4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
33 #ifdef CONFIG_VM_EVENT_COUNTERS
34 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
35 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
37 static void sum_vm_events(unsigned long *ret
)
42 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
44 for_each_online_cpu(cpu
) {
45 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
47 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
48 ret
[i
] += this->event
[i
];
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
57 void all_vm_events(unsigned long *ret
)
63 EXPORT_SYMBOL_GPL(all_vm_events
);
66 * Fold the foreign cpu events into our own.
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
71 void vm_events_fold_cpu(int cpu
)
73 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
76 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
77 count_vm_events(i
, fold_state
->event
[i
]);
78 fold_state
->event
[i
] = 0;
82 #endif /* CONFIG_VM_EVENT_COUNTERS */
85 * Manage combined zone based / global counters
87 * vm_stat contains the global counters
89 atomic_long_t vm_zone_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
90 atomic_long_t vm_node_stat
[NR_VM_NODE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
91 EXPORT_SYMBOL(vm_zone_stat
);
92 EXPORT_SYMBOL(vm_node_stat
);
96 int calculate_pressure_threshold(struct zone
*zone
)
99 int watermark_distance
;
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
109 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
110 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
113 * Maximum threshold is 125
115 threshold
= min(125, threshold
);
120 int calculate_normal_threshold(struct zone
*zone
)
123 int mem
; /* memory in 128 MB units */
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
131 * Some sample thresholds:
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
155 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
157 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
160 * Maximum threshold is 125
162 threshold
= min(125, threshold
);
168 * Refresh the thresholds for each zone.
170 void refresh_zone_stat_thresholds(void)
172 struct pglist_data
*pgdat
;
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat
) {
179 for_each_online_cpu(cpu
) {
180 per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
= 0;
184 for_each_populated_zone(zone
) {
185 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
186 unsigned long max_drift
, tolerate_drift
;
188 threshold
= calculate_normal_threshold(zone
);
190 for_each_online_cpu(cpu
) {
193 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold
= per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
;
198 per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
199 = max(threshold
, pgdat_threshold
);
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
207 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
208 max_drift
= num_online_cpus() * threshold
;
209 if (max_drift
> tolerate_drift
)
210 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
215 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
216 int (*calculate_pressure
)(struct zone
*))
223 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
224 zone
= &pgdat
->node_zones
[i
];
225 if (!zone
->percpu_drift_mark
)
228 threshold
= (*calculate_pressure
)(zone
);
229 for_each_online_cpu(cpu
)
230 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
240 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
243 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
244 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
248 x
= delta
+ __this_cpu_read(*p
);
250 t
= __this_cpu_read(pcp
->stat_threshold
);
252 if (unlikely(x
> t
|| x
< -t
)) {
253 zone_page_state_add(x
, zone
, item
);
256 __this_cpu_write(*p
, x
);
258 EXPORT_SYMBOL(__mod_zone_page_state
);
260 void __mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
263 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
264 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
268 x
= delta
+ __this_cpu_read(*p
);
270 t
= __this_cpu_read(pcp
->stat_threshold
);
272 if (unlikely(x
> t
|| x
< -t
)) {
273 node_page_state_add(x
, pgdat
, item
);
276 __this_cpu_write(*p
, x
);
278 EXPORT_SYMBOL(__mod_node_page_state
);
281 * Optimized increment and decrement functions.
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
290 * The increment or decrement is known and therefore one boundary check can
293 * NOTE: These functions are very performance sensitive. Change only
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
303 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
305 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
306 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
309 v
= __this_cpu_inc_return(*p
);
310 t
= __this_cpu_read(pcp
->stat_threshold
);
311 if (unlikely(v
> t
)) {
312 s8 overstep
= t
>> 1;
314 zone_page_state_add(v
+ overstep
, zone
, item
);
315 __this_cpu_write(*p
, -overstep
);
319 void __inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
321 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
322 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
325 v
= __this_cpu_inc_return(*p
);
326 t
= __this_cpu_read(pcp
->stat_threshold
);
327 if (unlikely(v
> t
)) {
328 s8 overstep
= t
>> 1;
330 node_page_state_add(v
+ overstep
, pgdat
, item
);
331 __this_cpu_write(*p
, -overstep
);
335 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
337 __inc_zone_state(page_zone(page
), item
);
339 EXPORT_SYMBOL(__inc_zone_page_state
);
341 void __inc_node_page_state(struct page
*page
, enum node_stat_item item
)
343 __inc_node_state(page_pgdat(page
), item
);
345 EXPORT_SYMBOL(__inc_node_page_state
);
347 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
349 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
350 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
353 v
= __this_cpu_dec_return(*p
);
354 t
= __this_cpu_read(pcp
->stat_threshold
);
355 if (unlikely(v
< - t
)) {
356 s8 overstep
= t
>> 1;
358 zone_page_state_add(v
- overstep
, zone
, item
);
359 __this_cpu_write(*p
, overstep
);
363 void __dec_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
365 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
366 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
369 v
= __this_cpu_dec_return(*p
);
370 t
= __this_cpu_read(pcp
->stat_threshold
);
371 if (unlikely(v
< - t
)) {
372 s8 overstep
= t
>> 1;
374 node_page_state_add(v
- overstep
, pgdat
, item
);
375 __this_cpu_write(*p
, overstep
);
379 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
381 __dec_zone_state(page_zone(page
), item
);
383 EXPORT_SYMBOL(__dec_zone_page_state
);
385 void __dec_node_page_state(struct page
*page
, enum node_stat_item item
)
387 __dec_node_state(page_pgdat(page
), item
);
389 EXPORT_SYMBOL(__dec_node_page_state
);
391 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
396 * mod_state() modifies the zone counter state through atomic per cpu
399 * Overstep mode specifies how overstep should handled:
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
404 static inline void mod_zone_state(struct zone
*zone
,
405 enum zone_stat_item item
, long delta
, int overstep_mode
)
407 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
408 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
412 z
= 0; /* overflow to zone counters */
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
424 t
= this_cpu_read(pcp
->stat_threshold
);
426 o
= this_cpu_read(*p
);
429 if (n
> t
|| n
< -t
) {
430 int os
= overstep_mode
* (t
>> 1) ;
432 /* Overflow must be added to zone counters */
436 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
439 zone_page_state_add(z
, zone
, item
);
442 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
445 mod_zone_state(zone
, item
, delta
, 0);
447 EXPORT_SYMBOL(mod_zone_page_state
);
449 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
451 mod_zone_state(page_zone(page
), item
, 1, 1);
453 EXPORT_SYMBOL(inc_zone_page_state
);
455 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
457 mod_zone_state(page_zone(page
), item
, -1, -1);
459 EXPORT_SYMBOL(dec_zone_page_state
);
461 static inline void mod_node_state(struct pglist_data
*pgdat
,
462 enum node_stat_item item
, int delta
, int overstep_mode
)
464 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
465 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
469 z
= 0; /* overflow to node counters */
472 * The fetching of the stat_threshold is racy. We may apply
473 * a counter threshold to the wrong the cpu if we get
474 * rescheduled while executing here. However, the next
475 * counter update will apply the threshold again and
476 * therefore bring the counter under the threshold again.
478 * Most of the time the thresholds are the same anyways
479 * for all cpus in a node.
481 t
= this_cpu_read(pcp
->stat_threshold
);
483 o
= this_cpu_read(*p
);
486 if (n
> t
|| n
< -t
) {
487 int os
= overstep_mode
* (t
>> 1) ;
489 /* Overflow must be added to node counters */
493 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
496 node_page_state_add(z
, pgdat
, item
);
499 void mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
502 mod_node_state(pgdat
, item
, delta
, 0);
504 EXPORT_SYMBOL(mod_node_page_state
);
506 void inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
508 mod_node_state(pgdat
, item
, 1, 1);
511 void inc_node_page_state(struct page
*page
, enum node_stat_item item
)
513 mod_node_state(page_pgdat(page
), item
, 1, 1);
515 EXPORT_SYMBOL(inc_node_page_state
);
517 void dec_node_page_state(struct page
*page
, enum node_stat_item item
)
519 mod_node_state(page_pgdat(page
), item
, -1, -1);
521 EXPORT_SYMBOL(dec_node_page_state
);
524 * Use interrupt disable to serialize counter updates
526 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
531 local_irq_save(flags
);
532 __mod_zone_page_state(zone
, item
, delta
);
533 local_irq_restore(flags
);
535 EXPORT_SYMBOL(mod_zone_page_state
);
537 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
542 zone
= page_zone(page
);
543 local_irq_save(flags
);
544 __inc_zone_state(zone
, item
);
545 local_irq_restore(flags
);
547 EXPORT_SYMBOL(inc_zone_page_state
);
549 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
553 local_irq_save(flags
);
554 __dec_zone_page_state(page
, item
);
555 local_irq_restore(flags
);
557 EXPORT_SYMBOL(dec_zone_page_state
);
559 void inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
563 local_irq_save(flags
);
564 __inc_node_state(pgdat
, item
);
565 local_irq_restore(flags
);
567 EXPORT_SYMBOL(inc_node_state
);
569 void mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
574 local_irq_save(flags
);
575 __mod_node_page_state(pgdat
, item
, delta
);
576 local_irq_restore(flags
);
578 EXPORT_SYMBOL(mod_node_page_state
);
580 void inc_node_page_state(struct page
*page
, enum node_stat_item item
)
583 struct pglist_data
*pgdat
;
585 pgdat
= page_pgdat(page
);
586 local_irq_save(flags
);
587 __inc_node_state(pgdat
, item
);
588 local_irq_restore(flags
);
590 EXPORT_SYMBOL(inc_node_page_state
);
592 void dec_node_page_state(struct page
*page
, enum node_stat_item item
)
596 local_irq_save(flags
);
597 __dec_node_page_state(page
, item
);
598 local_irq_restore(flags
);
600 EXPORT_SYMBOL(dec_node_page_state
);
604 * Fold a differential into the global counters.
605 * Returns the number of counters updated.
607 static int fold_diff(int *zone_diff
, int *node_diff
)
612 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
614 atomic_long_add(zone_diff
[i
], &vm_zone_stat
[i
]);
618 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
620 atomic_long_add(node_diff
[i
], &vm_node_stat
[i
]);
627 * Update the zone counters for the current cpu.
629 * Note that refresh_cpu_vm_stats strives to only access
630 * node local memory. The per cpu pagesets on remote zones are placed
631 * in the memory local to the processor using that pageset. So the
632 * loop over all zones will access a series of cachelines local to
635 * The call to zone_page_state_add updates the cachelines with the
636 * statistics in the remote zone struct as well as the global cachelines
637 * with the global counters. These could cause remote node cache line
638 * bouncing and will have to be only done when necessary.
640 * The function returns the number of global counters updated.
642 static int refresh_cpu_vm_stats(bool do_pagesets
)
644 struct pglist_data
*pgdat
;
647 int global_zone_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
648 int global_node_diff
[NR_VM_NODE_STAT_ITEMS
] = { 0, };
651 for_each_populated_zone(zone
) {
652 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
654 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
657 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
660 atomic_long_add(v
, &zone
->vm_stat
[i
]);
661 global_zone_diff
[i
] += v
;
663 /* 3 seconds idle till flush */
664 __this_cpu_write(p
->expire
, 3);
672 * Deal with draining the remote pageset of this
675 * Check if there are pages remaining in this pageset
676 * if not then there is nothing to expire.
678 if (!__this_cpu_read(p
->expire
) ||
679 !__this_cpu_read(p
->pcp
.count
))
683 * We never drain zones local to this processor.
685 if (zone_to_nid(zone
) == numa_node_id()) {
686 __this_cpu_write(p
->expire
, 0);
690 if (__this_cpu_dec_return(p
->expire
))
693 if (__this_cpu_read(p
->pcp
.count
)) {
694 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
701 for_each_online_pgdat(pgdat
) {
702 struct per_cpu_nodestat __percpu
*p
= pgdat
->per_cpu_nodestats
;
704 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++) {
707 v
= this_cpu_xchg(p
->vm_node_stat_diff
[i
], 0);
709 atomic_long_add(v
, &pgdat
->vm_stat
[i
]);
710 global_node_diff
[i
] += v
;
715 changes
+= fold_diff(global_zone_diff
, global_node_diff
);
720 * Fold the data for an offline cpu into the global array.
721 * There cannot be any access by the offline cpu and therefore
722 * synchronization is simplified.
724 void cpu_vm_stats_fold(int cpu
)
726 struct pglist_data
*pgdat
;
729 int global_zone_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
730 int global_node_diff
[NR_VM_NODE_STAT_ITEMS
] = { 0, };
732 for_each_populated_zone(zone
) {
733 struct per_cpu_pageset
*p
;
735 p
= per_cpu_ptr(zone
->pageset
, cpu
);
737 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
738 if (p
->vm_stat_diff
[i
]) {
741 v
= p
->vm_stat_diff
[i
];
742 p
->vm_stat_diff
[i
] = 0;
743 atomic_long_add(v
, &zone
->vm_stat
[i
]);
744 global_zone_diff
[i
] += v
;
748 for_each_online_pgdat(pgdat
) {
749 struct per_cpu_nodestat
*p
;
751 p
= per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
);
753 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
754 if (p
->vm_node_stat_diff
[i
]) {
757 v
= p
->vm_node_stat_diff
[i
];
758 p
->vm_node_stat_diff
[i
] = 0;
759 atomic_long_add(v
, &pgdat
->vm_stat
[i
]);
760 global_node_diff
[i
] += v
;
764 fold_diff(global_zone_diff
, global_node_diff
);
768 * this is only called if !populated_zone(zone), which implies no other users of
769 * pset->vm_stat_diff[] exsist.
771 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
775 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
776 if (pset
->vm_stat_diff
[i
]) {
777 int v
= pset
->vm_stat_diff
[i
];
778 pset
->vm_stat_diff
[i
] = 0;
779 atomic_long_add(v
, &zone
->vm_stat
[i
]);
780 atomic_long_add(v
, &vm_zone_stat
[i
]);
787 * Determine the per node value of a stat item. This function
788 * is called frequently in a NUMA machine, so try to be as
789 * frugal as possible.
791 unsigned long sum_zone_node_page_state(int node
,
792 enum zone_stat_item item
)
794 struct zone
*zones
= NODE_DATA(node
)->node_zones
;
796 unsigned long count
= 0;
798 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
799 count
+= zone_page_state(zones
+ i
, item
);
805 * Determine the per node value of a stat item.
807 unsigned long node_page_state(struct pglist_data
*pgdat
,
808 enum node_stat_item item
)
810 long x
= atomic_long_read(&pgdat
->vm_stat
[item
]);
819 #ifdef CONFIG_COMPACTION
821 struct contig_page_info
{
822 unsigned long free_pages
;
823 unsigned long free_blocks_total
;
824 unsigned long free_blocks_suitable
;
828 * Calculate the number of free pages in a zone, how many contiguous
829 * pages are free and how many are large enough to satisfy an allocation of
830 * the target size. Note that this function makes no attempt to estimate
831 * how many suitable free blocks there *might* be if MOVABLE pages were
832 * migrated. Calculating that is possible, but expensive and can be
833 * figured out from userspace
835 static void fill_contig_page_info(struct zone
*zone
,
836 unsigned int suitable_order
,
837 struct contig_page_info
*info
)
841 info
->free_pages
= 0;
842 info
->free_blocks_total
= 0;
843 info
->free_blocks_suitable
= 0;
845 for (order
= 0; order
< MAX_ORDER
; order
++) {
846 unsigned long blocks
;
848 /* Count number of free blocks */
849 blocks
= zone
->free_area
[order
].nr_free
;
850 info
->free_blocks_total
+= blocks
;
852 /* Count free base pages */
853 info
->free_pages
+= blocks
<< order
;
855 /* Count the suitable free blocks */
856 if (order
>= suitable_order
)
857 info
->free_blocks_suitable
+= blocks
<<
858 (order
- suitable_order
);
863 * A fragmentation index only makes sense if an allocation of a requested
864 * size would fail. If that is true, the fragmentation index indicates
865 * whether external fragmentation or a lack of memory was the problem.
866 * The value can be used to determine if page reclaim or compaction
869 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
871 unsigned long requested
= 1UL << order
;
873 if (!info
->free_blocks_total
)
876 /* Fragmentation index only makes sense when a request would fail */
877 if (info
->free_blocks_suitable
)
881 * Index is between 0 and 1 so return within 3 decimal places
883 * 0 => allocation would fail due to lack of memory
884 * 1 => allocation would fail due to fragmentation
886 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
889 /* Same as __fragmentation index but allocs contig_page_info on stack */
890 int fragmentation_index(struct zone
*zone
, unsigned int order
)
892 struct contig_page_info info
;
894 fill_contig_page_info(zone
, order
, &info
);
895 return __fragmentation_index(order
, &info
);
899 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 #ifdef CONFIG_ZONE_DMA
901 #define TEXT_FOR_DMA(xx) xx "_dma",
903 #define TEXT_FOR_DMA(xx)
906 #ifdef CONFIG_ZONE_DMA32
907 #define TEXT_FOR_DMA32(xx) xx "_dma32",
909 #define TEXT_FOR_DMA32(xx)
912 #ifdef CONFIG_HIGHMEM
913 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
915 #define TEXT_FOR_HIGHMEM(xx)
918 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919 TEXT_FOR_HIGHMEM(xx) xx "_movable",
921 const char * const vmstat_text
[] = {
922 /* enum zone_stat_item countes */
924 "nr_zone_inactive_anon",
925 "nr_zone_active_anon",
926 "nr_zone_inactive_file",
927 "nr_zone_active_file",
928 "nr_zone_unevictable",
929 "nr_zone_write_pending",
931 "nr_slab_reclaimable",
932 "nr_slab_unreclaimable",
933 "nr_page_table_pages",
937 #if IS_ENABLED(CONFIG_ZSMALLOC)
950 /* Node-based counters */
959 "workingset_refault",
960 "workingset_activate",
961 "workingset_nodereclaim",
969 "nr_shmem_hugepages",
970 "nr_shmem_pmdmapped",
971 "nr_anon_transparent_hugepages",
974 "nr_vmscan_immediate_reclaim",
978 /* enum writeback_stat_item counters */
979 "nr_dirty_threshold",
980 "nr_dirty_background_threshold",
982 #ifdef CONFIG_VM_EVENT_COUNTERS
983 /* enum vm_event_item counters */
989 TEXTS_FOR_ZONES("pgalloc")
990 TEXTS_FOR_ZONES("allocstall")
991 TEXTS_FOR_ZONES("pgskip")
1006 "pgscan_direct_throttle",
1009 "zone_reclaim_failed",
1013 "kswapd_inodesteal",
1014 "kswapd_low_wmark_hit_quickly",
1015 "kswapd_high_wmark_hit_quickly",
1023 #ifdef CONFIG_NUMA_BALANCING
1025 "numa_huge_pte_updates",
1027 "numa_hint_faults_local",
1028 "numa_pages_migrated",
1030 #ifdef CONFIG_MIGRATION
1031 "pgmigrate_success",
1034 #ifdef CONFIG_COMPACTION
1035 "compact_migrate_scanned",
1036 "compact_free_scanned",
1041 "compact_daemon_wake",
1044 #ifdef CONFIG_HUGETLB_PAGE
1045 "htlb_buddy_alloc_success",
1046 "htlb_buddy_alloc_fail",
1048 "unevictable_pgs_culled",
1049 "unevictable_pgs_scanned",
1050 "unevictable_pgs_rescued",
1051 "unevictable_pgs_mlocked",
1052 "unevictable_pgs_munlocked",
1053 "unevictable_pgs_cleared",
1054 "unevictable_pgs_stranded",
1056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1058 "thp_fault_fallback",
1059 "thp_collapse_alloc",
1060 "thp_collapse_alloc_failed",
1064 "thp_split_page_failed",
1065 "thp_deferred_split_page",
1067 "thp_zero_page_alloc",
1068 "thp_zero_page_alloc_failed",
1070 #ifdef CONFIG_MEMORY_BALLOON
1073 #ifdef CONFIG_BALLOON_COMPACTION
1076 #endif /* CONFIG_MEMORY_BALLOON */
1077 #ifdef CONFIG_DEBUG_TLBFLUSH
1078 "nr_tlb_remote_flush",
1079 "nr_tlb_remote_flush_received",
1080 "nr_tlb_local_flush_all",
1081 "nr_tlb_local_flush_one",
1082 #endif /* CONFIG_DEBUG_TLBFLUSH */
1084 #ifdef CONFIG_DEBUG_VM_VMACACHE
1085 "vmacache_find_calls",
1086 "vmacache_find_hits",
1088 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1090 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1093 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1094 defined(CONFIG_PROC_FS)
1095 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
1100 for (pgdat
= first_online_pgdat();
1102 pgdat
= next_online_pgdat(pgdat
))
1108 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1110 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1113 return next_online_pgdat(pgdat
);
1116 static void frag_stop(struct seq_file
*m
, void *arg
)
1120 /* Walk all the zones in a node and print using a callback */
1121 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
1122 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
1125 struct zone
*node_zones
= pgdat
->node_zones
;
1126 unsigned long flags
;
1128 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
1129 if (!populated_zone(zone
))
1132 spin_lock_irqsave(&zone
->lock
, flags
);
1133 print(m
, pgdat
, zone
);
1134 spin_unlock_irqrestore(&zone
->lock
, flags
);
1139 #ifdef CONFIG_PROC_FS
1140 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1145 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1146 for (order
= 0; order
< MAX_ORDER
; ++order
)
1147 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
1152 * This walks the free areas for each zone.
1154 static int frag_show(struct seq_file
*m
, void *arg
)
1156 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1157 walk_zones_in_node(m
, pgdat
, frag_show_print
);
1161 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
1162 pg_data_t
*pgdat
, struct zone
*zone
)
1166 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
1167 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
1170 migratetype_names
[mtype
]);
1171 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1172 unsigned long freecount
= 0;
1173 struct free_area
*area
;
1174 struct list_head
*curr
;
1176 area
= &(zone
->free_area
[order
]);
1178 list_for_each(curr
, &area
->free_list
[mtype
])
1180 seq_printf(m
, "%6lu ", freecount
);
1186 /* Print out the free pages at each order for each migatetype */
1187 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
1190 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1193 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
1194 for (order
= 0; order
< MAX_ORDER
; ++order
)
1195 seq_printf(m
, "%6d ", order
);
1198 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
1203 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
1204 pg_data_t
*pgdat
, struct zone
*zone
)
1208 unsigned long start_pfn
= zone
->zone_start_pfn
;
1209 unsigned long end_pfn
= zone_end_pfn(zone
);
1210 unsigned long count
[MIGRATE_TYPES
] = { 0, };
1212 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
1215 if (!pfn_valid(pfn
))
1218 page
= pfn_to_page(pfn
);
1220 /* Watch for unexpected holes punched in the memmap */
1221 if (!memmap_valid_within(pfn
, page
, zone
))
1224 if (page_zone(page
) != zone
)
1227 mtype
= get_pageblock_migratetype(page
);
1229 if (mtype
< MIGRATE_TYPES
)
1234 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1235 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1236 seq_printf(m
, "%12lu ", count
[mtype
]);
1240 /* Print out the free pages at each order for each migratetype */
1241 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
1244 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1246 seq_printf(m
, "\n%-23s", "Number of blocks type ");
1247 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1248 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1250 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
1256 * Print out the number of pageblocks for each migratetype that contain pages
1257 * of other types. This gives an indication of how well fallbacks are being
1258 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1259 * to determine what is going on
1261 static void pagetypeinfo_showmixedcount(struct seq_file
*m
, pg_data_t
*pgdat
)
1263 #ifdef CONFIG_PAGE_OWNER
1266 if (!static_branch_unlikely(&page_owner_inited
))
1269 drain_all_pages(NULL
);
1271 seq_printf(m
, "\n%-23s", "Number of mixed blocks ");
1272 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1273 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1276 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showmixedcount_print
);
1277 #endif /* CONFIG_PAGE_OWNER */
1281 * This prints out statistics in relation to grouping pages by mobility.
1282 * It is expensive to collect so do not constantly read the file.
1284 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
1286 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1288 /* check memoryless node */
1289 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1292 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1293 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1295 pagetypeinfo_showfree(m
, pgdat
);
1296 pagetypeinfo_showblockcount(m
, pgdat
);
1297 pagetypeinfo_showmixedcount(m
, pgdat
);
1302 static const struct seq_operations fragmentation_op
= {
1303 .start
= frag_start
,
1309 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1311 return seq_open(file
, &fragmentation_op
);
1314 static const struct file_operations fragmentation_file_operations
= {
1315 .open
= fragmentation_open
,
1317 .llseek
= seq_lseek
,
1318 .release
= seq_release
,
1321 static const struct seq_operations pagetypeinfo_op
= {
1322 .start
= frag_start
,
1325 .show
= pagetypeinfo_show
,
1328 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1330 return seq_open(file
, &pagetypeinfo_op
);
1333 static const struct file_operations pagetypeinfo_file_ops
= {
1334 .open
= pagetypeinfo_open
,
1336 .llseek
= seq_lseek
,
1337 .release
= seq_release
,
1340 static bool is_zone_first_populated(pg_data_t
*pgdat
, struct zone
*zone
)
1344 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1345 struct zone
*compare
= &pgdat
->node_zones
[zid
];
1347 if (populated_zone(compare
))
1348 return zone
== compare
;
1354 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1358 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1359 if (is_zone_first_populated(pgdat
, zone
)) {
1360 seq_printf(m
, "\n per-node stats");
1361 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++) {
1362 seq_printf(m
, "\n %-12s %lu",
1363 vmstat_text
[i
+ NR_VM_ZONE_STAT_ITEMS
],
1364 node_page_state(pgdat
, i
));
1372 "\n node_scanned %lu"
1376 zone_page_state(zone
, NR_FREE_PAGES
),
1377 min_wmark_pages(zone
),
1378 low_wmark_pages(zone
),
1379 high_wmark_pages(zone
),
1380 node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
),
1381 zone
->spanned_pages
,
1382 zone
->present_pages
,
1383 zone
->managed_pages
);
1386 "\n protection: (%ld",
1387 zone
->lowmem_reserve
[0]);
1388 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1389 seq_printf(m
, ", %ld", zone
->lowmem_reserve
[i
]);
1392 /* If unpopulated, no other information is useful */
1393 if (!populated_zone(zone
)) {
1398 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1399 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1400 zone_page_state(zone
, i
));
1402 seq_printf(m
, "\n pagesets");
1403 for_each_online_cpu(i
) {
1404 struct per_cpu_pageset
*pageset
;
1406 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1415 pageset
->pcp
.batch
);
1417 seq_printf(m
, "\n vm stats threshold: %d",
1418 pageset
->stat_threshold
);
1422 "\n node_unreclaimable: %u"
1424 "\n node_inactive_ratio: %u",
1425 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
,
1426 zone
->zone_start_pfn
,
1427 zone
->zone_pgdat
->inactive_ratio
);
1432 * Output information about zones in @pgdat.
1434 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1436 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1437 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1441 static const struct seq_operations zoneinfo_op
= {
1442 .start
= frag_start
, /* iterate over all zones. The same as in
1446 .show
= zoneinfo_show
,
1449 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1451 return seq_open(file
, &zoneinfo_op
);
1454 static const struct file_operations proc_zoneinfo_file_operations
= {
1455 .open
= zoneinfo_open
,
1457 .llseek
= seq_lseek
,
1458 .release
= seq_release
,
1461 enum writeback_stat_item
{
1463 NR_DIRTY_BG_THRESHOLD
,
1464 NR_VM_WRITEBACK_STAT_ITEMS
,
1467 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1470 int i
, stat_items_size
;
1472 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1474 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1475 NR_VM_NODE_STAT_ITEMS
* sizeof(unsigned long) +
1476 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1478 #ifdef CONFIG_VM_EVENT_COUNTERS
1479 stat_items_size
+= sizeof(struct vm_event_state
);
1482 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1485 return ERR_PTR(-ENOMEM
);
1486 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1487 v
[i
] = global_page_state(i
);
1488 v
+= NR_VM_ZONE_STAT_ITEMS
;
1490 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
1491 v
[i
] = global_node_page_state(i
);
1492 v
+= NR_VM_NODE_STAT_ITEMS
;
1494 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1495 v
+ NR_DIRTY_THRESHOLD
);
1496 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1498 #ifdef CONFIG_VM_EVENT_COUNTERS
1500 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1503 return (unsigned long *)m
->private + *pos
;
1506 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1509 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1511 return (unsigned long *)m
->private + *pos
;
1514 static int vmstat_show(struct seq_file
*m
, void *arg
)
1516 unsigned long *l
= arg
;
1517 unsigned long off
= l
- (unsigned long *)m
->private;
1519 seq_puts(m
, vmstat_text
[off
]);
1520 seq_put_decimal_ull(m
, " ", *l
);
1525 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1531 static const struct seq_operations vmstat_op
= {
1532 .start
= vmstat_start
,
1533 .next
= vmstat_next
,
1534 .stop
= vmstat_stop
,
1535 .show
= vmstat_show
,
1538 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1540 return seq_open(file
, &vmstat_op
);
1543 static const struct file_operations proc_vmstat_file_operations
= {
1544 .open
= vmstat_open
,
1546 .llseek
= seq_lseek
,
1547 .release
= seq_release
,
1549 #endif /* CONFIG_PROC_FS */
1552 static struct workqueue_struct
*vmstat_wq
;
1553 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1554 int sysctl_stat_interval __read_mostly
= HZ
;
1556 #ifdef CONFIG_PROC_FS
1557 static void refresh_vm_stats(struct work_struct
*work
)
1559 refresh_cpu_vm_stats(true);
1562 int vmstat_refresh(struct ctl_table
*table
, int write
,
1563 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1570 * The regular update, every sysctl_stat_interval, may come later
1571 * than expected: leaving a significant amount in per_cpu buckets.
1572 * This is particularly misleading when checking a quantity of HUGE
1573 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1574 * which can equally be echo'ed to or cat'ted from (by root),
1575 * can be used to update the stats just before reading them.
1577 * Oh, and since global_page_state() etc. are so careful to hide
1578 * transiently negative values, report an error here if any of
1579 * the stats is negative, so we know to go looking for imbalance.
1581 err
= schedule_on_each_cpu(refresh_vm_stats
);
1584 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
1585 val
= atomic_long_read(&vm_zone_stat
[i
]);
1588 case NR_PAGES_SCANNED
:
1590 * This is often seen to go negative in
1591 * recent kernels, but not to go permanently
1592 * negative. Whilst it would be nicer not to
1593 * have exceptions, rooting them out would be
1594 * another task, of rather low priority.
1598 pr_warn("%s: %s %ld\n",
1599 __func__
, vmstat_text
[i
], val
);
1613 #endif /* CONFIG_PROC_FS */
1615 static void vmstat_update(struct work_struct
*w
)
1617 if (refresh_cpu_vm_stats(true)) {
1619 * Counters were updated so we expect more updates
1620 * to occur in the future. Keep on running the
1621 * update worker thread.
1623 queue_delayed_work_on(smp_processor_id(), vmstat_wq
,
1624 this_cpu_ptr(&vmstat_work
),
1625 round_jiffies_relative(sysctl_stat_interval
));
1630 * Switch off vmstat processing and then fold all the remaining differentials
1631 * until the diffs stay at zero. The function is used by NOHZ and can only be
1632 * invoked when tick processing is not active.
1635 * Check if the diffs for a certain cpu indicate that
1636 * an update is needed.
1638 static bool need_update(int cpu
)
1642 for_each_populated_zone(zone
) {
1643 struct per_cpu_pageset
*p
= per_cpu_ptr(zone
->pageset
, cpu
);
1645 BUILD_BUG_ON(sizeof(p
->vm_stat_diff
[0]) != 1);
1647 * The fast way of checking if there are any vmstat diffs.
1648 * This works because the diffs are byte sized items.
1650 if (memchr_inv(p
->vm_stat_diff
, 0, NR_VM_ZONE_STAT_ITEMS
))
1658 * Switch off vmstat processing and then fold all the remaining differentials
1659 * until the diffs stay at zero. The function is used by NOHZ and can only be
1660 * invoked when tick processing is not active.
1662 void quiet_vmstat(void)
1664 if (system_state
!= SYSTEM_RUNNING
)
1667 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work
)))
1670 if (!need_update(smp_processor_id()))
1674 * Just refresh counters and do not care about the pending delayed
1675 * vmstat_update. It doesn't fire that often to matter and canceling
1676 * it would be too expensive from this path.
1677 * vmstat_shepherd will take care about that for us.
1679 refresh_cpu_vm_stats(false);
1683 * Shepherd worker thread that checks the
1684 * differentials of processors that have their worker
1685 * threads for vm statistics updates disabled because of
1688 static void vmstat_shepherd(struct work_struct
*w
);
1690 static DECLARE_DEFERRABLE_WORK(shepherd
, vmstat_shepherd
);
1692 static void vmstat_shepherd(struct work_struct
*w
)
1697 /* Check processors whose vmstat worker threads have been disabled */
1698 for_each_online_cpu(cpu
) {
1699 struct delayed_work
*dw
= &per_cpu(vmstat_work
, cpu
);
1701 if (!delayed_work_pending(dw
) && need_update(cpu
))
1702 queue_delayed_work_on(cpu
, vmstat_wq
, dw
, 0);
1706 schedule_delayed_work(&shepherd
,
1707 round_jiffies_relative(sysctl_stat_interval
));
1710 static void __init
start_shepherd_timer(void)
1714 for_each_possible_cpu(cpu
)
1715 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work
, cpu
),
1718 vmstat_wq
= alloc_workqueue("vmstat", WQ_FREEZABLE
|WQ_MEM_RECLAIM
, 0);
1719 schedule_delayed_work(&shepherd
,
1720 round_jiffies_relative(sysctl_stat_interval
));
1723 static void __init
init_cpu_node_state(void)
1728 for_each_online_cpu(cpu
)
1729 node_set_state(cpu_to_node(cpu
), N_CPU
);
1733 static void vmstat_cpu_dead(int node
)
1738 for_each_online_cpu(cpu
)
1739 if (cpu_to_node(cpu
) == node
)
1742 node_clear_state(node
, N_CPU
);
1748 * Use the cpu notifier to insure that the thresholds are recalculated
1751 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1752 unsigned long action
,
1755 long cpu
= (long)hcpu
;
1759 case CPU_ONLINE_FROZEN
:
1760 refresh_zone_stat_thresholds();
1761 node_set_state(cpu_to_node(cpu
), N_CPU
);
1763 case CPU_DOWN_PREPARE
:
1764 case CPU_DOWN_PREPARE_FROZEN
:
1765 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1767 case CPU_DOWN_FAILED
:
1768 case CPU_DOWN_FAILED_FROZEN
:
1771 case CPU_DEAD_FROZEN
:
1772 refresh_zone_stat_thresholds();
1773 vmstat_cpu_dead(cpu_to_node(cpu
));
1781 static struct notifier_block vmstat_notifier
=
1782 { &vmstat_cpuup_callback
, NULL
, 0 };
1785 static int __init
setup_vmstat(void)
1788 cpu_notifier_register_begin();
1789 __register_cpu_notifier(&vmstat_notifier
);
1790 init_cpu_node_state();
1792 start_shepherd_timer();
1793 cpu_notifier_register_done();
1795 #ifdef CONFIG_PROC_FS
1796 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1797 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1798 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1799 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1803 module_init(setup_vmstat
)
1805 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1808 * Return an index indicating how much of the available free memory is
1809 * unusable for an allocation of the requested size.
1811 static int unusable_free_index(unsigned int order
,
1812 struct contig_page_info
*info
)
1814 /* No free memory is interpreted as all free memory is unusable */
1815 if (info
->free_pages
== 0)
1819 * Index should be a value between 0 and 1. Return a value to 3
1822 * 0 => no fragmentation
1823 * 1 => high fragmentation
1825 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1829 static void unusable_show_print(struct seq_file
*m
,
1830 pg_data_t
*pgdat
, struct zone
*zone
)
1834 struct contig_page_info info
;
1836 seq_printf(m
, "Node %d, zone %8s ",
1839 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1840 fill_contig_page_info(zone
, order
, &info
);
1841 index
= unusable_free_index(order
, &info
);
1842 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1849 * Display unusable free space index
1851 * The unusable free space index measures how much of the available free
1852 * memory cannot be used to satisfy an allocation of a given size and is a
1853 * value between 0 and 1. The higher the value, the more of free memory is
1854 * unusable and by implication, the worse the external fragmentation is. This
1855 * can be expressed as a percentage by multiplying by 100.
1857 static int unusable_show(struct seq_file
*m
, void *arg
)
1859 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1861 /* check memoryless node */
1862 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1865 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1870 static const struct seq_operations unusable_op
= {
1871 .start
= frag_start
,
1874 .show
= unusable_show
,
1877 static int unusable_open(struct inode
*inode
, struct file
*file
)
1879 return seq_open(file
, &unusable_op
);
1882 static const struct file_operations unusable_file_ops
= {
1883 .open
= unusable_open
,
1885 .llseek
= seq_lseek
,
1886 .release
= seq_release
,
1889 static void extfrag_show_print(struct seq_file
*m
,
1890 pg_data_t
*pgdat
, struct zone
*zone
)
1895 /* Alloc on stack as interrupts are disabled for zone walk */
1896 struct contig_page_info info
;
1898 seq_printf(m
, "Node %d, zone %8s ",
1901 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1902 fill_contig_page_info(zone
, order
, &info
);
1903 index
= __fragmentation_index(order
, &info
);
1904 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1911 * Display fragmentation index for orders that allocations would fail for
1913 static int extfrag_show(struct seq_file
*m
, void *arg
)
1915 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1917 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1922 static const struct seq_operations extfrag_op
= {
1923 .start
= frag_start
,
1926 .show
= extfrag_show
,
1929 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1931 return seq_open(file
, &extfrag_op
);
1934 static const struct file_operations extfrag_file_ops
= {
1935 .open
= extfrag_open
,
1937 .llseek
= seq_lseek
,
1938 .release
= seq_release
,
1941 static int __init
extfrag_debug_init(void)
1943 struct dentry
*extfrag_debug_root
;
1945 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1946 if (!extfrag_debug_root
)
1949 if (!debugfs_create_file("unusable_index", 0444,
1950 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1953 if (!debugfs_create_file("extfrag_index", 0444,
1954 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1959 debugfs_remove_recursive(extfrag_debug_root
);
1963 module_init(extfrag_debug_init
);