iscsi_ibft: make ISCSI_IBFT dependson ACPI instead of ISCSI_IBFT_FIND
[linux/fpc-iii.git] / mm / vmstat.c
blob9af8d369e1122d6cde11685291518923bf483759
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
31 #include "internal.h"
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states);
37 static void sum_vm_events(unsigned long *ret)
39 int cpu;
40 int i;
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
44 for_each_online_cpu(cpu) {
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret)
59 get_online_cpus();
60 sum_vm_events(ret);
61 put_online_cpus();
63 EXPORT_SYMBOL_GPL(all_vm_events);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu)
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91 EXPORT_SYMBOL(vm_zone_stat);
92 EXPORT_SYMBOL(vm_node_stat);
94 #ifdef CONFIG_SMP
96 int calculate_pressure_threshold(struct zone *zone)
98 int threshold;
99 int watermark_distance;
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
107 * the min watermark
109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
113 * Maximum threshold is 125
115 threshold = min(125, threshold);
117 return threshold;
120 int calculate_normal_threshold(struct zone *zone)
122 int threshold;
123 int mem; /* memory in 128 MB units */
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
131 * Some sample thresholds:
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
135 * 8 1 1 0.9-1 GB 4
136 * 16 2 2 0.9-1 GB 4
137 * 20 2 2 1-2 GB 5
138 * 24 2 2 2-4 GB 6
139 * 28 2 2 4-8 GB 7
140 * 32 2 2 8-16 GB 8
141 * 4 2 2 <128M 1
142 * 30 4 3 2-4 GB 5
143 * 48 4 3 8-16 GB 8
144 * 32 8 4 1-2 GB 4
145 * 32 8 4 0.9-1GB 4
146 * 10 16 5 <128M 1
147 * 40 16 5 900M 4
148 * 70 64 7 2-4 GB 5
149 * 84 64 7 4-8 GB 6
150 * 108 512 9 4-8 GB 6
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
155 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
160 * Maximum threshold is 125
162 threshold = min(125, threshold);
164 return threshold;
168 * Refresh the thresholds for each zone.
170 void refresh_zone_stat_thresholds(void)
172 struct pglist_data *pgdat;
173 struct zone *zone;
174 int cpu;
175 int threshold;
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat) {
179 for_each_online_cpu(cpu) {
180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
184 for_each_populated_zone(zone) {
185 struct pglist_data *pgdat = zone->zone_pgdat;
186 unsigned long max_drift, tolerate_drift;
188 threshold = calculate_normal_threshold(zone);
190 for_each_online_cpu(cpu) {
191 int pgdat_threshold;
193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194 = threshold;
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199 = max(threshold, pgdat_threshold);
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208 max_drift = num_online_cpus() * threshold;
209 if (max_drift > tolerate_drift)
210 zone->percpu_drift_mark = high_wmark_pages(zone) +
211 max_drift;
215 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216 int (*calculate_pressure)(struct zone *))
218 struct zone *zone;
219 int cpu;
220 int threshold;
221 int i;
223 for (i = 0; i < pgdat->nr_zones; i++) {
224 zone = &pgdat->node_zones[i];
225 if (!zone->percpu_drift_mark)
226 continue;
228 threshold = (*calculate_pressure)(zone);
229 for_each_online_cpu(cpu)
230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231 = threshold;
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
240 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241 long delta)
243 struct per_cpu_pageset __percpu *pcp = zone->pageset;
244 s8 __percpu *p = pcp->vm_stat_diff + item;
245 long x;
246 long t;
248 x = delta + __this_cpu_read(*p);
250 t = __this_cpu_read(pcp->stat_threshold);
252 if (unlikely(x > t || x < -t)) {
253 zone_page_state_add(x, zone, item);
254 x = 0;
256 __this_cpu_write(*p, x);
258 EXPORT_SYMBOL(__mod_zone_page_state);
260 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261 long delta)
263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264 s8 __percpu *p = pcp->vm_node_stat_diff + item;
265 long x;
266 long t;
268 x = delta + __this_cpu_read(*p);
270 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(x > t || x < -t)) {
273 node_page_state_add(x, pgdat, item);
274 x = 0;
276 __this_cpu_write(*p, x);
278 EXPORT_SYMBOL(__mod_node_page_state);
281 * Optimized increment and decrement functions.
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
290 * The increment or decrement is known and therefore one boundary check can
291 * be omitted.
293 * NOTE: These functions are very performance sensitive. Change only
294 * with care.
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
303 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
305 struct per_cpu_pageset __percpu *pcp = zone->pageset;
306 s8 __percpu *p = pcp->vm_stat_diff + item;
307 s8 v, t;
309 v = __this_cpu_inc_return(*p);
310 t = __this_cpu_read(pcp->stat_threshold);
311 if (unlikely(v > t)) {
312 s8 overstep = t >> 1;
314 zone_page_state_add(v + overstep, zone, item);
315 __this_cpu_write(*p, -overstep);
319 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322 s8 __percpu *p = pcp->vm_node_stat_diff + item;
323 s8 v, t;
325 v = __this_cpu_inc_return(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(v > t)) {
328 s8 overstep = t >> 1;
330 node_page_state_add(v + overstep, pgdat, item);
331 __this_cpu_write(*p, -overstep);
335 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
337 __inc_zone_state(page_zone(page), item);
339 EXPORT_SYMBOL(__inc_zone_page_state);
341 void __inc_node_page_state(struct page *page, enum node_stat_item item)
343 __inc_node_state(page_pgdat(page), item);
345 EXPORT_SYMBOL(__inc_node_page_state);
347 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
349 struct per_cpu_pageset __percpu *pcp = zone->pageset;
350 s8 __percpu *p = pcp->vm_stat_diff + item;
351 s8 v, t;
353 v = __this_cpu_dec_return(*p);
354 t = __this_cpu_read(pcp->stat_threshold);
355 if (unlikely(v < - t)) {
356 s8 overstep = t >> 1;
358 zone_page_state_add(v - overstep, zone, item);
359 __this_cpu_write(*p, overstep);
363 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366 s8 __percpu *p = pcp->vm_node_stat_diff + item;
367 s8 v, t;
369 v = __this_cpu_dec_return(*p);
370 t = __this_cpu_read(pcp->stat_threshold);
371 if (unlikely(v < - t)) {
372 s8 overstep = t >> 1;
374 node_page_state_add(v - overstep, pgdat, item);
375 __this_cpu_write(*p, overstep);
379 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
381 __dec_zone_state(page_zone(page), item);
383 EXPORT_SYMBOL(__dec_zone_page_state);
385 void __dec_node_page_state(struct page *page, enum node_stat_item item)
387 __dec_node_state(page_pgdat(page), item);
389 EXPORT_SYMBOL(__dec_node_page_state);
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
396 * mod_state() modifies the zone counter state through atomic per cpu
397 * operations.
399 * Overstep mode specifies how overstep should handled:
400 * 0 No overstepping
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
404 static inline void mod_zone_state(struct zone *zone,
405 enum zone_stat_item item, long delta, int overstep_mode)
407 struct per_cpu_pageset __percpu *pcp = zone->pageset;
408 s8 __percpu *p = pcp->vm_stat_diff + item;
409 long o, n, t, z;
411 do {
412 z = 0; /* overflow to zone counters */
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
424 t = this_cpu_read(pcp->stat_threshold);
426 o = this_cpu_read(*p);
427 n = delta + o;
429 if (n > t || n < -t) {
430 int os = overstep_mode * (t >> 1) ;
432 /* Overflow must be added to zone counters */
433 z = n + os;
434 n = -os;
436 } while (this_cpu_cmpxchg(*p, o, n) != o);
438 if (z)
439 zone_page_state_add(z, zone, item);
442 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443 long delta)
445 mod_zone_state(zone, item, delta, 0);
447 EXPORT_SYMBOL(mod_zone_page_state);
449 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
451 mod_zone_state(page_zone(page), item, 1, 1);
453 EXPORT_SYMBOL(inc_zone_page_state);
455 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
457 mod_zone_state(page_zone(page), item, -1, -1);
459 EXPORT_SYMBOL(dec_zone_page_state);
461 static inline void mod_node_state(struct pglist_data *pgdat,
462 enum node_stat_item item, int delta, int overstep_mode)
464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465 s8 __percpu *p = pcp->vm_node_stat_diff + item;
466 long o, n, t, z;
468 do {
469 z = 0; /* overflow to node counters */
472 * The fetching of the stat_threshold is racy. We may apply
473 * a counter threshold to the wrong the cpu if we get
474 * rescheduled while executing here. However, the next
475 * counter update will apply the threshold again and
476 * therefore bring the counter under the threshold again.
478 * Most of the time the thresholds are the same anyways
479 * for all cpus in a node.
481 t = this_cpu_read(pcp->stat_threshold);
483 o = this_cpu_read(*p);
484 n = delta + o;
486 if (n > t || n < -t) {
487 int os = overstep_mode * (t >> 1) ;
489 /* Overflow must be added to node counters */
490 z = n + os;
491 n = -os;
493 } while (this_cpu_cmpxchg(*p, o, n) != o);
495 if (z)
496 node_page_state_add(z, pgdat, item);
499 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500 long delta)
502 mod_node_state(pgdat, item, delta, 0);
504 EXPORT_SYMBOL(mod_node_page_state);
506 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
508 mod_node_state(pgdat, item, 1, 1);
511 void inc_node_page_state(struct page *page, enum node_stat_item item)
513 mod_node_state(page_pgdat(page), item, 1, 1);
515 EXPORT_SYMBOL(inc_node_page_state);
517 void dec_node_page_state(struct page *page, enum node_stat_item item)
519 mod_node_state(page_pgdat(page), item, -1, -1);
521 EXPORT_SYMBOL(dec_node_page_state);
522 #else
524 * Use interrupt disable to serialize counter updates
526 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527 long delta)
529 unsigned long flags;
531 local_irq_save(flags);
532 __mod_zone_page_state(zone, item, delta);
533 local_irq_restore(flags);
535 EXPORT_SYMBOL(mod_zone_page_state);
537 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
539 unsigned long flags;
540 struct zone *zone;
542 zone = page_zone(page);
543 local_irq_save(flags);
544 __inc_zone_state(zone, item);
545 local_irq_restore(flags);
547 EXPORT_SYMBOL(inc_zone_page_state);
549 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
551 unsigned long flags;
553 local_irq_save(flags);
554 __dec_zone_page_state(page, item);
555 local_irq_restore(flags);
557 EXPORT_SYMBOL(dec_zone_page_state);
559 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
561 unsigned long flags;
563 local_irq_save(flags);
564 __inc_node_state(pgdat, item);
565 local_irq_restore(flags);
567 EXPORT_SYMBOL(inc_node_state);
569 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570 long delta)
572 unsigned long flags;
574 local_irq_save(flags);
575 __mod_node_page_state(pgdat, item, delta);
576 local_irq_restore(flags);
578 EXPORT_SYMBOL(mod_node_page_state);
580 void inc_node_page_state(struct page *page, enum node_stat_item item)
582 unsigned long flags;
583 struct pglist_data *pgdat;
585 pgdat = page_pgdat(page);
586 local_irq_save(flags);
587 __inc_node_state(pgdat, item);
588 local_irq_restore(flags);
590 EXPORT_SYMBOL(inc_node_page_state);
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
594 unsigned long flags;
596 local_irq_save(flags);
597 __dec_node_page_state(page, item);
598 local_irq_restore(flags);
600 EXPORT_SYMBOL(dec_node_page_state);
601 #endif
604 * Fold a differential into the global counters.
605 * Returns the number of counters updated.
607 static int fold_diff(int *zone_diff, int *node_diff)
609 int i;
610 int changes = 0;
612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613 if (zone_diff[i]) {
614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615 changes++;
618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619 if (node_diff[i]) {
620 atomic_long_add(node_diff[i], &vm_node_stat[i]);
621 changes++;
623 return changes;
627 * Update the zone counters for the current cpu.
629 * Note that refresh_cpu_vm_stats strives to only access
630 * node local memory. The per cpu pagesets on remote zones are placed
631 * in the memory local to the processor using that pageset. So the
632 * loop over all zones will access a series of cachelines local to
633 * the processor.
635 * The call to zone_page_state_add updates the cachelines with the
636 * statistics in the remote zone struct as well as the global cachelines
637 * with the global counters. These could cause remote node cache line
638 * bouncing and will have to be only done when necessary.
640 * The function returns the number of global counters updated.
642 static int refresh_cpu_vm_stats(bool do_pagesets)
644 struct pglist_data *pgdat;
645 struct zone *zone;
646 int i;
647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649 int changes = 0;
651 for_each_populated_zone(zone) {
652 struct per_cpu_pageset __percpu *p = zone->pageset;
654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655 int v;
657 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658 if (v) {
660 atomic_long_add(v, &zone->vm_stat[i]);
661 global_zone_diff[i] += v;
662 #ifdef CONFIG_NUMA
663 /* 3 seconds idle till flush */
664 __this_cpu_write(p->expire, 3);
665 #endif
668 #ifdef CONFIG_NUMA
669 if (do_pagesets) {
670 cond_resched();
672 * Deal with draining the remote pageset of this
673 * processor
675 * Check if there are pages remaining in this pageset
676 * if not then there is nothing to expire.
678 if (!__this_cpu_read(p->expire) ||
679 !__this_cpu_read(p->pcp.count))
680 continue;
683 * We never drain zones local to this processor.
685 if (zone_to_nid(zone) == numa_node_id()) {
686 __this_cpu_write(p->expire, 0);
687 continue;
690 if (__this_cpu_dec_return(p->expire))
691 continue;
693 if (__this_cpu_read(p->pcp.count)) {
694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695 changes++;
698 #endif
701 for_each_online_pgdat(pgdat) {
702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705 int v;
707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708 if (v) {
709 atomic_long_add(v, &pgdat->vm_stat[i]);
710 global_node_diff[i] += v;
715 changes += fold_diff(global_zone_diff, global_node_diff);
716 return changes;
720 * Fold the data for an offline cpu into the global array.
721 * There cannot be any access by the offline cpu and therefore
722 * synchronization is simplified.
724 void cpu_vm_stats_fold(int cpu)
726 struct pglist_data *pgdat;
727 struct zone *zone;
728 int i;
729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
732 for_each_populated_zone(zone) {
733 struct per_cpu_pageset *p;
735 p = per_cpu_ptr(zone->pageset, cpu);
737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738 if (p->vm_stat_diff[i]) {
739 int v;
741 v = p->vm_stat_diff[i];
742 p->vm_stat_diff[i] = 0;
743 atomic_long_add(v, &zone->vm_stat[i]);
744 global_zone_diff[i] += v;
748 for_each_online_pgdat(pgdat) {
749 struct per_cpu_nodestat *p;
751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754 if (p->vm_node_stat_diff[i]) {
755 int v;
757 v = p->vm_node_stat_diff[i];
758 p->vm_node_stat_diff[i] = 0;
759 atomic_long_add(v, &pgdat->vm_stat[i]);
760 global_node_diff[i] += v;
764 fold_diff(global_zone_diff, global_node_diff);
768 * this is only called if !populated_zone(zone), which implies no other users of
769 * pset->vm_stat_diff[] exsist.
771 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
773 int i;
775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776 if (pset->vm_stat_diff[i]) {
777 int v = pset->vm_stat_diff[i];
778 pset->vm_stat_diff[i] = 0;
779 atomic_long_add(v, &zone->vm_stat[i]);
780 atomic_long_add(v, &vm_zone_stat[i]);
783 #endif
785 #ifdef CONFIG_NUMA
787 * Determine the per node value of a stat item. This function
788 * is called frequently in a NUMA machine, so try to be as
789 * frugal as possible.
791 unsigned long sum_zone_node_page_state(int node,
792 enum zone_stat_item item)
794 struct zone *zones = NODE_DATA(node)->node_zones;
795 int i;
796 unsigned long count = 0;
798 for (i = 0; i < MAX_NR_ZONES; i++)
799 count += zone_page_state(zones + i, item);
801 return count;
805 * Determine the per node value of a stat item.
807 unsigned long node_page_state(struct pglist_data *pgdat,
808 enum node_stat_item item)
810 long x = atomic_long_read(&pgdat->vm_stat[item]);
811 #ifdef CONFIG_SMP
812 if (x < 0)
813 x = 0;
814 #endif
815 return x;
817 #endif
819 #ifdef CONFIG_COMPACTION
821 struct contig_page_info {
822 unsigned long free_pages;
823 unsigned long free_blocks_total;
824 unsigned long free_blocks_suitable;
828 * Calculate the number of free pages in a zone, how many contiguous
829 * pages are free and how many are large enough to satisfy an allocation of
830 * the target size. Note that this function makes no attempt to estimate
831 * how many suitable free blocks there *might* be if MOVABLE pages were
832 * migrated. Calculating that is possible, but expensive and can be
833 * figured out from userspace
835 static void fill_contig_page_info(struct zone *zone,
836 unsigned int suitable_order,
837 struct contig_page_info *info)
839 unsigned int order;
841 info->free_pages = 0;
842 info->free_blocks_total = 0;
843 info->free_blocks_suitable = 0;
845 for (order = 0; order < MAX_ORDER; order++) {
846 unsigned long blocks;
848 /* Count number of free blocks */
849 blocks = zone->free_area[order].nr_free;
850 info->free_blocks_total += blocks;
852 /* Count free base pages */
853 info->free_pages += blocks << order;
855 /* Count the suitable free blocks */
856 if (order >= suitable_order)
857 info->free_blocks_suitable += blocks <<
858 (order - suitable_order);
863 * A fragmentation index only makes sense if an allocation of a requested
864 * size would fail. If that is true, the fragmentation index indicates
865 * whether external fragmentation or a lack of memory was the problem.
866 * The value can be used to determine if page reclaim or compaction
867 * should be used
869 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
871 unsigned long requested = 1UL << order;
873 if (!info->free_blocks_total)
874 return 0;
876 /* Fragmentation index only makes sense when a request would fail */
877 if (info->free_blocks_suitable)
878 return -1000;
881 * Index is between 0 and 1 so return within 3 decimal places
883 * 0 => allocation would fail due to lack of memory
884 * 1 => allocation would fail due to fragmentation
886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone *zone, unsigned int order)
892 struct contig_page_info info;
894 fill_contig_page_info(zone, order, &info);
895 return __fragmentation_index(order, &info);
897 #endif
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
902 #else
903 #define TEXT_FOR_DMA(xx)
904 #endif
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
908 #else
909 #define TEXT_FOR_DMA32(xx)
910 #endif
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
914 #else
915 #define TEXT_FOR_HIGHMEM(xx)
916 #endif
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919 TEXT_FOR_HIGHMEM(xx) xx "_movable",
921 const char * const vmstat_text[] = {
922 /* enum zone_stat_item countes */
923 "nr_free_pages",
924 "nr_zone_inactive_anon",
925 "nr_zone_active_anon",
926 "nr_zone_inactive_file",
927 "nr_zone_active_file",
928 "nr_zone_unevictable",
929 "nr_zone_write_pending",
930 "nr_mlock",
931 "nr_slab_reclaimable",
932 "nr_slab_unreclaimable",
933 "nr_page_table_pages",
934 "nr_kernel_stack",
935 "nr_overhead",
936 "nr_bounce",
937 #if IS_ENABLED(CONFIG_ZSMALLOC)
938 "nr_zspages",
939 #endif
940 #ifdef CONFIG_NUMA
941 "numa_hit",
942 "numa_miss",
943 "numa_foreign",
944 "numa_interleave",
945 "numa_local",
946 "numa_other",
947 #endif
948 "nr_free_cma",
950 /* Node-based counters */
951 "nr_inactive_anon",
952 "nr_active_anon",
953 "nr_inactive_file",
954 "nr_active_file",
955 "nr_unevictable",
956 "nr_isolated_anon",
957 "nr_isolated_file",
958 "nr_pages_scanned",
959 "workingset_refault",
960 "workingset_activate",
961 "workingset_nodereclaim",
962 "nr_anon_pages",
963 "nr_mapped",
964 "nr_file_pages",
965 "nr_dirty",
966 "nr_writeback",
967 "nr_writeback_temp",
968 "nr_shmem",
969 "nr_shmem_hugepages",
970 "nr_shmem_pmdmapped",
971 "nr_anon_transparent_hugepages",
972 "nr_unstable",
973 "nr_vmscan_write",
974 "nr_vmscan_immediate_reclaim",
975 "nr_dirtied",
976 "nr_written",
978 /* enum writeback_stat_item counters */
979 "nr_dirty_threshold",
980 "nr_dirty_background_threshold",
982 #ifdef CONFIG_VM_EVENT_COUNTERS
983 /* enum vm_event_item counters */
984 "pgpgin",
985 "pgpgout",
986 "pswpin",
987 "pswpout",
989 TEXTS_FOR_ZONES("pgalloc")
990 TEXTS_FOR_ZONES("allocstall")
991 TEXTS_FOR_ZONES("pgskip")
993 "pgfree",
994 "pgactivate",
995 "pgdeactivate",
997 "pgfault",
998 "pgmajfault",
999 "pglazyfreed",
1001 "pgrefill",
1002 "pgsteal_kswapd",
1003 "pgsteal_direct",
1004 "pgscan_kswapd",
1005 "pgscan_direct",
1006 "pgscan_direct_throttle",
1008 #ifdef CONFIG_NUMA
1009 "zone_reclaim_failed",
1010 #endif
1011 "pginodesteal",
1012 "slabs_scanned",
1013 "kswapd_inodesteal",
1014 "kswapd_low_wmark_hit_quickly",
1015 "kswapd_high_wmark_hit_quickly",
1016 "pageoutrun",
1018 "pgrotated",
1020 "drop_pagecache",
1021 "drop_slab",
1023 #ifdef CONFIG_NUMA_BALANCING
1024 "numa_pte_updates",
1025 "numa_huge_pte_updates",
1026 "numa_hint_faults",
1027 "numa_hint_faults_local",
1028 "numa_pages_migrated",
1029 #endif
1030 #ifdef CONFIG_MIGRATION
1031 "pgmigrate_success",
1032 "pgmigrate_fail",
1033 #endif
1034 #ifdef CONFIG_COMPACTION
1035 "compact_migrate_scanned",
1036 "compact_free_scanned",
1037 "compact_isolated",
1038 "compact_stall",
1039 "compact_fail",
1040 "compact_success",
1041 "compact_daemon_wake",
1042 #endif
1044 #ifdef CONFIG_HUGETLB_PAGE
1045 "htlb_buddy_alloc_success",
1046 "htlb_buddy_alloc_fail",
1047 #endif
1048 "unevictable_pgs_culled",
1049 "unevictable_pgs_scanned",
1050 "unevictable_pgs_rescued",
1051 "unevictable_pgs_mlocked",
1052 "unevictable_pgs_munlocked",
1053 "unevictable_pgs_cleared",
1054 "unevictable_pgs_stranded",
1056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1057 "thp_fault_alloc",
1058 "thp_fault_fallback",
1059 "thp_collapse_alloc",
1060 "thp_collapse_alloc_failed",
1061 "thp_file_alloc",
1062 "thp_file_mapped",
1063 "thp_split_page",
1064 "thp_split_page_failed",
1065 "thp_deferred_split_page",
1066 "thp_split_pmd",
1067 "thp_zero_page_alloc",
1068 "thp_zero_page_alloc_failed",
1069 #endif
1070 #ifdef CONFIG_MEMORY_BALLOON
1071 "balloon_inflate",
1072 "balloon_deflate",
1073 #ifdef CONFIG_BALLOON_COMPACTION
1074 "balloon_migrate",
1075 #endif
1076 #endif /* CONFIG_MEMORY_BALLOON */
1077 #ifdef CONFIG_DEBUG_TLBFLUSH
1078 "nr_tlb_remote_flush",
1079 "nr_tlb_remote_flush_received",
1080 "nr_tlb_local_flush_all",
1081 "nr_tlb_local_flush_one",
1082 #endif /* CONFIG_DEBUG_TLBFLUSH */
1084 #ifdef CONFIG_DEBUG_VM_VMACACHE
1085 "vmacache_find_calls",
1086 "vmacache_find_hits",
1087 #endif
1088 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1090 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1093 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1094 defined(CONFIG_PROC_FS)
1095 static void *frag_start(struct seq_file *m, loff_t *pos)
1097 pg_data_t *pgdat;
1098 loff_t node = *pos;
1100 for (pgdat = first_online_pgdat();
1101 pgdat && node;
1102 pgdat = next_online_pgdat(pgdat))
1103 --node;
1105 return pgdat;
1108 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1110 pg_data_t *pgdat = (pg_data_t *)arg;
1112 (*pos)++;
1113 return next_online_pgdat(pgdat);
1116 static void frag_stop(struct seq_file *m, void *arg)
1120 /* Walk all the zones in a node and print using a callback */
1121 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1122 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1124 struct zone *zone;
1125 struct zone *node_zones = pgdat->node_zones;
1126 unsigned long flags;
1128 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1129 if (!populated_zone(zone))
1130 continue;
1132 spin_lock_irqsave(&zone->lock, flags);
1133 print(m, pgdat, zone);
1134 spin_unlock_irqrestore(&zone->lock, flags);
1137 #endif
1139 #ifdef CONFIG_PROC_FS
1140 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1141 struct zone *zone)
1143 int order;
1145 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1146 for (order = 0; order < MAX_ORDER; ++order)
1147 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1148 seq_putc(m, '\n');
1152 * This walks the free areas for each zone.
1154 static int frag_show(struct seq_file *m, void *arg)
1156 pg_data_t *pgdat = (pg_data_t *)arg;
1157 walk_zones_in_node(m, pgdat, frag_show_print);
1158 return 0;
1161 static void pagetypeinfo_showfree_print(struct seq_file *m,
1162 pg_data_t *pgdat, struct zone *zone)
1164 int order, mtype;
1166 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1167 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1168 pgdat->node_id,
1169 zone->name,
1170 migratetype_names[mtype]);
1171 for (order = 0; order < MAX_ORDER; ++order) {
1172 unsigned long freecount = 0;
1173 struct free_area *area;
1174 struct list_head *curr;
1176 area = &(zone->free_area[order]);
1178 list_for_each(curr, &area->free_list[mtype])
1179 freecount++;
1180 seq_printf(m, "%6lu ", freecount);
1182 seq_putc(m, '\n');
1186 /* Print out the free pages at each order for each migatetype */
1187 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1189 int order;
1190 pg_data_t *pgdat = (pg_data_t *)arg;
1192 /* Print header */
1193 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1194 for (order = 0; order < MAX_ORDER; ++order)
1195 seq_printf(m, "%6d ", order);
1196 seq_putc(m, '\n');
1198 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1200 return 0;
1203 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1204 pg_data_t *pgdat, struct zone *zone)
1206 int mtype;
1207 unsigned long pfn;
1208 unsigned long start_pfn = zone->zone_start_pfn;
1209 unsigned long end_pfn = zone_end_pfn(zone);
1210 unsigned long count[MIGRATE_TYPES] = { 0, };
1212 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1213 struct page *page;
1215 if (!pfn_valid(pfn))
1216 continue;
1218 page = pfn_to_page(pfn);
1220 /* Watch for unexpected holes punched in the memmap */
1221 if (!memmap_valid_within(pfn, page, zone))
1222 continue;
1224 if (page_zone(page) != zone)
1225 continue;
1227 mtype = get_pageblock_migratetype(page);
1229 if (mtype < MIGRATE_TYPES)
1230 count[mtype]++;
1233 /* Print counts */
1234 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1235 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1236 seq_printf(m, "%12lu ", count[mtype]);
1237 seq_putc(m, '\n');
1240 /* Print out the free pages at each order for each migratetype */
1241 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1243 int mtype;
1244 pg_data_t *pgdat = (pg_data_t *)arg;
1246 seq_printf(m, "\n%-23s", "Number of blocks type ");
1247 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1248 seq_printf(m, "%12s ", migratetype_names[mtype]);
1249 seq_putc(m, '\n');
1250 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1252 return 0;
1256 * Print out the number of pageblocks for each migratetype that contain pages
1257 * of other types. This gives an indication of how well fallbacks are being
1258 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1259 * to determine what is going on
1261 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1263 #ifdef CONFIG_PAGE_OWNER
1264 int mtype;
1266 if (!static_branch_unlikely(&page_owner_inited))
1267 return;
1269 drain_all_pages(NULL);
1271 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1272 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1273 seq_printf(m, "%12s ", migratetype_names[mtype]);
1274 seq_putc(m, '\n');
1276 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1277 #endif /* CONFIG_PAGE_OWNER */
1281 * This prints out statistics in relation to grouping pages by mobility.
1282 * It is expensive to collect so do not constantly read the file.
1284 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1286 pg_data_t *pgdat = (pg_data_t *)arg;
1288 /* check memoryless node */
1289 if (!node_state(pgdat->node_id, N_MEMORY))
1290 return 0;
1292 seq_printf(m, "Page block order: %d\n", pageblock_order);
1293 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1294 seq_putc(m, '\n');
1295 pagetypeinfo_showfree(m, pgdat);
1296 pagetypeinfo_showblockcount(m, pgdat);
1297 pagetypeinfo_showmixedcount(m, pgdat);
1299 return 0;
1302 static const struct seq_operations fragmentation_op = {
1303 .start = frag_start,
1304 .next = frag_next,
1305 .stop = frag_stop,
1306 .show = frag_show,
1309 static int fragmentation_open(struct inode *inode, struct file *file)
1311 return seq_open(file, &fragmentation_op);
1314 static const struct file_operations fragmentation_file_operations = {
1315 .open = fragmentation_open,
1316 .read = seq_read,
1317 .llseek = seq_lseek,
1318 .release = seq_release,
1321 static const struct seq_operations pagetypeinfo_op = {
1322 .start = frag_start,
1323 .next = frag_next,
1324 .stop = frag_stop,
1325 .show = pagetypeinfo_show,
1328 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1330 return seq_open(file, &pagetypeinfo_op);
1333 static const struct file_operations pagetypeinfo_file_ops = {
1334 .open = pagetypeinfo_open,
1335 .read = seq_read,
1336 .llseek = seq_lseek,
1337 .release = seq_release,
1340 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1342 int zid;
1344 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1345 struct zone *compare = &pgdat->node_zones[zid];
1347 if (populated_zone(compare))
1348 return zone == compare;
1351 return false;
1354 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1355 struct zone *zone)
1357 int i;
1358 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1359 if (is_zone_first_populated(pgdat, zone)) {
1360 seq_printf(m, "\n per-node stats");
1361 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1362 seq_printf(m, "\n %-12s %lu",
1363 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1364 node_page_state(pgdat, i));
1367 seq_printf(m,
1368 "\n pages free %lu"
1369 "\n min %lu"
1370 "\n low %lu"
1371 "\n high %lu"
1372 "\n node_scanned %lu"
1373 "\n spanned %lu"
1374 "\n present %lu"
1375 "\n managed %lu",
1376 zone_page_state(zone, NR_FREE_PAGES),
1377 min_wmark_pages(zone),
1378 low_wmark_pages(zone),
1379 high_wmark_pages(zone),
1380 node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
1381 zone->spanned_pages,
1382 zone->present_pages,
1383 zone->managed_pages);
1385 seq_printf(m,
1386 "\n protection: (%ld",
1387 zone->lowmem_reserve[0]);
1388 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1389 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1390 seq_putc(m, ')');
1392 /* If unpopulated, no other information is useful */
1393 if (!populated_zone(zone)) {
1394 seq_putc(m, '\n');
1395 return;
1398 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1399 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1400 zone_page_state(zone, i));
1402 seq_printf(m, "\n pagesets");
1403 for_each_online_cpu(i) {
1404 struct per_cpu_pageset *pageset;
1406 pageset = per_cpu_ptr(zone->pageset, i);
1407 seq_printf(m,
1408 "\n cpu: %i"
1409 "\n count: %i"
1410 "\n high: %i"
1411 "\n batch: %i",
1413 pageset->pcp.count,
1414 pageset->pcp.high,
1415 pageset->pcp.batch);
1416 #ifdef CONFIG_SMP
1417 seq_printf(m, "\n vm stats threshold: %d",
1418 pageset->stat_threshold);
1419 #endif
1421 seq_printf(m,
1422 "\n node_unreclaimable: %u"
1423 "\n start_pfn: %lu"
1424 "\n node_inactive_ratio: %u",
1425 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1426 zone->zone_start_pfn,
1427 zone->zone_pgdat->inactive_ratio);
1428 seq_putc(m, '\n');
1432 * Output information about zones in @pgdat.
1434 static int zoneinfo_show(struct seq_file *m, void *arg)
1436 pg_data_t *pgdat = (pg_data_t *)arg;
1437 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1438 return 0;
1441 static const struct seq_operations zoneinfo_op = {
1442 .start = frag_start, /* iterate over all zones. The same as in
1443 * fragmentation. */
1444 .next = frag_next,
1445 .stop = frag_stop,
1446 .show = zoneinfo_show,
1449 static int zoneinfo_open(struct inode *inode, struct file *file)
1451 return seq_open(file, &zoneinfo_op);
1454 static const struct file_operations proc_zoneinfo_file_operations = {
1455 .open = zoneinfo_open,
1456 .read = seq_read,
1457 .llseek = seq_lseek,
1458 .release = seq_release,
1461 enum writeback_stat_item {
1462 NR_DIRTY_THRESHOLD,
1463 NR_DIRTY_BG_THRESHOLD,
1464 NR_VM_WRITEBACK_STAT_ITEMS,
1467 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1469 unsigned long *v;
1470 int i, stat_items_size;
1472 if (*pos >= ARRAY_SIZE(vmstat_text))
1473 return NULL;
1474 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1475 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1476 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1478 #ifdef CONFIG_VM_EVENT_COUNTERS
1479 stat_items_size += sizeof(struct vm_event_state);
1480 #endif
1482 v = kmalloc(stat_items_size, GFP_KERNEL);
1483 m->private = v;
1484 if (!v)
1485 return ERR_PTR(-ENOMEM);
1486 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1487 v[i] = global_page_state(i);
1488 v += NR_VM_ZONE_STAT_ITEMS;
1490 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1491 v[i] = global_node_page_state(i);
1492 v += NR_VM_NODE_STAT_ITEMS;
1494 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1495 v + NR_DIRTY_THRESHOLD);
1496 v += NR_VM_WRITEBACK_STAT_ITEMS;
1498 #ifdef CONFIG_VM_EVENT_COUNTERS
1499 all_vm_events(v);
1500 v[PGPGIN] /= 2; /* sectors -> kbytes */
1501 v[PGPGOUT] /= 2;
1502 #endif
1503 return (unsigned long *)m->private + *pos;
1506 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1508 (*pos)++;
1509 if (*pos >= ARRAY_SIZE(vmstat_text))
1510 return NULL;
1511 return (unsigned long *)m->private + *pos;
1514 static int vmstat_show(struct seq_file *m, void *arg)
1516 unsigned long *l = arg;
1517 unsigned long off = l - (unsigned long *)m->private;
1519 seq_puts(m, vmstat_text[off]);
1520 seq_put_decimal_ull(m, " ", *l);
1521 seq_putc(m, '\n');
1522 return 0;
1525 static void vmstat_stop(struct seq_file *m, void *arg)
1527 kfree(m->private);
1528 m->private = NULL;
1531 static const struct seq_operations vmstat_op = {
1532 .start = vmstat_start,
1533 .next = vmstat_next,
1534 .stop = vmstat_stop,
1535 .show = vmstat_show,
1538 static int vmstat_open(struct inode *inode, struct file *file)
1540 return seq_open(file, &vmstat_op);
1543 static const struct file_operations proc_vmstat_file_operations = {
1544 .open = vmstat_open,
1545 .read = seq_read,
1546 .llseek = seq_lseek,
1547 .release = seq_release,
1549 #endif /* CONFIG_PROC_FS */
1551 #ifdef CONFIG_SMP
1552 static struct workqueue_struct *vmstat_wq;
1553 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1554 int sysctl_stat_interval __read_mostly = HZ;
1556 #ifdef CONFIG_PROC_FS
1557 static void refresh_vm_stats(struct work_struct *work)
1559 refresh_cpu_vm_stats(true);
1562 int vmstat_refresh(struct ctl_table *table, int write,
1563 void __user *buffer, size_t *lenp, loff_t *ppos)
1565 long val;
1566 int err;
1567 int i;
1570 * The regular update, every sysctl_stat_interval, may come later
1571 * than expected: leaving a significant amount in per_cpu buckets.
1572 * This is particularly misleading when checking a quantity of HUGE
1573 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1574 * which can equally be echo'ed to or cat'ted from (by root),
1575 * can be used to update the stats just before reading them.
1577 * Oh, and since global_page_state() etc. are so careful to hide
1578 * transiently negative values, report an error here if any of
1579 * the stats is negative, so we know to go looking for imbalance.
1581 err = schedule_on_each_cpu(refresh_vm_stats);
1582 if (err)
1583 return err;
1584 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1585 val = atomic_long_read(&vm_zone_stat[i]);
1586 if (val < 0) {
1587 switch (i) {
1588 case NR_PAGES_SCANNED:
1590 * This is often seen to go negative in
1591 * recent kernels, but not to go permanently
1592 * negative. Whilst it would be nicer not to
1593 * have exceptions, rooting them out would be
1594 * another task, of rather low priority.
1596 break;
1597 default:
1598 pr_warn("%s: %s %ld\n",
1599 __func__, vmstat_text[i], val);
1600 err = -EINVAL;
1601 break;
1605 if (err)
1606 return err;
1607 if (write)
1608 *ppos += *lenp;
1609 else
1610 *lenp = 0;
1611 return 0;
1613 #endif /* CONFIG_PROC_FS */
1615 static void vmstat_update(struct work_struct *w)
1617 if (refresh_cpu_vm_stats(true)) {
1619 * Counters were updated so we expect more updates
1620 * to occur in the future. Keep on running the
1621 * update worker thread.
1623 queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1624 this_cpu_ptr(&vmstat_work),
1625 round_jiffies_relative(sysctl_stat_interval));
1630 * Switch off vmstat processing and then fold all the remaining differentials
1631 * until the diffs stay at zero. The function is used by NOHZ and can only be
1632 * invoked when tick processing is not active.
1635 * Check if the diffs for a certain cpu indicate that
1636 * an update is needed.
1638 static bool need_update(int cpu)
1640 struct zone *zone;
1642 for_each_populated_zone(zone) {
1643 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1645 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1647 * The fast way of checking if there are any vmstat diffs.
1648 * This works because the diffs are byte sized items.
1650 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1651 return true;
1654 return false;
1658 * Switch off vmstat processing and then fold all the remaining differentials
1659 * until the diffs stay at zero. The function is used by NOHZ and can only be
1660 * invoked when tick processing is not active.
1662 void quiet_vmstat(void)
1664 if (system_state != SYSTEM_RUNNING)
1665 return;
1667 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1668 return;
1670 if (!need_update(smp_processor_id()))
1671 return;
1674 * Just refresh counters and do not care about the pending delayed
1675 * vmstat_update. It doesn't fire that often to matter and canceling
1676 * it would be too expensive from this path.
1677 * vmstat_shepherd will take care about that for us.
1679 refresh_cpu_vm_stats(false);
1683 * Shepherd worker thread that checks the
1684 * differentials of processors that have their worker
1685 * threads for vm statistics updates disabled because of
1686 * inactivity.
1688 static void vmstat_shepherd(struct work_struct *w);
1690 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1692 static void vmstat_shepherd(struct work_struct *w)
1694 int cpu;
1696 get_online_cpus();
1697 /* Check processors whose vmstat worker threads have been disabled */
1698 for_each_online_cpu(cpu) {
1699 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1701 if (!delayed_work_pending(dw) && need_update(cpu))
1702 queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1704 put_online_cpus();
1706 schedule_delayed_work(&shepherd,
1707 round_jiffies_relative(sysctl_stat_interval));
1710 static void __init start_shepherd_timer(void)
1712 int cpu;
1714 for_each_possible_cpu(cpu)
1715 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1716 vmstat_update);
1718 vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1719 schedule_delayed_work(&shepherd,
1720 round_jiffies_relative(sysctl_stat_interval));
1723 static void __init init_cpu_node_state(void)
1725 int cpu;
1727 get_online_cpus();
1728 for_each_online_cpu(cpu)
1729 node_set_state(cpu_to_node(cpu), N_CPU);
1730 put_online_cpus();
1733 static void vmstat_cpu_dead(int node)
1735 int cpu;
1737 get_online_cpus();
1738 for_each_online_cpu(cpu)
1739 if (cpu_to_node(cpu) == node)
1740 goto end;
1742 node_clear_state(node, N_CPU);
1743 end:
1744 put_online_cpus();
1748 * Use the cpu notifier to insure that the thresholds are recalculated
1749 * when necessary.
1751 static int vmstat_cpuup_callback(struct notifier_block *nfb,
1752 unsigned long action,
1753 void *hcpu)
1755 long cpu = (long)hcpu;
1757 switch (action) {
1758 case CPU_ONLINE:
1759 case CPU_ONLINE_FROZEN:
1760 refresh_zone_stat_thresholds();
1761 node_set_state(cpu_to_node(cpu), N_CPU);
1762 break;
1763 case CPU_DOWN_PREPARE:
1764 case CPU_DOWN_PREPARE_FROZEN:
1765 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1766 break;
1767 case CPU_DOWN_FAILED:
1768 case CPU_DOWN_FAILED_FROZEN:
1769 break;
1770 case CPU_DEAD:
1771 case CPU_DEAD_FROZEN:
1772 refresh_zone_stat_thresholds();
1773 vmstat_cpu_dead(cpu_to_node(cpu));
1774 break;
1775 default:
1776 break;
1778 return NOTIFY_OK;
1781 static struct notifier_block vmstat_notifier =
1782 { &vmstat_cpuup_callback, NULL, 0 };
1783 #endif
1785 static int __init setup_vmstat(void)
1787 #ifdef CONFIG_SMP
1788 cpu_notifier_register_begin();
1789 __register_cpu_notifier(&vmstat_notifier);
1790 init_cpu_node_state();
1792 start_shepherd_timer();
1793 cpu_notifier_register_done();
1794 #endif
1795 #ifdef CONFIG_PROC_FS
1796 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1797 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1798 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1799 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1800 #endif
1801 return 0;
1803 module_init(setup_vmstat)
1805 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1808 * Return an index indicating how much of the available free memory is
1809 * unusable for an allocation of the requested size.
1811 static int unusable_free_index(unsigned int order,
1812 struct contig_page_info *info)
1814 /* No free memory is interpreted as all free memory is unusable */
1815 if (info->free_pages == 0)
1816 return 1000;
1819 * Index should be a value between 0 and 1. Return a value to 3
1820 * decimal places.
1822 * 0 => no fragmentation
1823 * 1 => high fragmentation
1825 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1829 static void unusable_show_print(struct seq_file *m,
1830 pg_data_t *pgdat, struct zone *zone)
1832 unsigned int order;
1833 int index;
1834 struct contig_page_info info;
1836 seq_printf(m, "Node %d, zone %8s ",
1837 pgdat->node_id,
1838 zone->name);
1839 for (order = 0; order < MAX_ORDER; ++order) {
1840 fill_contig_page_info(zone, order, &info);
1841 index = unusable_free_index(order, &info);
1842 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1845 seq_putc(m, '\n');
1849 * Display unusable free space index
1851 * The unusable free space index measures how much of the available free
1852 * memory cannot be used to satisfy an allocation of a given size and is a
1853 * value between 0 and 1. The higher the value, the more of free memory is
1854 * unusable and by implication, the worse the external fragmentation is. This
1855 * can be expressed as a percentage by multiplying by 100.
1857 static int unusable_show(struct seq_file *m, void *arg)
1859 pg_data_t *pgdat = (pg_data_t *)arg;
1861 /* check memoryless node */
1862 if (!node_state(pgdat->node_id, N_MEMORY))
1863 return 0;
1865 walk_zones_in_node(m, pgdat, unusable_show_print);
1867 return 0;
1870 static const struct seq_operations unusable_op = {
1871 .start = frag_start,
1872 .next = frag_next,
1873 .stop = frag_stop,
1874 .show = unusable_show,
1877 static int unusable_open(struct inode *inode, struct file *file)
1879 return seq_open(file, &unusable_op);
1882 static const struct file_operations unusable_file_ops = {
1883 .open = unusable_open,
1884 .read = seq_read,
1885 .llseek = seq_lseek,
1886 .release = seq_release,
1889 static void extfrag_show_print(struct seq_file *m,
1890 pg_data_t *pgdat, struct zone *zone)
1892 unsigned int order;
1893 int index;
1895 /* Alloc on stack as interrupts are disabled for zone walk */
1896 struct contig_page_info info;
1898 seq_printf(m, "Node %d, zone %8s ",
1899 pgdat->node_id,
1900 zone->name);
1901 for (order = 0; order < MAX_ORDER; ++order) {
1902 fill_contig_page_info(zone, order, &info);
1903 index = __fragmentation_index(order, &info);
1904 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1907 seq_putc(m, '\n');
1911 * Display fragmentation index for orders that allocations would fail for
1913 static int extfrag_show(struct seq_file *m, void *arg)
1915 pg_data_t *pgdat = (pg_data_t *)arg;
1917 walk_zones_in_node(m, pgdat, extfrag_show_print);
1919 return 0;
1922 static const struct seq_operations extfrag_op = {
1923 .start = frag_start,
1924 .next = frag_next,
1925 .stop = frag_stop,
1926 .show = extfrag_show,
1929 static int extfrag_open(struct inode *inode, struct file *file)
1931 return seq_open(file, &extfrag_op);
1934 static const struct file_operations extfrag_file_ops = {
1935 .open = extfrag_open,
1936 .read = seq_read,
1937 .llseek = seq_lseek,
1938 .release = seq_release,
1941 static int __init extfrag_debug_init(void)
1943 struct dentry *extfrag_debug_root;
1945 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1946 if (!extfrag_debug_root)
1947 return -ENOMEM;
1949 if (!debugfs_create_file("unusable_index", 0444,
1950 extfrag_debug_root, NULL, &unusable_file_ops))
1951 goto fail;
1953 if (!debugfs_create_file("extfrag_index", 0444,
1954 extfrag_debug_root, NULL, &extfrag_file_ops))
1955 goto fail;
1957 return 0;
1958 fail:
1959 debugfs_remove_recursive(extfrag_debug_root);
1960 return -ENOMEM;
1963 module_init(extfrag_debug_init);
1964 #endif