1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup
*target_mem_cgroup
;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage
:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap
:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap
:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab
:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim
:1;
100 unsigned int memcg_low_skipped
:1;
102 unsigned int hibernation_mode
:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready
:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned
;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed
;
127 unsigned int unqueued_dirty
;
128 unsigned int congested
;
129 unsigned int writeback
;
130 unsigned int immediate
;
131 unsigned int file_taken
;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness
= 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages
;
174 static LIST_HEAD(shrinker_list
);
175 static DECLARE_RWSEM(shrinker_rwsem
);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr
);
193 static int shrinker_nr_max
;
195 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
197 int id
, ret
= -ENOMEM
;
199 down_write(&shrinker_rwsem
);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
205 if (id
>= shrinker_nr_max
) {
206 if (memcg_expand_shrinker_maps(id
)) {
207 idr_remove(&shrinker_idr
, id
);
211 shrinker_nr_max
= id
+ 1;
216 up_write(&shrinker_rwsem
);
220 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
222 int id
= shrinker
->id
;
226 down_write(&shrinker_rwsem
);
227 idr_remove(&shrinker_idr
, id
);
228 up_write(&shrinker_rwsem
);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
236 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control
*sc
)
244 return !sc
->target_mem_cgroup
;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control
*sc
)
262 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
273 static void set_memcg_congestion(pg_data_t
*pgdat
,
274 struct mem_cgroup
*memcg
,
277 struct mem_cgroup_per_node
*mn
;
282 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
283 WRITE_ONCE(mn
->congested
, congested
);
286 static bool memcg_congested(pg_data_t
*pgdat
,
287 struct mem_cgroup
*memcg
)
289 struct mem_cgroup_per_node
*mn
;
291 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
292 return READ_ONCE(mn
->congested
);
296 static bool global_reclaim(struct scan_control
*sc
)
301 static bool sane_reclaim(struct scan_control
*sc
)
306 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
307 struct mem_cgroup
*memcg
, bool congested
)
311 static inline bool memcg_congested(struct pglist_data
*pgdat
,
312 struct mem_cgroup
*memcg
)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone
*zone
)
328 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
329 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
330 if (get_nr_swap_pages() > 0)
331 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
332 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
345 unsigned long lru_size
;
348 if (!mem_cgroup_disabled())
349 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
351 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
353 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
354 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
357 if (!managed_zone(zone
))
360 if (!mem_cgroup_disabled())
361 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
363 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
364 NR_ZONE_LRU_BASE
+ lru
);
365 lru_size
-= min(size
, lru_size
);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker
*shrinker
)
377 size_t size
= sizeof(*shrinker
->nr_deferred
);
379 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
382 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
383 if (!shrinker
->nr_deferred
)
386 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
387 if (prealloc_memcg_shrinker(shrinker
))
394 kfree(shrinker
->nr_deferred
);
395 shrinker
->nr_deferred
= NULL
;
399 void free_prealloced_shrinker(struct shrinker
*shrinker
)
401 if (!shrinker
->nr_deferred
)
404 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
405 unregister_memcg_shrinker(shrinker
);
407 kfree(shrinker
->nr_deferred
);
408 shrinker
->nr_deferred
= NULL
;
411 void register_shrinker_prepared(struct shrinker
*shrinker
)
413 down_write(&shrinker_rwsem
);
414 list_add_tail(&shrinker
->list
, &shrinker_list
);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
417 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
419 up_write(&shrinker_rwsem
);
422 int register_shrinker(struct shrinker
*shrinker
)
424 int err
= prealloc_shrinker(shrinker
);
428 register_shrinker_prepared(shrinker
);
431 EXPORT_SYMBOL(register_shrinker
);
436 void unregister_shrinker(struct shrinker
*shrinker
)
438 if (!shrinker
->nr_deferred
)
440 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
441 unregister_memcg_shrinker(shrinker
);
442 down_write(&shrinker_rwsem
);
443 list_del(&shrinker
->list
);
444 up_write(&shrinker_rwsem
);
445 kfree(shrinker
->nr_deferred
);
446 shrinker
->nr_deferred
= NULL
;
448 EXPORT_SYMBOL(unregister_shrinker
);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
453 struct shrinker
*shrinker
, int priority
)
455 unsigned long freed
= 0;
456 unsigned long long delta
;
461 int nid
= shrinkctl
->nid
;
462 long batch_size
= shrinker
->batch
? shrinker
->batch
464 long scanned
= 0, next_deferred
;
466 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
469 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
470 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
481 if (shrinker
->seeks
) {
482 delta
= freeable
>> priority
;
484 do_div(delta
, shrinker
->seeks
);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta
= freeable
/ 2;
495 if (total_scan
< 0) {
496 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
497 shrinker
->scan_objects
, total_scan
);
498 total_scan
= freeable
;
501 next_deferred
= total_scan
;
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
515 if (delta
< freeable
/ 4)
516 total_scan
= min(total_scan
, freeable
/ 2);
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
523 if (total_scan
> freeable
* 2)
524 total_scan
= freeable
* 2;
526 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
527 freeable
, delta
, total_scan
, priority
);
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
544 while (total_scan
>= batch_size
||
545 total_scan
>= freeable
) {
547 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
549 shrinkctl
->nr_to_scan
= nr_to_scan
;
550 shrinkctl
->nr_scanned
= nr_to_scan
;
551 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
552 if (ret
== SHRINK_STOP
)
556 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
557 total_scan
-= shrinkctl
->nr_scanned
;
558 scanned
+= shrinkctl
->nr_scanned
;
563 if (next_deferred
>= scanned
)
564 next_deferred
-= scanned
;
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
572 if (next_deferred
> 0)
573 new_nr
= atomic_long_add_return(next_deferred
,
574 &shrinker
->nr_deferred
[nid
]);
576 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
578 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
584 struct mem_cgroup
*memcg
, int priority
)
586 struct memcg_shrinker_map
*map
;
587 unsigned long ret
, freed
= 0;
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
593 if (!down_read_trylock(&shrinker_rwsem
))
596 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
601 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
602 struct shrink_control sc
= {
603 .gfp_mask
= gfp_mask
,
607 struct shrinker
*shrinker
;
609 shrinker
= idr_find(&shrinker_idr
, i
);
610 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
612 clear_bit(i
, map
->map
);
616 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
617 if (ret
== SHRINK_EMPTY
) {
618 clear_bit(i
, map
->map
);
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
632 * set_bit() do_shrink_slab()
634 smp_mb__after_atomic();
635 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
636 if (ret
== SHRINK_EMPTY
)
639 memcg_set_shrinker_bit(memcg
, nid
, i
);
643 if (rwsem_is_contended(&shrinker_rwsem
)) {
649 up_read(&shrinker_rwsem
);
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
654 struct mem_cgroup
*memcg
, int priority
)
658 #endif /* CONFIG_MEMCG_KMEM */
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
667 * Call the shrink functions to age shrinkable caches.
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
678 * Returns the number of reclaimed slab objects.
680 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
681 struct mem_cgroup
*memcg
,
684 unsigned long ret
, freed
= 0;
685 struct shrinker
*shrinker
;
687 if (!mem_cgroup_is_root(memcg
))
688 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
690 if (!down_read_trylock(&shrinker_rwsem
))
693 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
694 struct shrink_control sc
= {
695 .gfp_mask
= gfp_mask
,
700 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
701 if (ret
== SHRINK_EMPTY
)
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
709 if (rwsem_is_contended(&shrinker_rwsem
)) {
715 up_read(&shrinker_rwsem
);
721 void drop_slab_node(int nid
)
726 struct mem_cgroup
*memcg
= NULL
;
729 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
731 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
732 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
733 } while (freed
> 10);
740 for_each_online_node(nid
)
744 static inline int is_page_cache_freeable(struct page
*page
)
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
751 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
753 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
756 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
758 if (current
->flags
& PF_SWAPWRITE
)
760 if (!inode_write_congested(inode
))
762 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
776 * We're allowed to run sleeping lock_page() here because we know the caller has
779 static void handle_write_error(struct address_space
*mapping
,
780 struct page
*page
, int error
)
783 if (page_mapping(page
) == mapping
)
784 mapping_set_error(mapping
, error
);
788 /* possible outcome of pageout() */
790 /* failed to write page out, page is locked */
792 /* move page to the active list, page is locked */
794 /* page has been sent to the disk successfully, page is unlocked */
796 /* page is clean and locked */
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
804 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
805 struct scan_control
*sc
)
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
823 if (!is_page_cache_freeable(page
))
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
830 if (page_has_private(page
)) {
831 if (try_to_free_buffers(page
)) {
832 ClearPageDirty(page
);
833 pr_info("%s: orphaned page\n", __func__
);
839 if (mapping
->a_ops
->writepage
== NULL
)
840 return PAGE_ACTIVATE
;
841 if (!may_write_to_inode(mapping
->host
, sc
))
844 if (clear_page_dirty_for_io(page
)) {
846 struct writeback_control wbc
= {
847 .sync_mode
= WB_SYNC_NONE
,
848 .nr_to_write
= SWAP_CLUSTER_MAX
,
850 .range_end
= LLONG_MAX
,
854 SetPageReclaim(page
);
855 res
= mapping
->a_ops
->writepage(page
, &wbc
);
857 handle_write_error(mapping
, page
, res
);
858 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
859 ClearPageReclaim(page
);
860 return PAGE_ACTIVATE
;
863 if (!PageWriteback(page
)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page
);
867 trace_mm_vmscan_writepage(page
);
868 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
879 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
885 BUG_ON(!PageLocked(page
));
886 BUG_ON(mapping
!= page_mapping(page
));
888 xa_lock_irqsave(&mapping
->i_pages
, flags
);
890 * The non racy check for a busy page.
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
897 * get_user_pages(&page);
898 * [user mapping goes away]
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
903 * !page_count(page) [good, discard it]
905 * [oops, our write_to data is lost]
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
914 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
915 refcount
= 1 + HPAGE_PMD_NR
;
918 if (!page_ref_freeze(page
, refcount
))
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page
))) {
922 page_ref_unfreeze(page
, refcount
);
926 if (PageSwapCache(page
)) {
927 swp_entry_t swap
= { .val
= page_private(page
) };
928 mem_cgroup_swapout(page
, swap
);
929 __delete_from_swap_cache(page
, swap
);
930 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
931 put_swap_page(page
, swap
);
933 void (*freepage
)(struct page
*);
936 freepage
= mapping
->a_ops
->freepage
;
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
953 if (reclaimed
&& page_is_file_cache(page
) &&
954 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
955 shadow
= workingset_eviction(mapping
, page
);
956 __delete_from_page_cache(page
, shadow
);
957 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
959 if (freepage
!= NULL
)
966 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
976 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
978 if (__remove_mapping(mapping
, page
, false)) {
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
984 page_ref_unfreeze(page
, 1);
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
997 * lru_lock must not be held, interrupts must be enabled.
999 void putback_lru_page(struct page
*page
)
1001 lru_cache_add(page
);
1002 put_page(page
); /* drop ref from isolate */
1005 enum page_references
{
1007 PAGEREF_RECLAIM_CLEAN
,
1012 static enum page_references
page_check_references(struct page
*page
,
1013 struct scan_control
*sc
)
1015 int referenced_ptes
, referenced_page
;
1016 unsigned long vm_flags
;
1018 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1020 referenced_page
= TestClearPageReferenced(page
);
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1026 if (vm_flags
& VM_LOCKED
)
1027 return PAGEREF_RECLAIM
;
1029 if (referenced_ptes
) {
1030 if (PageSwapBacked(page
))
1031 return PAGEREF_ACTIVATE
;
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1046 SetPageReferenced(page
);
1048 if (referenced_page
|| referenced_ptes
> 1)
1049 return PAGEREF_ACTIVATE
;
1052 * Activate file-backed executable pages after first usage.
1054 if (vm_flags
& VM_EXEC
)
1055 return PAGEREF_ACTIVATE
;
1057 return PAGEREF_KEEP
;
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page
&& !PageSwapBacked(page
))
1062 return PAGEREF_RECLAIM_CLEAN
;
1064 return PAGEREF_RECLAIM
;
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page
*page
,
1069 bool *dirty
, bool *writeback
)
1071 struct address_space
*mapping
;
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1077 if (!page_is_file_cache(page
) ||
1078 (PageAnon(page
) && !PageSwapBacked(page
))) {
1084 /* By default assume that the page flags are accurate */
1085 *dirty
= PageDirty(page
);
1086 *writeback
= PageWriteback(page
);
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page
))
1092 mapping
= page_mapping(page
);
1093 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1094 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1098 * shrink_page_list() returns the number of reclaimed pages
1100 static unsigned long shrink_page_list(struct list_head
*page_list
,
1101 struct pglist_data
*pgdat
,
1102 struct scan_control
*sc
,
1103 enum ttu_flags ttu_flags
,
1104 struct reclaim_stat
*stat
,
1107 LIST_HEAD(ret_pages
);
1108 LIST_HEAD(free_pages
);
1110 unsigned nr_unqueued_dirty
= 0;
1111 unsigned nr_dirty
= 0;
1112 unsigned nr_congested
= 0;
1113 unsigned nr_reclaimed
= 0;
1114 unsigned nr_writeback
= 0;
1115 unsigned nr_immediate
= 0;
1116 unsigned nr_ref_keep
= 0;
1117 unsigned nr_unmap_fail
= 0;
1121 while (!list_empty(page_list
)) {
1122 struct address_space
*mapping
;
1125 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1126 bool dirty
, writeback
;
1130 page
= lru_to_page(page_list
);
1131 list_del(&page
->lru
);
1133 if (!trylock_page(page
))
1136 VM_BUG_ON_PAGE(PageActive(page
), page
);
1140 if (unlikely(!page_evictable(page
)))
1141 goto activate_locked
;
1143 if (!sc
->may_unmap
&& page_mapped(page
))
1146 /* Double the slab pressure for mapped and swapcache pages */
1147 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1148 !(PageAnon(page
) && !PageSwapBacked(page
)))
1151 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1152 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1155 * The number of dirty pages determines if a node is marked
1156 * reclaim_congested which affects wait_iff_congested. kswapd
1157 * will stall and start writing pages if the tail of the LRU
1158 * is all dirty unqueued pages.
1160 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1161 if (dirty
|| writeback
)
1164 if (dirty
&& !writeback
)
1165 nr_unqueued_dirty
++;
1168 * Treat this page as congested if the underlying BDI is or if
1169 * pages are cycling through the LRU so quickly that the
1170 * pages marked for immediate reclaim are making it to the
1171 * end of the LRU a second time.
1173 mapping
= page_mapping(page
);
1174 if (((dirty
|| writeback
) && mapping
&&
1175 inode_write_congested(mapping
->host
)) ||
1176 (writeback
&& PageReclaim(page
)))
1180 * If a page at the tail of the LRU is under writeback, there
1181 * are three cases to consider.
1183 * 1) If reclaim is encountering an excessive number of pages
1184 * under writeback and this page is both under writeback and
1185 * PageReclaim then it indicates that pages are being queued
1186 * for IO but are being recycled through the LRU before the
1187 * IO can complete. Waiting on the page itself risks an
1188 * indefinite stall if it is impossible to writeback the
1189 * page due to IO error or disconnected storage so instead
1190 * note that the LRU is being scanned too quickly and the
1191 * caller can stall after page list has been processed.
1193 * 2) Global or new memcg reclaim encounters a page that is
1194 * not marked for immediate reclaim, or the caller does not
1195 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1196 * not to fs). In this case mark the page for immediate
1197 * reclaim and continue scanning.
1199 * Require may_enter_fs because we would wait on fs, which
1200 * may not have submitted IO yet. And the loop driver might
1201 * enter reclaim, and deadlock if it waits on a page for
1202 * which it is needed to do the write (loop masks off
1203 * __GFP_IO|__GFP_FS for this reason); but more thought
1204 * would probably show more reasons.
1206 * 3) Legacy memcg encounters a page that is already marked
1207 * PageReclaim. memcg does not have any dirty pages
1208 * throttling so we could easily OOM just because too many
1209 * pages are in writeback and there is nothing else to
1210 * reclaim. Wait for the writeback to complete.
1212 * In cases 1) and 2) we activate the pages to get them out of
1213 * the way while we continue scanning for clean pages on the
1214 * inactive list and refilling from the active list. The
1215 * observation here is that waiting for disk writes is more
1216 * expensive than potentially causing reloads down the line.
1217 * Since they're marked for immediate reclaim, they won't put
1218 * memory pressure on the cache working set any longer than it
1219 * takes to write them to disk.
1221 if (PageWriteback(page
)) {
1223 if (current_is_kswapd() &&
1224 PageReclaim(page
) &&
1225 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1227 goto activate_locked
;
1230 } else if (sane_reclaim(sc
) ||
1231 !PageReclaim(page
) || !may_enter_fs
) {
1233 * This is slightly racy - end_page_writeback()
1234 * might have just cleared PageReclaim, then
1235 * setting PageReclaim here end up interpreted
1236 * as PageReadahead - but that does not matter
1237 * enough to care. What we do want is for this
1238 * page to have PageReclaim set next time memcg
1239 * reclaim reaches the tests above, so it will
1240 * then wait_on_page_writeback() to avoid OOM;
1241 * and it's also appropriate in global reclaim.
1243 SetPageReclaim(page
);
1245 goto activate_locked
;
1250 wait_on_page_writeback(page
);
1251 /* then go back and try same page again */
1252 list_add_tail(&page
->lru
, page_list
);
1258 references
= page_check_references(page
, sc
);
1260 switch (references
) {
1261 case PAGEREF_ACTIVATE
:
1262 goto activate_locked
;
1266 case PAGEREF_RECLAIM
:
1267 case PAGEREF_RECLAIM_CLEAN
:
1268 ; /* try to reclaim the page below */
1272 * Anonymous process memory has backing store?
1273 * Try to allocate it some swap space here.
1274 * Lazyfree page could be freed directly
1276 if (PageAnon(page
) && PageSwapBacked(page
)) {
1277 if (!PageSwapCache(page
)) {
1278 if (!(sc
->gfp_mask
& __GFP_IO
))
1280 if (PageTransHuge(page
)) {
1281 /* cannot split THP, skip it */
1282 if (!can_split_huge_page(page
, NULL
))
1283 goto activate_locked
;
1285 * Split pages without a PMD map right
1286 * away. Chances are some or all of the
1287 * tail pages can be freed without IO.
1289 if (!compound_mapcount(page
) &&
1290 split_huge_page_to_list(page
,
1292 goto activate_locked
;
1294 if (!add_to_swap(page
)) {
1295 if (!PageTransHuge(page
))
1296 goto activate_locked
;
1297 /* Fallback to swap normal pages */
1298 if (split_huge_page_to_list(page
,
1300 goto activate_locked
;
1301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1302 count_vm_event(THP_SWPOUT_FALLBACK
);
1304 if (!add_to_swap(page
))
1305 goto activate_locked
;
1310 /* Adding to swap updated mapping */
1311 mapping
= page_mapping(page
);
1313 } else if (unlikely(PageTransHuge(page
))) {
1314 /* Split file THP */
1315 if (split_huge_page_to_list(page
, page_list
))
1320 * The page is mapped into the page tables of one or more
1321 * processes. Try to unmap it here.
1323 if (page_mapped(page
)) {
1324 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1326 if (unlikely(PageTransHuge(page
)))
1327 flags
|= TTU_SPLIT_HUGE_PMD
;
1328 if (!try_to_unmap(page
, flags
)) {
1330 goto activate_locked
;
1334 if (PageDirty(page
)) {
1336 * Only kswapd can writeback filesystem pages
1337 * to avoid risk of stack overflow. But avoid
1338 * injecting inefficient single-page IO into
1339 * flusher writeback as much as possible: only
1340 * write pages when we've encountered many
1341 * dirty pages, and when we've already scanned
1342 * the rest of the LRU for clean pages and see
1343 * the same dirty pages again (PageReclaim).
1345 if (page_is_file_cache(page
) &&
1346 (!current_is_kswapd() || !PageReclaim(page
) ||
1347 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1349 * Immediately reclaim when written back.
1350 * Similar in principal to deactivate_page()
1351 * except we already have the page isolated
1352 * and know it's dirty
1354 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1355 SetPageReclaim(page
);
1357 goto activate_locked
;
1360 if (references
== PAGEREF_RECLAIM_CLEAN
)
1364 if (!sc
->may_writepage
)
1368 * Page is dirty. Flush the TLB if a writable entry
1369 * potentially exists to avoid CPU writes after IO
1370 * starts and then write it out here.
1372 try_to_unmap_flush_dirty();
1373 switch (pageout(page
, mapping
, sc
)) {
1377 goto activate_locked
;
1379 if (PageWriteback(page
))
1381 if (PageDirty(page
))
1385 * A synchronous write - probably a ramdisk. Go
1386 * ahead and try to reclaim the page.
1388 if (!trylock_page(page
))
1390 if (PageDirty(page
) || PageWriteback(page
))
1392 mapping
= page_mapping(page
);
1394 ; /* try to free the page below */
1399 * If the page has buffers, try to free the buffer mappings
1400 * associated with this page. If we succeed we try to free
1403 * We do this even if the page is PageDirty().
1404 * try_to_release_page() does not perform I/O, but it is
1405 * possible for a page to have PageDirty set, but it is actually
1406 * clean (all its buffers are clean). This happens if the
1407 * buffers were written out directly, with submit_bh(). ext3
1408 * will do this, as well as the blockdev mapping.
1409 * try_to_release_page() will discover that cleanness and will
1410 * drop the buffers and mark the page clean - it can be freed.
1412 * Rarely, pages can have buffers and no ->mapping. These are
1413 * the pages which were not successfully invalidated in
1414 * truncate_complete_page(). We try to drop those buffers here
1415 * and if that worked, and the page is no longer mapped into
1416 * process address space (page_count == 1) it can be freed.
1417 * Otherwise, leave the page on the LRU so it is swappable.
1419 if (page_has_private(page
)) {
1420 if (!try_to_release_page(page
, sc
->gfp_mask
))
1421 goto activate_locked
;
1422 if (!mapping
&& page_count(page
) == 1) {
1424 if (put_page_testzero(page
))
1428 * rare race with speculative reference.
1429 * the speculative reference will free
1430 * this page shortly, so we may
1431 * increment nr_reclaimed here (and
1432 * leave it off the LRU).
1440 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1441 /* follow __remove_mapping for reference */
1442 if (!page_ref_freeze(page
, 1))
1444 if (PageDirty(page
)) {
1445 page_ref_unfreeze(page
, 1);
1449 count_vm_event(PGLAZYFREED
);
1450 count_memcg_page_event(page
, PGLAZYFREED
);
1451 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1459 * Is there need to periodically free_page_list? It would
1460 * appear not as the counts should be low
1462 if (unlikely(PageTransHuge(page
))) {
1463 mem_cgroup_uncharge(page
);
1464 (*get_compound_page_dtor(page
))(page
);
1466 list_add(&page
->lru
, &free_pages
);
1470 /* Not a candidate for swapping, so reclaim swap space. */
1471 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1473 try_to_free_swap(page
);
1474 VM_BUG_ON_PAGE(PageActive(page
), page
);
1475 if (!PageMlocked(page
)) {
1476 SetPageActive(page
);
1478 count_memcg_page_event(page
, PGACTIVATE
);
1483 list_add(&page
->lru
, &ret_pages
);
1484 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1487 mem_cgroup_uncharge_list(&free_pages
);
1488 try_to_unmap_flush();
1489 free_unref_page_list(&free_pages
);
1491 list_splice(&ret_pages
, page_list
);
1492 count_vm_events(PGACTIVATE
, pgactivate
);
1495 stat
->nr_dirty
= nr_dirty
;
1496 stat
->nr_congested
= nr_congested
;
1497 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1498 stat
->nr_writeback
= nr_writeback
;
1499 stat
->nr_immediate
= nr_immediate
;
1500 stat
->nr_activate
= pgactivate
;
1501 stat
->nr_ref_keep
= nr_ref_keep
;
1502 stat
->nr_unmap_fail
= nr_unmap_fail
;
1504 return nr_reclaimed
;
1507 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1508 struct list_head
*page_list
)
1510 struct scan_control sc
= {
1511 .gfp_mask
= GFP_KERNEL
,
1512 .priority
= DEF_PRIORITY
,
1516 struct page
*page
, *next
;
1517 LIST_HEAD(clean_pages
);
1519 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1520 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1521 !__PageMovable(page
)) {
1522 ClearPageActive(page
);
1523 list_move(&page
->lru
, &clean_pages
);
1527 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1528 TTU_IGNORE_ACCESS
, NULL
, true);
1529 list_splice(&clean_pages
, page_list
);
1530 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1542 * returns 0 on success, -ve errno on failure.
1544 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1548 /* Only take pages on the LRU. */
1552 /* Compaction should not handle unevictable pages but CMA can do so */
1553 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1559 * To minimise LRU disruption, the caller can indicate that it only
1560 * wants to isolate pages it will be able to operate on without
1561 * blocking - clean pages for the most part.
1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 * that it is possible to migrate without blocking
1566 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1567 /* All the caller can do on PageWriteback is block */
1568 if (PageWriteback(page
))
1571 if (PageDirty(page
)) {
1572 struct address_space
*mapping
;
1576 * Only pages without mappings or that have a
1577 * ->migratepage callback are possible to migrate
1578 * without blocking. However, we can be racing with
1579 * truncation so it's necessary to lock the page
1580 * to stabilise the mapping as truncation holds
1581 * the page lock until after the page is removed
1582 * from the page cache.
1584 if (!trylock_page(page
))
1587 mapping
= page_mapping(page
);
1588 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1595 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1598 if (likely(get_page_unless_zero(page
))) {
1600 * Be careful not to clear PageLRU until after we're
1601 * sure the page is not being freed elsewhere -- the
1602 * page release code relies on it.
1613 * Update LRU sizes after isolating pages. The LRU size updates must
1614 * be complete before mem_cgroup_update_lru_size due to a santity check.
1616 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1617 enum lru_list lru
, unsigned long *nr_zone_taken
)
1621 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1622 if (!nr_zone_taken
[zid
])
1625 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1627 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1634 * zone_lru_lock is heavily contended. Some of the functions that
1635 * shrink the lists perform better by taking out a batch of pages
1636 * and working on them outside the LRU lock.
1638 * For pagecache intensive workloads, this function is the hottest
1639 * spot in the kernel (apart from copy_*_user functions).
1641 * Appropriate locks must be held before calling this function.
1643 * @nr_to_scan: The number of eligible pages to look through on the list.
1644 * @lruvec: The LRU vector to pull pages from.
1645 * @dst: The temp list to put pages on to.
1646 * @nr_scanned: The number of pages that were scanned.
1647 * @sc: The scan_control struct for this reclaim session
1648 * @mode: One of the LRU isolation modes
1649 * @lru: LRU list id for isolating
1651 * returns how many pages were moved onto *@dst.
1653 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1654 struct lruvec
*lruvec
, struct list_head
*dst
,
1655 unsigned long *nr_scanned
, struct scan_control
*sc
,
1658 struct list_head
*src
= &lruvec
->lists
[lru
];
1659 unsigned long nr_taken
= 0;
1660 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1661 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1662 unsigned long skipped
= 0;
1663 unsigned long scan
, total_scan
, nr_pages
;
1664 LIST_HEAD(pages_skipped
);
1665 isolate_mode_t mode
= (sc
->may_unmap
? 0 : ISOLATE_UNMAPPED
);
1668 for (total_scan
= 0;
1669 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1673 page
= lru_to_page(src
);
1674 prefetchw_prev_lru_page(page
, src
, flags
);
1676 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1678 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1679 list_move(&page
->lru
, &pages_skipped
);
1680 nr_skipped
[page_zonenum(page
)]++;
1685 * Do not count skipped pages because that makes the function
1686 * return with no isolated pages if the LRU mostly contains
1687 * ineligible pages. This causes the VM to not reclaim any
1688 * pages, triggering a premature OOM.
1691 switch (__isolate_lru_page(page
, mode
)) {
1693 nr_pages
= hpage_nr_pages(page
);
1694 nr_taken
+= nr_pages
;
1695 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1696 list_move(&page
->lru
, dst
);
1700 /* else it is being freed elsewhere */
1701 list_move(&page
->lru
, src
);
1710 * Splice any skipped pages to the start of the LRU list. Note that
1711 * this disrupts the LRU order when reclaiming for lower zones but
1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 * scanning would soon rescan the same pages to skip and put the
1714 * system at risk of premature OOM.
1716 if (!list_empty(&pages_skipped
)) {
1719 list_splice(&pages_skipped
, src
);
1720 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1721 if (!nr_skipped
[zid
])
1724 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1725 skipped
+= nr_skipped
[zid
];
1728 *nr_scanned
= total_scan
;
1729 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1730 total_scan
, skipped
, nr_taken
, mode
, lru
);
1731 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1736 * isolate_lru_page - tries to isolate a page from its LRU list
1737 * @page: page to isolate from its LRU list
1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 * Returns 0 if the page was removed from an LRU list.
1743 * Returns -EBUSY if the page was not on an LRU list.
1745 * The returned page will have PageLRU() cleared. If it was found on
1746 * the active list, it will have PageActive set. If it was found on
1747 * the unevictable list, it will have the PageUnevictable bit set. That flag
1748 * may need to be cleared by the caller before letting the page go.
1750 * The vmstat statistic corresponding to the list on which the page was
1751 * found will be decremented.
1755 * (1) Must be called with an elevated refcount on the page. This is a
1756 * fundamentnal difference from isolate_lru_pages (which is called
1757 * without a stable reference).
1758 * (2) the lru_lock must not be held.
1759 * (3) interrupts must be enabled.
1761 int isolate_lru_page(struct page
*page
)
1765 VM_BUG_ON_PAGE(!page_count(page
), page
);
1766 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1768 if (PageLRU(page
)) {
1769 struct zone
*zone
= page_zone(page
);
1770 struct lruvec
*lruvec
;
1772 spin_lock_irq(zone_lru_lock(zone
));
1773 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1774 if (PageLRU(page
)) {
1775 int lru
= page_lru(page
);
1778 del_page_from_lru_list(page
, lruvec
, lru
);
1781 spin_unlock_irq(zone_lru_lock(zone
));
1787 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1788 * then get resheduled. When there are massive number of tasks doing page
1789 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1790 * the LRU list will go small and be scanned faster than necessary, leading to
1791 * unnecessary swapping, thrashing and OOM.
1793 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1794 struct scan_control
*sc
)
1796 unsigned long inactive
, isolated
;
1798 if (current_is_kswapd())
1801 if (!sane_reclaim(sc
))
1805 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1806 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1808 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1809 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1813 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1814 * won't get blocked by normal direct-reclaimers, forming a circular
1817 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1820 return isolated
> inactive
;
1823 static noinline_for_stack
void
1824 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1826 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1827 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1828 LIST_HEAD(pages_to_free
);
1831 * Put back any unfreeable pages.
1833 while (!list_empty(page_list
)) {
1834 struct page
*page
= lru_to_page(page_list
);
1837 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1838 list_del(&page
->lru
);
1839 if (unlikely(!page_evictable(page
))) {
1840 spin_unlock_irq(&pgdat
->lru_lock
);
1841 putback_lru_page(page
);
1842 spin_lock_irq(&pgdat
->lru_lock
);
1846 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1849 lru
= page_lru(page
);
1850 add_page_to_lru_list(page
, lruvec
, lru
);
1852 if (is_active_lru(lru
)) {
1853 int file
= is_file_lru(lru
);
1854 int numpages
= hpage_nr_pages(page
);
1855 reclaim_stat
->recent_rotated
[file
] += numpages
;
1857 if (put_page_testzero(page
)) {
1858 __ClearPageLRU(page
);
1859 __ClearPageActive(page
);
1860 del_page_from_lru_list(page
, lruvec
, lru
);
1862 if (unlikely(PageCompound(page
))) {
1863 spin_unlock_irq(&pgdat
->lru_lock
);
1864 mem_cgroup_uncharge(page
);
1865 (*get_compound_page_dtor(page
))(page
);
1866 spin_lock_irq(&pgdat
->lru_lock
);
1868 list_add(&page
->lru
, &pages_to_free
);
1873 * To save our caller's stack, now use input list for pages to free.
1875 list_splice(&pages_to_free
, page_list
);
1879 * If a kernel thread (such as nfsd for loop-back mounts) services
1880 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1881 * In that case we should only throttle if the backing device it is
1882 * writing to is congested. In other cases it is safe to throttle.
1884 static int current_may_throttle(void)
1886 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1887 current
->backing_dev_info
== NULL
||
1888 bdi_write_congested(current
->backing_dev_info
);
1892 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1893 * of reclaimed pages
1895 static noinline_for_stack
unsigned long
1896 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1897 struct scan_control
*sc
, enum lru_list lru
)
1899 LIST_HEAD(page_list
);
1900 unsigned long nr_scanned
;
1901 unsigned long nr_reclaimed
= 0;
1902 unsigned long nr_taken
;
1903 struct reclaim_stat stat
= {};
1904 int file
= is_file_lru(lru
);
1905 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1906 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1907 bool stalled
= false;
1909 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1913 /* wait a bit for the reclaimer. */
1917 /* We are about to die and free our memory. Return now. */
1918 if (fatal_signal_pending(current
))
1919 return SWAP_CLUSTER_MAX
;
1924 spin_lock_irq(&pgdat
->lru_lock
);
1926 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1927 &nr_scanned
, sc
, lru
);
1929 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1930 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1932 if (current_is_kswapd()) {
1933 if (global_reclaim(sc
))
1934 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1935 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1938 if (global_reclaim(sc
))
1939 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1940 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1943 spin_unlock_irq(&pgdat
->lru_lock
);
1948 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1951 spin_lock_irq(&pgdat
->lru_lock
);
1953 if (current_is_kswapd()) {
1954 if (global_reclaim(sc
))
1955 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1956 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1959 if (global_reclaim(sc
))
1960 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1961 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1965 putback_inactive_pages(lruvec
, &page_list
);
1967 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1969 spin_unlock_irq(&pgdat
->lru_lock
);
1971 mem_cgroup_uncharge_list(&page_list
);
1972 free_unref_page_list(&page_list
);
1975 * If dirty pages are scanned that are not queued for IO, it
1976 * implies that flushers are not doing their job. This can
1977 * happen when memory pressure pushes dirty pages to the end of
1978 * the LRU before the dirty limits are breached and the dirty
1979 * data has expired. It can also happen when the proportion of
1980 * dirty pages grows not through writes but through memory
1981 * pressure reclaiming all the clean cache. And in some cases,
1982 * the flushers simply cannot keep up with the allocation
1983 * rate. Nudge the flusher threads in case they are asleep.
1985 if (stat
.nr_unqueued_dirty
== nr_taken
)
1986 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1988 sc
->nr
.dirty
+= stat
.nr_dirty
;
1989 sc
->nr
.congested
+= stat
.nr_congested
;
1990 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
1991 sc
->nr
.writeback
+= stat
.nr_writeback
;
1992 sc
->nr
.immediate
+= stat
.nr_immediate
;
1993 sc
->nr
.taken
+= nr_taken
;
1995 sc
->nr
.file_taken
+= nr_taken
;
1997 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1998 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
1999 return nr_reclaimed
;
2003 * This moves pages from the active list to the inactive list.
2005 * We move them the other way if the page is referenced by one or more
2006 * processes, from rmap.
2008 * If the pages are mostly unmapped, the processing is fast and it is
2009 * appropriate to hold zone_lru_lock across the whole operation. But if
2010 * the pages are mapped, the processing is slow (page_referenced()) so we
2011 * should drop zone_lru_lock around each page. It's impossible to balance
2012 * this, so instead we remove the pages from the LRU while processing them.
2013 * It is safe to rely on PG_active against the non-LRU pages in here because
2014 * nobody will play with that bit on a non-LRU page.
2016 * The downside is that we have to touch page->_refcount against each page.
2017 * But we had to alter page->flags anyway.
2019 * Returns the number of pages moved to the given lru.
2022 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
2023 struct list_head
*list
,
2024 struct list_head
*pages_to_free
,
2027 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2032 while (!list_empty(list
)) {
2033 page
= lru_to_page(list
);
2034 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2036 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2039 nr_pages
= hpage_nr_pages(page
);
2040 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
2041 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
2043 if (put_page_testzero(page
)) {
2044 __ClearPageLRU(page
);
2045 __ClearPageActive(page
);
2046 del_page_from_lru_list(page
, lruvec
, lru
);
2048 if (unlikely(PageCompound(page
))) {
2049 spin_unlock_irq(&pgdat
->lru_lock
);
2050 mem_cgroup_uncharge(page
);
2051 (*get_compound_page_dtor(page
))(page
);
2052 spin_lock_irq(&pgdat
->lru_lock
);
2054 list_add(&page
->lru
, pages_to_free
);
2056 nr_moved
+= nr_pages
;
2060 if (!is_active_lru(lru
)) {
2061 __count_vm_events(PGDEACTIVATE
, nr_moved
);
2062 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
2069 static void shrink_active_list(unsigned long nr_to_scan
,
2070 struct lruvec
*lruvec
,
2071 struct scan_control
*sc
,
2074 unsigned long nr_taken
;
2075 unsigned long nr_scanned
;
2076 unsigned long vm_flags
;
2077 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2078 LIST_HEAD(l_active
);
2079 LIST_HEAD(l_inactive
);
2081 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2082 unsigned nr_deactivate
, nr_activate
;
2083 unsigned nr_rotated
= 0;
2084 int file
= is_file_lru(lru
);
2085 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2089 spin_lock_irq(&pgdat
->lru_lock
);
2091 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2092 &nr_scanned
, sc
, lru
);
2094 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2095 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2097 __count_vm_events(PGREFILL
, nr_scanned
);
2098 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2100 spin_unlock_irq(&pgdat
->lru_lock
);
2102 while (!list_empty(&l_hold
)) {
2104 page
= lru_to_page(&l_hold
);
2105 list_del(&page
->lru
);
2107 if (unlikely(!page_evictable(page
))) {
2108 putback_lru_page(page
);
2112 if (unlikely(buffer_heads_over_limit
)) {
2113 if (page_has_private(page
) && trylock_page(page
)) {
2114 if (page_has_private(page
))
2115 try_to_release_page(page
, 0);
2120 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2122 nr_rotated
+= hpage_nr_pages(page
);
2124 * Identify referenced, file-backed active pages and
2125 * give them one more trip around the active list. So
2126 * that executable code get better chances to stay in
2127 * memory under moderate memory pressure. Anon pages
2128 * are not likely to be evicted by use-once streaming
2129 * IO, plus JVM can create lots of anon VM_EXEC pages,
2130 * so we ignore them here.
2132 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2133 list_add(&page
->lru
, &l_active
);
2138 ClearPageActive(page
); /* we are de-activating */
2139 SetPageWorkingset(page
);
2140 list_add(&page
->lru
, &l_inactive
);
2144 * Move pages back to the lru list.
2146 spin_lock_irq(&pgdat
->lru_lock
);
2148 * Count referenced pages from currently used mappings as rotated,
2149 * even though only some of them are actually re-activated. This
2150 * helps balance scan pressure between file and anonymous pages in
2153 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2155 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2156 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2157 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2158 spin_unlock_irq(&pgdat
->lru_lock
);
2160 mem_cgroup_uncharge_list(&l_hold
);
2161 free_unref_page_list(&l_hold
);
2162 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2163 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2167 * The inactive anon list should be small enough that the VM never has
2168 * to do too much work.
2170 * The inactive file list should be small enough to leave most memory
2171 * to the established workingset on the scan-resistant active list,
2172 * but large enough to avoid thrashing the aggregate readahead window.
2174 * Both inactive lists should also be large enough that each inactive
2175 * page has a chance to be referenced again before it is reclaimed.
2177 * If that fails and refaulting is observed, the inactive list grows.
2179 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2180 * on this LRU, maintained by the pageout code. An inactive_ratio
2181 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2184 * memory ratio inactive
2185 * -------------------------------------
2194 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2195 struct mem_cgroup
*memcg
,
2196 struct scan_control
*sc
, bool actual_reclaim
)
2198 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2199 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2200 enum lru_list inactive_lru
= file
* LRU_FILE
;
2201 unsigned long inactive
, active
;
2202 unsigned long inactive_ratio
;
2203 unsigned long refaults
;
2207 * If we don't have swap space, anonymous page deactivation
2210 if (!file
&& !total_swap_pages
)
2213 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2214 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2217 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2219 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2222 * When refaults are being observed, it means a new workingset
2223 * is being established. Disable active list protection to get
2224 * rid of the stale workingset quickly.
2226 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2229 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2231 inactive_ratio
= int_sqrt(10 * gb
);
2237 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2238 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2239 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2240 inactive_ratio
, file
);
2242 return inactive
* inactive_ratio
< active
;
2245 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2246 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2247 struct scan_control
*sc
)
2249 if (is_active_lru(lru
)) {
2250 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2252 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2256 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2267 * Determine how aggressively the anon and file LRU lists should be
2268 * scanned. The relative value of each set of LRU lists is determined
2269 * by looking at the fraction of the pages scanned we did rotate back
2270 * onto the active list instead of evict.
2272 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2273 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2275 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2276 struct scan_control
*sc
, unsigned long *nr
,
2277 unsigned long *lru_pages
)
2279 int swappiness
= mem_cgroup_swappiness(memcg
);
2280 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2282 u64 denominator
= 0; /* gcc */
2283 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2284 unsigned long anon_prio
, file_prio
;
2285 enum scan_balance scan_balance
;
2286 unsigned long anon
, file
;
2287 unsigned long ap
, fp
;
2290 /* If we have no swap space, do not bother scanning anon pages. */
2291 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2292 scan_balance
= SCAN_FILE
;
2297 * Global reclaim will swap to prevent OOM even with no
2298 * swappiness, but memcg users want to use this knob to
2299 * disable swapping for individual groups completely when
2300 * using the memory controller's swap limit feature would be
2303 if (!global_reclaim(sc
) && !swappiness
) {
2304 scan_balance
= SCAN_FILE
;
2309 * Do not apply any pressure balancing cleverness when the
2310 * system is close to OOM, scan both anon and file equally
2311 * (unless the swappiness setting disagrees with swapping).
2313 if (!sc
->priority
&& swappiness
) {
2314 scan_balance
= SCAN_EQUAL
;
2319 * Prevent the reclaimer from falling into the cache trap: as
2320 * cache pages start out inactive, every cache fault will tip
2321 * the scan balance towards the file LRU. And as the file LRU
2322 * shrinks, so does the window for rotation from references.
2323 * This means we have a runaway feedback loop where a tiny
2324 * thrashing file LRU becomes infinitely more attractive than
2325 * anon pages. Try to detect this based on file LRU size.
2327 if (global_reclaim(sc
)) {
2328 unsigned long pgdatfile
;
2329 unsigned long pgdatfree
;
2331 unsigned long total_high_wmark
= 0;
2333 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2334 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2335 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2337 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2338 struct zone
*zone
= &pgdat
->node_zones
[z
];
2339 if (!managed_zone(zone
))
2342 total_high_wmark
+= high_wmark_pages(zone
);
2345 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2347 * Force SCAN_ANON if there are enough inactive
2348 * anonymous pages on the LRU in eligible zones.
2349 * Otherwise, the small LRU gets thrashed.
2351 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2352 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2354 scan_balance
= SCAN_ANON
;
2361 * If there is enough inactive page cache, i.e. if the size of the
2362 * inactive list is greater than that of the active list *and* the
2363 * inactive list actually has some pages to scan on this priority, we
2364 * do not reclaim anything from the anonymous working set right now.
2365 * Without the second condition we could end up never scanning an
2366 * lruvec even if it has plenty of old anonymous pages unless the
2367 * system is under heavy pressure.
2369 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2370 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2371 scan_balance
= SCAN_FILE
;
2375 scan_balance
= SCAN_FRACT
;
2378 * With swappiness at 100, anonymous and file have the same priority.
2379 * This scanning priority is essentially the inverse of IO cost.
2381 anon_prio
= swappiness
;
2382 file_prio
= 200 - anon_prio
;
2385 * OK, so we have swap space and a fair amount of page cache
2386 * pages. We use the recently rotated / recently scanned
2387 * ratios to determine how valuable each cache is.
2389 * Because workloads change over time (and to avoid overflow)
2390 * we keep these statistics as a floating average, which ends
2391 * up weighing recent references more than old ones.
2393 * anon in [0], file in [1]
2396 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2397 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2398 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2399 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2401 spin_lock_irq(&pgdat
->lru_lock
);
2402 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2403 reclaim_stat
->recent_scanned
[0] /= 2;
2404 reclaim_stat
->recent_rotated
[0] /= 2;
2407 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2408 reclaim_stat
->recent_scanned
[1] /= 2;
2409 reclaim_stat
->recent_rotated
[1] /= 2;
2413 * The amount of pressure on anon vs file pages is inversely
2414 * proportional to the fraction of recently scanned pages on
2415 * each list that were recently referenced and in active use.
2417 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2418 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2420 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2421 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2422 spin_unlock_irq(&pgdat
->lru_lock
);
2426 denominator
= ap
+ fp
+ 1;
2429 for_each_evictable_lru(lru
) {
2430 int file
= is_file_lru(lru
);
2434 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2435 scan
= size
>> sc
->priority
;
2437 * If the cgroup's already been deleted, make sure to
2438 * scrape out the remaining cache.
2440 if (!scan
&& !mem_cgroup_online(memcg
))
2441 scan
= min(size
, SWAP_CLUSTER_MAX
);
2443 switch (scan_balance
) {
2445 /* Scan lists relative to size */
2449 * Scan types proportional to swappiness and
2450 * their relative recent reclaim efficiency.
2451 * Make sure we don't miss the last page
2452 * because of a round-off error.
2454 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2459 /* Scan one type exclusively */
2460 if ((scan_balance
== SCAN_FILE
) != file
) {
2466 /* Look ma, no brain */
2476 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2478 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2479 struct scan_control
*sc
, unsigned long *lru_pages
)
2481 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2482 unsigned long nr
[NR_LRU_LISTS
];
2483 unsigned long targets
[NR_LRU_LISTS
];
2484 unsigned long nr_to_scan
;
2486 unsigned long nr_reclaimed
= 0;
2487 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2488 struct blk_plug plug
;
2491 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2493 /* Record the original scan target for proportional adjustments later */
2494 memcpy(targets
, nr
, sizeof(nr
));
2497 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2498 * event that can occur when there is little memory pressure e.g.
2499 * multiple streaming readers/writers. Hence, we do not abort scanning
2500 * when the requested number of pages are reclaimed when scanning at
2501 * DEF_PRIORITY on the assumption that the fact we are direct
2502 * reclaiming implies that kswapd is not keeping up and it is best to
2503 * do a batch of work at once. For memcg reclaim one check is made to
2504 * abort proportional reclaim if either the file or anon lru has already
2505 * dropped to zero at the first pass.
2507 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2508 sc
->priority
== DEF_PRIORITY
);
2510 blk_start_plug(&plug
);
2511 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2512 nr
[LRU_INACTIVE_FILE
]) {
2513 unsigned long nr_anon
, nr_file
, percentage
;
2514 unsigned long nr_scanned
;
2516 for_each_evictable_lru(lru
) {
2518 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2519 nr
[lru
] -= nr_to_scan
;
2521 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2528 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2532 * For kswapd and memcg, reclaim at least the number of pages
2533 * requested. Ensure that the anon and file LRUs are scanned
2534 * proportionally what was requested by get_scan_count(). We
2535 * stop reclaiming one LRU and reduce the amount scanning
2536 * proportional to the original scan target.
2538 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2539 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2542 * It's just vindictive to attack the larger once the smaller
2543 * has gone to zero. And given the way we stop scanning the
2544 * smaller below, this makes sure that we only make one nudge
2545 * towards proportionality once we've got nr_to_reclaim.
2547 if (!nr_file
|| !nr_anon
)
2550 if (nr_file
> nr_anon
) {
2551 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2552 targets
[LRU_ACTIVE_ANON
] + 1;
2554 percentage
= nr_anon
* 100 / scan_target
;
2556 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2557 targets
[LRU_ACTIVE_FILE
] + 1;
2559 percentage
= nr_file
* 100 / scan_target
;
2562 /* Stop scanning the smaller of the LRU */
2564 nr
[lru
+ LRU_ACTIVE
] = 0;
2567 * Recalculate the other LRU scan count based on its original
2568 * scan target and the percentage scanning already complete
2570 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2571 nr_scanned
= targets
[lru
] - nr
[lru
];
2572 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2573 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2576 nr_scanned
= targets
[lru
] - nr
[lru
];
2577 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2578 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2580 scan_adjusted
= true;
2582 blk_finish_plug(&plug
);
2583 sc
->nr_reclaimed
+= nr_reclaimed
;
2586 * Even if we did not try to evict anon pages at all, we want to
2587 * rebalance the anon lru active/inactive ratio.
2589 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2590 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2591 sc
, LRU_ACTIVE_ANON
);
2594 /* Use reclaim/compaction for costly allocs or under memory pressure */
2595 static bool in_reclaim_compaction(struct scan_control
*sc
)
2597 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2598 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2599 sc
->priority
< DEF_PRIORITY
- 2))
2606 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2607 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2608 * true if more pages should be reclaimed such that when the page allocator
2609 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2610 * It will give up earlier than that if there is difficulty reclaiming pages.
2612 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2613 unsigned long nr_reclaimed
,
2614 unsigned long nr_scanned
,
2615 struct scan_control
*sc
)
2617 unsigned long pages_for_compaction
;
2618 unsigned long inactive_lru_pages
;
2621 /* If not in reclaim/compaction mode, stop */
2622 if (!in_reclaim_compaction(sc
))
2625 /* Consider stopping depending on scan and reclaim activity */
2626 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2628 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2629 * full LRU list has been scanned and we are still failing
2630 * to reclaim pages. This full LRU scan is potentially
2631 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2633 if (!nr_reclaimed
&& !nr_scanned
)
2637 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2638 * fail without consequence, stop if we failed to reclaim
2639 * any pages from the last SWAP_CLUSTER_MAX number of
2640 * pages that were scanned. This will return to the
2641 * caller faster at the risk reclaim/compaction and
2642 * the resulting allocation attempt fails
2649 * If we have not reclaimed enough pages for compaction and the
2650 * inactive lists are large enough, continue reclaiming
2652 pages_for_compaction
= compact_gap(sc
->order
);
2653 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2654 if (get_nr_swap_pages() > 0)
2655 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2656 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2657 inactive_lru_pages
> pages_for_compaction
)
2660 /* If compaction would go ahead or the allocation would succeed, stop */
2661 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2662 struct zone
*zone
= &pgdat
->node_zones
[z
];
2663 if (!managed_zone(zone
))
2666 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2667 case COMPACT_SUCCESS
:
2668 case COMPACT_CONTINUE
:
2671 /* check next zone */
2678 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2680 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2681 (memcg
&& memcg_congested(pgdat
, memcg
));
2684 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2686 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2687 unsigned long nr_reclaimed
, nr_scanned
;
2688 bool reclaimable
= false;
2691 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2692 struct mem_cgroup_reclaim_cookie reclaim
= {
2694 .priority
= sc
->priority
,
2696 unsigned long node_lru_pages
= 0;
2697 struct mem_cgroup
*memcg
;
2699 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2701 nr_reclaimed
= sc
->nr_reclaimed
;
2702 nr_scanned
= sc
->nr_scanned
;
2704 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2706 unsigned long lru_pages
;
2707 unsigned long reclaimed
;
2708 unsigned long scanned
;
2710 switch (mem_cgroup_protected(root
, memcg
)) {
2711 case MEMCG_PROT_MIN
:
2714 * If there is no reclaimable memory, OOM.
2717 case MEMCG_PROT_LOW
:
2720 * Respect the protection only as long as
2721 * there is an unprotected supply
2722 * of reclaimable memory from other cgroups.
2724 if (!sc
->memcg_low_reclaim
) {
2725 sc
->memcg_low_skipped
= 1;
2728 memcg_memory_event(memcg
, MEMCG_LOW
);
2730 case MEMCG_PROT_NONE
:
2734 reclaimed
= sc
->nr_reclaimed
;
2735 scanned
= sc
->nr_scanned
;
2736 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2737 node_lru_pages
+= lru_pages
;
2739 if (sc
->may_shrinkslab
) {
2740 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2741 memcg
, sc
->priority
);
2744 /* Record the group's reclaim efficiency */
2745 vmpressure(sc
->gfp_mask
, memcg
, false,
2746 sc
->nr_scanned
- scanned
,
2747 sc
->nr_reclaimed
- reclaimed
);
2750 * Kswapd have to scan all memory cgroups to fulfill
2751 * the overall scan target for the node.
2753 * Limit reclaim, on the other hand, only cares about
2754 * nr_to_reclaim pages to be reclaimed and it will
2755 * retry with decreasing priority if one round over the
2756 * whole hierarchy is not sufficient.
2758 if (!current_is_kswapd() &&
2759 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2760 mem_cgroup_iter_break(root
, memcg
);
2763 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2765 if (reclaim_state
) {
2766 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2767 reclaim_state
->reclaimed_slab
= 0;
2770 /* Record the subtree's reclaim efficiency */
2771 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2772 sc
->nr_scanned
- nr_scanned
,
2773 sc
->nr_reclaimed
- nr_reclaimed
);
2775 if (sc
->nr_reclaimed
- nr_reclaimed
)
2778 if (current_is_kswapd()) {
2780 * If reclaim is isolating dirty pages under writeback,
2781 * it implies that the long-lived page allocation rate
2782 * is exceeding the page laundering rate. Either the
2783 * global limits are not being effective at throttling
2784 * processes due to the page distribution throughout
2785 * zones or there is heavy usage of a slow backing
2786 * device. The only option is to throttle from reclaim
2787 * context which is not ideal as there is no guarantee
2788 * the dirtying process is throttled in the same way
2789 * balance_dirty_pages() manages.
2791 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2792 * count the number of pages under pages flagged for
2793 * immediate reclaim and stall if any are encountered
2794 * in the nr_immediate check below.
2796 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2797 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2800 * Tag a node as congested if all the dirty pages
2801 * scanned were backed by a congested BDI and
2802 * wait_iff_congested will stall.
2804 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2805 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2807 /* Allow kswapd to start writing pages during reclaim.*/
2808 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2809 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2812 * If kswapd scans pages marked marked for immediate
2813 * reclaim and under writeback (nr_immediate), it
2814 * implies that pages are cycling through the LRU
2815 * faster than they are written so also forcibly stall.
2817 if (sc
->nr
.immediate
)
2818 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2822 * Legacy memcg will stall in page writeback so avoid forcibly
2823 * stalling in wait_iff_congested().
2825 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2826 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2827 set_memcg_congestion(pgdat
, root
, true);
2830 * Stall direct reclaim for IO completions if underlying BDIs
2831 * and node is congested. Allow kswapd to continue until it
2832 * starts encountering unqueued dirty pages or cycling through
2833 * the LRU too quickly.
2835 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2836 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2837 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2839 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2840 sc
->nr_scanned
- nr_scanned
, sc
));
2843 * Kswapd gives up on balancing particular nodes after too
2844 * many failures to reclaim anything from them and goes to
2845 * sleep. On reclaim progress, reset the failure counter. A
2846 * successful direct reclaim run will revive a dormant kswapd.
2849 pgdat
->kswapd_failures
= 0;
2855 * Returns true if compaction should go ahead for a costly-order request, or
2856 * the allocation would already succeed without compaction. Return false if we
2857 * should reclaim first.
2859 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2861 unsigned long watermark
;
2862 enum compact_result suitable
;
2864 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2865 if (suitable
== COMPACT_SUCCESS
)
2866 /* Allocation should succeed already. Don't reclaim. */
2868 if (suitable
== COMPACT_SKIPPED
)
2869 /* Compaction cannot yet proceed. Do reclaim. */
2873 * Compaction is already possible, but it takes time to run and there
2874 * are potentially other callers using the pages just freed. So proceed
2875 * with reclaim to make a buffer of free pages available to give
2876 * compaction a reasonable chance of completing and allocating the page.
2877 * Note that we won't actually reclaim the whole buffer in one attempt
2878 * as the target watermark in should_continue_reclaim() is lower. But if
2879 * we are already above the high+gap watermark, don't reclaim at all.
2881 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2883 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2887 * This is the direct reclaim path, for page-allocating processes. We only
2888 * try to reclaim pages from zones which will satisfy the caller's allocation
2891 * If a zone is deemed to be full of pinned pages then just give it a light
2892 * scan then give up on it.
2894 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2898 unsigned long nr_soft_reclaimed
;
2899 unsigned long nr_soft_scanned
;
2901 pg_data_t
*last_pgdat
= NULL
;
2904 * If the number of buffer_heads in the machine exceeds the maximum
2905 * allowed level, force direct reclaim to scan the highmem zone as
2906 * highmem pages could be pinning lowmem pages storing buffer_heads
2908 orig_mask
= sc
->gfp_mask
;
2909 if (buffer_heads_over_limit
) {
2910 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2911 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2914 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2915 sc
->reclaim_idx
, sc
->nodemask
) {
2917 * Take care memory controller reclaiming has small influence
2920 if (global_reclaim(sc
)) {
2921 if (!cpuset_zone_allowed(zone
,
2922 GFP_KERNEL
| __GFP_HARDWALL
))
2926 * If we already have plenty of memory free for
2927 * compaction in this zone, don't free any more.
2928 * Even though compaction is invoked for any
2929 * non-zero order, only frequent costly order
2930 * reclamation is disruptive enough to become a
2931 * noticeable problem, like transparent huge
2934 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2935 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2936 compaction_ready(zone
, sc
)) {
2937 sc
->compaction_ready
= true;
2942 * Shrink each node in the zonelist once. If the
2943 * zonelist is ordered by zone (not the default) then a
2944 * node may be shrunk multiple times but in that case
2945 * the user prefers lower zones being preserved.
2947 if (zone
->zone_pgdat
== last_pgdat
)
2951 * This steals pages from memory cgroups over softlimit
2952 * and returns the number of reclaimed pages and
2953 * scanned pages. This works for global memory pressure
2954 * and balancing, not for a memcg's limit.
2956 nr_soft_scanned
= 0;
2957 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2958 sc
->order
, sc
->gfp_mask
,
2960 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2961 sc
->nr_scanned
+= nr_soft_scanned
;
2962 /* need some check for avoid more shrink_zone() */
2965 /* See comment about same check for global reclaim above */
2966 if (zone
->zone_pgdat
== last_pgdat
)
2968 last_pgdat
= zone
->zone_pgdat
;
2969 shrink_node(zone
->zone_pgdat
, sc
);
2973 * Restore to original mask to avoid the impact on the caller if we
2974 * promoted it to __GFP_HIGHMEM.
2976 sc
->gfp_mask
= orig_mask
;
2979 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2981 struct mem_cgroup
*memcg
;
2983 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2985 unsigned long refaults
;
2986 struct lruvec
*lruvec
;
2989 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2991 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2993 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2994 lruvec
->refaults
= refaults
;
2995 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2999 * This is the main entry point to direct page reclaim.
3001 * If a full scan of the inactive list fails to free enough memory then we
3002 * are "out of memory" and something needs to be killed.
3004 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3005 * high - the zone may be full of dirty or under-writeback pages, which this
3006 * caller can't do much about. We kick the writeback threads and take explicit
3007 * naps in the hope that some of these pages can be written. But if the
3008 * allocating task holds filesystem locks which prevent writeout this might not
3009 * work, and the allocation attempt will fail.
3011 * returns: 0, if no pages reclaimed
3012 * else, the number of pages reclaimed
3014 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3015 struct scan_control
*sc
)
3017 int initial_priority
= sc
->priority
;
3018 pg_data_t
*last_pgdat
;
3022 delayacct_freepages_start();
3024 if (global_reclaim(sc
))
3025 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3028 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3031 shrink_zones(zonelist
, sc
);
3033 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3036 if (sc
->compaction_ready
)
3040 * If we're getting trouble reclaiming, start doing
3041 * writepage even in laptop mode.
3043 if (sc
->priority
< DEF_PRIORITY
- 2)
3044 sc
->may_writepage
= 1;
3045 } while (--sc
->priority
>= 0);
3048 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3050 if (zone
->zone_pgdat
== last_pgdat
)
3052 last_pgdat
= zone
->zone_pgdat
;
3053 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3054 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3057 delayacct_freepages_end();
3059 if (sc
->nr_reclaimed
)
3060 return sc
->nr_reclaimed
;
3062 /* Aborted reclaim to try compaction? don't OOM, then */
3063 if (sc
->compaction_ready
)
3066 /* Untapped cgroup reserves? Don't OOM, retry. */
3067 if (sc
->memcg_low_skipped
) {
3068 sc
->priority
= initial_priority
;
3069 sc
->memcg_low_reclaim
= 1;
3070 sc
->memcg_low_skipped
= 0;
3077 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3080 unsigned long pfmemalloc_reserve
= 0;
3081 unsigned long free_pages
= 0;
3085 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3088 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3089 zone
= &pgdat
->node_zones
[i
];
3090 if (!managed_zone(zone
))
3093 if (!zone_reclaimable_pages(zone
))
3096 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3097 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3100 /* If there are no reserves (unexpected config) then do not throttle */
3101 if (!pfmemalloc_reserve
)
3104 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3106 /* kswapd must be awake if processes are being throttled */
3107 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3108 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3109 (enum zone_type
)ZONE_NORMAL
);
3110 wake_up_interruptible(&pgdat
->kswapd_wait
);
3117 * Throttle direct reclaimers if backing storage is backed by the network
3118 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3119 * depleted. kswapd will continue to make progress and wake the processes
3120 * when the low watermark is reached.
3122 * Returns true if a fatal signal was delivered during throttling. If this
3123 * happens, the page allocator should not consider triggering the OOM killer.
3125 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3126 nodemask_t
*nodemask
)
3130 pg_data_t
*pgdat
= NULL
;
3133 * Kernel threads should not be throttled as they may be indirectly
3134 * responsible for cleaning pages necessary for reclaim to make forward
3135 * progress. kjournald for example may enter direct reclaim while
3136 * committing a transaction where throttling it could forcing other
3137 * processes to block on log_wait_commit().
3139 if (current
->flags
& PF_KTHREAD
)
3143 * If a fatal signal is pending, this process should not throttle.
3144 * It should return quickly so it can exit and free its memory
3146 if (fatal_signal_pending(current
))
3150 * Check if the pfmemalloc reserves are ok by finding the first node
3151 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3152 * GFP_KERNEL will be required for allocating network buffers when
3153 * swapping over the network so ZONE_HIGHMEM is unusable.
3155 * Throttling is based on the first usable node and throttled processes
3156 * wait on a queue until kswapd makes progress and wakes them. There
3157 * is an affinity then between processes waking up and where reclaim
3158 * progress has been made assuming the process wakes on the same node.
3159 * More importantly, processes running on remote nodes will not compete
3160 * for remote pfmemalloc reserves and processes on different nodes
3161 * should make reasonable progress.
3163 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3164 gfp_zone(gfp_mask
), nodemask
) {
3165 if (zone_idx(zone
) > ZONE_NORMAL
)
3168 /* Throttle based on the first usable node */
3169 pgdat
= zone
->zone_pgdat
;
3170 if (allow_direct_reclaim(pgdat
))
3175 /* If no zone was usable by the allocation flags then do not throttle */
3179 /* Account for the throttling */
3180 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3183 * If the caller cannot enter the filesystem, it's possible that it
3184 * is due to the caller holding an FS lock or performing a journal
3185 * transaction in the case of a filesystem like ext[3|4]. In this case,
3186 * it is not safe to block on pfmemalloc_wait as kswapd could be
3187 * blocked waiting on the same lock. Instead, throttle for up to a
3188 * second before continuing.
3190 if (!(gfp_mask
& __GFP_FS
)) {
3191 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3192 allow_direct_reclaim(pgdat
), HZ
);
3197 /* Throttle until kswapd wakes the process */
3198 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3199 allow_direct_reclaim(pgdat
));
3202 if (fatal_signal_pending(current
))
3209 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3210 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3212 unsigned long nr_reclaimed
;
3213 struct scan_control sc
= {
3214 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3215 .gfp_mask
= current_gfp_context(gfp_mask
),
3216 .reclaim_idx
= gfp_zone(gfp_mask
),
3218 .nodemask
= nodemask
,
3219 .priority
= DEF_PRIORITY
,
3220 .may_writepage
= !laptop_mode
,
3223 .may_shrinkslab
= 1,
3227 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3228 * Confirm they are large enough for max values.
3230 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3231 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3232 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3235 * Do not enter reclaim if fatal signal was delivered while throttled.
3236 * 1 is returned so that the page allocator does not OOM kill at this
3239 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3242 trace_mm_vmscan_direct_reclaim_begin(order
,
3247 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3249 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3251 return nr_reclaimed
;
3256 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3257 gfp_t gfp_mask
, bool noswap
,
3259 unsigned long *nr_scanned
)
3261 struct scan_control sc
= {
3262 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3263 .target_mem_cgroup
= memcg
,
3264 .may_writepage
= !laptop_mode
,
3266 .reclaim_idx
= MAX_NR_ZONES
- 1,
3267 .may_swap
= !noswap
,
3268 .may_shrinkslab
= 1,
3270 unsigned long lru_pages
;
3272 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3273 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3275 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3281 * NOTE: Although we can get the priority field, using it
3282 * here is not a good idea, since it limits the pages we can scan.
3283 * if we don't reclaim here, the shrink_node from balance_pgdat
3284 * will pick up pages from other mem cgroup's as well. We hack
3285 * the priority and make it zero.
3287 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3289 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3291 *nr_scanned
= sc
.nr_scanned
;
3292 return sc
.nr_reclaimed
;
3295 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3296 unsigned long nr_pages
,
3300 struct zonelist
*zonelist
;
3301 unsigned long nr_reclaimed
;
3302 unsigned long pflags
;
3304 unsigned int noreclaim_flag
;
3305 struct scan_control sc
= {
3306 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3307 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3308 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3309 .reclaim_idx
= MAX_NR_ZONES
- 1,
3310 .target_mem_cgroup
= memcg
,
3311 .priority
= DEF_PRIORITY
,
3312 .may_writepage
= !laptop_mode
,
3314 .may_swap
= may_swap
,
3315 .may_shrinkslab
= 1,
3319 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3320 * take care of from where we get pages. So the node where we start the
3321 * scan does not need to be the current node.
3323 nid
= mem_cgroup_select_victim_node(memcg
);
3325 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3327 trace_mm_vmscan_memcg_reclaim_begin(0,
3332 psi_memstall_enter(&pflags
);
3333 noreclaim_flag
= memalloc_noreclaim_save();
3335 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3337 memalloc_noreclaim_restore(noreclaim_flag
);
3338 psi_memstall_leave(&pflags
);
3340 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3342 return nr_reclaimed
;
3346 static void age_active_anon(struct pglist_data
*pgdat
,
3347 struct scan_control
*sc
)
3349 struct mem_cgroup
*memcg
;
3351 if (!total_swap_pages
)
3354 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3356 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3358 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3359 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3360 sc
, LRU_ACTIVE_ANON
);
3362 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3366 static bool pgdat_watermark_boosted(pg_data_t
*pgdat
, int classzone_idx
)
3372 * Check for watermark boosts top-down as the higher zones
3373 * are more likely to be boosted. Both watermarks and boosts
3374 * should not be checked at the time time as reclaim would
3375 * start prematurely when there is no boosting and a lower
3378 for (i
= classzone_idx
; i
>= 0; i
--) {
3379 zone
= pgdat
->node_zones
+ i
;
3380 if (!managed_zone(zone
))
3383 if (zone
->watermark_boost
)
3391 * Returns true if there is an eligible zone balanced for the request order
3394 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3397 unsigned long mark
= -1;
3401 * Check watermarks bottom-up as lower zones are more likely to
3404 for (i
= 0; i
<= classzone_idx
; i
++) {
3405 zone
= pgdat
->node_zones
+ i
;
3407 if (!managed_zone(zone
))
3410 mark
= high_wmark_pages(zone
);
3411 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3416 * If a node has no populated zone within classzone_idx, it does not
3417 * need balancing by definition. This can happen if a zone-restricted
3418 * allocation tries to wake a remote kswapd.
3426 /* Clear pgdat state for congested, dirty or under writeback. */
3427 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3429 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3430 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3431 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3435 * Prepare kswapd for sleeping. This verifies that there are no processes
3436 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3438 * Returns true if kswapd is ready to sleep
3440 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3443 * The throttled processes are normally woken up in balance_pgdat() as
3444 * soon as allow_direct_reclaim() is true. But there is a potential
3445 * race between when kswapd checks the watermarks and a process gets
3446 * throttled. There is also a potential race if processes get
3447 * throttled, kswapd wakes, a large process exits thereby balancing the
3448 * zones, which causes kswapd to exit balance_pgdat() before reaching
3449 * the wake up checks. If kswapd is going to sleep, no process should
3450 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3451 * the wake up is premature, processes will wake kswapd and get
3452 * throttled again. The difference from wake ups in balance_pgdat() is
3453 * that here we are under prepare_to_wait().
3455 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3456 wake_up_all(&pgdat
->pfmemalloc_wait
);
3458 /* Hopeless node, leave it to direct reclaim */
3459 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3462 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3463 clear_pgdat_congested(pgdat
);
3471 * kswapd shrinks a node of pages that are at or below the highest usable
3472 * zone that is currently unbalanced.
3474 * Returns true if kswapd scanned at least the requested number of pages to
3475 * reclaim or if the lack of progress was due to pages under writeback.
3476 * This is used to determine if the scanning priority needs to be raised.
3478 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3479 struct scan_control
*sc
)
3484 /* Reclaim a number of pages proportional to the number of zones */
3485 sc
->nr_to_reclaim
= 0;
3486 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3487 zone
= pgdat
->node_zones
+ z
;
3488 if (!managed_zone(zone
))
3491 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3495 * Historically care was taken to put equal pressure on all zones but
3496 * now pressure is applied based on node LRU order.
3498 shrink_node(pgdat
, sc
);
3501 * Fragmentation may mean that the system cannot be rebalanced for
3502 * high-order allocations. If twice the allocation size has been
3503 * reclaimed then recheck watermarks only at order-0 to prevent
3504 * excessive reclaim. Assume that a process requested a high-order
3505 * can direct reclaim/compact.
3507 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3510 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3514 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3515 * that are eligible for use by the caller until at least one zone is
3518 * Returns the order kswapd finished reclaiming at.
3520 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3521 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3522 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3523 * or lower is eligible for reclaim until at least one usable zone is
3526 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3529 unsigned long nr_soft_reclaimed
;
3530 unsigned long nr_soft_scanned
;
3531 unsigned long pflags
;
3532 unsigned long nr_boost_reclaim
;
3533 unsigned long zone_boosts
[MAX_NR_ZONES
] = { 0, };
3536 struct scan_control sc
= {
3537 .gfp_mask
= GFP_KERNEL
,
3542 psi_memstall_enter(&pflags
);
3543 __fs_reclaim_acquire();
3545 count_vm_event(PAGEOUTRUN
);
3548 * Account for the reclaim boost. Note that the zone boost is left in
3549 * place so that parallel allocations that are near the watermark will
3550 * stall or direct reclaim until kswapd is finished.
3552 nr_boost_reclaim
= 0;
3553 for (i
= 0; i
<= classzone_idx
; i
++) {
3554 zone
= pgdat
->node_zones
+ i
;
3555 if (!managed_zone(zone
))
3558 nr_boost_reclaim
+= zone
->watermark_boost
;
3559 zone_boosts
[i
] = zone
->watermark_boost
;
3561 boosted
= nr_boost_reclaim
;
3564 sc
.priority
= DEF_PRIORITY
;
3566 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3567 bool raise_priority
= true;
3571 sc
.reclaim_idx
= classzone_idx
;
3574 * If the number of buffer_heads exceeds the maximum allowed
3575 * then consider reclaiming from all zones. This has a dual
3576 * purpose -- on 64-bit systems it is expected that
3577 * buffer_heads are stripped during active rotation. On 32-bit
3578 * systems, highmem pages can pin lowmem memory and shrinking
3579 * buffers can relieve lowmem pressure. Reclaim may still not
3580 * go ahead if all eligible zones for the original allocation
3581 * request are balanced to avoid excessive reclaim from kswapd.
3583 if (buffer_heads_over_limit
) {
3584 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3585 zone
= pgdat
->node_zones
+ i
;
3586 if (!managed_zone(zone
))
3595 * If the pgdat is imbalanced then ignore boosting and preserve
3596 * the watermarks for a later time and restart. Note that the
3597 * zone watermarks will be still reset at the end of balancing
3598 * on the grounds that the normal reclaim should be enough to
3599 * re-evaluate if boosting is required when kswapd next wakes.
3601 balanced
= pgdat_balanced(pgdat
, sc
.order
, classzone_idx
);
3602 if (!balanced
&& nr_boost_reclaim
) {
3603 nr_boost_reclaim
= 0;
3608 * If boosting is not active then only reclaim if there are no
3609 * eligible zones. Note that sc.reclaim_idx is not used as
3610 * buffer_heads_over_limit may have adjusted it.
3612 if (!nr_boost_reclaim
&& balanced
)
3615 /* Limit the priority of boosting to avoid reclaim writeback */
3616 if (nr_boost_reclaim
&& sc
.priority
== DEF_PRIORITY
- 2)
3617 raise_priority
= false;
3620 * Do not writeback or swap pages for boosted reclaim. The
3621 * intent is to relieve pressure not issue sub-optimal IO
3622 * from reclaim context. If no pages are reclaimed, the
3623 * reclaim will be aborted.
3625 sc
.may_writepage
= !laptop_mode
&& !nr_boost_reclaim
;
3626 sc
.may_swap
= !nr_boost_reclaim
;
3627 sc
.may_shrinkslab
= !nr_boost_reclaim
;
3630 * Do some background aging of the anon list, to give
3631 * pages a chance to be referenced before reclaiming. All
3632 * pages are rotated regardless of classzone as this is
3633 * about consistent aging.
3635 age_active_anon(pgdat
, &sc
);
3638 * If we're getting trouble reclaiming, start doing writepage
3639 * even in laptop mode.
3641 if (sc
.priority
< DEF_PRIORITY
- 2)
3642 sc
.may_writepage
= 1;
3644 /* Call soft limit reclaim before calling shrink_node. */
3646 nr_soft_scanned
= 0;
3647 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3648 sc
.gfp_mask
, &nr_soft_scanned
);
3649 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3652 * There should be no need to raise the scanning priority if
3653 * enough pages are already being scanned that that high
3654 * watermark would be met at 100% efficiency.
3656 if (kswapd_shrink_node(pgdat
, &sc
))
3657 raise_priority
= false;
3660 * If the low watermark is met there is no need for processes
3661 * to be throttled on pfmemalloc_wait as they should not be
3662 * able to safely make forward progress. Wake them
3664 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3665 allow_direct_reclaim(pgdat
))
3666 wake_up_all(&pgdat
->pfmemalloc_wait
);
3668 /* Check if kswapd should be suspending */
3669 __fs_reclaim_release();
3670 ret
= try_to_freeze();
3671 __fs_reclaim_acquire();
3672 if (ret
|| kthread_should_stop())
3676 * Raise priority if scanning rate is too low or there was no
3677 * progress in reclaiming pages
3679 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3680 nr_boost_reclaim
-= min(nr_boost_reclaim
, nr_reclaimed
);
3683 * If reclaim made no progress for a boost, stop reclaim as
3684 * IO cannot be queued and it could be an infinite loop in
3685 * extreme circumstances.
3687 if (nr_boost_reclaim
&& !nr_reclaimed
)
3690 if (raise_priority
|| !nr_reclaimed
)
3692 } while (sc
.priority
>= 1);
3694 if (!sc
.nr_reclaimed
)
3695 pgdat
->kswapd_failures
++;
3698 /* If reclaim was boosted, account for the reclaim done in this pass */
3700 unsigned long flags
;
3702 for (i
= 0; i
<= classzone_idx
; i
++) {
3703 if (!zone_boosts
[i
])
3706 /* Increments are under the zone lock */
3707 zone
= pgdat
->node_zones
+ i
;
3708 spin_lock_irqsave(&zone
->lock
, flags
);
3709 zone
->watermark_boost
-= min(zone
->watermark_boost
, zone_boosts
[i
]);
3710 spin_unlock_irqrestore(&zone
->lock
, flags
);
3714 * As there is now likely space, wakeup kcompact to defragment
3717 wakeup_kcompactd(pgdat
, pageblock_order
, classzone_idx
);
3720 snapshot_refaults(NULL
, pgdat
);
3721 __fs_reclaim_release();
3722 psi_memstall_leave(&pflags
);
3724 * Return the order kswapd stopped reclaiming at as
3725 * prepare_kswapd_sleep() takes it into account. If another caller
3726 * entered the allocator slow path while kswapd was awake, order will
3727 * remain at the higher level.
3733 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3734 * allocation request woke kswapd for. When kswapd has not woken recently,
3735 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3736 * given classzone and returns it or the highest classzone index kswapd
3737 * was recently woke for.
3739 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3740 enum zone_type classzone_idx
)
3742 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3743 return classzone_idx
;
3745 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3748 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3749 unsigned int classzone_idx
)
3754 if (freezing(current
) || kthread_should_stop())
3757 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3760 * Try to sleep for a short interval. Note that kcompactd will only be
3761 * woken if it is possible to sleep for a short interval. This is
3762 * deliberate on the assumption that if reclaim cannot keep an
3763 * eligible zone balanced that it's also unlikely that compaction will
3766 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3768 * Compaction records what page blocks it recently failed to
3769 * isolate pages from and skips them in the future scanning.
3770 * When kswapd is going to sleep, it is reasonable to assume
3771 * that pages and compaction may succeed so reset the cache.
3773 reset_isolation_suitable(pgdat
);
3776 * We have freed the memory, now we should compact it to make
3777 * allocation of the requested order possible.
3779 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3781 remaining
= schedule_timeout(HZ
/10);
3784 * If woken prematurely then reset kswapd_classzone_idx and
3785 * order. The values will either be from a wakeup request or
3786 * the previous request that slept prematurely.
3789 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3790 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3793 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3794 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3798 * After a short sleep, check if it was a premature sleep. If not, then
3799 * go fully to sleep until explicitly woken up.
3802 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3803 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3806 * vmstat counters are not perfectly accurate and the estimated
3807 * value for counters such as NR_FREE_PAGES can deviate from the
3808 * true value by nr_online_cpus * threshold. To avoid the zone
3809 * watermarks being breached while under pressure, we reduce the
3810 * per-cpu vmstat threshold while kswapd is awake and restore
3811 * them before going back to sleep.
3813 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3815 if (!kthread_should_stop())
3818 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3821 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3823 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3825 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3829 * The background pageout daemon, started as a kernel thread
3830 * from the init process.
3832 * This basically trickles out pages so that we have _some_
3833 * free memory available even if there is no other activity
3834 * that frees anything up. This is needed for things like routing
3835 * etc, where we otherwise might have all activity going on in
3836 * asynchronous contexts that cannot page things out.
3838 * If there are applications that are active memory-allocators
3839 * (most normal use), this basically shouldn't matter.
3841 static int kswapd(void *p
)
3843 unsigned int alloc_order
, reclaim_order
;
3844 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3845 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3846 struct task_struct
*tsk
= current
;
3848 struct reclaim_state reclaim_state
= {
3849 .reclaimed_slab
= 0,
3851 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3853 if (!cpumask_empty(cpumask
))
3854 set_cpus_allowed_ptr(tsk
, cpumask
);
3855 current
->reclaim_state
= &reclaim_state
;
3858 * Tell the memory management that we're a "memory allocator",
3859 * and that if we need more memory we should get access to it
3860 * regardless (see "__alloc_pages()"). "kswapd" should
3861 * never get caught in the normal page freeing logic.
3863 * (Kswapd normally doesn't need memory anyway, but sometimes
3864 * you need a small amount of memory in order to be able to
3865 * page out something else, and this flag essentially protects
3866 * us from recursively trying to free more memory as we're
3867 * trying to free the first piece of memory in the first place).
3869 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3872 pgdat
->kswapd_order
= 0;
3873 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3877 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3878 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3881 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3884 /* Read the new order and classzone_idx */
3885 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3886 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3887 pgdat
->kswapd_order
= 0;
3888 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3890 ret
= try_to_freeze();
3891 if (kthread_should_stop())
3895 * We can speed up thawing tasks if we don't call balance_pgdat
3896 * after returning from the refrigerator
3902 * Reclaim begins at the requested order but if a high-order
3903 * reclaim fails then kswapd falls back to reclaiming for
3904 * order-0. If that happens, kswapd will consider sleeping
3905 * for the order it finished reclaiming at (reclaim_order)
3906 * but kcompactd is woken to compact for the original
3907 * request (alloc_order).
3909 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3911 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3912 if (reclaim_order
< alloc_order
)
3913 goto kswapd_try_sleep
;
3916 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3917 current
->reclaim_state
= NULL
;
3923 * A zone is low on free memory or too fragmented for high-order memory. If
3924 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3925 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3926 * has failed or is not needed, still wake up kcompactd if only compaction is
3929 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3930 enum zone_type classzone_idx
)
3934 if (!managed_zone(zone
))
3937 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3939 pgdat
= zone
->zone_pgdat
;
3940 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3942 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3943 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3946 /* Hopeless node, leave it to direct reclaim if possible */
3947 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3948 (pgdat_balanced(pgdat
, order
, classzone_idx
) &&
3949 !pgdat_watermark_boosted(pgdat
, classzone_idx
))) {
3951 * There may be plenty of free memory available, but it's too
3952 * fragmented for high-order allocations. Wake up kcompactd
3953 * and rely on compaction_suitable() to determine if it's
3954 * needed. If it fails, it will defer subsequent attempts to
3955 * ratelimit its work.
3957 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3958 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3962 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3964 wake_up_interruptible(&pgdat
->kswapd_wait
);
3967 #ifdef CONFIG_HIBERNATION
3969 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3972 * Rather than trying to age LRUs the aim is to preserve the overall
3973 * LRU order by reclaiming preferentially
3974 * inactive > active > active referenced > active mapped
3976 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3978 struct reclaim_state reclaim_state
;
3979 struct scan_control sc
= {
3980 .nr_to_reclaim
= nr_to_reclaim
,
3981 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3982 .reclaim_idx
= MAX_NR_ZONES
- 1,
3983 .priority
= DEF_PRIORITY
,
3987 .hibernation_mode
= 1,
3989 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3990 struct task_struct
*p
= current
;
3991 unsigned long nr_reclaimed
;
3992 unsigned int noreclaim_flag
;
3994 fs_reclaim_acquire(sc
.gfp_mask
);
3995 noreclaim_flag
= memalloc_noreclaim_save();
3996 reclaim_state
.reclaimed_slab
= 0;
3997 p
->reclaim_state
= &reclaim_state
;
3999 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
4001 p
->reclaim_state
= NULL
;
4002 memalloc_noreclaim_restore(noreclaim_flag
);
4003 fs_reclaim_release(sc
.gfp_mask
);
4005 return nr_reclaimed
;
4007 #endif /* CONFIG_HIBERNATION */
4009 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4010 not required for correctness. So if the last cpu in a node goes
4011 away, we get changed to run anywhere: as the first one comes back,
4012 restore their cpu bindings. */
4013 static int kswapd_cpu_online(unsigned int cpu
)
4017 for_each_node_state(nid
, N_MEMORY
) {
4018 pg_data_t
*pgdat
= NODE_DATA(nid
);
4019 const struct cpumask
*mask
;
4021 mask
= cpumask_of_node(pgdat
->node_id
);
4023 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
4024 /* One of our CPUs online: restore mask */
4025 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
4031 * This kswapd start function will be called by init and node-hot-add.
4032 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034 int kswapd_run(int nid
)
4036 pg_data_t
*pgdat
= NODE_DATA(nid
);
4042 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
4043 if (IS_ERR(pgdat
->kswapd
)) {
4044 /* failure at boot is fatal */
4045 BUG_ON(system_state
< SYSTEM_RUNNING
);
4046 pr_err("Failed to start kswapd on node %d\n", nid
);
4047 ret
= PTR_ERR(pgdat
->kswapd
);
4048 pgdat
->kswapd
= NULL
;
4054 * Called by memory hotplug when all memory in a node is offlined. Caller must
4055 * hold mem_hotplug_begin/end().
4057 void kswapd_stop(int nid
)
4059 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
4062 kthread_stop(kswapd
);
4063 NODE_DATA(nid
)->kswapd
= NULL
;
4067 static int __init
kswapd_init(void)
4072 for_each_node_state(nid
, N_MEMORY
)
4074 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
4075 "mm/vmscan:online", kswapd_cpu_online
,
4081 module_init(kswapd_init
)
4087 * If non-zero call node_reclaim when the number of free pages falls below
4090 int node_reclaim_mode __read_mostly
;
4092 #define RECLAIM_OFF 0
4093 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4094 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4095 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4098 * Priority for NODE_RECLAIM. This determines the fraction of pages
4099 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4102 #define NODE_RECLAIM_PRIORITY 4
4105 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4108 int sysctl_min_unmapped_ratio
= 1;
4111 * If the number of slab pages in a zone grows beyond this percentage then
4112 * slab reclaim needs to occur.
4114 int sysctl_min_slab_ratio
= 5;
4116 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4118 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4119 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4120 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4123 * It's possible for there to be more file mapped pages than
4124 * accounted for by the pages on the file LRU lists because
4125 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4127 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4130 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4131 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4133 unsigned long nr_pagecache_reclaimable
;
4134 unsigned long delta
= 0;
4137 * If RECLAIM_UNMAP is set, then all file pages are considered
4138 * potentially reclaimable. Otherwise, we have to worry about
4139 * pages like swapcache and node_unmapped_file_pages() provides
4142 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4143 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4145 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4147 /* If we can't clean pages, remove dirty pages from consideration */
4148 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4149 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4151 /* Watch for any possible underflows due to delta */
4152 if (unlikely(delta
> nr_pagecache_reclaimable
))
4153 delta
= nr_pagecache_reclaimable
;
4155 return nr_pagecache_reclaimable
- delta
;
4159 * Try to free up some pages from this node through reclaim.
4161 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4163 /* Minimum pages needed in order to stay on node */
4164 const unsigned long nr_pages
= 1 << order
;
4165 struct task_struct
*p
= current
;
4166 struct reclaim_state reclaim_state
;
4167 unsigned int noreclaim_flag
;
4168 struct scan_control sc
= {
4169 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4170 .gfp_mask
= current_gfp_context(gfp_mask
),
4172 .priority
= NODE_RECLAIM_PRIORITY
,
4173 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4174 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4176 .reclaim_idx
= gfp_zone(gfp_mask
),
4180 fs_reclaim_acquire(sc
.gfp_mask
);
4182 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4183 * and we also need to be able to write out pages for RECLAIM_WRITE
4184 * and RECLAIM_UNMAP.
4186 noreclaim_flag
= memalloc_noreclaim_save();
4187 p
->flags
|= PF_SWAPWRITE
;
4188 reclaim_state
.reclaimed_slab
= 0;
4189 p
->reclaim_state
= &reclaim_state
;
4191 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4193 * Free memory by calling shrink node with increasing
4194 * priorities until we have enough memory freed.
4197 shrink_node(pgdat
, &sc
);
4198 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4201 p
->reclaim_state
= NULL
;
4202 current
->flags
&= ~PF_SWAPWRITE
;
4203 memalloc_noreclaim_restore(noreclaim_flag
);
4204 fs_reclaim_release(sc
.gfp_mask
);
4205 return sc
.nr_reclaimed
>= nr_pages
;
4208 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4213 * Node reclaim reclaims unmapped file backed pages and
4214 * slab pages if we are over the defined limits.
4216 * A small portion of unmapped file backed pages is needed for
4217 * file I/O otherwise pages read by file I/O will be immediately
4218 * thrown out if the node is overallocated. So we do not reclaim
4219 * if less than a specified percentage of the node is used by
4220 * unmapped file backed pages.
4222 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4223 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4224 return NODE_RECLAIM_FULL
;
4227 * Do not scan if the allocation should not be delayed.
4229 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4230 return NODE_RECLAIM_NOSCAN
;
4233 * Only run node reclaim on the local node or on nodes that do not
4234 * have associated processors. This will favor the local processor
4235 * over remote processors and spread off node memory allocations
4236 * as wide as possible.
4238 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4239 return NODE_RECLAIM_NOSCAN
;
4241 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4242 return NODE_RECLAIM_NOSCAN
;
4244 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4245 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4248 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4255 * page_evictable - test whether a page is evictable
4256 * @page: the page to test
4258 * Test whether page is evictable--i.e., should be placed on active/inactive
4259 * lists vs unevictable list.
4261 * Reasons page might not be evictable:
4262 * (1) page's mapping marked unevictable
4263 * (2) page is part of an mlocked VMA
4266 int page_evictable(struct page
*page
)
4270 /* Prevent address_space of inode and swap cache from being freed */
4272 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4278 * check_move_unevictable_pages - check pages for evictability and move to
4279 * appropriate zone lru list
4280 * @pvec: pagevec with lru pages to check
4282 * Checks pages for evictability, if an evictable page is in the unevictable
4283 * lru list, moves it to the appropriate evictable lru list. This function
4284 * should be only used for lru pages.
4286 void check_move_unevictable_pages(struct pagevec
*pvec
)
4288 struct lruvec
*lruvec
;
4289 struct pglist_data
*pgdat
= NULL
;
4294 for (i
= 0; i
< pvec
->nr
; i
++) {
4295 struct page
*page
= pvec
->pages
[i
];
4296 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4299 if (pagepgdat
!= pgdat
) {
4301 spin_unlock_irq(&pgdat
->lru_lock
);
4303 spin_lock_irq(&pgdat
->lru_lock
);
4305 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4307 if (!PageLRU(page
) || !PageUnevictable(page
))
4310 if (page_evictable(page
)) {
4311 enum lru_list lru
= page_lru_base_type(page
);
4313 VM_BUG_ON_PAGE(PageActive(page
), page
);
4314 ClearPageUnevictable(page
);
4315 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4316 add_page_to_lru_list(page
, lruvec
, lru
);
4322 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4323 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4324 spin_unlock_irq(&pgdat
->lru_lock
);
4327 EXPORT_SYMBOL_GPL(check_move_unevictable_pages
);