iscsi_ibft: make ISCSI_IBFT dependson ACPI instead of ISCSI_IBFT_FIND
[linux/fpc-iii.git] / mm / zsmalloc.c
blobcf15851a7d2fb030c79328fd1ef8bf7c0c8a19ef
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_private2: identifies the last component page
28 * PG_owner_priv_1: indentifies the huge component page
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
65 #define ZS_ALIGN 8
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91 * be PAGE_SHIFT
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
127 * On systems with 4K page size, this gives 255 size classes! There is a
128 * trader-off here:
129 * - Large number of size classes is potentially wasteful as free page are
130 * spread across these classes
131 * - Small number of size classes causes large internal fragmentation
132 * - Probably its better to use specific size classes (empirically
133 * determined). NOTE: all those class sizes must be set as multiple of
134 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
136 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137 * (reason above)
139 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
141 enum fullness_group {
142 ZS_EMPTY,
143 ZS_ALMOST_EMPTY,
144 ZS_ALMOST_FULL,
145 ZS_FULL,
146 NR_ZS_FULLNESS,
149 enum zs_stat_type {
150 CLASS_EMPTY,
151 CLASS_ALMOST_EMPTY,
152 CLASS_ALMOST_FULL,
153 CLASS_FULL,
154 OBJ_ALLOCATED,
155 OBJ_USED,
156 NR_ZS_STAT_TYPE,
159 struct zs_size_stat {
160 unsigned long objs[NR_ZS_STAT_TYPE];
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
172 * number of size_classes
174 static int zs_size_classes;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac = 4;
192 struct size_class {
193 spinlock_t lock;
194 struct list_head fullness_list[NR_ZS_FULLNESS];
196 * Size of objects stored in this class. Must be multiple
197 * of ZS_ALIGN.
199 int size;
200 int objs_per_zspage;
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
204 unsigned int index;
205 struct zs_size_stat stats;
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
211 SetPageOwnerPriv1(page);
214 static void ClearPageHugeObject(struct page *page)
216 ClearPageOwnerPriv1(page);
219 static int PageHugeObject(struct page *page)
221 return PageOwnerPriv1(page);
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
228 * This must be power of 2 and less than or equal to ZS_ALIGN
230 struct link_free {
231 union {
233 * Free object index;
234 * It's valid for non-allocated object
236 unsigned long next;
238 * Handle of allocated object.
240 unsigned long handle;
244 struct zs_pool {
245 const char *name;
247 struct size_class **size_class;
248 struct kmem_cache *handle_cachep;
249 struct kmem_cache *zspage_cachep;
251 atomic_long_t pages_allocated;
253 struct zs_pool_stats stats;
255 /* Compact classes */
256 struct shrinker shrinker;
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
261 bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266 struct inode *inode;
267 struct work_struct free_work;
268 #endif
272 * A zspage's class index and fullness group
273 * are encoded in its (first)page->mapping
275 #define FULLNESS_BITS 2
276 #define CLASS_BITS 8
277 #define ISOLATED_BITS 3
278 #define MAGIC_VAL_BITS 8
280 struct zspage {
281 struct {
282 unsigned int fullness:FULLNESS_BITS;
283 unsigned int class:CLASS_BITS + 1;
284 unsigned int isolated:ISOLATED_BITS;
285 unsigned int magic:MAGIC_VAL_BITS;
287 unsigned int inuse;
288 unsigned int freeobj;
289 struct page *first_page;
290 struct list_head list; /* fullness list */
291 #ifdef CONFIG_COMPACTION
292 rwlock_t lock;
293 #endif
296 struct mapping_area {
297 #ifdef CONFIG_PGTABLE_MAPPING
298 struct vm_struct *vm; /* vm area for mapping object that span pages */
299 #else
300 char *vm_buf; /* copy buffer for objects that span pages */
301 #endif
302 char *vm_addr; /* address of kmap_atomic()'ed pages */
303 enum zs_mapmode vm_mm; /* mapping mode */
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool *pool);
308 static void zs_unregister_migration(struct zs_pool *pool);
309 static void migrate_lock_init(struct zspage *zspage);
310 static void migrate_read_lock(struct zspage *zspage);
311 static void migrate_read_unlock(struct zspage *zspage);
312 static void kick_deferred_free(struct zs_pool *pool);
313 static void init_deferred_free(struct zs_pool *pool);
314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 #else
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool *pool) { return 0; }
319 static void zs_unregister_migration(struct zs_pool *pool) {}
320 static void migrate_lock_init(struct zspage *zspage) {}
321 static void migrate_read_lock(struct zspage *zspage) {}
322 static void migrate_read_unlock(struct zspage *zspage) {}
323 static void kick_deferred_free(struct zs_pool *pool) {}
324 static void init_deferred_free(struct zs_pool *pool) {}
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 #endif
328 static int create_cache(struct zs_pool *pool)
330 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331 0, 0, NULL);
332 if (!pool->handle_cachep)
333 return 1;
335 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336 0, 0, NULL);
337 if (!pool->zspage_cachep) {
338 kmem_cache_destroy(pool->handle_cachep);
339 pool->handle_cachep = NULL;
340 return 1;
343 return 0;
346 static void destroy_cache(struct zs_pool *pool)
348 kmem_cache_destroy(pool->handle_cachep);
349 kmem_cache_destroy(pool->zspage_cachep);
352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
354 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
355 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
360 kmem_cache_free(pool->handle_cachep, (void *)handle);
363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
365 return kmem_cache_alloc(pool->zspage_cachep,
366 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
371 kmem_cache_free(pool->zspage_cachep, zspage);
374 static void record_obj(unsigned long handle, unsigned long obj)
377 * lsb of @obj represents handle lock while other bits
378 * represent object value the handle is pointing so
379 * updating shouldn't do store tearing.
381 WRITE_ONCE(*(unsigned long *)handle, obj);
384 /* zpool driver */
386 #ifdef CONFIG_ZPOOL
388 static void *zs_zpool_create(const char *name, gfp_t gfp,
389 const struct zpool_ops *zpool_ops,
390 struct zpool *zpool)
393 * Ignore global gfp flags: zs_malloc() may be invoked from
394 * different contexts and its caller must provide a valid
395 * gfp mask.
397 return zs_create_pool(name);
400 static void zs_zpool_destroy(void *pool)
402 zs_destroy_pool(pool);
405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
406 unsigned long *handle)
408 *handle = zs_malloc(pool, size, gfp);
409 return *handle ? 0 : -1;
411 static void zs_zpool_free(void *pool, unsigned long handle)
413 zs_free(pool, handle);
416 static int zs_zpool_shrink(void *pool, unsigned int pages,
417 unsigned int *reclaimed)
419 return -EINVAL;
422 static void *zs_zpool_map(void *pool, unsigned long handle,
423 enum zpool_mapmode mm)
425 enum zs_mapmode zs_mm;
427 switch (mm) {
428 case ZPOOL_MM_RO:
429 zs_mm = ZS_MM_RO;
430 break;
431 case ZPOOL_MM_WO:
432 zs_mm = ZS_MM_WO;
433 break;
434 case ZPOOL_MM_RW: /* fallthru */
435 default:
436 zs_mm = ZS_MM_RW;
437 break;
440 return zs_map_object(pool, handle, zs_mm);
442 static void zs_zpool_unmap(void *pool, unsigned long handle)
444 zs_unmap_object(pool, handle);
447 static u64 zs_zpool_total_size(void *pool)
449 return zs_get_total_pages(pool) << PAGE_SHIFT;
452 static struct zpool_driver zs_zpool_driver = {
453 .type = "zsmalloc",
454 .owner = THIS_MODULE,
455 .create = zs_zpool_create,
456 .destroy = zs_zpool_destroy,
457 .malloc = zs_zpool_malloc,
458 .free = zs_zpool_free,
459 .shrink = zs_zpool_shrink,
460 .map = zs_zpool_map,
461 .unmap = zs_zpool_unmap,
462 .total_size = zs_zpool_total_size,
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
471 static bool is_zspage_isolated(struct zspage *zspage)
473 return zspage->isolated;
476 static __maybe_unused int is_first_page(struct page *page)
478 return PagePrivate(page);
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage *zspage)
484 return zspage->inuse;
487 static inline void set_zspage_inuse(struct zspage *zspage, int val)
489 zspage->inuse = val;
492 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
494 zspage->inuse += val;
497 static inline struct page *get_first_page(struct zspage *zspage)
499 struct page *first_page = zspage->first_page;
501 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
502 return first_page;
505 static inline int get_first_obj_offset(struct page *page)
507 return page->units;
510 static inline void set_first_obj_offset(struct page *page, int offset)
512 page->units = offset;
515 static inline unsigned int get_freeobj(struct zspage *zspage)
517 return zspage->freeobj;
520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
522 zspage->freeobj = obj;
525 static void get_zspage_mapping(struct zspage *zspage,
526 unsigned int *class_idx,
527 enum fullness_group *fullness)
529 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
531 *fullness = zspage->fullness;
532 *class_idx = zspage->class;
535 static void set_zspage_mapping(struct zspage *zspage,
536 unsigned int class_idx,
537 enum fullness_group fullness)
539 zspage->class = class_idx;
540 zspage->fullness = fullness;
544 * zsmalloc divides the pool into various size classes where each
545 * class maintains a list of zspages where each zspage is divided
546 * into equal sized chunks. Each allocation falls into one of these
547 * classes depending on its size. This function returns index of the
548 * size class which has chunk size big enough to hold the give size.
550 static int get_size_class_index(int size)
552 int idx = 0;
554 if (likely(size > ZS_MIN_ALLOC_SIZE))
555 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
556 ZS_SIZE_CLASS_DELTA);
558 return min(zs_size_classes - 1, idx);
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline void zs_stat_inc(struct size_class *class,
563 int type, unsigned long cnt)
565 class->stats.objs[type] += cnt;
568 /* type can be of enum type zs_stat_type or fullness_group */
569 static inline void zs_stat_dec(struct size_class *class,
570 int type, unsigned long cnt)
572 class->stats.objs[type] -= cnt;
575 /* type can be of enum type zs_stat_type or fullness_group */
576 static inline unsigned long zs_stat_get(struct size_class *class,
577 int type)
579 return class->stats.objs[type];
582 #ifdef CONFIG_ZSMALLOC_STAT
584 static void __init zs_stat_init(void)
586 if (!debugfs_initialized()) {
587 pr_warn("debugfs not available, stat dir not created\n");
588 return;
591 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
592 if (!zs_stat_root)
593 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
596 static void __exit zs_stat_exit(void)
598 debugfs_remove_recursive(zs_stat_root);
601 static unsigned long zs_can_compact(struct size_class *class);
603 static int zs_stats_size_show(struct seq_file *s, void *v)
605 int i;
606 struct zs_pool *pool = s->private;
607 struct size_class *class;
608 int objs_per_zspage;
609 unsigned long class_almost_full, class_almost_empty;
610 unsigned long obj_allocated, obj_used, pages_used, freeable;
611 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
612 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
613 unsigned long total_freeable = 0;
615 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
616 "class", "size", "almost_full", "almost_empty",
617 "obj_allocated", "obj_used", "pages_used",
618 "pages_per_zspage", "freeable");
620 for (i = 0; i < zs_size_classes; i++) {
621 class = pool->size_class[i];
623 if (class->index != i)
624 continue;
626 spin_lock(&class->lock);
627 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
628 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
629 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
630 obj_used = zs_stat_get(class, OBJ_USED);
631 freeable = zs_can_compact(class);
632 spin_unlock(&class->lock);
634 objs_per_zspage = class->objs_per_zspage;
635 pages_used = obj_allocated / objs_per_zspage *
636 class->pages_per_zspage;
638 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
639 " %10lu %10lu %16d %8lu\n",
640 i, class->size, class_almost_full, class_almost_empty,
641 obj_allocated, obj_used, pages_used,
642 class->pages_per_zspage, freeable);
644 total_class_almost_full += class_almost_full;
645 total_class_almost_empty += class_almost_empty;
646 total_objs += obj_allocated;
647 total_used_objs += obj_used;
648 total_pages += pages_used;
649 total_freeable += freeable;
652 seq_puts(s, "\n");
653 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
654 "Total", "", total_class_almost_full,
655 total_class_almost_empty, total_objs,
656 total_used_objs, total_pages, "", total_freeable);
658 return 0;
661 static int zs_stats_size_open(struct inode *inode, struct file *file)
663 return single_open(file, zs_stats_size_show, inode->i_private);
666 static const struct file_operations zs_stat_size_ops = {
667 .open = zs_stats_size_open,
668 .read = seq_read,
669 .llseek = seq_lseek,
670 .release = single_release,
673 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
675 struct dentry *entry;
677 if (!zs_stat_root) {
678 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
679 return;
682 entry = debugfs_create_dir(name, zs_stat_root);
683 if (!entry) {
684 pr_warn("debugfs dir <%s> creation failed\n", name);
685 return;
687 pool->stat_dentry = entry;
689 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
690 pool->stat_dentry, pool, &zs_stat_size_ops);
691 if (!entry) {
692 pr_warn("%s: debugfs file entry <%s> creation failed\n",
693 name, "classes");
694 debugfs_remove_recursive(pool->stat_dentry);
695 pool->stat_dentry = NULL;
699 static void zs_pool_stat_destroy(struct zs_pool *pool)
701 debugfs_remove_recursive(pool->stat_dentry);
704 #else /* CONFIG_ZSMALLOC_STAT */
705 static void __init zs_stat_init(void)
709 static void __exit zs_stat_exit(void)
713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
717 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
720 #endif
724 * For each size class, zspages are divided into different groups
725 * depending on how "full" they are. This was done so that we could
726 * easily find empty or nearly empty zspages when we try to shrink
727 * the pool (not yet implemented). This function returns fullness
728 * status of the given page.
730 static enum fullness_group get_fullness_group(struct size_class *class,
731 struct zspage *zspage)
733 int inuse, objs_per_zspage;
734 enum fullness_group fg;
736 inuse = get_zspage_inuse(zspage);
737 objs_per_zspage = class->objs_per_zspage;
739 if (inuse == 0)
740 fg = ZS_EMPTY;
741 else if (inuse == objs_per_zspage)
742 fg = ZS_FULL;
743 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
744 fg = ZS_ALMOST_EMPTY;
745 else
746 fg = ZS_ALMOST_FULL;
748 return fg;
752 * Each size class maintains various freelists and zspages are assigned
753 * to one of these freelists based on the number of live objects they
754 * have. This functions inserts the given zspage into the freelist
755 * identified by <class, fullness_group>.
757 static void insert_zspage(struct size_class *class,
758 struct zspage *zspage,
759 enum fullness_group fullness)
761 struct zspage *head;
763 zs_stat_inc(class, fullness, 1);
764 head = list_first_entry_or_null(&class->fullness_list[fullness],
765 struct zspage, list);
767 * We want to see more ZS_FULL pages and less almost empty/full.
768 * Put pages with higher ->inuse first.
770 if (head) {
771 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
772 list_add(&zspage->list, &head->list);
773 return;
776 list_add(&zspage->list, &class->fullness_list[fullness]);
780 * This function removes the given zspage from the freelist identified
781 * by <class, fullness_group>.
783 static void remove_zspage(struct size_class *class,
784 struct zspage *zspage,
785 enum fullness_group fullness)
787 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
788 VM_BUG_ON(is_zspage_isolated(zspage));
790 list_del_init(&zspage->list);
791 zs_stat_dec(class, fullness, 1);
795 * Each size class maintains zspages in different fullness groups depending
796 * on the number of live objects they contain. When allocating or freeing
797 * objects, the fullness status of the page can change, say, from ALMOST_FULL
798 * to ALMOST_EMPTY when freeing an object. This function checks if such
799 * a status change has occurred for the given page and accordingly moves the
800 * page from the freelist of the old fullness group to that of the new
801 * fullness group.
803 static enum fullness_group fix_fullness_group(struct size_class *class,
804 struct zspage *zspage)
806 int class_idx;
807 enum fullness_group currfg, newfg;
809 get_zspage_mapping(zspage, &class_idx, &currfg);
810 newfg = get_fullness_group(class, zspage);
811 if (newfg == currfg)
812 goto out;
814 if (!is_zspage_isolated(zspage)) {
815 remove_zspage(class, zspage, currfg);
816 insert_zspage(class, zspage, newfg);
819 set_zspage_mapping(zspage, class_idx, newfg);
821 out:
822 return newfg;
826 * We have to decide on how many pages to link together
827 * to form a zspage for each size class. This is important
828 * to reduce wastage due to unusable space left at end of
829 * each zspage which is given as:
830 * wastage = Zp % class_size
831 * usage = Zp - wastage
832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
834 * For example, for size class of 3/8 * PAGE_SIZE, we should
835 * link together 3 PAGE_SIZE sized pages to form a zspage
836 * since then we can perfectly fit in 8 such objects.
838 static int get_pages_per_zspage(int class_size)
840 int i, max_usedpc = 0;
841 /* zspage order which gives maximum used size per KB */
842 int max_usedpc_order = 1;
844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845 int zspage_size;
846 int waste, usedpc;
848 zspage_size = i * PAGE_SIZE;
849 waste = zspage_size % class_size;
850 usedpc = (zspage_size - waste) * 100 / zspage_size;
852 if (usedpc > max_usedpc) {
853 max_usedpc = usedpc;
854 max_usedpc_order = i;
858 return max_usedpc_order;
861 static struct zspage *get_zspage(struct page *page)
863 struct zspage *zspage = (struct zspage *)page->private;
865 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866 return zspage;
869 static struct page *get_next_page(struct page *page)
871 if (unlikely(PageHugeObject(page)))
872 return NULL;
874 return page->freelist;
878 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
879 * @page: page object resides in zspage
880 * @obj_idx: object index
882 static void obj_to_location(unsigned long obj, struct page **page,
883 unsigned int *obj_idx)
885 obj >>= OBJ_TAG_BITS;
886 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
887 *obj_idx = (obj & OBJ_INDEX_MASK);
891 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
892 * @page: page object resides in zspage
893 * @obj_idx: object index
895 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
897 unsigned long obj;
899 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
900 obj |= obj_idx & OBJ_INDEX_MASK;
901 obj <<= OBJ_TAG_BITS;
903 return obj;
906 static unsigned long handle_to_obj(unsigned long handle)
908 return *(unsigned long *)handle;
911 static unsigned long obj_to_head(struct page *page, void *obj)
913 if (unlikely(PageHugeObject(page))) {
914 VM_BUG_ON_PAGE(!is_first_page(page), page);
915 return page->index;
916 } else
917 return *(unsigned long *)obj;
920 static inline int testpin_tag(unsigned long handle)
922 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
925 static inline int trypin_tag(unsigned long handle)
927 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 static void pin_tag(unsigned long handle)
932 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
935 static void unpin_tag(unsigned long handle)
937 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
940 static void reset_page(struct page *page)
942 __ClearPageMovable(page);
943 ClearPagePrivate(page);
944 ClearPagePrivate2(page);
945 set_page_private(page, 0);
946 page_mapcount_reset(page);
947 ClearPageHugeObject(page);
948 page->freelist = NULL;
952 * To prevent zspage destroy during migration, zspage freeing should
953 * hold locks of all pages in the zspage.
955 void lock_zspage(struct zspage *zspage)
957 struct page *page = get_first_page(zspage);
959 do {
960 lock_page(page);
961 } while ((page = get_next_page(page)) != NULL);
964 int trylock_zspage(struct zspage *zspage)
966 struct page *cursor, *fail;
968 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
969 get_next_page(cursor)) {
970 if (!trylock_page(cursor)) {
971 fail = cursor;
972 goto unlock;
976 return 1;
977 unlock:
978 for (cursor = get_first_page(zspage); cursor != fail; cursor =
979 get_next_page(cursor))
980 unlock_page(cursor);
982 return 0;
985 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
986 struct zspage *zspage)
988 struct page *page, *next;
989 enum fullness_group fg;
990 unsigned int class_idx;
992 get_zspage_mapping(zspage, &class_idx, &fg);
994 assert_spin_locked(&class->lock);
996 VM_BUG_ON(get_zspage_inuse(zspage));
997 VM_BUG_ON(fg != ZS_EMPTY);
999 next = page = get_first_page(zspage);
1000 do {
1001 VM_BUG_ON_PAGE(!PageLocked(page), page);
1002 next = get_next_page(page);
1003 reset_page(page);
1004 unlock_page(page);
1005 dec_zone_page_state(page, NR_ZSPAGES);
1006 put_page(page);
1007 page = next;
1008 } while (page != NULL);
1010 cache_free_zspage(pool, zspage);
1012 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1013 atomic_long_sub(class->pages_per_zspage,
1014 &pool->pages_allocated);
1017 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1018 struct zspage *zspage)
1020 VM_BUG_ON(get_zspage_inuse(zspage));
1021 VM_BUG_ON(list_empty(&zspage->list));
1023 if (!trylock_zspage(zspage)) {
1024 kick_deferred_free(pool);
1025 return;
1028 remove_zspage(class, zspage, ZS_EMPTY);
1029 __free_zspage(pool, class, zspage);
1032 /* Initialize a newly allocated zspage */
1033 static void init_zspage(struct size_class *class, struct zspage *zspage)
1035 unsigned int freeobj = 1;
1036 unsigned long off = 0;
1037 struct page *page = get_first_page(zspage);
1039 while (page) {
1040 struct page *next_page;
1041 struct link_free *link;
1042 void *vaddr;
1044 set_first_obj_offset(page, off);
1046 vaddr = kmap_atomic(page);
1047 link = (struct link_free *)vaddr + off / sizeof(*link);
1049 while ((off += class->size) < PAGE_SIZE) {
1050 link->next = freeobj++ << OBJ_TAG_BITS;
1051 link += class->size / sizeof(*link);
1055 * We now come to the last (full or partial) object on this
1056 * page, which must point to the first object on the next
1057 * page (if present)
1059 next_page = get_next_page(page);
1060 if (next_page) {
1061 link->next = freeobj++ << OBJ_TAG_BITS;
1062 } else {
1064 * Reset OBJ_TAG_BITS bit to last link to tell
1065 * whether it's allocated object or not.
1067 link->next = -1 << OBJ_TAG_BITS;
1069 kunmap_atomic(vaddr);
1070 page = next_page;
1071 off %= PAGE_SIZE;
1074 set_freeobj(zspage, 0);
1077 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1078 struct page *pages[])
1080 int i;
1081 struct page *page;
1082 struct page *prev_page = NULL;
1083 int nr_pages = class->pages_per_zspage;
1086 * Allocate individual pages and link them together as:
1087 * 1. all pages are linked together using page->freelist
1088 * 2. each sub-page point to zspage using page->private
1090 * we set PG_private to identify the first page (i.e. no other sub-page
1091 * has this flag set) and PG_private_2 to identify the last page.
1093 for (i = 0; i < nr_pages; i++) {
1094 page = pages[i];
1095 set_page_private(page, (unsigned long)zspage);
1096 page->freelist = NULL;
1097 if (i == 0) {
1098 zspage->first_page = page;
1099 SetPagePrivate(page);
1100 if (unlikely(class->objs_per_zspage == 1 &&
1101 class->pages_per_zspage == 1))
1102 SetPageHugeObject(page);
1103 } else {
1104 prev_page->freelist = page;
1106 if (i == nr_pages - 1)
1107 SetPagePrivate2(page);
1108 prev_page = page;
1113 * Allocate a zspage for the given size class
1115 static struct zspage *alloc_zspage(struct zs_pool *pool,
1116 struct size_class *class,
1117 gfp_t gfp)
1119 int i;
1120 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1121 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1123 if (!zspage)
1124 return NULL;
1126 memset(zspage, 0, sizeof(struct zspage));
1127 zspage->magic = ZSPAGE_MAGIC;
1128 migrate_lock_init(zspage);
1130 for (i = 0; i < class->pages_per_zspage; i++) {
1131 struct page *page;
1133 page = alloc_page(gfp);
1134 if (!page) {
1135 while (--i >= 0) {
1136 dec_zone_page_state(pages[i], NR_ZSPAGES);
1137 __free_page(pages[i]);
1139 cache_free_zspage(pool, zspage);
1140 return NULL;
1143 inc_zone_page_state(page, NR_ZSPAGES);
1144 pages[i] = page;
1147 create_page_chain(class, zspage, pages);
1148 init_zspage(class, zspage);
1150 return zspage;
1153 static struct zspage *find_get_zspage(struct size_class *class)
1155 int i;
1156 struct zspage *zspage;
1158 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1159 zspage = list_first_entry_or_null(&class->fullness_list[i],
1160 struct zspage, list);
1161 if (zspage)
1162 break;
1165 return zspage;
1168 #ifdef CONFIG_PGTABLE_MAPPING
1169 static inline int __zs_cpu_up(struct mapping_area *area)
1172 * Make sure we don't leak memory if a cpu UP notification
1173 * and zs_init() race and both call zs_cpu_up() on the same cpu
1175 if (area->vm)
1176 return 0;
1177 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1178 if (!area->vm)
1179 return -ENOMEM;
1180 return 0;
1183 static inline void __zs_cpu_down(struct mapping_area *area)
1185 if (area->vm)
1186 free_vm_area(area->vm);
1187 area->vm = NULL;
1190 static inline void *__zs_map_object(struct mapping_area *area,
1191 struct page *pages[2], int off, int size)
1193 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1194 area->vm_addr = area->vm->addr;
1195 return area->vm_addr + off;
1198 static inline void __zs_unmap_object(struct mapping_area *area,
1199 struct page *pages[2], int off, int size)
1201 unsigned long addr = (unsigned long)area->vm_addr;
1203 unmap_kernel_range(addr, PAGE_SIZE * 2);
1206 #else /* CONFIG_PGTABLE_MAPPING */
1208 static inline int __zs_cpu_up(struct mapping_area *area)
1211 * Make sure we don't leak memory if a cpu UP notification
1212 * and zs_init() race and both call zs_cpu_up() on the same cpu
1214 if (area->vm_buf)
1215 return 0;
1216 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1217 if (!area->vm_buf)
1218 return -ENOMEM;
1219 return 0;
1222 static inline void __zs_cpu_down(struct mapping_area *area)
1224 kfree(area->vm_buf);
1225 area->vm_buf = NULL;
1228 static void *__zs_map_object(struct mapping_area *area,
1229 struct page *pages[2], int off, int size)
1231 int sizes[2];
1232 void *addr;
1233 char *buf = area->vm_buf;
1235 /* disable page faults to match kmap_atomic() return conditions */
1236 pagefault_disable();
1238 /* no read fastpath */
1239 if (area->vm_mm == ZS_MM_WO)
1240 goto out;
1242 sizes[0] = PAGE_SIZE - off;
1243 sizes[1] = size - sizes[0];
1245 /* copy object to per-cpu buffer */
1246 addr = kmap_atomic(pages[0]);
1247 memcpy(buf, addr + off, sizes[0]);
1248 kunmap_atomic(addr);
1249 addr = kmap_atomic(pages[1]);
1250 memcpy(buf + sizes[0], addr, sizes[1]);
1251 kunmap_atomic(addr);
1252 out:
1253 return area->vm_buf;
1256 static void __zs_unmap_object(struct mapping_area *area,
1257 struct page *pages[2], int off, int size)
1259 int sizes[2];
1260 void *addr;
1261 char *buf;
1263 /* no write fastpath */
1264 if (area->vm_mm == ZS_MM_RO)
1265 goto out;
1267 buf = area->vm_buf;
1268 buf = buf + ZS_HANDLE_SIZE;
1269 size -= ZS_HANDLE_SIZE;
1270 off += ZS_HANDLE_SIZE;
1272 sizes[0] = PAGE_SIZE - off;
1273 sizes[1] = size - sizes[0];
1275 /* copy per-cpu buffer to object */
1276 addr = kmap_atomic(pages[0]);
1277 memcpy(addr + off, buf, sizes[0]);
1278 kunmap_atomic(addr);
1279 addr = kmap_atomic(pages[1]);
1280 memcpy(addr, buf + sizes[0], sizes[1]);
1281 kunmap_atomic(addr);
1283 out:
1284 /* enable page faults to match kunmap_atomic() return conditions */
1285 pagefault_enable();
1288 #endif /* CONFIG_PGTABLE_MAPPING */
1290 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1291 void *pcpu)
1293 int ret, cpu = (long)pcpu;
1294 struct mapping_area *area;
1296 switch (action) {
1297 case CPU_UP_PREPARE:
1298 area = &per_cpu(zs_map_area, cpu);
1299 ret = __zs_cpu_up(area);
1300 if (ret)
1301 return notifier_from_errno(ret);
1302 break;
1303 case CPU_DEAD:
1304 case CPU_UP_CANCELED:
1305 area = &per_cpu(zs_map_area, cpu);
1306 __zs_cpu_down(area);
1307 break;
1310 return NOTIFY_OK;
1313 static struct notifier_block zs_cpu_nb = {
1314 .notifier_call = zs_cpu_notifier
1317 static int zs_register_cpu_notifier(void)
1319 int cpu, uninitialized_var(ret);
1321 cpu_notifier_register_begin();
1323 __register_cpu_notifier(&zs_cpu_nb);
1324 for_each_online_cpu(cpu) {
1325 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1326 if (notifier_to_errno(ret))
1327 break;
1330 cpu_notifier_register_done();
1331 return notifier_to_errno(ret);
1334 static void zs_unregister_cpu_notifier(void)
1336 int cpu;
1338 cpu_notifier_register_begin();
1340 for_each_online_cpu(cpu)
1341 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1342 __unregister_cpu_notifier(&zs_cpu_nb);
1344 cpu_notifier_register_done();
1347 static void __init init_zs_size_classes(void)
1349 int nr;
1351 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1352 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1353 nr += 1;
1355 zs_size_classes = nr;
1358 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1359 int objs_per_zspage)
1361 if (prev->pages_per_zspage == pages_per_zspage &&
1362 prev->objs_per_zspage == objs_per_zspage)
1363 return true;
1365 return false;
1368 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1370 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1373 unsigned long zs_get_total_pages(struct zs_pool *pool)
1375 return atomic_long_read(&pool->pages_allocated);
1377 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1380 * zs_map_object - get address of allocated object from handle.
1381 * @pool: pool from which the object was allocated
1382 * @handle: handle returned from zs_malloc
1384 * Before using an object allocated from zs_malloc, it must be mapped using
1385 * this function. When done with the object, it must be unmapped using
1386 * zs_unmap_object.
1388 * Only one object can be mapped per cpu at a time. There is no protection
1389 * against nested mappings.
1391 * This function returns with preemption and page faults disabled.
1393 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1394 enum zs_mapmode mm)
1396 struct zspage *zspage;
1397 struct page *page;
1398 unsigned long obj, off;
1399 unsigned int obj_idx;
1401 unsigned int class_idx;
1402 enum fullness_group fg;
1403 struct size_class *class;
1404 struct mapping_area *area;
1405 struct page *pages[2];
1406 void *ret;
1409 * Because we use per-cpu mapping areas shared among the
1410 * pools/users, we can't allow mapping in interrupt context
1411 * because it can corrupt another users mappings.
1413 BUG_ON(in_interrupt());
1415 /* From now on, migration cannot move the object */
1416 pin_tag(handle);
1418 obj = handle_to_obj(handle);
1419 obj_to_location(obj, &page, &obj_idx);
1420 zspage = get_zspage(page);
1422 /* migration cannot move any subpage in this zspage */
1423 migrate_read_lock(zspage);
1425 get_zspage_mapping(zspage, &class_idx, &fg);
1426 class = pool->size_class[class_idx];
1427 off = (class->size * obj_idx) & ~PAGE_MASK;
1429 area = &get_cpu_var(zs_map_area);
1430 area->vm_mm = mm;
1431 if (off + class->size <= PAGE_SIZE) {
1432 /* this object is contained entirely within a page */
1433 area->vm_addr = kmap_atomic(page);
1434 ret = area->vm_addr + off;
1435 goto out;
1438 /* this object spans two pages */
1439 pages[0] = page;
1440 pages[1] = get_next_page(page);
1441 BUG_ON(!pages[1]);
1443 ret = __zs_map_object(area, pages, off, class->size);
1444 out:
1445 if (likely(!PageHugeObject(page)))
1446 ret += ZS_HANDLE_SIZE;
1448 return ret;
1450 EXPORT_SYMBOL_GPL(zs_map_object);
1452 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1454 struct zspage *zspage;
1455 struct page *page;
1456 unsigned long obj, off;
1457 unsigned int obj_idx;
1459 unsigned int class_idx;
1460 enum fullness_group fg;
1461 struct size_class *class;
1462 struct mapping_area *area;
1464 obj = handle_to_obj(handle);
1465 obj_to_location(obj, &page, &obj_idx);
1466 zspage = get_zspage(page);
1467 get_zspage_mapping(zspage, &class_idx, &fg);
1468 class = pool->size_class[class_idx];
1469 off = (class->size * obj_idx) & ~PAGE_MASK;
1471 area = this_cpu_ptr(&zs_map_area);
1472 if (off + class->size <= PAGE_SIZE)
1473 kunmap_atomic(area->vm_addr);
1474 else {
1475 struct page *pages[2];
1477 pages[0] = page;
1478 pages[1] = get_next_page(page);
1479 BUG_ON(!pages[1]);
1481 __zs_unmap_object(area, pages, off, class->size);
1483 put_cpu_var(zs_map_area);
1485 migrate_read_unlock(zspage);
1486 unpin_tag(handle);
1488 EXPORT_SYMBOL_GPL(zs_unmap_object);
1490 static unsigned long obj_malloc(struct size_class *class,
1491 struct zspage *zspage, unsigned long handle)
1493 int i, nr_page, offset;
1494 unsigned long obj;
1495 struct link_free *link;
1497 struct page *m_page;
1498 unsigned long m_offset;
1499 void *vaddr;
1501 handle |= OBJ_ALLOCATED_TAG;
1502 obj = get_freeobj(zspage);
1504 offset = obj * class->size;
1505 nr_page = offset >> PAGE_SHIFT;
1506 m_offset = offset & ~PAGE_MASK;
1507 m_page = get_first_page(zspage);
1509 for (i = 0; i < nr_page; i++)
1510 m_page = get_next_page(m_page);
1512 vaddr = kmap_atomic(m_page);
1513 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1514 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1515 if (likely(!PageHugeObject(m_page)))
1516 /* record handle in the header of allocated chunk */
1517 link->handle = handle;
1518 else
1519 /* record handle to page->index */
1520 zspage->first_page->index = handle;
1522 kunmap_atomic(vaddr);
1523 mod_zspage_inuse(zspage, 1);
1524 zs_stat_inc(class, OBJ_USED, 1);
1526 obj = location_to_obj(m_page, obj);
1528 return obj;
1533 * zs_malloc - Allocate block of given size from pool.
1534 * @pool: pool to allocate from
1535 * @size: size of block to allocate
1536 * @gfp: gfp flags when allocating object
1538 * On success, handle to the allocated object is returned,
1539 * otherwise 0.
1540 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1542 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1544 unsigned long handle, obj;
1545 struct size_class *class;
1546 enum fullness_group newfg;
1547 struct zspage *zspage;
1549 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1550 return 0;
1552 handle = cache_alloc_handle(pool, gfp);
1553 if (!handle)
1554 return 0;
1556 /* extra space in chunk to keep the handle */
1557 size += ZS_HANDLE_SIZE;
1558 class = pool->size_class[get_size_class_index(size)];
1560 spin_lock(&class->lock);
1561 zspage = find_get_zspage(class);
1562 if (likely(zspage)) {
1563 obj = obj_malloc(class, zspage, handle);
1564 /* Now move the zspage to another fullness group, if required */
1565 fix_fullness_group(class, zspage);
1566 record_obj(handle, obj);
1567 spin_unlock(&class->lock);
1569 return handle;
1572 spin_unlock(&class->lock);
1574 zspage = alloc_zspage(pool, class, gfp);
1575 if (!zspage) {
1576 cache_free_handle(pool, handle);
1577 return 0;
1580 spin_lock(&class->lock);
1581 obj = obj_malloc(class, zspage, handle);
1582 newfg = get_fullness_group(class, zspage);
1583 insert_zspage(class, zspage, newfg);
1584 set_zspage_mapping(zspage, class->index, newfg);
1585 record_obj(handle, obj);
1586 atomic_long_add(class->pages_per_zspage,
1587 &pool->pages_allocated);
1588 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1590 /* We completely set up zspage so mark them as movable */
1591 SetZsPageMovable(pool, zspage);
1592 spin_unlock(&class->lock);
1594 return handle;
1596 EXPORT_SYMBOL_GPL(zs_malloc);
1598 static void obj_free(struct size_class *class, unsigned long obj)
1600 struct link_free *link;
1601 struct zspage *zspage;
1602 struct page *f_page;
1603 unsigned long f_offset;
1604 unsigned int f_objidx;
1605 void *vaddr;
1607 obj &= ~OBJ_ALLOCATED_TAG;
1608 obj_to_location(obj, &f_page, &f_objidx);
1609 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1610 zspage = get_zspage(f_page);
1612 vaddr = kmap_atomic(f_page);
1614 /* Insert this object in containing zspage's freelist */
1615 link = (struct link_free *)(vaddr + f_offset);
1616 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1617 kunmap_atomic(vaddr);
1618 set_freeobj(zspage, f_objidx);
1619 mod_zspage_inuse(zspage, -1);
1620 zs_stat_dec(class, OBJ_USED, 1);
1623 void zs_free(struct zs_pool *pool, unsigned long handle)
1625 struct zspage *zspage;
1626 struct page *f_page;
1627 unsigned long obj;
1628 unsigned int f_objidx;
1629 int class_idx;
1630 struct size_class *class;
1631 enum fullness_group fullness;
1632 bool isolated;
1634 if (unlikely(!handle))
1635 return;
1637 pin_tag(handle);
1638 obj = handle_to_obj(handle);
1639 obj_to_location(obj, &f_page, &f_objidx);
1640 zspage = get_zspage(f_page);
1642 migrate_read_lock(zspage);
1644 get_zspage_mapping(zspage, &class_idx, &fullness);
1645 class = pool->size_class[class_idx];
1647 spin_lock(&class->lock);
1648 obj_free(class, obj);
1649 fullness = fix_fullness_group(class, zspage);
1650 if (fullness != ZS_EMPTY) {
1651 migrate_read_unlock(zspage);
1652 goto out;
1655 isolated = is_zspage_isolated(zspage);
1656 migrate_read_unlock(zspage);
1657 /* If zspage is isolated, zs_page_putback will free the zspage */
1658 if (likely(!isolated))
1659 free_zspage(pool, class, zspage);
1660 out:
1662 spin_unlock(&class->lock);
1663 unpin_tag(handle);
1664 cache_free_handle(pool, handle);
1666 EXPORT_SYMBOL_GPL(zs_free);
1668 static void zs_object_copy(struct size_class *class, unsigned long dst,
1669 unsigned long src)
1671 struct page *s_page, *d_page;
1672 unsigned int s_objidx, d_objidx;
1673 unsigned long s_off, d_off;
1674 void *s_addr, *d_addr;
1675 int s_size, d_size, size;
1676 int written = 0;
1678 s_size = d_size = class->size;
1680 obj_to_location(src, &s_page, &s_objidx);
1681 obj_to_location(dst, &d_page, &d_objidx);
1683 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1684 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1686 if (s_off + class->size > PAGE_SIZE)
1687 s_size = PAGE_SIZE - s_off;
1689 if (d_off + class->size > PAGE_SIZE)
1690 d_size = PAGE_SIZE - d_off;
1692 s_addr = kmap_atomic(s_page);
1693 d_addr = kmap_atomic(d_page);
1695 while (1) {
1696 size = min(s_size, d_size);
1697 memcpy(d_addr + d_off, s_addr + s_off, size);
1698 written += size;
1700 if (written == class->size)
1701 break;
1703 s_off += size;
1704 s_size -= size;
1705 d_off += size;
1706 d_size -= size;
1708 if (s_off >= PAGE_SIZE) {
1709 kunmap_atomic(d_addr);
1710 kunmap_atomic(s_addr);
1711 s_page = get_next_page(s_page);
1712 s_addr = kmap_atomic(s_page);
1713 d_addr = kmap_atomic(d_page);
1714 s_size = class->size - written;
1715 s_off = 0;
1718 if (d_off >= PAGE_SIZE) {
1719 kunmap_atomic(d_addr);
1720 d_page = get_next_page(d_page);
1721 d_addr = kmap_atomic(d_page);
1722 d_size = class->size - written;
1723 d_off = 0;
1727 kunmap_atomic(d_addr);
1728 kunmap_atomic(s_addr);
1732 * Find alloced object in zspage from index object and
1733 * return handle.
1735 static unsigned long find_alloced_obj(struct size_class *class,
1736 struct page *page, int *obj_idx)
1738 unsigned long head;
1739 int offset = 0;
1740 int index = *obj_idx;
1741 unsigned long handle = 0;
1742 void *addr = kmap_atomic(page);
1744 offset = get_first_obj_offset(page);
1745 offset += class->size * index;
1747 while (offset < PAGE_SIZE) {
1748 head = obj_to_head(page, addr + offset);
1749 if (head & OBJ_ALLOCATED_TAG) {
1750 handle = head & ~OBJ_ALLOCATED_TAG;
1751 if (trypin_tag(handle))
1752 break;
1753 handle = 0;
1756 offset += class->size;
1757 index++;
1760 kunmap_atomic(addr);
1762 *obj_idx = index;
1764 return handle;
1767 struct zs_compact_control {
1768 /* Source spage for migration which could be a subpage of zspage */
1769 struct page *s_page;
1770 /* Destination page for migration which should be a first page
1771 * of zspage. */
1772 struct page *d_page;
1773 /* Starting object index within @s_page which used for live object
1774 * in the subpage. */
1775 int obj_idx;
1778 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1779 struct zs_compact_control *cc)
1781 unsigned long used_obj, free_obj;
1782 unsigned long handle;
1783 struct page *s_page = cc->s_page;
1784 struct page *d_page = cc->d_page;
1785 int obj_idx = cc->obj_idx;
1786 int ret = 0;
1788 while (1) {
1789 handle = find_alloced_obj(class, s_page, &obj_idx);
1790 if (!handle) {
1791 s_page = get_next_page(s_page);
1792 if (!s_page)
1793 break;
1794 obj_idx = 0;
1795 continue;
1798 /* Stop if there is no more space */
1799 if (zspage_full(class, get_zspage(d_page))) {
1800 unpin_tag(handle);
1801 ret = -ENOMEM;
1802 break;
1805 used_obj = handle_to_obj(handle);
1806 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1807 zs_object_copy(class, free_obj, used_obj);
1808 obj_idx++;
1810 * record_obj updates handle's value to free_obj and it will
1811 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1812 * breaks synchronization using pin_tag(e,g, zs_free) so
1813 * let's keep the lock bit.
1815 free_obj |= BIT(HANDLE_PIN_BIT);
1816 record_obj(handle, free_obj);
1817 unpin_tag(handle);
1818 obj_free(class, used_obj);
1821 /* Remember last position in this iteration */
1822 cc->s_page = s_page;
1823 cc->obj_idx = obj_idx;
1825 return ret;
1828 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1830 int i;
1831 struct zspage *zspage;
1832 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1834 if (!source) {
1835 fg[0] = ZS_ALMOST_FULL;
1836 fg[1] = ZS_ALMOST_EMPTY;
1839 for (i = 0; i < 2; i++) {
1840 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1841 struct zspage, list);
1842 if (zspage) {
1843 VM_BUG_ON(is_zspage_isolated(zspage));
1844 remove_zspage(class, zspage, fg[i]);
1845 return zspage;
1849 return zspage;
1853 * putback_zspage - add @zspage into right class's fullness list
1854 * @class: destination class
1855 * @zspage: target page
1857 * Return @zspage's fullness_group
1859 static enum fullness_group putback_zspage(struct size_class *class,
1860 struct zspage *zspage)
1862 enum fullness_group fullness;
1864 VM_BUG_ON(is_zspage_isolated(zspage));
1866 fullness = get_fullness_group(class, zspage);
1867 insert_zspage(class, zspage, fullness);
1868 set_zspage_mapping(zspage, class->index, fullness);
1870 return fullness;
1873 #ifdef CONFIG_COMPACTION
1874 static struct dentry *zs_mount(struct file_system_type *fs_type,
1875 int flags, const char *dev_name, void *data)
1877 static const struct dentry_operations ops = {
1878 .d_dname = simple_dname,
1881 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1884 static struct file_system_type zsmalloc_fs = {
1885 .name = "zsmalloc",
1886 .mount = zs_mount,
1887 .kill_sb = kill_anon_super,
1890 static int zsmalloc_mount(void)
1892 int ret = 0;
1894 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1895 if (IS_ERR(zsmalloc_mnt))
1896 ret = PTR_ERR(zsmalloc_mnt);
1898 return ret;
1901 static void zsmalloc_unmount(void)
1903 kern_unmount(zsmalloc_mnt);
1906 static void migrate_lock_init(struct zspage *zspage)
1908 rwlock_init(&zspage->lock);
1911 static void migrate_read_lock(struct zspage *zspage)
1913 read_lock(&zspage->lock);
1916 static void migrate_read_unlock(struct zspage *zspage)
1918 read_unlock(&zspage->lock);
1921 static void migrate_write_lock(struct zspage *zspage)
1923 write_lock(&zspage->lock);
1926 static void migrate_write_unlock(struct zspage *zspage)
1928 write_unlock(&zspage->lock);
1931 /* Number of isolated subpage for *page migration* in this zspage */
1932 static void inc_zspage_isolation(struct zspage *zspage)
1934 zspage->isolated++;
1937 static void dec_zspage_isolation(struct zspage *zspage)
1939 zspage->isolated--;
1942 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1943 struct page *newpage, struct page *oldpage)
1945 struct page *page;
1946 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1947 int idx = 0;
1949 page = get_first_page(zspage);
1950 do {
1951 if (page == oldpage)
1952 pages[idx] = newpage;
1953 else
1954 pages[idx] = page;
1955 idx++;
1956 } while ((page = get_next_page(page)) != NULL);
1958 create_page_chain(class, zspage, pages);
1959 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1960 if (unlikely(PageHugeObject(oldpage)))
1961 newpage->index = oldpage->index;
1962 __SetPageMovable(newpage, page_mapping(oldpage));
1965 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1967 struct zs_pool *pool;
1968 struct size_class *class;
1969 int class_idx;
1970 enum fullness_group fullness;
1971 struct zspage *zspage;
1972 struct address_space *mapping;
1975 * Page is locked so zspage couldn't be destroyed. For detail, look at
1976 * lock_zspage in free_zspage.
1978 VM_BUG_ON_PAGE(!PageMovable(page), page);
1979 VM_BUG_ON_PAGE(PageIsolated(page), page);
1981 zspage = get_zspage(page);
1984 * Without class lock, fullness could be stale while class_idx is okay
1985 * because class_idx is constant unless page is freed so we should get
1986 * fullness again under class lock.
1988 get_zspage_mapping(zspage, &class_idx, &fullness);
1989 mapping = page_mapping(page);
1990 pool = mapping->private_data;
1991 class = pool->size_class[class_idx];
1993 spin_lock(&class->lock);
1994 if (get_zspage_inuse(zspage) == 0) {
1995 spin_unlock(&class->lock);
1996 return false;
1999 /* zspage is isolated for object migration */
2000 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2001 spin_unlock(&class->lock);
2002 return false;
2006 * If this is first time isolation for the zspage, isolate zspage from
2007 * size_class to prevent further object allocation from the zspage.
2009 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2010 get_zspage_mapping(zspage, &class_idx, &fullness);
2011 remove_zspage(class, zspage, fullness);
2014 inc_zspage_isolation(zspage);
2015 spin_unlock(&class->lock);
2017 return true;
2020 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2021 struct page *page, enum migrate_mode mode)
2023 struct zs_pool *pool;
2024 struct size_class *class;
2025 int class_idx;
2026 enum fullness_group fullness;
2027 struct zspage *zspage;
2028 struct page *dummy;
2029 void *s_addr, *d_addr, *addr;
2030 int offset, pos;
2031 unsigned long handle, head;
2032 unsigned long old_obj, new_obj;
2033 unsigned int obj_idx;
2034 int ret = -EAGAIN;
2036 VM_BUG_ON_PAGE(!PageMovable(page), page);
2037 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2039 zspage = get_zspage(page);
2041 /* Concurrent compactor cannot migrate any subpage in zspage */
2042 migrate_write_lock(zspage);
2043 get_zspage_mapping(zspage, &class_idx, &fullness);
2044 pool = mapping->private_data;
2045 class = pool->size_class[class_idx];
2046 offset = get_first_obj_offset(page);
2048 spin_lock(&class->lock);
2049 if (!get_zspage_inuse(zspage)) {
2050 ret = -EBUSY;
2051 goto unlock_class;
2054 pos = offset;
2055 s_addr = kmap_atomic(page);
2056 while (pos < PAGE_SIZE) {
2057 head = obj_to_head(page, s_addr + pos);
2058 if (head & OBJ_ALLOCATED_TAG) {
2059 handle = head & ~OBJ_ALLOCATED_TAG;
2060 if (!trypin_tag(handle))
2061 goto unpin_objects;
2063 pos += class->size;
2067 * Here, any user cannot access all objects in the zspage so let's move.
2069 d_addr = kmap_atomic(newpage);
2070 memcpy(d_addr, s_addr, PAGE_SIZE);
2071 kunmap_atomic(d_addr);
2073 for (addr = s_addr + offset; addr < s_addr + pos;
2074 addr += class->size) {
2075 head = obj_to_head(page, addr);
2076 if (head & OBJ_ALLOCATED_TAG) {
2077 handle = head & ~OBJ_ALLOCATED_TAG;
2078 if (!testpin_tag(handle))
2079 BUG();
2081 old_obj = handle_to_obj(handle);
2082 obj_to_location(old_obj, &dummy, &obj_idx);
2083 new_obj = (unsigned long)location_to_obj(newpage,
2084 obj_idx);
2085 new_obj |= BIT(HANDLE_PIN_BIT);
2086 record_obj(handle, new_obj);
2090 replace_sub_page(class, zspage, newpage, page);
2091 get_page(newpage);
2093 dec_zspage_isolation(zspage);
2096 * Page migration is done so let's putback isolated zspage to
2097 * the list if @page is final isolated subpage in the zspage.
2099 if (!is_zspage_isolated(zspage))
2100 putback_zspage(class, zspage);
2102 reset_page(page);
2103 put_page(page);
2104 page = newpage;
2106 ret = MIGRATEPAGE_SUCCESS;
2107 unpin_objects:
2108 for (addr = s_addr + offset; addr < s_addr + pos;
2109 addr += class->size) {
2110 head = obj_to_head(page, addr);
2111 if (head & OBJ_ALLOCATED_TAG) {
2112 handle = head & ~OBJ_ALLOCATED_TAG;
2113 if (!testpin_tag(handle))
2114 BUG();
2115 unpin_tag(handle);
2118 kunmap_atomic(s_addr);
2119 unlock_class:
2120 spin_unlock(&class->lock);
2121 migrate_write_unlock(zspage);
2123 return ret;
2126 void zs_page_putback(struct page *page)
2128 struct zs_pool *pool;
2129 struct size_class *class;
2130 int class_idx;
2131 enum fullness_group fg;
2132 struct address_space *mapping;
2133 struct zspage *zspage;
2135 VM_BUG_ON_PAGE(!PageMovable(page), page);
2136 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2138 zspage = get_zspage(page);
2139 get_zspage_mapping(zspage, &class_idx, &fg);
2140 mapping = page_mapping(page);
2141 pool = mapping->private_data;
2142 class = pool->size_class[class_idx];
2144 spin_lock(&class->lock);
2145 dec_zspage_isolation(zspage);
2146 if (!is_zspage_isolated(zspage)) {
2147 fg = putback_zspage(class, zspage);
2149 * Due to page_lock, we cannot free zspage immediately
2150 * so let's defer.
2152 if (fg == ZS_EMPTY)
2153 schedule_work(&pool->free_work);
2155 spin_unlock(&class->lock);
2158 const struct address_space_operations zsmalloc_aops = {
2159 .isolate_page = zs_page_isolate,
2160 .migratepage = zs_page_migrate,
2161 .putback_page = zs_page_putback,
2164 static int zs_register_migration(struct zs_pool *pool)
2166 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2167 if (IS_ERR(pool->inode)) {
2168 pool->inode = NULL;
2169 return 1;
2172 pool->inode->i_mapping->private_data = pool;
2173 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2174 return 0;
2177 static void zs_unregister_migration(struct zs_pool *pool)
2179 flush_work(&pool->free_work);
2180 iput(pool->inode);
2184 * Caller should hold page_lock of all pages in the zspage
2185 * In here, we cannot use zspage meta data.
2187 static void async_free_zspage(struct work_struct *work)
2189 int i;
2190 struct size_class *class;
2191 unsigned int class_idx;
2192 enum fullness_group fullness;
2193 struct zspage *zspage, *tmp;
2194 LIST_HEAD(free_pages);
2195 struct zs_pool *pool = container_of(work, struct zs_pool,
2196 free_work);
2198 for (i = 0; i < zs_size_classes; i++) {
2199 class = pool->size_class[i];
2200 if (class->index != i)
2201 continue;
2203 spin_lock(&class->lock);
2204 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205 spin_unlock(&class->lock);
2209 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210 list_del(&zspage->list);
2211 lock_zspage(zspage);
2213 get_zspage_mapping(zspage, &class_idx, &fullness);
2214 VM_BUG_ON(fullness != ZS_EMPTY);
2215 class = pool->size_class[class_idx];
2216 spin_lock(&class->lock);
2217 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218 spin_unlock(&class->lock);
2222 static void kick_deferred_free(struct zs_pool *pool)
2224 schedule_work(&pool->free_work);
2227 static void init_deferred_free(struct zs_pool *pool)
2229 INIT_WORK(&pool->free_work, async_free_zspage);
2232 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2234 struct page *page = get_first_page(zspage);
2236 do {
2237 WARN_ON(!trylock_page(page));
2238 __SetPageMovable(page, pool->inode->i_mapping);
2239 unlock_page(page);
2240 } while ((page = get_next_page(page)) != NULL);
2242 #endif
2246 * Based on the number of unused allocated objects calculate
2247 * and return the number of pages that we can free.
2249 static unsigned long zs_can_compact(struct size_class *class)
2251 unsigned long obj_wasted;
2252 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2255 if (obj_allocated <= obj_used)
2256 return 0;
2258 obj_wasted = obj_allocated - obj_used;
2259 obj_wasted /= class->objs_per_zspage;
2261 return obj_wasted * class->pages_per_zspage;
2264 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2266 struct zs_compact_control cc;
2267 struct zspage *src_zspage;
2268 struct zspage *dst_zspage = NULL;
2270 spin_lock(&class->lock);
2271 while ((src_zspage = isolate_zspage(class, true))) {
2273 if (!zs_can_compact(class))
2274 break;
2276 cc.obj_idx = 0;
2277 cc.s_page = get_first_page(src_zspage);
2279 while ((dst_zspage = isolate_zspage(class, false))) {
2280 cc.d_page = get_first_page(dst_zspage);
2282 * If there is no more space in dst_page, resched
2283 * and see if anyone had allocated another zspage.
2285 if (!migrate_zspage(pool, class, &cc))
2286 break;
2288 putback_zspage(class, dst_zspage);
2291 /* Stop if we couldn't find slot */
2292 if (dst_zspage == NULL)
2293 break;
2295 putback_zspage(class, dst_zspage);
2296 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2297 free_zspage(pool, class, src_zspage);
2298 pool->stats.pages_compacted += class->pages_per_zspage;
2300 spin_unlock(&class->lock);
2301 cond_resched();
2302 spin_lock(&class->lock);
2305 if (src_zspage)
2306 putback_zspage(class, src_zspage);
2308 spin_unlock(&class->lock);
2311 unsigned long zs_compact(struct zs_pool *pool)
2313 int i;
2314 struct size_class *class;
2316 for (i = zs_size_classes - 1; i >= 0; i--) {
2317 class = pool->size_class[i];
2318 if (!class)
2319 continue;
2320 if (class->index != i)
2321 continue;
2322 __zs_compact(pool, class);
2325 return pool->stats.pages_compacted;
2327 EXPORT_SYMBOL_GPL(zs_compact);
2329 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2331 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2333 EXPORT_SYMBOL_GPL(zs_pool_stats);
2335 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2336 struct shrink_control *sc)
2338 unsigned long pages_freed;
2339 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2340 shrinker);
2342 pages_freed = pool->stats.pages_compacted;
2344 * Compact classes and calculate compaction delta.
2345 * Can run concurrently with a manually triggered
2346 * (by user) compaction.
2348 pages_freed = zs_compact(pool) - pages_freed;
2350 return pages_freed ? pages_freed : SHRINK_STOP;
2353 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2354 struct shrink_control *sc)
2356 int i;
2357 struct size_class *class;
2358 unsigned long pages_to_free = 0;
2359 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2360 shrinker);
2362 for (i = zs_size_classes - 1; i >= 0; i--) {
2363 class = pool->size_class[i];
2364 if (!class)
2365 continue;
2366 if (class->index != i)
2367 continue;
2369 pages_to_free += zs_can_compact(class);
2372 return pages_to_free;
2375 static void zs_unregister_shrinker(struct zs_pool *pool)
2377 if (pool->shrinker_enabled) {
2378 unregister_shrinker(&pool->shrinker);
2379 pool->shrinker_enabled = false;
2383 static int zs_register_shrinker(struct zs_pool *pool)
2385 pool->shrinker.scan_objects = zs_shrinker_scan;
2386 pool->shrinker.count_objects = zs_shrinker_count;
2387 pool->shrinker.batch = 0;
2388 pool->shrinker.seeks = DEFAULT_SEEKS;
2390 return register_shrinker(&pool->shrinker);
2394 * zs_create_pool - Creates an allocation pool to work from.
2395 * @name: pool name to be created
2397 * This function must be called before anything when using
2398 * the zsmalloc allocator.
2400 * On success, a pointer to the newly created pool is returned,
2401 * otherwise NULL.
2403 struct zs_pool *zs_create_pool(const char *name)
2405 int i;
2406 struct zs_pool *pool;
2407 struct size_class *prev_class = NULL;
2409 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2410 if (!pool)
2411 return NULL;
2413 init_deferred_free(pool);
2414 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2415 GFP_KERNEL);
2416 if (!pool->size_class) {
2417 kfree(pool);
2418 return NULL;
2421 pool->name = kstrdup(name, GFP_KERNEL);
2422 if (!pool->name)
2423 goto err;
2425 if (create_cache(pool))
2426 goto err;
2429 * Iterate reversly, because, size of size_class that we want to use
2430 * for merging should be larger or equal to current size.
2432 for (i = zs_size_classes - 1; i >= 0; i--) {
2433 int size;
2434 int pages_per_zspage;
2435 int objs_per_zspage;
2436 struct size_class *class;
2437 int fullness = 0;
2439 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2440 if (size > ZS_MAX_ALLOC_SIZE)
2441 size = ZS_MAX_ALLOC_SIZE;
2442 pages_per_zspage = get_pages_per_zspage(size);
2443 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2446 * size_class is used for normal zsmalloc operation such
2447 * as alloc/free for that size. Although it is natural that we
2448 * have one size_class for each size, there is a chance that we
2449 * can get more memory utilization if we use one size_class for
2450 * many different sizes whose size_class have same
2451 * characteristics. So, we makes size_class point to
2452 * previous size_class if possible.
2454 if (prev_class) {
2455 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2456 pool->size_class[i] = prev_class;
2457 continue;
2461 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2462 if (!class)
2463 goto err;
2465 class->size = size;
2466 class->index = i;
2467 class->pages_per_zspage = pages_per_zspage;
2468 class->objs_per_zspage = objs_per_zspage;
2469 spin_lock_init(&class->lock);
2470 pool->size_class[i] = class;
2471 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2472 fullness++)
2473 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2475 prev_class = class;
2478 /* debug only, don't abort if it fails */
2479 zs_pool_stat_create(pool, name);
2481 if (zs_register_migration(pool))
2482 goto err;
2485 * Not critical, we still can use the pool
2486 * and user can trigger compaction manually.
2488 if (zs_register_shrinker(pool) == 0)
2489 pool->shrinker_enabled = true;
2490 return pool;
2492 err:
2493 zs_destroy_pool(pool);
2494 return NULL;
2496 EXPORT_SYMBOL_GPL(zs_create_pool);
2498 void zs_destroy_pool(struct zs_pool *pool)
2500 int i;
2502 zs_unregister_shrinker(pool);
2503 zs_unregister_migration(pool);
2504 zs_pool_stat_destroy(pool);
2506 for (i = 0; i < zs_size_classes; i++) {
2507 int fg;
2508 struct size_class *class = pool->size_class[i];
2510 if (!class)
2511 continue;
2513 if (class->index != i)
2514 continue;
2516 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2517 if (!list_empty(&class->fullness_list[fg])) {
2518 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2519 class->size, fg);
2522 kfree(class);
2525 destroy_cache(pool);
2526 kfree(pool->size_class);
2527 kfree(pool->name);
2528 kfree(pool);
2530 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2532 static int __init zs_init(void)
2534 int ret;
2536 ret = zsmalloc_mount();
2537 if (ret)
2538 goto out;
2540 ret = zs_register_cpu_notifier();
2542 if (ret)
2543 goto notifier_fail;
2545 init_zs_size_classes();
2547 #ifdef CONFIG_ZPOOL
2548 zpool_register_driver(&zs_zpool_driver);
2549 #endif
2551 zs_stat_init();
2553 return 0;
2555 notifier_fail:
2556 zs_unregister_cpu_notifier();
2557 zsmalloc_unmount();
2558 out:
2559 return ret;
2562 static void __exit zs_exit(void)
2564 #ifdef CONFIG_ZPOOL
2565 zpool_unregister_driver(&zs_zpool_driver);
2566 #endif
2567 zsmalloc_unmount();
2568 zs_unregister_cpu_notifier();
2570 zs_stat_exit();
2573 module_init(zs_init);
2574 module_exit(zs_exit);
2576 MODULE_LICENSE("Dual BSD/GPL");
2577 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");