem_cache_node *n = NULL;
990 int node = cpu_to_mem(cpu);
991 const struct cpumask *mask = cpumask_of_node(node);
993 list_for_each_entry(cachep, &slab_caches, list) {
994 struct array_cache *nc;
995 struct array_cache *shared;
996 struct alien_cache **alien;
997 LIST_HEAD(list);
999 n = get_node(cachep, node);
1000 if (!n)
1001 continue;
1003 spin_lock_irq(&n->list_lock);
1005 /* Free limit for this kmem_cache_node */
1006 n->free_limit -= cachep->batchcount;
1008 /* cpu is dead; no one can alloc from it. */
1009 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1010 if (nc) {
1011 free_block(cachep, nc->entry, nc->avail, node, &list);
1012 nc->avail = 0;
1015 if (!cpumask_empty(mask)) {
1016 spin_unlock_irq(&n->list_lock);
1017 goto free_slab;
1020 shared = n->shared;
1021 if (shared) {
1022 free_block(cachep, shared->entry,
1023 shared->avail, node, &list);
1024 n->shared = NULL;
1027 alien = n->alien;
1028 n->alien = NULL;
1030 spin_unlock_irq(&n->list_lock);
1032 kfree(shared);
1033 if (alien) {
1034 drain_alien_cache(cachep, alien);
1035 free_alien_cache(alien);
1038 free_slab:
1039 slabs_destroy(cachep, &list);
1042 * In the previous loop, all the objects were freed to
1043 * the respective cache's slabs, now we can go ahead and
1044 * shrink each nodelist to its limit.
1046 list_for_each_entry(cachep, &slab_caches, list) {
1047 n = get_node(cachep, node);
1048 if (!n)
1049 continue;
1050 drain_freelist(cachep, n, INT_MAX);
1054 static int cpuup_prepare(long cpu)
1056 struct kmem_cache *cachep;
1057 int node = cpu_to_mem(cpu);
1058 int err;
1061 * We need to do this right in the beginning since
1062 * alloc_arraycache's are going to use this list.
1063 * kmalloc_node allows us to add the slab to the right
1064 * kmem_cache_node and not this cpu's kmem_cache_node
1066 err = init_cache_node_node(node);
1067 if (err < 0)
1068 goto bad;
1071 * Now we can go ahead with allocating the shared arrays and
1072 * array caches
1074 list_for_each_entry(cachep, &slab_caches, list) {
1075 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1076 if (err)
1077 goto bad;
1080 return 0;
1081 bad:
1082 cpuup_canceled(cpu);
1083 return -ENOMEM;
1086 int slab_prepare_cpu(unsigned int cpu)
1088 int err;
1090 mutex_lock(&slab_mutex);
1091 err = cpuup_prepare(cpu);
1092 mutex_unlock(&slab_mutex);
1093 return err;
1097 * This is called for a failed online attempt and for a successful
1098 * offline.
1100 * Even if all the cpus of a node are down, we don't free the
1101 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1102 * a kmalloc allocation from another cpu for memory from the node of
1103 * the cpu going down. The list3 structure is usually allocated from
1104 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1106 int slab_dead_cpu(unsigned int cpu)
1108 mutex_lock(&slab_mutex);
1109 cpuup_canceled(cpu);
1110 mutex_unlock(&slab_mutex);
1111 return 0;
1113 #endif
1115 static int slab_online_cpu(unsigned int cpu)
1117 start_cpu_timer(cpu);
1118 return 0;
1121 static int slab_offline_cpu(unsigned int cpu)
1124 * Shutdown cache reaper. Note that the slab_mutex is held so
1125 * that if cache_reap() is invoked it cannot do anything
1126 * expensive but will only modify reap_work and reschedule the
1127 * timer.
1129 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1130 /* Now the cache_reaper is guaranteed to be not running. */
1131 per_cpu(slab_reap_work, cpu).work.func = NULL;
1132 return 0;
1135 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1137 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1138 * Returns -EBUSY if all objects cannot be drained so that the node is not
1139 * removed.
1141 * Must hold slab_mutex.
1143 static int __meminit drain_cache_node_node(int node)
1145 struct kmem_cache *cachep;
1146 int ret = 0;
1148 list_for_each_entry(cachep, &slab_caches, list) {
1149 struct kmem_cache_node *n;
1151 n = get_node(cachep, node);
1152 if (!n)
1153 continue;
1155 drain_freelist(cachep, n, INT_MAX);
1157 if (!list_empty(&n->slabs_full) ||
1158 !list_empty(&n->slabs_partial)) {
1159 ret = -EBUSY;
1160 break;
1163 return ret;
1166 static int __meminit slab_memory_callback(struct notifier_block *self,
1167 unsigned long action, void *arg)
1169 struct memory_notify *mnb = arg;
1170 int ret = 0;
1171 int nid;
1173 nid = mnb->status_change_nid;
1174 if (nid < 0)
1175 goto out;
1177 switch (action) {
1178 case MEM_GOING_ONLINE:
1179 mutex_lock(&slab_mutex);
1180 ret = init_cache_node_node(nid);
1181 mutex_unlock(&slab_mutex);
1182 break;
1183 case MEM_GOING_OFFLINE:
1184 mutex_lock(&slab_mutex);
1185 ret = drain_cache_node_node(nid);
1186 mutex_unlock(&slab_mutex);
1187 break;
1188 case MEM_ONLINE:
1189 case MEM_OFFLINE:
1190 case MEM_CANCEL_ONLINE:
1191 case MEM_CANCEL_OFFLINE:
1192 break;
1194 out:
1195 return notifier_from_errno(ret);
1197 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1200 * swap the static kmem_cache_node with kmalloced memory
1202 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1203 int nodeid)
1205 struct kmem_cache_node *ptr;
1207 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1208 BUG_ON(!ptr);
1210 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1212 * Do not assume that spinlocks can be initialized via memcpy:
1214 spin_lock_init(&ptr->list_lock);
1216 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1217 cachep->node[nodeid] = ptr;
1221 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1222 * size of kmem_cache_node.
1224 static void __init set_up_node(struct kmem_cache *cachep, int index)
1226 int node;
1228 for_each_online_node(node) {
1229 cachep->node[node] = &init_kmem_cache_node[index + node];
1230 cachep->node[node]->next_reap = jiffies +
1231 REAPTIMEOUT_NODE +
1232 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1237 * Initialisation. Called after the page allocator have been initialised and
1238 * before smp_init().
1240 void __init kmem_cache_init(void)
1242 int i;
1244 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1245 sizeof(struct rcu_head));
1246 kmem_cache = &kmem_cache_boot;
1248 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1249 use_alien_caches = 0;
1251 for (i = 0; i < NUM_INIT_LISTS; i++)
1252 kmem_cache_node_init(&init_kmem_cache_node[i]);
1255 * Fragmentation resistance on low memory - only use bigger
1256 * page orders on machines with more than 32MB of memory if
1257 * not overridden on the command line.
1259 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1260 slab_max_order = SLAB_MAX_ORDER_HI;
1262 /* Bootstrap is tricky, because several objects are allocated
1263 * from caches that do not exist yet:
1264 * 1) initialize the kmem_cache cache: it contains the struct
1265 * kmem_cache structures of all caches, except kmem_cache itself:
1266 * kmem_cache is statically allocated.
1267 * Initially an __init data area is used for the head array and the
1268 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1269 * array at the end of the bootstrap.
1270 * 2) Create the first kmalloc cache.
1271 * The struct kmem_cache for the new cache is allocated normally.
1272 * An __init data area is used for the head array.
1273 * 3) Create the remaining kmalloc caches, with minimally sized
1274 * head arrays.
1275 * 4) Replace the __init data head arrays for kmem_cache and the first
1276 * kmalloc cache with kmalloc allocated arrays.
1277 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1278 * the other cache's with kmalloc allocated memory.
1279 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1282 /* 1) create the kmem_cache */
1285 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1287 create_boot_cache(kmem_cache, "kmem_cache",
1288 offsetof(struct kmem_cache, node) +
1289 nr_node_ids * sizeof(struct kmem_cache_node *),
1290 SLAB_HWCACHE_ALIGN);
1291 list_add(&kmem_cache->list, &slab_caches);
1292 slab_state = PARTIAL;
1295 * Initialize the caches that provide memory for the kmem_cache_node
1296 * structures first. Without this, further allocations will bug.
1298 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1299 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1300 slab_state = PARTIAL_NODE;
1301 setup_kmalloc_cache_index_table();
1303 slab_early_init = 0;
1305 /* 5) Replace the bootstrap kmem_cache_node */
1307 int nid;
1309 for_each_online_node(nid) {
1310 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1312 init_list(kmalloc_caches[INDEX_NODE],
1313 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1317 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1320 void __init kmem_cache_init_late(void)
1322 struct kmem_cache *cachep;
1324 slab_state = UP;
1326 /* 6) resize the head arrays to their final sizes */
1327 mutex_lock(&slab_mutex);
1328 list_for_each_entry(cachep, &slab_caches, list)
1329 if (enable_cpucache(cachep, GFP_NOWAIT))
1330 BUG();
1331 mutex_unlock(&slab_mutex);
1333 /* Done! */
1334 slab_state = FULL;
1336 #ifdef CONFIG_NUMA
1338 * Register a memory hotplug callback that initializes and frees
1339 * node.
1341 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1342 #endif
1345 * The reap timers are started later, with a module init call: That part
1346 * of the kernel is not yet operational.
1350 static int __init cpucache_init(void)
1352 int ret;
1355 * Register the timers that return unneeded pages to the page allocator
1357 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1358 slab_online_cpu, slab_offline_cpu);
1359 WARN_ON(ret < 0);
1361 /* Done! */
1362 slab_state = FULL;
1363 return 0;
1365 __initcall(cpucache_init);
1367 static noinline void
1368 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1370 #if DEBUG
1371 struct kmem_cache_node *n;
1372 struct page *page;
1373 unsigned long flags;
1374 int node;
1375 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1376 DEFAULT_RATELIMIT_BURST);
1378 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1379 return;
1381 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1382 nodeid, gfpflags, &gfpflags);
1383 pr_warn(" cache: %s, object size: %d, order: %d\n",
1384 cachep->name, cachep->size, cachep->gfporder);
1386 for_each_kmem_cache_node(cachep, node, n) {
1387 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1388 unsigned long active_slabs = 0, num_slabs = 0;
1389 unsigned long num_slabs_partial = 0, num_slabs_free = 0;
1390 unsigned long num_slabs_full;
1392 spin_lock_irqsave(&n->list_lock, flags);
1393 num_slabs = n->num_slabs;
1394 list_for_each_entry(page, &n->slabs_partial, lru) {
1395 active_objs += page->active;
1396 num_slabs_partial++;
1398 list_for_each_entry(page, &n->slabs_free, lru)
1399 num_slabs_free++;
1401 free_objects += n->free_objects;
1402 spin_unlock_irqrestore(&n->list_lock, flags);
1404 num_objs = num_slabs * cachep->num;
1405 active_slabs = num_slabs - num_slabs_free;
1406 num_slabs_full = num_slabs -
1407 (num_slabs_partial + num_slabs_free);
1408 active_objs += (num_slabs_full * cachep->num);
1410 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1411 node, active_slabs, num_slabs, active_objs, num_objs,
1412 free_objects);
1414 #endif
1418 * Interface to system's page allocator. No need to hold the
1419 * kmem_cache_node ->list_lock.
1421 * If we requested dmaable memory, we will get it. Even if we
1422 * did not request dmaable memory, we might get it, but that
1423 * would be relatively rare and ignorable.
1425 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1426 int nodeid)
1428 struct page *page;
1429 int nr_pages;
1431 flags |= cachep->allocflags;
1432 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1433 flags |= __GFP_RECLAIMABLE;
1435 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1436 if (!page) {
1437 slab_out_of_memory(cachep, flags, nodeid);
1438 return NULL;
1441 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1442 __free_pages(page, cachep->gfporder);
1443 return NULL;
1446 nr_pages = (1 << cachep->gfporder);
1447 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1448 add_zone_page_state(page_zone(page),
1449 NR_SLAB_RECLAIMABLE, nr_pages);
1450 else
1451 add_zone_page_state(page_zone(page),
1452 NR_SLAB_UNRECLAIMABLE, nr_pages);
1454 __SetPageSlab(page);
1455 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1456 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1457 SetPageSlabPfmemalloc(page);
1459 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1460 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1462 if (cachep->ctor)
1463 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1464 else
1465 kmemcheck_mark_unallocated_pages(page, nr_pages);
1468 return page;
1472 * Interface to system's page release.
1474 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1476 int order = cachep->gfporder;
1477 unsigned long nr_freed = (1 << order);
1479 kmemcheck_free_shadow(page, order);
1481 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1482 sub_zone_page_state(page_zone(page),
1483 NR_SLAB_RECLAIMABLE, nr_freed);
1484 else
1485 sub_zone_page_state(page_zone(page),
1486 NR_SLAB_UNRECLAIMABLE, nr_freed);
1488 BUG_ON(!PageSlab(page));
1489 __ClearPageSlabPfmemalloc(page);
1490 __ClearPageSlab(page);
1491 page_mapcount_reset(page);
1492 page->mapping = NULL;
1494 if (current->reclaim_state)
1495 current->reclaim_state->reclaimed_slab += nr_freed;
1496 memcg_uncharge_slab(page, order, cachep);
1497 __free_pages(page, order);
1500 static void kmem_rcu_free(struct rcu_head *head)
1502 struct kmem_cache *cachep;
1503 struct page *page;
1505 page = container_of(head, struct page, rcu_head);
1506 cachep = page->slab_cache;
1508 kmem_freepages(cachep, page);
1511 #if DEBUG
1512 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1514 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1515 (cachep->size % PAGE_SIZE) == 0)
1516 return true;
1518 return false;
1521 #ifdef CONFIG_DEBUG_PAGEALLOC
1522 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1523 unsigned long caller)
1525 int size = cachep->object_size;
1527 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1529 if (size < 5 * sizeof(unsigned long))
1530 return;
1532 *addr++ = 0x12345678;
1533 *addr++ = caller;
1534 *addr++ = smp_processor_id();
1535 size -= 3 * sizeof(unsigned long);
1537 unsigned long *sptr = &caller;
1538 unsigned long svalue;
1540 while (!kstack_end(sptr)) {
1541 svalue = *sptr++;
1542 if (kernel_text_address(svalue)) {
1543 *addr++ = svalue;
1544 size -= sizeof(unsigned long);
1545 if (size <= sizeof(unsigned long))
1546 break;
1551 *addr++ = 0x87654321;
1554 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1555 int map, unsigned long caller)
1557 if (!is_debug_pagealloc_cache(cachep))
1558 return;
1560 if (caller)
1561 store_stackinfo(cachep, objp, caller);
1563 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1566 #else
1567 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1568 int map, unsigned long caller) {}
1570 #endif
1572 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1574 int size = cachep->object_size;
1575 addr = &((char *)addr)[obj_offset(cachep)];
1577 memset(addr, val, size);
1578 *(unsigned char *)(addr + size - 1) = POISON_END;
1581 static void dump_line(char *data, int offset, int limit)
1583 int i;
1584 unsigned char error = 0;
1585 int bad_count = 0;
1587 pr_err("%03x: ", offset);
1588 for (i = 0; i < limit; i++) {
1589 if (data[offset + i] != POISON_FREE) {
1590 error = data[offset + i];
1591 bad_count++;
1594 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1595 &data[offset], limit, 1);
1597 if (bad_count == 1) {
1598 error ^= POISON_FREE;
1599 if (!(error & (error - 1))) {
1600 pr_err("Single bit error detected. Probably bad RAM.\n");
1601 #ifdef CONFIG_X86
1602 pr_err("Run memtest86+ or a similar memory test tool.\n");
1603 #else
1604 pr_err("Run a memory test tool.\n");
1605 #endif
1609 #endif
1611 #if DEBUG
1613 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1615 int i, size;
1616 char *realobj;
1618 if (cachep->flags & SLAB_RED_ZONE) {
1619 pr_err("Redzone: 0x%llx/0x%llx\n",
1620 *dbg_redzone1(cachep, objp),
1621 *dbg_redzone2(cachep, objp));
1624 if (cachep->flags & SLAB_STORE_USER) {
1625 pr_err("Last user: [<%p>](%pSR)\n",
1626 *dbg_userword(cachep, objp),
1627 *dbg_userword(cachep, objp));
1629 realobj = (char *)objp + obj_offset(cachep);
1630 size = cachep->object_size;
1631 for (i = 0; i < size && lines; i += 16, lines--) {
1632 int limit;
1633 limit = 16;
1634 if (i + limit > size)
1635 limit = size - i;
1636 dump_line(realobj, i, limit);
1640 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1642 char *realobj;
1643 int size, i;
1644 int lines = 0;
1646 if (is_debug_pagealloc_cache(cachep))
1647 return;
1649 realobj = (char *)objp + obj_offset(cachep);
1650 size = cachep->object_size;
1652 for (i = 0; i < size; i++) {
1653 char exp = POISON_FREE;
1654 if (i == size - 1)
1655 exp = POISON_END;
1656 if (realobj[i] != exp) {
1657 int limit;
1658 /* Mismatch ! */
1659 /* Print header */
1660 if (lines == 0) {
1661 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1662 print_tainted(), cachep->name,
1663 realobj, size);
1664 print_objinfo(cachep, objp, 0);
1666 /* Hexdump the affected line */
1667 i = (i / 16) * 16;
1668 limit = 16;
1669 if (i + limit > size)
1670 limit = size - i;
1671 dump_line(realobj, i, limit);
1672 i += 16;
1673 lines++;
1674 /* Limit to 5 lines */
1675 if (lines > 5)
1676 break;
1679 if (lines != 0) {
1680 /* Print some data about the neighboring objects, if they
1681 * exist:
1683 struct page *page = virt_to_head_page(objp);
1684 unsigned int objnr;
1686 objnr = obj_to_index(cachep, page, objp);
1687 if (objnr) {
1688 objp = index_to_obj(cachep, page, objnr - 1);
1689 realobj = (char *)objp + obj_offset(cachep);
1690 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1691 print_objinfo(cachep, objp, 2);
1693 if (objnr + 1 < cachep->num) {
1694 objp = index_to_obj(cachep, page, objnr + 1);
1695 realobj = (char *)objp + obj_offset(cachep);
1696 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1697 print_objinfo(cachep, objp, 2);
1701 #endif
1703 #if DEBUG
1704 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1705 struct page *page)
1707 int i;
1709 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1710 poison_obj(cachep, page->freelist - obj_offset(cachep),
1711 POISON_FREE);
1714 for (i = 0; i < cachep->num; i++) {
1715 void *objp = index_to_obj(cachep, page, i);
1717 if (cachep->flags & SLAB_POISON) {
1718 check_poison_obj(cachep, objp);
1719 slab_kernel_map(cachep, objp, 1, 0);
1721 if (cachep->flags & SLAB_RED_ZONE) {
1722 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1723 slab_error(cachep, "start of a freed object was overwritten");
1724 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1725 slab_error(cachep, "end of a freed object was overwritten");
1729 #else
1730 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1731 struct page *page)
1734 #endif
1737 * slab_destroy - destroy and release all objects in a slab
1738 * @cachep: cache pointer being destroyed
1739 * @page: page pointer being destroyed
1741 * Destroy all the objs in a slab page, and release the mem back to the system.
1742 * Before calling the slab page must have been unlinked from the cache. The
1743 * kmem_cache_node ->list_lock is not held/needed.
1745 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1747 void *freelist;
1749 freelist = page->freelist;
1750 slab_destroy_debugcheck(cachep, page);
1751 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1752 call_rcu(&page->rcu_head, kmem_rcu_free);
1753 else
1754 kmem_freepages(cachep, page);
1757 * From now on, we don't use freelist
1758 * although actual page can be freed in rcu context
1760 if (OFF_SLAB(cachep))
1761 kmem_cache_free(cachep->freelist_cache, freelist);
1764 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1766 struct page *page, *n;
1768 list_for_each_entry_safe(page, n, list, lru) {
1769 list_del(&page->lru);
1770 slab_destroy(cachep, page);
1775 * calculate_slab_order - calculate size (page order) of slabs
1776 * @cachep: pointer to the cache that is being created
1777 * @size: size of objects to be created in this cache.
1778 * @flags: slab allocation flags
1780 * Also calculates the number of objects per slab.
1782 * This could be made much more intelligent. For now, try to avoid using
1783 * high order pages for slabs. When the gfp() functions are more friendly
1784 * towards high-order requests, this should be changed.
1786 static size_t calculate_slab_order(struct kmem_cache *cachep,
1787 size_t size, unsigned long flags)
1789 size_t left_over = 0;
1790 int gfporder;
1792 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1793 unsigned int num;
1794 size_t remainder;
1796 num = cache_estimate(gfporder, size, flags, &remainder);
1797 if (!num)
1798 continue;
1800 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1801 if (num > SLAB_OBJ_MAX_NUM)
1802 break;
1804 if (flags & CFLGS_OFF_SLAB) {
1805 struct kmem_cache *freelist_cache;
1806 size_t freelist_size;
1808 freelist_size = num * sizeof(freelist_idx_t);
1809 freelist_cache = kmalloc_slab(freelist_size, 0u);
1810 if (!freelist_cache)
1811 continue;
1814 * Needed to avoid possible looping condition
1815 * in cache_grow_begin()
1817 if (OFF_SLAB(freelist_cache))
1818 continue;
1820 /* check if off slab has enough benefit */
1821 if (freelist_cache->size > cachep->size / 2)
1822 continue;
1825 /* Found something acceptable - save it away */
1826 cachep->num = num;
1827 cachep->gfporder = gfporder;
1828 left_over = remainder;
1831 * A VFS-reclaimable slab tends to have most allocations
1832 * as GFP_NOFS and we really don't want to have to be allocating
1833 * higher-order pages when we are unable to shrink dcache.
1835 if (flags & SLAB_RECLAIM_ACCOUNT)
1836 break;
1839 * Large number of objects is good, but very large slabs are
1840 * currently bad for the gfp()s.
1842 if (gfporder >= slab_max_order)
1843 break;
1846 * Acceptable internal fragmentation?
1848 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1849 break;
1851 return left_over;
1854 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1855 struct kmem_cache *cachep, int entries, int batchcount)
1857 int cpu;
1858 size_t size;
1859 struct array_cache __percpu *cpu_cache;
1861 size = sizeof(void *) * entries + sizeof(struct array_cache);
1862 cpu_cache = __alloc_percpu(size, sizeof(void *));
1864 if (!cpu_cache)
1865 return NULL;
1867 for_each_possible_cpu(cpu) {
1868 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1869 entries, batchcount);
1872 return cpu_cache;
1875 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1877 if (slab_state >= FULL)
1878 return enable_cpucache(cachep, gfp);
1880 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1881 if (!cachep->cpu_cache)
1882 return 1;
1884 if (slab_state == DOWN) {
1885 /* Creation of first cache (kmem_cache). */
1886 set_up_node(kmem_cache, CACHE_CACHE);
1887 } else if (slab_state == PARTIAL) {
1888 /* For kmem_cache_node */
1889 set_up_node(cachep, SIZE_NODE);
1890 } else {
1891 int node;
1893 for_each_online_node(node) {
1894 cachep->node[node] = kmalloc_node(
1895 sizeof(struct kmem_cache_node), gfp, node);
1896 BUG_ON(!cachep->node[node]);
1897 kmem_cache_node_init(cachep->node[node]);
1901 cachep->node[numa_mem_id()]->next_reap =
1902 jiffies + REAPTIMEOUT_NODE +
1903 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1905 cpu_cache_get(cachep)->avail = 0;
1906 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1907 cpu_cache_get(cachep)->batchcount = 1;
1908 cpu_cache_get(cachep)->touched = 0;
1909 cachep->batchcount = 1;
1910 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1911 return 0;
1914 unsigned long kmem_cache_flags(unsigned long object_size,
1915 unsigned long flags, const char *name,
1916 void (*ctor)(void *))
1918 return flags;
1921 struct kmem_cache *
1922 __kmem_cache_alias(const char *name, size_t size, size_t align,
1923 unsigned long flags, void (*ctor)(void *))
1925 struct kmem_cache *cachep;
1927 cachep = find_mergeable(size, align, flags, name, ctor);
1928 if (cachep) {
1929 cachep->refcount++;
1932 * Adjust the object sizes so that we clear
1933 * the complete object on kzalloc.
1935 cachep->object_size = max_t(int, cachep->object_size, size);
1937 return cachep;
1940 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1943 size_t left;
1945 cachep->num = 0;
1947 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1948 return false;
1950 left = calculate_slab_order(cachep, size,
1951 flags | CFLGS_OBJFREELIST_SLAB);
1952 if (!cachep->num)
1953 return false;
1955 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1956 return false;
1958 cachep->colour = left / cachep->colour_off;
1960 return true;
1963 static bool set_off_slab_cache(struct kmem_cache *cachep,
1964 size_t size, unsigned long flags)
1966 size_t left;
1968 cachep->num = 0;
1971 * Always use on-slab management when SLAB_NOLEAKTRACE
1972 * to avoid recursive calls into kmemleak.
1974 if (flags & SLAB_NOLEAKTRACE)
1975 return false;
1978 * Size is large, assume best to place the slab management obj
1979 * off-slab (should allow better packing of objs).
1981 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1982 if (!cachep->num)
1983 return false;
1986 * If the slab has been placed off-slab, and we have enough space then
1987 * move it on-slab. This is at the expense of any extra colouring.
1989 if (left >= cachep->num * sizeof(freelist_idx_t))
1990 return false;
1992 cachep->colour = left / cachep->colour_off;
1994 return true;
1997 static bool set_on_slab_cache(struct kmem_cache *cachep,
1998 size_t size, unsigned long flags)
2000 size_t left;
2002 cachep->num = 0;
2004 left = calculate_slab_order(cachep, size, flags);
2005 if (!cachep->num)
2006 return false;
2008 cachep->colour = left / cachep->colour_off;
2010 return true;
2014 * __kmem_cache_create - Create a cache.
2015 * @cachep: cache management descriptor
2016 * @flags: SLAB flags
2018 * Returns a ptr to the cache on success, NULL on failure.
2019 * Cannot be called within a int, but can be interrupted.
2020 * The @ctor is run when new pages are allocated by the cache.
2022 * The flags are
2024 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2025 * to catch references to uninitialised memory.
2027 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2028 * for buffer overruns.
2030 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2031 * cacheline. This can be beneficial if you're counting cycles as closely
2032 * as davem.
2035 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2037 size_t ralign = BYTES_PER_WORD;
2038 gfp_t gfp;
2039 int err;
2040 size_t size = cachep->size;
2042 #if DEBUG
2043 #if FORCED_DEBUG
2045 * Enable redzoning and last user accounting, except for caches with
2046 * large objects, if the increased size would increase the object size
2047 * above the next power of two: caches with object sizes just above a
2048 * power of two have a significant amount of internal fragmentation.
2050 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2051 2 * sizeof(unsigned long long)))
2052 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2053 if (!(flags & SLAB_DESTROY_BY_RCU))
2054 flags |= SLAB_POISON;
2055 #endif
2056 #endif
2059 * Check that size is in terms of words. This is needed to avoid
2060 * unaligned accesses for some archs when redzoning is used, and makes
2061 * sure any on-slab bufctl's are also correctly aligned.
2063 if (size & (BYTES_PER_WORD - 1)) {
2064 size += (BYTES_PER_WORD - 1);
2065 size &= ~(BYTES_PER_WORD - 1);
2068 if (flags & SLAB_RED_ZONE) {
2069 ralign = REDZONE_ALIGN;
2070 /* If redzoning, ensure that the second redzone is suitably
2071 * aligned, by adjusting the object size accordingly. */
2072 size += REDZONE_ALIGN - 1;
2073 size &= ~(REDZONE_ALIGN - 1);
2076 /* 3) caller mandated alignment */
2077 if (ralign < cachep->align) {
2078 ralign = cachep->align;
2080 /* disable debug if necessary */
2081 if (ralign > __alignof__(unsigned long long))
2082 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2084 * 4) Store it.
2086 cachep->align = ralign;
2087 cachep->colour_off = cache_line_size();
2088 /* Offset must be a multiple of the alignment. */
2089 if (cachep->colour_off < cachep->align)
2090 cachep->colour_off = cachep->align;
2092 if (slab_is_available())
2093 gfp = GFP_KERNEL;
2094 else
2095 gfp = GFP_NOWAIT;
2097 #if DEBUG
2100 * Both debugging options require word-alignment which is calculated
2101 * into align above.
2103 if (flags & SLAB_RED_ZONE) {
2104 /* add space for red zone words */
2105 cachep->obj_offset += sizeof(unsigned long long);
2106 size += 2 * sizeof(unsigned long long);
2108 if (flags & SLAB_STORE_USER) {
2109 /* user store requires one word storage behind the end of
2110 * the real object. But if the second red zone needs to be
2111 * aligned to 64 bits, we must allow that much space.
2113 if (flags & SLAB_RED_ZONE)
2114 size += REDZONE_ALIGN;
2115 else
2116 size += BYTES_PER_WORD;
2118 #endif
2120 kasan_cache_create(cachep, &size, &flags);
2122 size = ALIGN(size, cachep->align);
2124 * We should restrict the number of objects in a slab to implement
2125 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2127 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2128 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2130 #if DEBUG
2132 * To activate debug pagealloc, off-slab management is necessary
2133 * requirement. In early phase of initialization, small sized slab
2134 * doesn't get initialized so it would not be possible. So, we need
2135 * to check size >= 256. It guarantees that all necessary small
2136 * sized slab is initialized in current slab initialization sequence.
2138 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2139 size >= 256 && cachep->object_size > cache_line_size()) {
2140 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2141 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2143 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2144 flags |= CFLGS_OFF_SLAB;
2145 cachep->obj_offset += tmp_size - size;
2146 size = tmp_size;
2147 goto done;
2151 #endif
2153 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2154 flags |= CFLGS_OBJFREELIST_SLAB;
2155 goto done;
2158 if (set_off_slab_cache(cachep, size, flags)) {
2159 flags |= CFLGS_OFF_SLAB;
2160 goto done;
2163 if (set_on_slab_cache(cachep, size, flags))
2164 goto done;
2166 return -E2BIG;
2168 done:
2169 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2170 cachep->flags = flags;
2171 cachep->allocflags = __GFP_COMP;
2172 if (flags & SLAB_CACHE_DMA)
2173 cachep->allocflags |= GFP_DMA;
2174 cachep->size = size;
2175 cachep->reciprocal_buffer_size = reciprocal_value(size);
2177 #if DEBUG
2179 * If we're going to use the generic kernel_map_pages()
2180 * poisoning, then it's going to smash the contents of
2181 * the redzone and userword anyhow, so switch them off.
2183 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2184 (cachep->flags & SLAB_POISON) &&
2185 is_debug_pagealloc_cache(cachep))
2186 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2187 #endif
2189 if (OFF_SLAB(cachep)) {
2190 cachep->freelist_cache =
2191 kmalloc_slab(cachep->freelist_size, 0u);
2194 err = setup_cpu_cache(cachep, gfp);
2195 if (err) {
2196 __kmem_cache_release(cachep);
2197 return err;
2200 return 0;
2203 #if DEBUG
2204 static void check_irq_off(void)
2206 BUG_ON(!irqs_disabled());
2209 static void check_irq_on(void)
2211 BUG_ON(irqs_disabled());
2214 static void check_mutex_acquired(void)
2216 BUG_ON(!mutex_is_locked(&slab_mutex));
2219 static void check_spinlock_acquired(struct kmem_cache *cachep)
2221 #ifdef CONFIG_SMP
2222 check_irq_off();
2223 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2224 #endif
2227 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2229 #ifdef CONFIG_SMP
2230 check_irq_off();
2231 assert_spin_locked(&get_node(cachep, node)->list_lock);
2232 #endif
2235 #else
2236 #define check_irq_off() do { } while(0)
2237 #define check_irq_on() do { } while(0)
2238 #define check_mutex_acquired() do { } while(0)
2239 #define check_spinlock_acquired(x) do { } while(0)
2240 #define check_spinlock_acquired_node(x, y) do { } while(0)
2241 #endif
2243 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2244 int node, bool free_all, struct list_head *list)
2246 int tofree;
2248 if (!ac || !ac->avail)
2249 return;
2251 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2252 if (tofree > ac->avail)
2253 tofree = (ac->avail + 1) / 2;
2255 free_block(cachep, ac->entry, tofree, node, list);
2256 ac->avail -= tofree;
2257 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2260 static void do_drain(void *arg)
2262 struct kmem_cache *cachep = arg;
2263 struct array_cache *ac;
2264 int node = numa_mem_id();
2265 struct kmem_cache_node *n;
2266 LIST_HEAD(list);
2268 check_irq_off();
2269 ac = cpu_cache_get(cachep);
2270 n = get_node(cachep, node);
2271 spin_lock(&n->list_lock);
2272 free_block(cachep, ac->entry, ac->avail, node, &list);
2273 spin_unlock(&n->list_lock);
2274 slabs_destroy(cachep, &list);
2275 ac->avail = 0;
2278 static void drain_cpu_caches(struct kmem_cache *cachep)
2280 struct kmem_cache_node *n;
2281 int node;
2282 LIST_HEAD(list);
2284 on_each_cpu(do_drain, cachep, 1);
2285 check_irq_on();
2286 for_each_kmem_cache_node(cachep, node, n)
2287 if (n->alien)
2288 drain_alien_cache(cachep, n->alien);
2290 for_each_kmem_cache_node(cachep, node, n) {
2291 spin_lock_irq(&n->list_lock);
2292 drain_array_locked(cachep, n->shared, node, true, &list);
2293 spin_unlock_irq(&n->list_lock);
2295 slabs_destroy(cachep, &list);
2300 * Remove slabs from the list of free slabs.
2301 * Specify the number of slabs to drain in tofree.
2303 * Returns the actual number of slabs released.
2305 static int drain_freelist(struct kmem_cache *cache,
2306 struct kmem_cache_node *n, int tofree)
2308 struct list_head *p;
2309 int nr_freed;
2310 struct page *page;
2312 nr_freed = 0;
2313 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2315 spin_lock_irq(&n->list_lock);
2316 p = n->slabs_free.prev;
2317 if (p == &n->slabs_free) {
2318 spin_unlock_irq(&n->list_lock);
2319 goto out;
2322 page = list_entry(p, struct page, lru);
2323 list_del(&page->lru);
2324 n->num_slabs--;
2326 * Safe to drop the lock. The slab is no longer linked
2327 * to the cache.
2329 n->free_objects -= cache->num;
2330 spin_unlock_irq(&n->list_lock);
2331 slab_destroy(cache, page);
2332 nr_freed++;
2334 out:
2335 return nr_freed;
2338 int __kmem_cache_shrink(struct kmem_cache *cachep)
2340 int ret = 0;
2341 int node;
2342 struct kmem_cache_node *n;
2344 drain_cpu_caches(cachep);
2346 check_irq_on();
2347 for_each_kmem_cache_node(cachep, node, n) {
2348 drain_freelist(cachep, n, INT_MAX);
2350 ret += !list_empty(&n->slabs_full) ||
2351 !list_empty(&n->slabs_partial);
2353 return (ret ? 1 : 0);
2356 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2358 return __kmem_cache_shrink(cachep);
2361 void __kmem_cache_release(struct kmem_cache *cachep)
2363 int i;
2364 struct kmem_cache_node *n;
2366 cache_random_seq_destroy(cachep);
2368 free_percpu(cachep->cpu_cache);
2370 /* NUMA: free the node structures */
2371 for_each_kmem_cache_node(cachep, i, n) {
2372 kfree(n->shared);
2373 free_alien_cache(n->alien);
2374 kfree(n);
2375 cachep->node[i] = NULL;
2380 * Get the memory for a slab management obj.
2382 * For a slab cache when the slab descriptor is off-slab, the
2383 * slab descriptor can't come from the same cache which is being created,
2384 * Because if it is the case, that means we defer the creation of
2385 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2386 * And we eventually call down to __kmem_cache_create(), which
2387 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2388 * This is a "chicken-and-egg" problem.
2390 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2391 * which are all initialized during kmem_cache_init().
2393 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2394 struct page *page, int colour_off,
2395 gfp_t local_flags, int nodeid)
2397 void *freelist;
2398 void *addr = page_address(page);
2400 page->s_mem = addr + colour_off;
2401 page->active = 0;
2403 if (OBJFREELIST_SLAB(cachep))
2404 freelist = NULL;
2405 else if (OFF_SLAB(cachep)) {
2406 /* Slab management obj is off-slab. */
2407 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2408 local_flags, nodeid);
2409 if (!freelist)
2410 return NULL;
2411 } else {
2412 /* We will use last bytes at the slab for freelist */
2413 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2414 cachep->freelist_size;
2417 return freelist;
2420 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2422 return ((freelist_idx_t *)page->freelist)[idx];
2425 static inline void set_free_obj(struct page *page,
2426 unsigned int idx, freelist_idx_t val)
2428 ((freelist_idx_t *)(page->freelist))[idx] = val;
2431 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2433 #if DEBUG
2434 int i;
2436 for (i = 0; i < cachep->num; i++) {
2437 void *objp = index_to_obj(cachep, page, i);
2439 if (cachep->flags & SLAB_STORE_USER)
2440 *dbg_userword(cachep, objp) = NULL;
2442 if (cachep->flags & SLAB_RED_ZONE) {
2443 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2444 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2447 * Constructors are not allowed to allocate memory from the same
2448 * cache which they are a constructor for. Otherwise, deadlock.
2449 * They must also be threaded.
2451 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2452 kasan_unpoison_object_data(cachep,
2453 objp + obj_offset(cachep));
2454 cachep->ctor(objp + obj_offset(cachep));
2455 kasan_poison_object_data(
2456 cachep, objp + obj_offset(cachep));
2459 if (cachep->flags & SLAB_RED_ZONE) {
2460 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2461 slab_error(cachep, "constructor overwrote the end of an object");
2462 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2463 slab_error(cachep, "constructor overwrote the start of an object");
2465 /* need to poison the objs? */
2466 if (cachep->flags & SLAB_POISON) {
2467 poison_obj(cachep, objp, POISON_FREE);
2468 slab_kernel_map(cachep, objp, 0, 0);
2471 #endif
2474 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2475 /* Hold information during a freelist initialization */
2476 union freelist_init_state {
2477 struct {
2478 unsigned int pos;
2479 unsigned int *list;
2480 unsigned int count;
2482 struct rnd_state rnd_state;
2486 * Initialize the state based on the randomization methode available.
2487 * return true if the pre-computed list is available, false otherwize.
2489 static bool freelist_state_initialize(union freelist_init_state *state,
2490 struct kmem_cache *cachep,
2491 unsigned int count)
2493 bool ret;
2494 unsigned int rand;
2496 /* Use best entropy available to define a random shift */
2497 rand = get_random_int();
2499 /* Use a random state if the pre-computed list is not available */
2500 if (!cachep->random_seq) {
2501 prandom_seed_state(&state->rnd_state, rand);
2502 ret = false;
2503 } else {
2504 state->list = cachep->random_seq;
2505 state->count = count;
2506 state->pos = rand % count;
2507 ret = true;
2509 return ret;
2512 /* Get the next entry on the list and randomize it using a random shift */
2513 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2515 if (state->pos >= state->count)
2516 state->pos = 0;
2517 return state->list[state->pos++];
2520 /* Swap two freelist entries */
2521 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2523 swap(((freelist_idx_t *)page->freelist)[a],
2524 ((freelist_idx_t *)page->freelist)[b]);
2528 * Shuffle the freelist initialization state based on pre-computed lists.
2529 * return true if the list was successfully shuffled, false otherwise.
2531 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2533 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2534 union freelist_init_state state;
2535 bool precomputed;
2537 if (count < 2)
2538 return false;
2540 precomputed = freelist_state_initialize(&state, cachep, count);
2542 /* Take a random entry as the objfreelist */
2543 if (OBJFREELIST_SLAB(cachep)) {
2544 if (!precomputed)
2545 objfreelist = count - 1;
2546 else
2547 objfreelist = next_random_slot(&state);
2548 page->freelist = index_to_obj(cachep, page, objfreelist) +
2549 obj_offset(cachep);
2550 count--;
2554 * On early boot, generate the list dynamically.
2555 * Later use a pre-computed list for speed.
2557 if (!precomputed) {
2558 for (i = 0; i < count; i++)
2559 set_free_obj(page, i, i);
2561 /* Fisher-Yates shuffle */
2562 for (i = count - 1; i > 0; i--) {
2563 rand = prandom_u32_state(&state.rnd_state);
2564 rand %= (i + 1);
2565 swap_free_obj(page, i, rand);
2567 } else {
2568 for (i = 0; i < count; i++)
2569 set_free_obj(page, i, next_random_slot(&state));
2572 if (OBJFREELIST_SLAB(cachep))
2573 set_free_obj(page, cachep->num - 1, objfreelist);
2575 return true;
2577 #else
2578 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2579 struct page *page)
2581 return false;
2583 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2585 static void cache_init_objs(struct kmem_cache *cachep,
2586 struct page *page)
2588 int i;
2589 void *objp;
2590 bool shuffled;
2592 cache_init_objs_debug(cachep, page);
2594 /* Try to randomize the freelist if enabled */
2595 shuffled = shuffle_freelist(cachep, page);
2597 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2598 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2599 obj_offset(cachep);
2602 for (i = 0; i < cachep->num; i++) {
2603 objp = index_to_obj(cachep, page, i);
2604 kasan_init_slab_obj(cachep, objp);
2606 /* constructor could break poison info */
2607 if (DEBUG == 0 && cachep->ctor) {
2608 kasan_unpoison_object_data(cachep, objp);
2609 cachep->ctor(objp);
2610 kasan_poison_object_data(cachep, objp);
2613 if (!shuffled)
2614 set_free_obj(page, i, i);
2618 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2620 void *objp;
2622 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2623 page->active++;
2625 #if DEBUG
2626 if (cachep->flags & SLAB_STORE_USER)
2627 set_store_user_dirty(cachep);
2628 #endif
2630 return objp;
2633 static void slab_put_obj(struct kmem_cache *cachep,
2634 struct page *page, void *objp)
2636 unsigned int objnr = obj_to_index(cachep, page, objp);
2637 #if DEBUG
2638 unsigned int i;
2640 /* Verify double free bug */
2641 for (i = page->active; i < cachep->num; i++) {
2642 if (get_free_obj(page, i) == objnr) {
2643 pr_err("slab: double free detected in cache '%s', objp %p\n",
2644 cachep->name, objp);
2645 BUG();
2648 #endif
2649 page->active--;
2650 if (!page->freelist)
2651 page->freelist = objp + obj_offset(cachep);
2653 set_free_obj(page, page->active, objnr);
2657 * Map pages beginning at addr to the given cache and slab. This is required
2658 * for the slab allocator to be able to lookup the cache and slab of a
2659 * virtual address for kfree, ksize, and slab debugging.
2661 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2662 void *freelist)
2664 page->slab_cache = cache;
2665 page->freelist = freelist;
2669 * Grow (by 1) the number of slabs within a cache. This is called by
2670 * kmem_cache_alloc() when there are no active objs left in a cache.
2672 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2673 gfp_t flags, int nodeid)
2675 void *freelist;
2676 size_t offset;
2677 gfp_t local_flags;
2678 int page_node;
2679 struct kmem_cache_node *n;
2680 struct page *page;
2683 * Be lazy and only check for valid flags here, keeping it out of the
2684 * critical path in kmem_cache_alloc().
2686 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2687 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2688 flags &= ~GFP_SLAB_BUG_MASK;
2689 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2690 invalid_mask, &invalid_mask, flags, &flags);
2691 dump_stack();
2693 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2695 check_irq_off();
2696 if (gfpflags_allow_blocking(local_flags))
2697 local_irq_enable();
2700 * Get mem for the objs. Attempt to allocate a physical page from
2701 * 'nodeid'.
2703 page = kmem_getpages(cachep, local_flags, nodeid);
2704 if (!page)
2705 goto failed;
2707 page_node = page_to_nid(page);
2708 n = get_node(cachep, page_node);
2710 /* Get colour for the slab, and cal the next value. */
2711 n->colour_next++;
2712 if (n->colour_next >= cachep->colour)
2713 n->colour_next = 0;
2715 offset = n->colour_next;
2716 if (offset >= cachep->colour)
2717 offset = 0;
2719 offset *= cachep->colour_off;
2721 /* Get slab management. */
2722 freelist = alloc_slabmgmt(cachep, page, offset,
2723 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2724 if (OFF_SLAB(cachep) && !freelist)
2725 goto opps1;
2727 slab_map_pages(cachep, page, freelist);
2729 kasan_poison_slab(page);
2730 cache_init_objs(cachep, page);
2732 if (gfpflags_allow_blocking(local_flags))
2733 local_irq_disable();
2735 return page;
2737 opps1:
2738 kmem_freepages(cachep, page);
2739 failed:
2740 if (gfpflags_allow_blocking(local_flags))
2741 local_irq_disable();
2742 return NULL;
2745 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2747 struct kmem_cache_node *n;
2748 void *list = NULL;
2750 check_irq_off();
2752 if (!page)
2753 return;
2755 INIT_LIST_HEAD(&page->lru);
2756 n = get_node(cachep, page_to_nid(page));
2758 spin_lock(&n->list_lock);
2759 if (!page->active)
2760 list_add_tail(&page->lru, &(n->slabs_free));
2761 else
2762 fixup_slab_list(cachep, n, page, &list);
2764 n->num_slabs++;
2765 STATS_INC_GROWN(cachep);
2766 n->free_objects += cachep->num - page->active;
2767 spin_unlock(&n->list_lock);
2769 fixup_objfreelist_debug(cachep, &list);
2772 #if DEBUG
2775 * Perform extra freeing checks:
2776 * - detect bad pointers.
2777 * - POISON/RED_ZONE checking
2779 static void kfree_debugcheck(const void *objp)
2781 if (!virt_addr_valid(objp)) {
2782 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2783 (unsigned long)objp);
2784 BUG();
2788 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2790 unsigned long long redzone1, redzone2;
2792 redzone1 = *dbg_redzone1(cache, obj);
2793 redzone2 = *dbg_redzone2(cache, obj);
2796 * Redzone is ok.
2798 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2799 return;
2801 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2802 slab_error(cache, "double free detected");
2803 else
2804 slab_error(cache, "memory outside object was overwritten");
2806 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2807 obj, redzone1, redzone2);
2810 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2811 unsigned long caller)
2813 unsigned int objnr;
2814 struct page *page;
2816 BUG_ON(virt_to_cache(objp) != cachep);
2818 objp -= obj_offset(cachep);
2819 kfree_debugcheck(objp);
2820 page = virt_to_head_page(objp);
2822 if (cachep->flags & SLAB_RED_ZONE) {
2823 verify_redzone_free(cachep, objp);
2824 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2825 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2827 if (cachep->flags & SLAB_STORE_USER) {
2828 set_store_user_dirty(cachep);
2829 *dbg_userword(cachep, objp) = (void *)caller;
2832 objnr = obj_to_index(cachep, page, objp);
2834 BUG_ON(objnr >= cachep->num);
2835 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2837 if (cachep->flags & SLAB_POISON) {
2838 poison_obj(cachep, objp, POISON_FREE);
2839 slab_kernel_map(cachep, objp, 0, caller);
2841 return objp;
2844 #else
2845 #define kfree_debugcheck(x) do { } while(0)
2846 #define cache_free_debugcheck(x,objp,z) (objp)
2847 #endif
2849 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2850 void **list)
2852 #if DEBUG
2853 void *next = *list;
2854 void *objp;
2856 while (next) {
2857 objp = next - obj_offset(cachep);
2858 next = *(void **)next;
2859 poison_obj(cachep, objp, POISON_FREE);
2861 #endif
2864 static inline void fixup_slab_list(struct kmem_cache *cachep,
2865 struct kmem_cache_node *n, struct page *page,
2866 void **list)
2868 /* move slabp to correct slabp list: */
2869 list_del(&page->lru);
2870 if (page->active == cachep->num) {
2871 list_add(&page->lru, &n->slabs_full);
2872 if (OBJFREELIST_SLAB(cachep)) {
2873 #if DEBUG
2874 /* Poisoning will be done without holding the lock */
2875 if (cachep->flags & SLAB_POISON) {
2876 void **objp = page->freelist;
2878 *objp = *list;
2879 *list = objp;
2881 #endif
2882 page->freelist = NULL;
2884 } else
2885 list_add(&page->lru, &n->slabs_partial);
2888 /* Try to find non-pfmemalloc slab if needed */
2889 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2890 struct page *page, bool pfmemalloc)
2892 if (!page)
2893 return NULL;
2895 if (pfmemalloc)
2896 return page;
2898 if (!PageSlabPfmemalloc(page))
2899 return page;
2901 /* No need to keep pfmemalloc slab if we have enough free objects */
2902 if (n->free_objects > n->free_limit) {
2903 ClearPageSlabPfmemalloc(page);
2904 return page;
2907 /* Move pfmemalloc slab to the end of list to speed up next search */
2908 list_del(&page->lru);
2909 if (!page->active)
2910 list_add_tail(&page->lru, &n->slabs_free);
2911 else
2912 list_add_tail(&page->lru, &n->slabs_partial);
2914 list_for_each_entry(page, &n->slabs_partial, lru) {
2915 if (!PageSlabPfmemalloc(page))
2916 return page;
2919 list_for_each_entry(page, &n->slabs_free, lru) {
2920 if (!PageSlabPfmemalloc(page))
2921 return page;
2924 return NULL;
2927 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2929 struct page *page;
2931 page = list_first_entry_or_null(&n->slabs_partial,
2932 struct page, lru);
2933 if (!page) {
2934 n->free_touched = 1;
2935 page = list_first_entry_or_null(&n->slabs_free,
2936 struct page, lru);
2939 if (sk_memalloc_socks())
2940 return get_valid_first_slab(n, page, pfmemalloc);
2942 return page;
2945 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2946 struct kmem_cache_node *n, gfp_t flags)
2948 struct page *page;
2949 void *obj;
2950 void *list = NULL;
2952 if (!gfp_pfmemalloc_allowed(flags))
2953 return NULL;
2955 spin_lock(&n->list_lock);
2956 page = get_first_slab(n, true);
2957 if (!page) {
2958 spin_unlock(&n->list_lock);
2959 return NULL;
2962 obj = slab_get_obj(cachep, page);
2963 n->free_objects--;
2965 fixup_slab_list(cachep, n, page, &list);
2967 spin_unlock(&n->list_lock);
2968 fixup_objfreelist_debug(cachep, &list);
2970 return obj;
2974 * Slab list should be fixed up by fixup_slab_list() for existing slab
2975 * or cache_grow_end() for new slab
2977 static __always_inline int alloc_block(struct kmem_cache *cachep,
2978 struct array_cache *ac, struct page *page, int batchcount)
2981 * There must be at least one object available for
2982 * allocation.
2984 BUG_ON(page->active >= cachep->num);
2986 while (page->active < cachep->num && batchcount--) {
2987 STATS_INC_ALLOCED(cachep);
2988 STATS_INC_ACTIVE(cachep);
2989 STATS_SET_HIGH(cachep);
2991 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2994 return batchcount;
2997 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2999 int batchcount;
3000 struct kmem_cache_node *n;
3001 struct array_cache *ac, *shared;
3002 int node;
3003 void *list = NULL;
3004 struct page *page;
3006 check_irq_off();
3007 node = numa_mem_id();
3009 ac = cpu_cache_get(cachep);
3010 batchcount = ac->batchcount;
3011 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3013 * If there was little recent activity on this cache, then
3014 * perform only a partial refill. Otherwise we could generate
3015 * refill bouncing.
3017 batchcount = BATCHREFILL_LIMIT;
3019 n = get_node(cachep, node);
3021 BUG_ON(ac->avail > 0 || !n);
3022 shared = READ_ONCE(n->shared);
3023 if (!n->free_objects && (!shared || !shared->avail))
3024 goto direct_grow;
3026 spin_lock(&n->list_lock);
3027 shared = READ_ONCE(n->shared);
3029 /* See if we can refill from the shared array */
3030 if (shared && transfer_objects(ac, shared, batchcount)) {
3031 shared->touched = 1;
3032 goto alloc_done;
3035 while (batchcount > 0) {
3036 /* Get slab alloc is to come from. */
3037 page = get_first_slab(n, false);
3038 if (!page)
3039 goto must_grow;
3041 check_spinlock_acquired(cachep);
3043 batchcount = alloc_block(cachep, ac, page, batchcount);
3044 fixup_slab_list(cachep, n, page, &list);
3047 must_grow:
3048 n->free_objects -= ac->avail;
3049 alloc_done:
3050 spin_unlock(&n->list_lock);
3051 fixup_objfreelist_debug(cachep, &list);
3053 direct_grow:
3054 if (unlikely(!ac->avail)) {
3055 /* Check if we can use obj in pfmemalloc slab */
3056 if (sk_memalloc_socks()) {
3057 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3059 if (obj)
3060 return obj;
3063 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3066 * cache_grow_begin() can reenable interrupts,
3067 * then ac could change.
3069 ac = cpu_cache_get(cachep);
3070 if (!ac->avail && page)
3071 alloc_block(cachep, ac, page, batchcount);
3072 cache_grow_end(cachep, page);
3074 if (!ac->avail)
3075 return NULL;
3077 ac->touched = 1;
3079 return ac->entry[--ac->avail];
3082 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3083 gfp_t flags)
3085 might_sleep_if(gfpflags_allow_blocking(flags));
3088 #if DEBUG
3089 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3090 gfp_t flags, void *objp, unsigned long caller)
3092 if (!objp)
3093 return objp;
3094 if (cachep->flags & SLAB_POISON) {
3095 check_poison_obj(cachep, objp);
3096 slab_kernel_map(cachep, objp, 1, 0);
3097 poison_obj(cachep, objp, POISON_INUSE);
3099 if (cachep->flags & SLAB_STORE_USER)
3100 *dbg_userword(cachep, objp) = (void *)caller;
3102 if (cachep->flags & SLAB_RED_ZONE) {
3103 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3104 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3105 slab_error(cachep, "double free, or memory outside object was overwritten");
3106 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3107 objp, *dbg_redzone1(cachep, objp),
3108 *dbg_redzone2(cachep, objp));
3110 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3111 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3114 objp += obj_offset(cachep);
3115 if (cachep->ctor && cachep->flags & SLAB_POISON)
3116 cachep->ctor(objp);
3117 if (ARCH_SLAB_MINALIGN &&
3118 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3119 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3120 objp, (int)ARCH_SLAB_MINALIGN);
3122 return objp;
3124 #else
3125 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3126 #endif
3128 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3130 void *objp;
3131 struct array_cache *ac;
3133 check_irq_off();
3135 ac = cpu_cache_get(cachep);
3136 if (likely(ac->avail)) {
3137 ac->touched = 1;
3138 objp = ac->entry[--ac->avail];
3140 STATS_INC_ALLOCHIT(cachep);
3141 goto out;
3144 STATS_INC_ALLOCMISS(cachep);
3145 objp = cache_alloc_refill(cachep, flags);
3147 * the 'ac' may be updated by cache_alloc_refill(),
3148 * and kmemleak_erase() requires its correct value.
3150 ac = cpu_cache_get(cachep);
3152 out:
3154 * To avoid a false negative, if an object that is in one of the
3155 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3156 * treat the array pointers as a reference to the object.
3158 if (objp)
3159 kmemleak_erase(&ac->entry[ac->avail]);
3160 return objp;
3163 #ifdef CONFIG_NUMA
3165 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3167 * If we are in_interrupt, then process context, including cpusets and
3168 * mempolicy, may not apply and should not be used for allocation policy.
3170 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3172 int nid_alloc, nid_here;
3174 if (in_interrupt() || (flags & __GFP_THISNODE))
3175 return NULL;
3176 nid_alloc = nid_here = numa_mem_id();
3177 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3178 nid_alloc = cpuset_slab_spread_node();
3179 else if (current->mempolicy)
3180 nid_alloc = mempolicy_slab_node();
3181 if (nid_alloc != nid_here)
3182 return ____cache_alloc_node(cachep, flags, nid_alloc);
3183 return NULL;
3187 * Fallback function if there was no memory available and no objects on a
3188 * certain node and fall back is permitted. First we scan all the
3189 * available node for available objects. If that fails then we
3190 * perform an allocation without specifying a node. This allows the page
3191 * allocator to do its reclaim / fallback magic. We then insert the
3192 * slab into the proper nodelist and then allocate from it.
3194 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3196 struct zonelist *zonelist;
3197 struct zoneref *z;
3198 struct zone *zone;
3199 enum zone_type high_zoneidx = gfp_zone(flags);
3200 void *obj = NULL;
3201 struct page *page;
3202 int nid;
3203 unsigned int cpuset_mems_cookie;
3205 if (flags & __GFP_THISNODE)
3206 return NULL;
3208 retry_cpuset:
3209 cpuset_mems_cookie = read_mems_allowed_begin();
3210 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3212 retry:
3214 * Look through allowed nodes for objects available
3215 * from existing per node queues.
3217 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3218 nid = zone_to_nid(zone);
3220 if (cpuset_zone_allowed(zone, flags) &&
3221 get_node(cache, nid) &&
3222 get_node(cache, nid)->free_objects) {
3223 obj = ____cache_alloc_node(cache,
3224 gfp_exact_node(flags), nid);
3225 if (obj)
3226 break;
3230 if (!obj) {
3232 * This allocation will be performed within the constraints
3233 * of the current cpuset / memory policy requirements.
3234 * We may trigger various forms of reclaim on the allowed
3235 * set and go into memory reserves if necessary.
3237 page = cache_grow_begin(cache, flags, numa_mem_id());
3238 cache_grow_end(cache, page);
3239 if (page) {
3240 nid = page_to_nid(page);
3241 obj = ____cache_alloc_node(cache,
3242 gfp_exact_node(flags), nid);
3245 * Another processor may allocate the objects in
3246 * the slab since we are not holding any locks.
3248 if (!obj)
3249 goto retry;
3253 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3254 goto retry_cpuset;
3255 return obj;
3259 * A interface to enable slab creation on nodeid
3261 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3262 int nodeid)
3264 struct page *page;
3265 struct kmem_cache_node *n;
3266 void *obj = NULL;
3267 void *list = NULL;
3269 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3270 n = get_node(cachep, nodeid);
3271 BUG_ON(!n);
3273 check_irq_off();
3274 spin_lock(&n->list_lock);
3275 page = get_first_slab(n, false);
3276 if (!page)
3277 goto must_grow;
3279 check_spinlock_acquired_node(cachep, nodeid);
3281 STATS_INC_NODEALLOCS(cachep);
3282 STATS_INC_ACTIVE(cachep);
3283 STATS_SET_HIGH(cachep);
3285 BUG_ON(page->active == cachep->num);
3287 obj = slab_get_obj(cachep, page);
3288 n->free_objects--;
3290 fixup_slab_list(cachep, n, page, &list);
3292 spin_unlock(&n->list_lock);
3293 fixup_objfreelist_debug(cachep, &list);
3294 return obj;
3296 must_grow:
3297 spin_unlock(&n->list_lock);
3298 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3299 if (page) {
3300 /* This slab isn't counted yet so don't update free_objects */
3301 obj = slab_get_obj(cachep, page);
3303 cache_grow_end(cachep, page);
3305 return obj ? obj : fallback_alloc(cachep, flags);
3308 static __always_inline void *
3309 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3310 unsigned long caller)
3312 unsigned long save_flags;
3313 void *ptr;
3314 int slab_node = numa_mem_id();
3316 flags &= gfp_allowed_mask;
3317 cachep = slab_pre_alloc_hook(cachep, flags);
3318 if (unlikely(!cachep))
3319 return NULL;
3321 cache_alloc_debugcheck_before(cachep, flags);
3322 local_irq_save(save_flags);
3324 if (nodeid == NUMA_NO_NODE)
3325 nodeid = slab_node;
3327 if (unlikely(!get_node(cachep, nodeid))) {
3328 /* Node not bootstrapped yet */
3329 ptr = fallback_alloc(cachep, flags);
3330 goto out;
3333 if (nodeid == slab_node) {
3335 * Use the locally cached objects if possible.
3336 * However ____cache_alloc does not allow fallback
3337 * to other nodes. It may fail while we still have
3338 * objects on other nodes available.
3340 ptr = ____cache_alloc(cachep, flags);
3341 if (ptr)
3342 goto out;
3344 /* ___cache_alloc_node can fall back to other nodes */
3345 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3346 out:
3347 local_irq_restore(save_flags);
3348 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3350 if (unlikely(flags & __GFP_ZERO) && ptr)
3351 memset(ptr, 0, cachep->object_size);
3353 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3354 return ptr;
3357 static __always_inline void *
3358 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3360 void *objp;
3362 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3363 objp = alternate_node_alloc(cache, flags);
3364 if (objp)
3365 goto out;
3367 objp = ____cache_alloc(cache, flags);
3370 * We may just have run out of memory on the local node.
3371 * ____cache_alloc_node() knows how to locate memory on other nodes
3373 if (!objp)
3374 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3376 out:
3377 return objp;
3379 #else
3381 static __always_inline void *
3382 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3384 return ____cache_alloc(cachep, flags);
3387 #endif /* CONFIG_NUMA */
3389 static __always_inline void *
3390 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3392 unsigned long save_flags;
3393 void *objp;
3395 flags &= gfp_allowed_mask;
3396 cachep = slab_pre_alloc_hook(cachep, flags);
3397 if (unlikely(!cachep))
3398 return NULL;
3400 cache_alloc_debugcheck_before(cachep, flags);
3401 local_irq_save(save_flags);
3402 objp = __do_cache_alloc(cachep, flags);
3403 local_irq_restore(save_flags);
3404 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3405 prefetchw(objp);
3407 if (unlikely(flags & __GFP_ZERO) && objp)
3408 memset(objp, 0, cachep->object_size);
3410 slab_post_alloc_hook(cachep, flags, 1, &objp);
3411 return objp;
3415 * Caller needs to acquire correct kmem_cache_node's list_lock
3416 * @list: List of detached free slabs should be freed by caller
3418 static void free_block(struct kmem_cache *cachep, void **objpp,
3419 int nr_objects, int node, struct list_head *list)
3421 int i;
3422 struct kmem_cache_node *n = get_node(cachep, node);
3423 struct page *page;
3425 n->free_objects += nr_objects;
3427 for (i = 0; i < nr_objects; i++) {
3428 void *objp;
3429 struct page *page;
3431 objp = objpp[i];
3433 page = virt_to_head_page(objp);
3434 list_del(&page->lru);
3435 check_spinlock_acquired_node(cachep, node);
3436 slab_put_obj(cachep, page, objp);
3437 STATS_DEC_ACTIVE(cachep);
3439 /* fixup slab chains */
3440 if (page->active == 0)
3441 list_add(&page->lru, &n->slabs_free);
3442 else {
3443 /* Unconditionally move a slab to the end of the
3444 * partial list on free - maximum time for the
3445 * other objects to be freed, too.
3447 list_add_tail(&page->lru, &n->slabs_partial);
3451 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3452 n->free_objects -= cachep->num;
3454 page = list_last_entry(&n->slabs_free, struct page, lru);
3455 list_move(&page->lru, list);
3456 n->num_slabs--;
3460 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3462 int batchcount;
3463 struct kmem_cache_node *n;
3464 int node = numa_mem_id();
3465 LIST_HEAD(list);
3467 batchcount = ac->batchcount;
3469 check_irq_off();
3470 n = get_node(cachep, node);
3471 spin_lock(&n->list_lock);
3472 if (n->shared) {
3473 struct array_cache *shared_array = n->shared;
3474 int max = shared_array->limit - shared_array->avail;
3475 if (max) {
3476 if (batchcount > max)
3477 batchcount = max;
3478 memcpy(&(shared_array->entry[shared_array->avail]),
3479 ac->entry, sizeof(void *) * batchcount);
3480 shared_array->avail += batchcount;
3481 goto free_done;
3485 free_block(cachep, ac->entry, batchcount, node, &list);
3486 free_done:
3487 #if STATS
3489 int i = 0;
3490 struct page *page;
3492 list_for_each_entry(page, &n->slabs_free, lru) {
3493 BUG_ON(page->active);
3495 i++;
3497 STATS_SET_FREEABLE(cachep, i);
3499 #endif
3500 spin_unlock(&n->list_lock);
3501 slabs_destroy(cachep, &list);
3502 ac->avail -= batchcount;
3503 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3507 * Release an obj back to its cache. If the obj has a constructed state, it must
3508 * be in this state _before_ it is released. Called with disabled ints.
3510 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3511 unsigned long caller)
3513 /* Put the object into the quarantine, don't touch it for now. */
3514 if (kasan_slab_free(cachep, objp))
3515 return;
3517 ___cache_free(cachep, objp, caller);
3520 void ___cache_free(struct kmem_cache *cachep, void *objp,
3521 unsigned long caller)
3523 struct array_cache *ac = cpu_cache_get(cachep);
3525 check_irq_off();
3526 kmemleak_free_recursive(objp, cachep->flags);
3527 objp = cache_free_debugcheck(cachep, objp, caller);
3529 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3532 * Skip calling cache_free_alien() when the platform is not numa.
3533 * This will avoid cache misses that happen while accessing slabp (which
3534 * is per page memory reference) to get nodeid. Instead use a global
3535 * variable to skip the call, which is mostly likely to be present in
3536 * the cache.
3538 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3539 return;
3541 if (ac->avail < ac->limit) {
3542 STATS_INC_FREEHIT(cachep);
3543 } else {
3544 STATS_INC_FREEMISS(cachep);
3545 cache_flusharray(cachep, ac);
3548 if (sk_memalloc_socks()) {
3549 struct page *page = virt_to_head_page(objp);
3551 if (unlikely(PageSlabPfmemalloc(page))) {
3552 cache_free_pfmemalloc(cachep, page, objp);
3553 return;
3557 ac->entry[ac->avail++] = objp;
3561 * kmem_cache_alloc - Allocate an object
3562 * @cachep: The cache to allocate from.
3563 * @flags: See kmalloc().
3565 * Allocate an object from this cache. The flags are only relevant
3566 * if the cache has no available objects.
3568 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3570 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3572 kasan_slab_alloc(cachep, ret, flags);
3573 trace_kmem_cache_alloc(_RET_IP_, ret,
3574 cachep->object_size, cachep->size, flags);
3576 return ret;
3578 EXPORT_SYMBOL(kmem_cache_alloc);
3580 static __always_inline void
3581 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3582 size_t size, void **p, unsigned long caller)
3584 size_t i;
3586 for (i = 0; i < size; i++)
3587 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3590 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3591 void **p)
3593 size_t i;
3595 s = slab_pre_alloc_hook(s, flags);
3596 if (!s)
3597 return 0;
3599 cache_alloc_debugcheck_before(s, flags);
3601 local_irq_disable();
3602 for (i = 0; i < size; i++) {
3603 void *objp = __do_cache_alloc(s, flags);
3605 if (unlikely(!objp))
3606 goto error;
3607 p[i] = objp;
3609 local_irq_enable();
3611 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3613 /* Clear memory outside IRQ disabled section */
3614 if (unlikely(flags & __GFP_ZERO))
3615 for (i = 0; i < size; i++)
3616 memset(p[i], 0, s->object_size);
3618 slab_post_alloc_hook(s, flags, size, p);
3619 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3620 return size;
3621 error:
3622 local_irq_enable();
3623 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3624 slab_post_alloc_hook(s, flags, i, p);
3625 __kmem_cache_free_bulk(s, i, p);
3626 return 0;
3628 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3630 #ifdef CONFIG_TRACING
3631 void *
3632 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3634 void *ret;
3636 ret = slab_alloc(cachep, flags, _RET_IP_);
3638 kasan_kmalloc(cachep, ret, size, flags);
3639 trace_kmalloc(_RET_IP_, ret,
3640 size, cachep->size, flags);
3641 return ret;
3643 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3644 #endif
3646 #ifdef CONFIG_NUMA
3648 * kmem_cache_alloc_node - Allocate an object on the specified node
3649 * @cachep: The cache to allocate from.
3650 * @flags: See kmalloc().
3651 * @nodeid: node number of the target node.
3653 * Identical to kmem_cache_alloc but it will allocate memory on the given
3654 * node, which can improve the performance for cpu bound structures.
3656 * Fallback to other node is possible if __GFP_THISNODE is not set.
3658 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3660 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662 kasan_slab_alloc(cachep, ret, flags);
3663 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3664 cachep->object_size, cachep->size,
3665 flags, nodeid);
3667 return ret;
3669 EXPORT_SYMBOL(kmem_cache_alloc_node);
3671 #ifdef CONFIG_TRACING
3672 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3673 gfp_t flags,
3674 int nodeid,
3675 size_t size)
3677 void *ret;
3679 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3681 kasan_kmalloc(cachep, ret, size, flags);
3682 trace_kmalloc_node(_RET_IP_, ret,
3683 size, cachep->size,
3684 flags, nodeid);
3685 return ret;
3687 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3688 #endif
3690 static __always_inline void *
3691 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3693 struct kmem_cache *cachep;
3694 void *ret;
3696 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3697 return NULL;
3698 cachep = kmalloc_slab(size, flags);
3699 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3700 return cachep;
3701 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3702 kasan_kmalloc(cachep, ret, size, flags);
3704 return ret;
3707 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3709 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3711 EXPORT_SYMBOL(__kmalloc_node);
3713 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3714 int node, unsigned long caller)
3716 return __do_kmalloc_node(size, flags, node, caller);
3718 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3719 #endif /* CONFIG_NUMA */
3722 * __do_kmalloc - allocate memory
3723 * @size: how many bytes of memory are required.
3724 * @flags: the type of memory to allocate (see kmalloc).
3725 * @caller: function caller for debug tracking of the caller
3727 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3728 unsigned long caller)
3730 struct kmem_cache *cachep;
3731 void *ret;
3733 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3734 return NULL;
3735 cachep = kmalloc_slab(size, flags);
3736 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3737 return cachep;
3738 ret = slab_alloc(cachep, flags, caller);
3740 kasan_kmalloc(cachep, ret, size, flags);
3741 trace_kmalloc(caller, ret,
3742 size, cachep->size, flags);
3744 return ret;
3747 void *__kmalloc(size_t size, gfp_t flags)
3749 return __do_kmalloc(size, flags, _RET_IP_);
3751 EXPORT_SYMBOL(__kmalloc);
3753 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3755 return __do_kmalloc(size, flags, caller);
3757 EXPORT_SYMBOL(__kmalloc_track_caller);
3760 * kmem_cache_free - Deallocate an object
3761 * @cachep: The cache the allocation was from.
3762 * @objp: The previously allocated object.
3764 * Free an object which was previously allocated from this
3765 * cache.
3767 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3769 unsigned long flags;
3770 cachep = cache_from_obj(cachep, objp);
3771 if (!cachep)
3772 return;
3774 local_irq_save(flags);
3775 debug_check_no_locks_freed(objp, cachep->object_size);
3776 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3777 debug_check_no_obj_freed(objp, cachep->object_size);
3778 __cache_free(cachep, objp, _RET_IP_);
3779 local_irq_restore(flags);
3781 trace_kmem_cache_free(_RET_IP_, objp);
3783 EXPORT_SYMBOL(kmem_cache_free);
3785 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3787 struct kmem_cache *s;
3788 size_t i;
3790 local_irq_disable();
3791 for (i = 0; i < size; i++) {
3792 void *objp = p[i];
3794 if (!orig_s) /* called via kfree_bulk */
3795 s = virt_to_cache(objp);
3796 else
3797 s = cache_from_obj(orig_s, objp);
3799 debug_check_no_locks_freed(objp, s->object_size);
3800 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3801 debug_check_no_obj_freed(objp, s->object_size);
3803 __cache_free(s, objp, _RET_IP_);
3805 local_irq_enable();
3807 /* FIXME: add tracing */
3809 EXPORT_SYMBOL(kmem_cache_free_bulk);
3812 * kfree - free previously allocated memory
3813 * @objp: pointer returned by kmalloc.
3815 * If @objp is NULL, no operation is performed.
3817 * Don't free memory not originally allocated by kmalloc()
3818 * or you will run into trouble.
3820 void kfree(const void *objp)
3822 struct kmem_cache *c;
3823 unsigned long flags;
3825 trace_kfree(_RET_IP_, objp);
3827 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3828 return;
3829 local_irq_save(flags);
3830 kfree_debugcheck(objp);
3831 c = virt_to_cache(objp);
3832 debug_check_no_locks_freed(objp, c->object_size);
3834 debug_check_no_obj_freed(objp, c->object_size);
3835 __cache_free(c, (void *)objp, _RET_IP_);
3836 local_irq_restore(flags);
3838 EXPORT_SYMBOL(kfree);
3841 * This initializes kmem_cache_node or resizes various caches for all nodes.
3843 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3845 int ret;
3846 int node;
3847 struct kmem_cache_node *n;
3849 for_each_online_node(node) {
3850 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3851 if (ret)
3852 goto fail;
3856 return 0;
3858 fail:
3859 if (!cachep->list.next) {
3860 /* Cache is not active yet. Roll back what we did */
3861 node--;
3862 while (node >= 0) {
3863 n = get_node(cachep, node);
3864 if (n) {
3865 kfree(n->shared);
3866 free_alien_cache(n->alien);
3867 kfree(n);
3868 cachep->node[node] = NULL;
3870 node--;
3873 return -ENOMEM;
3876 /* Always called with the slab_mutex held */
3877 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3878 int batchcount, int shared, gfp_t gfp)
3880 struct array_cache __percpu *cpu_cache, *prev;
3881 int cpu;
3883 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3884 if (!cpu_cache)
3885 return -ENOMEM;
3887 prev = cachep->cpu_cache;
3888 cachep->cpu_cache = cpu_cache;
3889 kick_all_cpus_sync();
3891 check_irq_on();
3892 cachep->batchcount = batchcount;
3893 cachep->limit = limit;
3894 cachep->shared = shared;
3896 if (!prev)
3897 goto setup_node;
3899 for_each_online_cpu(cpu) {
3900 LIST_HEAD(list);
3901 int node;
3902 struct kmem_cache_node *n;
3903 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3905 node = cpu_to_mem(cpu);
3906 n = get_node(cachep, node);
3907 spin_lock_irq(&n->list_lock);
3908 free_block(cachep, ac->entry, ac->avail, node, &list);
3909 spin_unlock_irq(&n->list_lock);
3910 slabs_destroy(cachep, &list);
3912 free_percpu(prev);
3914 setup_node:
3915 return setup_kmem_cache_nodes(cachep, gfp);
3918 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3919 int batchcount, int shared, gfp_t gfp)
3921 int ret;
3922 struct kmem_cache *c;
3924 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3926 if (slab_state < FULL)
3927 return ret;
3929 if ((ret < 0) || !is_root_cache(cachep))
3930 return ret;
3932 lockdep_assert_held(&slab_mutex);
3933 for_each_memcg_cache(c, cachep) {
3934 /* return value determined by the root cache only */
3935 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3938 return ret;
3941 /* Called with slab_mutex held always */
3942 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3944 int err;
3945 int limit = 0;
3946 int shared = 0;
3947 int batchcount = 0;
3949 err = cache_random_seq_create(cachep, cachep->num, gfp);
3950 if (err)
3951 goto end;
3953 if (!is_root_cache(cachep)) {
3954 struct kmem_cache *root = memcg_root_cache(cachep);
3955 limit = root->limit;
3956 shared = root->shared;
3957 batchcount = root->batchcount;
3960 if (limit && shared && batchcount)
3961 goto skip_setup;
3963 * The head array serves three purposes:
3964 * - create a LIFO ordering, i.e. return objects that are cache-warm
3965 * - reduce the number of spinlock operations.
3966 * - reduce the number of linked list operations on the slab and
3967 * bufctl chains: array operations are cheaper.
3968 * The numbers are guessed, we should auto-tune as described by
3969 * Bonwick.
3971 if (cachep->size > 131072)
3972 limit = 1;
3973 else if (cachep->size > PAGE_SIZE)
3974 limit = 8;
3975 else if (cachep->size > 1024)
3976 limit = 24;
3977 else if (cachep->size > 256)
3978 limit = 54;
3979 else
3980 limit = 120;
3983 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3984 * allocation behaviour: Most allocs on one cpu, most free operations
3985 * on another cpu. For these cases, an efficient object passing between
3986 * cpus is necessary. This is provided by a shared array. The array
3987 * replaces Bonwick's magazine layer.
3988 * On uniprocessor, it's functionally equivalent (but less efficient)
3989 * to a larger limit. Thus disabled by default.
3991 shared = 0;
3992 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3993 shared = 8;
3995 #if DEBUG
3997 * With debugging enabled, large batchcount lead to excessively long
3998 * periods with disabled local interrupts. Limit the batchcount
4000 if (limit > 32)
4001 limit = 32;
4002 #endif
4003 batchcount = (limit + 1) / 2;
4004 skip_setup:
4005 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4006 end:
4007 if (err)
4008 pr_err("enable_cpucache failed for %s, error %d\n",
4009 cachep->name, -err);
4010 return err;
4014 * Drain an array if it contains any elements taking the node lock only if
4015 * necessary. Note that the node listlock also protects the array_cache
4016 * if drain_array() is used on the shared array.
4018 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4019 struct array_cache *ac, int node)
4021 LIST_HEAD(list);
4023 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4024 check_mutex_acquired();
4026 if (!ac || !ac->avail)
4027 return;
4029 if (ac->touched) {
4030 ac->touched = 0;
4031 return;
4034 spin_lock_irq(&n->list_lock);
4035 drain_array_locked(cachep, ac, node, false, &list);
4036 spin_unlock_irq(&n->list_lock);
4038 slabs_destroy(cachep, &list);
4042 * cache_reap - Reclaim memory from caches.
4043 * @w: work descriptor
4045 * Called from workqueue/eventd every few seconds.
4046 * Purpose:
4047 * - clear the per-cpu caches for this CPU.
4048 * - return freeable pages to the main free memory pool.
4050 * If we cannot acquire the cache chain mutex then just give up - we'll try
4051 * again on the next iteration.
4053 static void cache_reap(struct work_struct *w)
4055 struct kmem_cache *searchp;
4056 struct kmem_cache_node *n;
4057 int node = numa_mem_id();
4058 struct delayed_work *work = to_delayed_work(w);
4060 if (!mutex_trylock(&slab_mutex))
4061 /* Give up. Setup the next iteration. */
4062 goto out;
4064 list_for_each_entry(searchp, &slab_caches, list) {
4065 check_irq_on();
4068 * We only take the node lock if absolutely necessary and we
4069 * have established with reasonable certainty that
4070 * we can do some work if the lock was obtained.
4072 n = get_node(searchp, node);
4074 reap_alien(searchp, n);
4076 drain_array(searchp, n, cpu_cache_get(searchp), node);
4079 * These are racy checks but it does not matter
4080 * if we skip one check or scan twice.
4082 if (time_after(n->next_reap, jiffies))
4083 goto next;
4085 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4087 drain_array(searchp, n, n->shared, node);
4089 if (n->free_touched)
4090 n->free_touched = 0;
4091 else {
4092 int freed;
4094 freed = drain_freelist(searchp, n, (n->free_limit +
4095 5 * searchp->num - 1) / (5 * searchp->num));
4096 STATS_ADD_REAPED(searchp, freed);
4098 next:
4099 cond_resched();
4101 check_irq_on();
4102 mutex_unlock(&slab_mutex);
4103 next_reap_node();
4104 out:
4105 /* Set up the next iteration */
4106 schedule_delayed_work_on(smp_processor_id(), work,
4107 round_jiffies_relative(REAPTIMEOUT_AC));
4110 #ifdef CONFIG_SLABINFO
4111 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4113 struct page *page;
4114 unsigned long active_objs;
4115 unsigned long num_objs;
4116 unsigned long active_slabs = 0;
4117 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4118 unsigned long num_slabs_partial = 0, num_slabs_free = 0;
4119 unsigned long num_slabs_full = 0;
4120 const char *name;
4121 char *error = NULL;
4122 int node;
4123 struct kmem_cache_node *n;
4125 active_objs = 0;
4126 num_slabs = 0;
4127 for_each_kmem_cache_node(cachep, node, n) {
4129 check_irq_on();
4130 spin_lock_irq(&n->list_lock);
4132 num_slabs += n->num_slabs;
4134 list_for_each_entry(page, &n->slabs_partial, lru) {
4135 if (page->active == cachep->num && !error)
4136 error = "slabs_partial accounting error";
4137 if (!page->active && !error)
4138 error = "slabs_partial accounting error";
4139 active_objs += page->active;
4140 num_slabs_partial++;
4143 list_for_each_entry(page, &n->slabs_free, lru) {
4144 if (page->active && !error)
4145 error = "slabs_free accounting error";
4146 num_slabs_free++;
4149 free_objects += n->free_objects;
4150 if (n->shared)
4151 shared_avail += n->shared->avail;
4153 spin_unlock_irq(&n->list_lock);
4155 num_objs = num_slabs * cachep->num;
4156 active_slabs = num_slabs - num_slabs_free;
4157 num_slabs_full = num_slabs - (num_slabs_partial + num_slabs_free);
4158 active_objs += (num_slabs_full * cachep->num);
4160 if (num_objs - active_objs != free_objects && !error)
4161 error = "free_objects accounting error";
4163 name = cachep->name;
4164 if (error)
4165 pr_err("slab: cache %s error: %s\n", name, error);
4167 sinfo->active_objs = active_objs;
4168 sinfo->num_objs = num_objs;
4169 sinfo->active_slabs = active_slabs;
4170 sinfo->num_slabs = num_slabs;
4171 sinfo->shared_avail = shared_avail;
4172 sinfo->limit = cachep->limit;
4173 sinfo->batchcount = cachep->batchcount;
4174 sinfo->shared = cachep->shared;
4175 sinfo->objects_per_slab = cachep->num;
4176 sinfo->cache_order = cachep->gfporder;
4179 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4181 #if STATS
4182 { /* node stats */
4183 unsigned long high = cachep->high_mark;
4184 unsigned long allocs = cachep->num_allocations;
4185 unsigned long grown = cachep->grown;
4186 unsigned long reaped = cachep->reaped;
4187 unsigned long errors = cachep->errors;
4188 unsigned long max_freeable = cachep->max_freeable;
4189 unsigned long node_allocs = cachep->node_allocs;
4190 unsigned long node_frees = cachep->node_frees;
4191 unsigned long overflows = cachep->node_overflow;
4193 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4194 allocs, high, grown,
4195 reaped, errors, max_freeable, node_allocs,
4196 node_frees, overflows);
4198 /* cpu stats */
4200 unsigned long allochit = atomic_read(&cachep->allochit);
4201 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4202 unsigned long freehit = atomic_read(&cachep->freehit);
4203 unsigned long freemiss = atomic_read(&cachep->freemiss);
4205 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4206 allochit, allocmiss, freehit, freemiss);
4208 #endif
4211 #define MAX_SLABINFO_WRITE 128
4213 * slabinfo_write - Tuning for the slab allocator
4214 * @file: unused
4215 * @buffer: user buffer
4216 * @count: data length
4217 * @ppos: unused
4219 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4220 size_t count, loff_t *ppos)
4222 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4223 int limit, batchcount, shared, res;
4224 struct kmem_cache *cachep;
4226 if (count > MAX_SLABINFO_WRITE)
4227 return -EINVAL;
4228 if (copy_from_user(&kbuf, buffer, count))
4229 return -EFAULT;
4230 kbuf[MAX_SLABINFO_WRITE] = '\0';
4232 tmp = strchr(kbuf, ' ');
4233 if (!tmp)
4234 return -EINVAL;
4235 *tmp = '\0';
4236 tmp++;
4237 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4238 return -EINVAL;
4240 /* Find the cache in the chain of caches. */
4241 mutex_lock(&slab_mutex);
4242 res = -EINVAL;
4243 list_for_each_entry(cachep, &slab_caches, list) {
4244 if (!strcmp(cachep->name, kbuf)) {
4245 if (limit < 1 || batchcount < 1 ||
4246 batchcount > limit || shared < 0) {
4247 res = 0;
4248 } else {
4249 res = do_tune_cpucache(cachep, limit,
4250 batchcount, shared,
4251 GFP_KERNEL);
4253 break;
4256 mutex_unlock(&slab_mutex);
4257 if (res >= 0)
4258 res = count;
4259 return res;
4262 #ifdef CONFIG_DEBUG_SLAB_LEAK
4264 static inline int add_caller(unsigned long *n, unsigned long v)
4266 unsigned long *p;
4267 int l;
4268 if (!v)
4269 return 1;
4270 l = n[1];
4271 p = n + 2;
4272 while (l) {
4273 int i = l/2;
4274 unsigned long *q = p + 2 * i;
4275 if (*q == v) {
4276 q[1]++;
4277 return 1;
4279 if (*q > v) {
4280 l = i;
4281 } else {
4282 p = q + 2;
4283 l -= i + 1;
4286 if (++n[1] == n[0])
4287 return 0;
4288 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4289 p[0] = v;
4290 p[1] = 1;
4291 return 1;
4294 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4295 struct page *page)
4297 void *p;
4298 int i, j;
4299 unsigned long v;
4301 if (n[0] == n[1])
4302 return;
4303 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4304 bool active = true;
4306 for (j = page->active; j < c->num; j++) {
4307 if (get_free_obj(page, j) == i) {
4308 active = false;
4309 break;
4313 if (!active)
4314 continue;
4317 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4318 * mapping is established when actual object allocation and
4319 * we could mistakenly access the unmapped object in the cpu
4320 * cache.
4322 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4323 continue;
4325 if (!add_caller(n, v))
4326 return;
4330 static void show_symbol(struct seq_file *m, unsigned long address)
4332 #ifdef CONFIG_KALLSYMS
4333 unsigned long offset, size;
4334 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4336 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4337 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4338 if (modname[0])
4339 seq_printf(m, " [%s]", modname);
4340 return;
4342 #endif
4343 seq_printf(m, "%p", (void *)address);
4346 static int leaks_show(struct seq_file *m, void *p)
4348 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4349 struct page *page;
4350 struct kmem_cache_node *n;
4351 const char *name;
4352 unsigned long *x = m->private;
4353 int node;
4354 int i;
4356 if (!(cachep->flags & SLAB_STORE_USER))
4357 return 0;
4358 if (!(cachep->flags & SLAB_RED_ZONE))
4359 return 0;
4362 * Set store_user_clean and start to grab stored user information
4363 * for all objects on this cache. If some alloc/free requests comes
4364 * during the processing, information would be wrong so restart
4365 * whole processing.
4367 do {
4368 drain_cpu_caches(cachep);
4370 * drain_cpu_caches() could make kmemleak_object and
4371 * debug_objects_cache dirty, so reset afterwards.
4373 set_store_user_clean(cachep);
4375 x[1] = 0;
4377 for_each_kmem_cache_node(cachep, node, n) {
4379 check_irq_on();
4380 spin_lock_irq(&n->list_lock);
4382 list_for_each_entry(page, &n->slabs_full, lru)
4383 handle_slab(x, cachep, page);
4384 list_for_each_entry(page, &n->slabs_partial, lru)
4385 handle_slab(x, cachep, page);
4386 spin_unlock_irq(&n->list_lock);
4388 } while (!is_store_user_clean(cachep));
4390 name = cachep->name;
4391 if (x[0] == x[1]) {
4392 /* Increase the buffer size */
4393 mutex_unlock(&slab_mutex);
4394 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4395 if (!m->private) {
4396 /* Too bad, we are really out */
4397 m->private = x;
4398 mutex_lock(&slab_mutex);
4399 return -ENOMEM;
4401 *(unsigned long *)m->private = x[0] * 2;
4402 kfree(x);
4403 mutex_lock(&slab_mutex);
4404 /* Now make sure this entry will be retried */
4405 m->count = m->size;
4406 return 0;
4408 for (i = 0; i < x[1]; i++) {
4409 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4410 show_symbol(m, x[2*i+2]);
4411 seq_putc(m, '\n');
4414 return 0;
4417 static const struct seq_operations slabstats_op = {
4418 .start = slab_start,
4419 .next = slab_next,
4420 .stop = slab_stop,
4421 .show = leaks_show,
4424 static int slabstats_open(struct inode *inode, struct file *file)
4426 unsigned long *n;
4428 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4429 if (!n)
4430 return -ENOMEM;
4432 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4434 return 0;
4437 static const struct file_operations proc_slabstats_operations = {
4438 .open = slabstats_open,
4439 .read = seq_read,
4440 .llseek = seq_lseek,
4441 .release = seq_release_private,
4443 #endif
4445 static int __init slab_proc_init(void)
4447 #ifdef CONFIG_DEBUG_SLAB_LEAK
4448 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4449 #endif
4450 return 0;
4452 module_init(slab_proc_init);
4453 #endif
4455 #ifdef CONFIG_HARDENED_USERCOPY
4457 * Rejects objects that are incorrectly sized.
4459 * Returns NULL if check passes, otherwise const char * to name of cache
4460 * to indicate an error.
4462 const char *__check_heap_object(const void *ptr, unsigned long n,
4463 struct page *page)
4465 struct kmem_cache *cachep;
4466 unsigned int objnr;
4467 unsigned long offset;
4469 /* Find and validate object. */
4470 cachep = page->slab_cache;
4471 objnr = obj_to_index(cachep, page, (void *)ptr);
4472 BUG_ON(objnr >= cachep->num);
4474 /* Find offset within object. */
4475 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4477 /* Allow address range falling entirely within object size. */
4478 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4479 return NULL;
4481 return cachep->name;
4483 #endif /* CONFIG_HARDENED_USERCOPY */
4486 * ksize - get the actual amount of memory allocated for a given object
4487 * @objp: Pointer to the object
4489 * kmalloc may internally round up allocations and return more memory
4490 * than requested. ksize() can be used to determine the actual amount of
4491 * memory allocated. The caller may use this additional memory, even though
4492 * a smaller amount of memory was initially specified with the kmalloc call.
4493 * The caller must guarantee that objp points to a valid object previously
4494 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4495 * must not be freed during the duration of the call.
4497 size_t ksize(const void *objp)
4499 size_t size;
4501 BUG_ON(!objp);
4502 if (unlikely(objp == ZERO_SIZE_PTR))
4503 return 0;
4505 size = virt_to_cache(objp)->object_size;
4506 /* We assume that ksize callers could use the whole allocated area,
4507 * so we need to unpoison this area.
4509 kasan_unpoison_shadow(objp, size);
4511 return size;
4513 EXPORT_SYMBOL(ksize);