mm: vmscan: do not iterate all mem cgroups for global direct reclaim
[linux/fpc-iii.git] / mm / vmscan.c
blob07a68dcd5f580a38a30377540a39785369d815fe
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
61 #include "internal.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
74 nodemask_t *nodemask;
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim:1;
100 unsigned int memcg_low_skipped:1;
102 unsigned int hibernation_mode:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready:1;
107 /* Allocation order */
108 s8 order;
110 /* Scan (total_size >> priority) pages at once */
111 s8 priority;
113 /* The highest zone to isolate pages for reclaim from */
114 s8 reclaim_idx;
116 /* This context's GFP mask */
117 gfp_t gfp_mask;
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed;
125 struct {
126 unsigned int dirty;
127 unsigned int unqueued_dirty;
128 unsigned int congested;
129 unsigned int writeback;
130 unsigned int immediate;
131 unsigned int file_taken;
132 unsigned int taken;
133 } nr;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
145 } while (0)
146 #else
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
152 do { \
153 if ((_page)->lru.prev != _base) { \
154 struct page *prev; \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
159 } while (0)
160 #else
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 #endif
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness = 60;
169 * The total number of pages which are beyond the high watermark within all
170 * zones.
172 unsigned long vm_total_pages;
174 static LIST_HEAD(shrinker_list);
175 static DECLARE_RWSEM(shrinker_rwsem);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr);
193 static int shrinker_nr_max;
195 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
197 int id, ret = -ENOMEM;
199 down_write(&shrinker_rwsem);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
202 if (id < 0)
203 goto unlock;
205 if (id >= shrinker_nr_max) {
206 if (memcg_expand_shrinker_maps(id)) {
207 idr_remove(&shrinker_idr, id);
208 goto unlock;
211 shrinker_nr_max = id + 1;
213 shrinker->id = id;
214 ret = 0;
215 unlock:
216 up_write(&shrinker_rwsem);
217 return ret;
220 static void unregister_memcg_shrinker(struct shrinker *shrinker)
222 int id = shrinker->id;
224 BUG_ON(id < 0);
226 down_write(&shrinker_rwsem);
227 idr_remove(&shrinker_idr, id);
228 up_write(&shrinker_rwsem);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
233 return 0;
236 static void unregister_memcg_shrinker(struct shrinker *shrinker)
239 #endif /* CONFIG_MEMCG_KMEM */
241 #ifdef CONFIG_MEMCG
242 static bool global_reclaim(struct scan_control *sc)
244 return !sc->target_mem_cgroup;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control *sc)
262 struct mem_cgroup *memcg = sc->target_mem_cgroup;
264 if (!memcg)
265 return true;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 return true;
269 #endif
270 return false;
273 static void set_memcg_congestion(pg_data_t *pgdat,
274 struct mem_cgroup *memcg,
275 bool congested)
277 struct mem_cgroup_per_node *mn;
279 if (!memcg)
280 return;
282 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
283 WRITE_ONCE(mn->congested, congested);
286 static bool memcg_congested(pg_data_t *pgdat,
287 struct mem_cgroup *memcg)
289 struct mem_cgroup_per_node *mn;
291 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
292 return READ_ONCE(mn->congested);
295 #else
296 static bool global_reclaim(struct scan_control *sc)
298 return true;
301 static bool sane_reclaim(struct scan_control *sc)
303 return true;
306 static inline void set_memcg_congestion(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg, bool congested)
311 static inline bool memcg_congested(struct pglist_data *pgdat,
312 struct mem_cgroup *memcg)
314 return false;
317 #endif
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone *zone)
326 unsigned long nr;
328 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
330 if (get_nr_swap_pages() > 0)
331 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
332 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
334 return nr;
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
340 * @lru: lru to use
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
345 unsigned long lru_size;
346 int zid;
348 if (!mem_cgroup_disabled())
349 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
350 else
351 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
353 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
354 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
355 unsigned long size;
357 if (!managed_zone(zone))
358 continue;
360 if (!mem_cgroup_disabled())
361 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
362 else
363 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
364 NR_ZONE_LRU_BASE + lru);
365 lru_size -= min(size, lru_size);
368 return lru_size;
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker *shrinker)
377 size_t size = sizeof(*shrinker->nr_deferred);
379 if (shrinker->flags & SHRINKER_NUMA_AWARE)
380 size *= nr_node_ids;
382 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
383 if (!shrinker->nr_deferred)
384 return -ENOMEM;
386 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
387 if (prealloc_memcg_shrinker(shrinker))
388 goto free_deferred;
391 return 0;
393 free_deferred:
394 kfree(shrinker->nr_deferred);
395 shrinker->nr_deferred = NULL;
396 return -ENOMEM;
399 void free_prealloced_shrinker(struct shrinker *shrinker)
401 if (!shrinker->nr_deferred)
402 return;
404 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
405 unregister_memcg_shrinker(shrinker);
407 kfree(shrinker->nr_deferred);
408 shrinker->nr_deferred = NULL;
411 void register_shrinker_prepared(struct shrinker *shrinker)
413 down_write(&shrinker_rwsem);
414 list_add_tail(&shrinker->list, &shrinker_list);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
417 idr_replace(&shrinker_idr, shrinker, shrinker->id);
418 #endif
419 up_write(&shrinker_rwsem);
422 int register_shrinker(struct shrinker *shrinker)
424 int err = prealloc_shrinker(shrinker);
426 if (err)
427 return err;
428 register_shrinker_prepared(shrinker);
429 return 0;
431 EXPORT_SYMBOL(register_shrinker);
434 * Remove one
436 void unregister_shrinker(struct shrinker *shrinker)
438 if (!shrinker->nr_deferred)
439 return;
440 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
441 unregister_memcg_shrinker(shrinker);
442 down_write(&shrinker_rwsem);
443 list_del(&shrinker->list);
444 up_write(&shrinker_rwsem);
445 kfree(shrinker->nr_deferred);
446 shrinker->nr_deferred = NULL;
448 EXPORT_SYMBOL(unregister_shrinker);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
453 struct shrinker *shrinker, int priority)
455 unsigned long freed = 0;
456 unsigned long long delta;
457 long total_scan;
458 long freeable;
459 long nr;
460 long new_nr;
461 int nid = shrinkctl->nid;
462 long batch_size = shrinker->batch ? shrinker->batch
463 : SHRINK_BATCH;
464 long scanned = 0, next_deferred;
466 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
467 nid = 0;
469 freeable = shrinker->count_objects(shrinker, shrinkctl);
470 if (freeable == 0 || freeable == SHRINK_EMPTY)
471 return freeable;
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
480 total_scan = nr;
481 if (shrinker->seeks) {
482 delta = freeable >> priority;
483 delta *= 4;
484 do_div(delta, shrinker->seeks);
485 } else {
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta = freeable / 2;
494 total_scan += delta;
495 if (total_scan < 0) {
496 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
497 shrinker->scan_objects, total_scan);
498 total_scan = freeable;
499 next_deferred = nr;
500 } else
501 next_deferred = total_scan;
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
510 * memory.
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
515 if (delta < freeable / 4)
516 total_scan = min(total_scan, freeable / 2);
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
521 * freeable entries.
523 if (total_scan > freeable * 2)
524 total_scan = freeable * 2;
526 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
527 freeable, delta, total_scan, priority);
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
536 * batch_size.
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
542 * possible.
544 while (total_scan >= batch_size ||
545 total_scan >= freeable) {
546 unsigned long ret;
547 unsigned long nr_to_scan = min(batch_size, total_scan);
549 shrinkctl->nr_to_scan = nr_to_scan;
550 shrinkctl->nr_scanned = nr_to_scan;
551 ret = shrinker->scan_objects(shrinker, shrinkctl);
552 if (ret == SHRINK_STOP)
553 break;
554 freed += ret;
556 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
557 total_scan -= shrinkctl->nr_scanned;
558 scanned += shrinkctl->nr_scanned;
560 cond_resched();
563 if (next_deferred >= scanned)
564 next_deferred -= scanned;
565 else
566 next_deferred = 0;
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
572 if (next_deferred > 0)
573 new_nr = atomic_long_add_return(next_deferred,
574 &shrinker->nr_deferred[nid]);
575 else
576 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
578 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
579 return freed;
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
584 struct mem_cgroup *memcg, int priority)
586 struct memcg_shrinker_map *map;
587 unsigned long ret, freed = 0;
588 int i;
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
591 return 0;
593 if (!down_read_trylock(&shrinker_rwsem))
594 return 0;
596 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 true);
598 if (unlikely(!map))
599 goto unlock;
601 for_each_set_bit(i, map->map, shrinker_nr_max) {
602 struct shrink_control sc = {
603 .gfp_mask = gfp_mask,
604 .nid = nid,
605 .memcg = memcg,
607 struct shrinker *shrinker;
609 shrinker = idr_find(&shrinker_idr, i);
610 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
611 if (!shrinker)
612 clear_bit(i, map->map);
613 continue;
616 ret = do_shrink_slab(&sc, shrinker, priority);
617 if (ret == SHRINK_EMPTY) {
618 clear_bit(i, map->map);
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
631 * <MB> <MB>
632 * set_bit() do_shrink_slab()
634 smp_mb__after_atomic();
635 ret = do_shrink_slab(&sc, shrinker, priority);
636 if (ret == SHRINK_EMPTY)
637 ret = 0;
638 else
639 memcg_set_shrinker_bit(memcg, nid, i);
641 freed += ret;
643 if (rwsem_is_contended(&shrinker_rwsem)) {
644 freed = freed ? : 1;
645 break;
648 unlock:
649 up_read(&shrinker_rwsem);
650 return freed;
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
654 struct mem_cgroup *memcg, int priority)
656 return 0;
658 #endif /* CONFIG_MEMCG_KMEM */
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
667 * Call the shrink functions to age shrinkable caches.
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
678 * Returns the number of reclaimed slab objects.
680 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
681 struct mem_cgroup *memcg,
682 int priority)
684 unsigned long ret, freed = 0;
685 struct shrinker *shrinker;
687 if (!mem_cgroup_is_root(memcg))
688 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
690 if (!down_read_trylock(&shrinker_rwsem))
691 goto out;
693 list_for_each_entry(shrinker, &shrinker_list, list) {
694 struct shrink_control sc = {
695 .gfp_mask = gfp_mask,
696 .nid = nid,
697 .memcg = memcg,
700 ret = do_shrink_slab(&sc, shrinker, priority);
701 if (ret == SHRINK_EMPTY)
702 ret = 0;
703 freed += ret;
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
709 if (rwsem_is_contended(&shrinker_rwsem)) {
710 freed = freed ? : 1;
711 break;
715 up_read(&shrinker_rwsem);
716 out:
717 cond_resched();
718 return freed;
721 void drop_slab_node(int nid)
723 unsigned long freed;
725 do {
726 struct mem_cgroup *memcg = NULL;
728 freed = 0;
729 memcg = mem_cgroup_iter(NULL, NULL, NULL);
730 do {
731 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
732 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
733 } while (freed > 10);
736 void drop_slab(void)
738 int nid;
740 for_each_online_node(nid)
741 drop_slab_node(nid);
744 static inline int is_page_cache_freeable(struct page *page)
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
751 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
752 HPAGE_PMD_NR : 1;
753 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
756 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
758 if (current->flags & PF_SWAPWRITE)
759 return 1;
760 if (!inode_write_congested(inode))
761 return 1;
762 if (inode_to_bdi(inode) == current->backing_dev_info)
763 return 1;
764 return 0;
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
776 * We're allowed to run sleeping lock_page() here because we know the caller has
777 * __GFP_FS.
779 static void handle_write_error(struct address_space *mapping,
780 struct page *page, int error)
782 lock_page(page);
783 if (page_mapping(page) == mapping)
784 mapping_set_error(mapping, error);
785 unlock_page(page);
788 /* possible outcome of pageout() */
789 typedef enum {
790 /* failed to write page out, page is locked */
791 PAGE_KEEP,
792 /* move page to the active list, page is locked */
793 PAGE_ACTIVATE,
794 /* page has been sent to the disk successfully, page is unlocked */
795 PAGE_SUCCESS,
796 /* page is clean and locked */
797 PAGE_CLEAN,
798 } pageout_t;
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
804 static pageout_t pageout(struct page *page, struct address_space *mapping,
805 struct scan_control *sc)
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
816 * will block.
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
823 if (!is_page_cache_freeable(page))
824 return PAGE_KEEP;
825 if (!mapping) {
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
830 if (page_has_private(page)) {
831 if (try_to_free_buffers(page)) {
832 ClearPageDirty(page);
833 pr_info("%s: orphaned page\n", __func__);
834 return PAGE_CLEAN;
837 return PAGE_KEEP;
839 if (mapping->a_ops->writepage == NULL)
840 return PAGE_ACTIVATE;
841 if (!may_write_to_inode(mapping->host, sc))
842 return PAGE_KEEP;
844 if (clear_page_dirty_for_io(page)) {
845 int res;
846 struct writeback_control wbc = {
847 .sync_mode = WB_SYNC_NONE,
848 .nr_to_write = SWAP_CLUSTER_MAX,
849 .range_start = 0,
850 .range_end = LLONG_MAX,
851 .for_reclaim = 1,
854 SetPageReclaim(page);
855 res = mapping->a_ops->writepage(page, &wbc);
856 if (res < 0)
857 handle_write_error(mapping, page, res);
858 if (res == AOP_WRITEPAGE_ACTIVATE) {
859 ClearPageReclaim(page);
860 return PAGE_ACTIVATE;
863 if (!PageWriteback(page)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page);
867 trace_mm_vmscan_writepage(page);
868 inc_node_page_state(page, NR_VMSCAN_WRITE);
869 return PAGE_SUCCESS;
872 return PAGE_CLEAN;
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
879 static int __remove_mapping(struct address_space *mapping, struct page *page,
880 bool reclaimed)
882 unsigned long flags;
883 int refcount;
885 BUG_ON(!PageLocked(page));
886 BUG_ON(mapping != page_mapping(page));
888 xa_lock_irqsave(&mapping->i_pages, flags);
890 * The non racy check for a busy page.
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
897 * get_user_pages(&page);
898 * [user mapping goes away]
899 * write_to(page);
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
902 * put_page(page);
903 * !page_count(page) [good, discard it]
905 * [oops, our write_to data is lost]
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
914 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
915 refcount = 1 + HPAGE_PMD_NR;
916 else
917 refcount = 2;
918 if (!page_ref_freeze(page, refcount))
919 goto cannot_free;
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page))) {
922 page_ref_unfreeze(page, refcount);
923 goto cannot_free;
926 if (PageSwapCache(page)) {
927 swp_entry_t swap = { .val = page_private(page) };
928 mem_cgroup_swapout(page, swap);
929 __delete_from_swap_cache(page, swap);
930 xa_unlock_irqrestore(&mapping->i_pages, flags);
931 put_swap_page(page, swap);
932 } else {
933 void (*freepage)(struct page *);
934 void *shadow = NULL;
936 freepage = mapping->a_ops->freepage;
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
945 * back.
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
953 if (reclaimed && page_is_file_cache(page) &&
954 !mapping_exiting(mapping) && !dax_mapping(mapping))
955 shadow = workingset_eviction(mapping, page);
956 __delete_from_page_cache(page, shadow);
957 xa_unlock_irqrestore(&mapping->i_pages, flags);
959 if (freepage != NULL)
960 freepage(page);
963 return 1;
965 cannot_free:
966 xa_unlock_irqrestore(&mapping->i_pages, flags);
967 return 0;
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
974 * this page.
976 int remove_mapping(struct address_space *mapping, struct page *page)
978 if (__remove_mapping(mapping, page, false)) {
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
982 * atomic operation.
984 page_ref_unfreeze(page, 1);
985 return 1;
987 return 0;
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
997 * lru_lock must not be held, interrupts must be enabled.
999 void putback_lru_page(struct page *page)
1001 lru_cache_add(page);
1002 put_page(page); /* drop ref from isolate */
1005 enum page_references {
1006 PAGEREF_RECLAIM,
1007 PAGEREF_RECLAIM_CLEAN,
1008 PAGEREF_KEEP,
1009 PAGEREF_ACTIVATE,
1012 static enum page_references page_check_references(struct page *page,
1013 struct scan_control *sc)
1015 int referenced_ptes, referenced_page;
1016 unsigned long vm_flags;
1018 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1019 &vm_flags);
1020 referenced_page = TestClearPageReferenced(page);
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1026 if (vm_flags & VM_LOCKED)
1027 return PAGEREF_RECLAIM;
1029 if (referenced_ptes) {
1030 if (PageSwapBacked(page))
1031 return PAGEREF_ACTIVATE;
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1036 * than once.
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1046 SetPageReferenced(page);
1048 if (referenced_page || referenced_ptes > 1)
1049 return PAGEREF_ACTIVATE;
1052 * Activate file-backed executable pages after first usage.
1054 if (vm_flags & VM_EXEC)
1055 return PAGEREF_ACTIVATE;
1057 return PAGEREF_KEEP;
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page && !PageSwapBacked(page))
1062 return PAGEREF_RECLAIM_CLEAN;
1064 return PAGEREF_RECLAIM;
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page *page,
1069 bool *dirty, bool *writeback)
1071 struct address_space *mapping;
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1077 if (!page_is_file_cache(page) ||
1078 (PageAnon(page) && !PageSwapBacked(page))) {
1079 *dirty = false;
1080 *writeback = false;
1081 return;
1084 /* By default assume that the page flags are accurate */
1085 *dirty = PageDirty(page);
1086 *writeback = PageWriteback(page);
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page))
1090 return;
1092 mapping = page_mapping(page);
1093 if (mapping && mapping->a_ops->is_dirty_writeback)
1094 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1098 * shrink_page_list() returns the number of reclaimed pages
1100 static unsigned long shrink_page_list(struct list_head *page_list,
1101 struct pglist_data *pgdat,
1102 struct scan_control *sc,
1103 enum ttu_flags ttu_flags,
1104 struct reclaim_stat *stat,
1105 bool force_reclaim)
1107 LIST_HEAD(ret_pages);
1108 LIST_HEAD(free_pages);
1109 int pgactivate = 0;
1110 unsigned nr_unqueued_dirty = 0;
1111 unsigned nr_dirty = 0;
1112 unsigned nr_congested = 0;
1113 unsigned nr_reclaimed = 0;
1114 unsigned nr_writeback = 0;
1115 unsigned nr_immediate = 0;
1116 unsigned nr_ref_keep = 0;
1117 unsigned nr_unmap_fail = 0;
1119 cond_resched();
1121 while (!list_empty(page_list)) {
1122 struct address_space *mapping;
1123 struct page *page;
1124 int may_enter_fs;
1125 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1126 bool dirty, writeback;
1128 cond_resched();
1130 page = lru_to_page(page_list);
1131 list_del(&page->lru);
1133 if (!trylock_page(page))
1134 goto keep;
1136 VM_BUG_ON_PAGE(PageActive(page), page);
1138 sc->nr_scanned++;
1140 if (unlikely(!page_evictable(page)))
1141 goto activate_locked;
1143 if (!sc->may_unmap && page_mapped(page))
1144 goto keep_locked;
1146 /* Double the slab pressure for mapped and swapcache pages */
1147 if ((page_mapped(page) || PageSwapCache(page)) &&
1148 !(PageAnon(page) && !PageSwapBacked(page)))
1149 sc->nr_scanned++;
1151 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1152 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1155 * The number of dirty pages determines if a node is marked
1156 * reclaim_congested which affects wait_iff_congested. kswapd
1157 * will stall and start writing pages if the tail of the LRU
1158 * is all dirty unqueued pages.
1160 page_check_dirty_writeback(page, &dirty, &writeback);
1161 if (dirty || writeback)
1162 nr_dirty++;
1164 if (dirty && !writeback)
1165 nr_unqueued_dirty++;
1168 * Treat this page as congested if the underlying BDI is or if
1169 * pages are cycling through the LRU so quickly that the
1170 * pages marked for immediate reclaim are making it to the
1171 * end of the LRU a second time.
1173 mapping = page_mapping(page);
1174 if (((dirty || writeback) && mapping &&
1175 inode_write_congested(mapping->host)) ||
1176 (writeback && PageReclaim(page)))
1177 nr_congested++;
1180 * If a page at the tail of the LRU is under writeback, there
1181 * are three cases to consider.
1183 * 1) If reclaim is encountering an excessive number of pages
1184 * under writeback and this page is both under writeback and
1185 * PageReclaim then it indicates that pages are being queued
1186 * for IO but are being recycled through the LRU before the
1187 * IO can complete. Waiting on the page itself risks an
1188 * indefinite stall if it is impossible to writeback the
1189 * page due to IO error or disconnected storage so instead
1190 * note that the LRU is being scanned too quickly and the
1191 * caller can stall after page list has been processed.
1193 * 2) Global or new memcg reclaim encounters a page that is
1194 * not marked for immediate reclaim, or the caller does not
1195 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1196 * not to fs). In this case mark the page for immediate
1197 * reclaim and continue scanning.
1199 * Require may_enter_fs because we would wait on fs, which
1200 * may not have submitted IO yet. And the loop driver might
1201 * enter reclaim, and deadlock if it waits on a page for
1202 * which it is needed to do the write (loop masks off
1203 * __GFP_IO|__GFP_FS for this reason); but more thought
1204 * would probably show more reasons.
1206 * 3) Legacy memcg encounters a page that is already marked
1207 * PageReclaim. memcg does not have any dirty pages
1208 * throttling so we could easily OOM just because too many
1209 * pages are in writeback and there is nothing else to
1210 * reclaim. Wait for the writeback to complete.
1212 * In cases 1) and 2) we activate the pages to get them out of
1213 * the way while we continue scanning for clean pages on the
1214 * inactive list and refilling from the active list. The
1215 * observation here is that waiting for disk writes is more
1216 * expensive than potentially causing reloads down the line.
1217 * Since they're marked for immediate reclaim, they won't put
1218 * memory pressure on the cache working set any longer than it
1219 * takes to write them to disk.
1221 if (PageWriteback(page)) {
1222 /* Case 1 above */
1223 if (current_is_kswapd() &&
1224 PageReclaim(page) &&
1225 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1226 nr_immediate++;
1227 goto activate_locked;
1229 /* Case 2 above */
1230 } else if (sane_reclaim(sc) ||
1231 !PageReclaim(page) || !may_enter_fs) {
1233 * This is slightly racy - end_page_writeback()
1234 * might have just cleared PageReclaim, then
1235 * setting PageReclaim here end up interpreted
1236 * as PageReadahead - but that does not matter
1237 * enough to care. What we do want is for this
1238 * page to have PageReclaim set next time memcg
1239 * reclaim reaches the tests above, so it will
1240 * then wait_on_page_writeback() to avoid OOM;
1241 * and it's also appropriate in global reclaim.
1243 SetPageReclaim(page);
1244 nr_writeback++;
1245 goto activate_locked;
1247 /* Case 3 above */
1248 } else {
1249 unlock_page(page);
1250 wait_on_page_writeback(page);
1251 /* then go back and try same page again */
1252 list_add_tail(&page->lru, page_list);
1253 continue;
1257 if (!force_reclaim)
1258 references = page_check_references(page, sc);
1260 switch (references) {
1261 case PAGEREF_ACTIVATE:
1262 goto activate_locked;
1263 case PAGEREF_KEEP:
1264 nr_ref_keep++;
1265 goto keep_locked;
1266 case PAGEREF_RECLAIM:
1267 case PAGEREF_RECLAIM_CLEAN:
1268 ; /* try to reclaim the page below */
1272 * Anonymous process memory has backing store?
1273 * Try to allocate it some swap space here.
1274 * Lazyfree page could be freed directly
1276 if (PageAnon(page) && PageSwapBacked(page)) {
1277 if (!PageSwapCache(page)) {
1278 if (!(sc->gfp_mask & __GFP_IO))
1279 goto keep_locked;
1280 if (PageTransHuge(page)) {
1281 /* cannot split THP, skip it */
1282 if (!can_split_huge_page(page, NULL))
1283 goto activate_locked;
1285 * Split pages without a PMD map right
1286 * away. Chances are some or all of the
1287 * tail pages can be freed without IO.
1289 if (!compound_mapcount(page) &&
1290 split_huge_page_to_list(page,
1291 page_list))
1292 goto activate_locked;
1294 if (!add_to_swap(page)) {
1295 if (!PageTransHuge(page))
1296 goto activate_locked;
1297 /* Fallback to swap normal pages */
1298 if (split_huge_page_to_list(page,
1299 page_list))
1300 goto activate_locked;
1301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1302 count_vm_event(THP_SWPOUT_FALLBACK);
1303 #endif
1304 if (!add_to_swap(page))
1305 goto activate_locked;
1308 may_enter_fs = 1;
1310 /* Adding to swap updated mapping */
1311 mapping = page_mapping(page);
1313 } else if (unlikely(PageTransHuge(page))) {
1314 /* Split file THP */
1315 if (split_huge_page_to_list(page, page_list))
1316 goto keep_locked;
1320 * The page is mapped into the page tables of one or more
1321 * processes. Try to unmap it here.
1323 if (page_mapped(page)) {
1324 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1326 if (unlikely(PageTransHuge(page)))
1327 flags |= TTU_SPLIT_HUGE_PMD;
1328 if (!try_to_unmap(page, flags)) {
1329 nr_unmap_fail++;
1330 goto activate_locked;
1334 if (PageDirty(page)) {
1336 * Only kswapd can writeback filesystem pages
1337 * to avoid risk of stack overflow. But avoid
1338 * injecting inefficient single-page IO into
1339 * flusher writeback as much as possible: only
1340 * write pages when we've encountered many
1341 * dirty pages, and when we've already scanned
1342 * the rest of the LRU for clean pages and see
1343 * the same dirty pages again (PageReclaim).
1345 if (page_is_file_cache(page) &&
1346 (!current_is_kswapd() || !PageReclaim(page) ||
1347 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1349 * Immediately reclaim when written back.
1350 * Similar in principal to deactivate_page()
1351 * except we already have the page isolated
1352 * and know it's dirty
1354 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1355 SetPageReclaim(page);
1357 goto activate_locked;
1360 if (references == PAGEREF_RECLAIM_CLEAN)
1361 goto keep_locked;
1362 if (!may_enter_fs)
1363 goto keep_locked;
1364 if (!sc->may_writepage)
1365 goto keep_locked;
1368 * Page is dirty. Flush the TLB if a writable entry
1369 * potentially exists to avoid CPU writes after IO
1370 * starts and then write it out here.
1372 try_to_unmap_flush_dirty();
1373 switch (pageout(page, mapping, sc)) {
1374 case PAGE_KEEP:
1375 goto keep_locked;
1376 case PAGE_ACTIVATE:
1377 goto activate_locked;
1378 case PAGE_SUCCESS:
1379 if (PageWriteback(page))
1380 goto keep;
1381 if (PageDirty(page))
1382 goto keep;
1385 * A synchronous write - probably a ramdisk. Go
1386 * ahead and try to reclaim the page.
1388 if (!trylock_page(page))
1389 goto keep;
1390 if (PageDirty(page) || PageWriteback(page))
1391 goto keep_locked;
1392 mapping = page_mapping(page);
1393 case PAGE_CLEAN:
1394 ; /* try to free the page below */
1399 * If the page has buffers, try to free the buffer mappings
1400 * associated with this page. If we succeed we try to free
1401 * the page as well.
1403 * We do this even if the page is PageDirty().
1404 * try_to_release_page() does not perform I/O, but it is
1405 * possible for a page to have PageDirty set, but it is actually
1406 * clean (all its buffers are clean). This happens if the
1407 * buffers were written out directly, with submit_bh(). ext3
1408 * will do this, as well as the blockdev mapping.
1409 * try_to_release_page() will discover that cleanness and will
1410 * drop the buffers and mark the page clean - it can be freed.
1412 * Rarely, pages can have buffers and no ->mapping. These are
1413 * the pages which were not successfully invalidated in
1414 * truncate_complete_page(). We try to drop those buffers here
1415 * and if that worked, and the page is no longer mapped into
1416 * process address space (page_count == 1) it can be freed.
1417 * Otherwise, leave the page on the LRU so it is swappable.
1419 if (page_has_private(page)) {
1420 if (!try_to_release_page(page, sc->gfp_mask))
1421 goto activate_locked;
1422 if (!mapping && page_count(page) == 1) {
1423 unlock_page(page);
1424 if (put_page_testzero(page))
1425 goto free_it;
1426 else {
1428 * rare race with speculative reference.
1429 * the speculative reference will free
1430 * this page shortly, so we may
1431 * increment nr_reclaimed here (and
1432 * leave it off the LRU).
1434 nr_reclaimed++;
1435 continue;
1440 if (PageAnon(page) && !PageSwapBacked(page)) {
1441 /* follow __remove_mapping for reference */
1442 if (!page_ref_freeze(page, 1))
1443 goto keep_locked;
1444 if (PageDirty(page)) {
1445 page_ref_unfreeze(page, 1);
1446 goto keep_locked;
1449 count_vm_event(PGLAZYFREED);
1450 count_memcg_page_event(page, PGLAZYFREED);
1451 } else if (!mapping || !__remove_mapping(mapping, page, true))
1452 goto keep_locked;
1454 unlock_page(page);
1455 free_it:
1456 nr_reclaimed++;
1459 * Is there need to periodically free_page_list? It would
1460 * appear not as the counts should be low
1462 if (unlikely(PageTransHuge(page))) {
1463 mem_cgroup_uncharge(page);
1464 (*get_compound_page_dtor(page))(page);
1465 } else
1466 list_add(&page->lru, &free_pages);
1467 continue;
1469 activate_locked:
1470 /* Not a candidate for swapping, so reclaim swap space. */
1471 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1472 PageMlocked(page)))
1473 try_to_free_swap(page);
1474 VM_BUG_ON_PAGE(PageActive(page), page);
1475 if (!PageMlocked(page)) {
1476 SetPageActive(page);
1477 pgactivate++;
1478 count_memcg_page_event(page, PGACTIVATE);
1480 keep_locked:
1481 unlock_page(page);
1482 keep:
1483 list_add(&page->lru, &ret_pages);
1484 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1487 mem_cgroup_uncharge_list(&free_pages);
1488 try_to_unmap_flush();
1489 free_unref_page_list(&free_pages);
1491 list_splice(&ret_pages, page_list);
1492 count_vm_events(PGACTIVATE, pgactivate);
1494 if (stat) {
1495 stat->nr_dirty = nr_dirty;
1496 stat->nr_congested = nr_congested;
1497 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1498 stat->nr_writeback = nr_writeback;
1499 stat->nr_immediate = nr_immediate;
1500 stat->nr_activate = pgactivate;
1501 stat->nr_ref_keep = nr_ref_keep;
1502 stat->nr_unmap_fail = nr_unmap_fail;
1504 return nr_reclaimed;
1507 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1508 struct list_head *page_list)
1510 struct scan_control sc = {
1511 .gfp_mask = GFP_KERNEL,
1512 .priority = DEF_PRIORITY,
1513 .may_unmap = 1,
1515 unsigned long ret;
1516 struct page *page, *next;
1517 LIST_HEAD(clean_pages);
1519 list_for_each_entry_safe(page, next, page_list, lru) {
1520 if (page_is_file_cache(page) && !PageDirty(page) &&
1521 !__PageMovable(page)) {
1522 ClearPageActive(page);
1523 list_move(&page->lru, &clean_pages);
1527 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1528 TTU_IGNORE_ACCESS, NULL, true);
1529 list_splice(&clean_pages, page_list);
1530 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1531 return ret;
1535 * Attempt to remove the specified page from its LRU. Only take this page
1536 * if it is of the appropriate PageActive status. Pages which are being
1537 * freed elsewhere are also ignored.
1539 * page: page to consider
1540 * mode: one of the LRU isolation modes defined above
1542 * returns 0 on success, -ve errno on failure.
1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1546 int ret = -EINVAL;
1548 /* Only take pages on the LRU. */
1549 if (!PageLRU(page))
1550 return ret;
1552 /* Compaction should not handle unevictable pages but CMA can do so */
1553 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 return ret;
1556 ret = -EBUSY;
1559 * To minimise LRU disruption, the caller can indicate that it only
1560 * wants to isolate pages it will be able to operate on without
1561 * blocking - clean pages for the most part.
1563 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 * that it is possible to migrate without blocking
1566 if (mode & ISOLATE_ASYNC_MIGRATE) {
1567 /* All the caller can do on PageWriteback is block */
1568 if (PageWriteback(page))
1569 return ret;
1571 if (PageDirty(page)) {
1572 struct address_space *mapping;
1573 bool migrate_dirty;
1576 * Only pages without mappings or that have a
1577 * ->migratepage callback are possible to migrate
1578 * without blocking. However, we can be racing with
1579 * truncation so it's necessary to lock the page
1580 * to stabilise the mapping as truncation holds
1581 * the page lock until after the page is removed
1582 * from the page cache.
1584 if (!trylock_page(page))
1585 return ret;
1587 mapping = page_mapping(page);
1588 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 unlock_page(page);
1590 if (!migrate_dirty)
1591 return ret;
1595 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1596 return ret;
1598 if (likely(get_page_unless_zero(page))) {
1600 * Be careful not to clear PageLRU until after we're
1601 * sure the page is not being freed elsewhere -- the
1602 * page release code relies on it.
1604 ClearPageLRU(page);
1605 ret = 0;
1608 return ret;
1613 * Update LRU sizes after isolating pages. The LRU size updates must
1614 * be complete before mem_cgroup_update_lru_size due to a santity check.
1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1617 enum lru_list lru, unsigned long *nr_zone_taken)
1619 int zid;
1621 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1622 if (!nr_zone_taken[zid])
1623 continue;
1625 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1626 #ifdef CONFIG_MEMCG
1627 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1628 #endif
1634 * zone_lru_lock is heavily contended. Some of the functions that
1635 * shrink the lists perform better by taking out a batch of pages
1636 * and working on them outside the LRU lock.
1638 * For pagecache intensive workloads, this function is the hottest
1639 * spot in the kernel (apart from copy_*_user functions).
1641 * Appropriate locks must be held before calling this function.
1643 * @nr_to_scan: The number of eligible pages to look through on the list.
1644 * @lruvec: The LRU vector to pull pages from.
1645 * @dst: The temp list to put pages on to.
1646 * @nr_scanned: The number of pages that were scanned.
1647 * @sc: The scan_control struct for this reclaim session
1648 * @mode: One of the LRU isolation modes
1649 * @lru: LRU list id for isolating
1651 * returns how many pages were moved onto *@dst.
1653 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1654 struct lruvec *lruvec, struct list_head *dst,
1655 unsigned long *nr_scanned, struct scan_control *sc,
1656 enum lru_list lru)
1658 struct list_head *src = &lruvec->lists[lru];
1659 unsigned long nr_taken = 0;
1660 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1661 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1662 unsigned long skipped = 0;
1663 unsigned long scan, total_scan, nr_pages;
1664 LIST_HEAD(pages_skipped);
1665 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1667 scan = 0;
1668 for (total_scan = 0;
1669 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1670 total_scan++) {
1671 struct page *page;
1673 page = lru_to_page(src);
1674 prefetchw_prev_lru_page(page, src, flags);
1676 VM_BUG_ON_PAGE(!PageLRU(page), page);
1678 if (page_zonenum(page) > sc->reclaim_idx) {
1679 list_move(&page->lru, &pages_skipped);
1680 nr_skipped[page_zonenum(page)]++;
1681 continue;
1685 * Do not count skipped pages because that makes the function
1686 * return with no isolated pages if the LRU mostly contains
1687 * ineligible pages. This causes the VM to not reclaim any
1688 * pages, triggering a premature OOM.
1690 scan++;
1691 switch (__isolate_lru_page(page, mode)) {
1692 case 0:
1693 nr_pages = hpage_nr_pages(page);
1694 nr_taken += nr_pages;
1695 nr_zone_taken[page_zonenum(page)] += nr_pages;
1696 list_move(&page->lru, dst);
1697 break;
1699 case -EBUSY:
1700 /* else it is being freed elsewhere */
1701 list_move(&page->lru, src);
1702 continue;
1704 default:
1705 BUG();
1710 * Splice any skipped pages to the start of the LRU list. Note that
1711 * this disrupts the LRU order when reclaiming for lower zones but
1712 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1713 * scanning would soon rescan the same pages to skip and put the
1714 * system at risk of premature OOM.
1716 if (!list_empty(&pages_skipped)) {
1717 int zid;
1719 list_splice(&pages_skipped, src);
1720 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1721 if (!nr_skipped[zid])
1722 continue;
1724 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1725 skipped += nr_skipped[zid];
1728 *nr_scanned = total_scan;
1729 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1730 total_scan, skipped, nr_taken, mode, lru);
1731 update_lru_sizes(lruvec, lru, nr_zone_taken);
1732 return nr_taken;
1736 * isolate_lru_page - tries to isolate a page from its LRU list
1737 * @page: page to isolate from its LRU list
1739 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1740 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 * Returns 0 if the page was removed from an LRU list.
1743 * Returns -EBUSY if the page was not on an LRU list.
1745 * The returned page will have PageLRU() cleared. If it was found on
1746 * the active list, it will have PageActive set. If it was found on
1747 * the unevictable list, it will have the PageUnevictable bit set. That flag
1748 * may need to be cleared by the caller before letting the page go.
1750 * The vmstat statistic corresponding to the list on which the page was
1751 * found will be decremented.
1753 * Restrictions:
1755 * (1) Must be called with an elevated refcount on the page. This is a
1756 * fundamentnal difference from isolate_lru_pages (which is called
1757 * without a stable reference).
1758 * (2) the lru_lock must not be held.
1759 * (3) interrupts must be enabled.
1761 int isolate_lru_page(struct page *page)
1763 int ret = -EBUSY;
1765 VM_BUG_ON_PAGE(!page_count(page), page);
1766 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768 if (PageLRU(page)) {
1769 struct zone *zone = page_zone(page);
1770 struct lruvec *lruvec;
1772 spin_lock_irq(zone_lru_lock(zone));
1773 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1774 if (PageLRU(page)) {
1775 int lru = page_lru(page);
1776 get_page(page);
1777 ClearPageLRU(page);
1778 del_page_from_lru_list(page, lruvec, lru);
1779 ret = 0;
1781 spin_unlock_irq(zone_lru_lock(zone));
1783 return ret;
1787 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1788 * then get resheduled. When there are massive number of tasks doing page
1789 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1790 * the LRU list will go small and be scanned faster than necessary, leading to
1791 * unnecessary swapping, thrashing and OOM.
1793 static int too_many_isolated(struct pglist_data *pgdat, int file,
1794 struct scan_control *sc)
1796 unsigned long inactive, isolated;
1798 if (current_is_kswapd())
1799 return 0;
1801 if (!sane_reclaim(sc))
1802 return 0;
1804 if (file) {
1805 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1806 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1807 } else {
1808 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1809 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1813 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1814 * won't get blocked by normal direct-reclaimers, forming a circular
1815 * deadlock.
1817 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1818 inactive >>= 3;
1820 return isolated > inactive;
1823 static noinline_for_stack void
1824 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1826 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1828 LIST_HEAD(pages_to_free);
1831 * Put back any unfreeable pages.
1833 while (!list_empty(page_list)) {
1834 struct page *page = lru_to_page(page_list);
1835 int lru;
1837 VM_BUG_ON_PAGE(PageLRU(page), page);
1838 list_del(&page->lru);
1839 if (unlikely(!page_evictable(page))) {
1840 spin_unlock_irq(&pgdat->lru_lock);
1841 putback_lru_page(page);
1842 spin_lock_irq(&pgdat->lru_lock);
1843 continue;
1846 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1848 SetPageLRU(page);
1849 lru = page_lru(page);
1850 add_page_to_lru_list(page, lruvec, lru);
1852 if (is_active_lru(lru)) {
1853 int file = is_file_lru(lru);
1854 int numpages = hpage_nr_pages(page);
1855 reclaim_stat->recent_rotated[file] += numpages;
1857 if (put_page_testzero(page)) {
1858 __ClearPageLRU(page);
1859 __ClearPageActive(page);
1860 del_page_from_lru_list(page, lruvec, lru);
1862 if (unlikely(PageCompound(page))) {
1863 spin_unlock_irq(&pgdat->lru_lock);
1864 mem_cgroup_uncharge(page);
1865 (*get_compound_page_dtor(page))(page);
1866 spin_lock_irq(&pgdat->lru_lock);
1867 } else
1868 list_add(&page->lru, &pages_to_free);
1873 * To save our caller's stack, now use input list for pages to free.
1875 list_splice(&pages_to_free, page_list);
1879 * If a kernel thread (such as nfsd for loop-back mounts) services
1880 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1881 * In that case we should only throttle if the backing device it is
1882 * writing to is congested. In other cases it is safe to throttle.
1884 static int current_may_throttle(void)
1886 return !(current->flags & PF_LESS_THROTTLE) ||
1887 current->backing_dev_info == NULL ||
1888 bdi_write_congested(current->backing_dev_info);
1892 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1893 * of reclaimed pages
1895 static noinline_for_stack unsigned long
1896 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1897 struct scan_control *sc, enum lru_list lru)
1899 LIST_HEAD(page_list);
1900 unsigned long nr_scanned;
1901 unsigned long nr_reclaimed = 0;
1902 unsigned long nr_taken;
1903 struct reclaim_stat stat = {};
1904 int file = is_file_lru(lru);
1905 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1906 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1907 bool stalled = false;
1909 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1910 if (stalled)
1911 return 0;
1913 /* wait a bit for the reclaimer. */
1914 msleep(100);
1915 stalled = true;
1917 /* We are about to die and free our memory. Return now. */
1918 if (fatal_signal_pending(current))
1919 return SWAP_CLUSTER_MAX;
1922 lru_add_drain();
1924 spin_lock_irq(&pgdat->lru_lock);
1926 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1927 &nr_scanned, sc, lru);
1929 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1930 reclaim_stat->recent_scanned[file] += nr_taken;
1932 if (current_is_kswapd()) {
1933 if (global_reclaim(sc))
1934 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1935 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1936 nr_scanned);
1937 } else {
1938 if (global_reclaim(sc))
1939 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1940 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1941 nr_scanned);
1943 spin_unlock_irq(&pgdat->lru_lock);
1945 if (nr_taken == 0)
1946 return 0;
1948 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1949 &stat, false);
1951 spin_lock_irq(&pgdat->lru_lock);
1953 if (current_is_kswapd()) {
1954 if (global_reclaim(sc))
1955 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1956 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1957 nr_reclaimed);
1958 } else {
1959 if (global_reclaim(sc))
1960 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1961 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1962 nr_reclaimed);
1965 putback_inactive_pages(lruvec, &page_list);
1967 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1969 spin_unlock_irq(&pgdat->lru_lock);
1971 mem_cgroup_uncharge_list(&page_list);
1972 free_unref_page_list(&page_list);
1975 * If dirty pages are scanned that are not queued for IO, it
1976 * implies that flushers are not doing their job. This can
1977 * happen when memory pressure pushes dirty pages to the end of
1978 * the LRU before the dirty limits are breached and the dirty
1979 * data has expired. It can also happen when the proportion of
1980 * dirty pages grows not through writes but through memory
1981 * pressure reclaiming all the clean cache. And in some cases,
1982 * the flushers simply cannot keep up with the allocation
1983 * rate. Nudge the flusher threads in case they are asleep.
1985 if (stat.nr_unqueued_dirty == nr_taken)
1986 wakeup_flusher_threads(WB_REASON_VMSCAN);
1988 sc->nr.dirty += stat.nr_dirty;
1989 sc->nr.congested += stat.nr_congested;
1990 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1991 sc->nr.writeback += stat.nr_writeback;
1992 sc->nr.immediate += stat.nr_immediate;
1993 sc->nr.taken += nr_taken;
1994 if (file)
1995 sc->nr.file_taken += nr_taken;
1997 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1998 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1999 return nr_reclaimed;
2003 * This moves pages from the active list to the inactive list.
2005 * We move them the other way if the page is referenced by one or more
2006 * processes, from rmap.
2008 * If the pages are mostly unmapped, the processing is fast and it is
2009 * appropriate to hold zone_lru_lock across the whole operation. But if
2010 * the pages are mapped, the processing is slow (page_referenced()) so we
2011 * should drop zone_lru_lock around each page. It's impossible to balance
2012 * this, so instead we remove the pages from the LRU while processing them.
2013 * It is safe to rely on PG_active against the non-LRU pages in here because
2014 * nobody will play with that bit on a non-LRU page.
2016 * The downside is that we have to touch page->_refcount against each page.
2017 * But we had to alter page->flags anyway.
2019 * Returns the number of pages moved to the given lru.
2022 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2023 struct list_head *list,
2024 struct list_head *pages_to_free,
2025 enum lru_list lru)
2027 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2028 struct page *page;
2029 int nr_pages;
2030 int nr_moved = 0;
2032 while (!list_empty(list)) {
2033 page = lru_to_page(list);
2034 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2036 VM_BUG_ON_PAGE(PageLRU(page), page);
2037 SetPageLRU(page);
2039 nr_pages = hpage_nr_pages(page);
2040 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2041 list_move(&page->lru, &lruvec->lists[lru]);
2043 if (put_page_testzero(page)) {
2044 __ClearPageLRU(page);
2045 __ClearPageActive(page);
2046 del_page_from_lru_list(page, lruvec, lru);
2048 if (unlikely(PageCompound(page))) {
2049 spin_unlock_irq(&pgdat->lru_lock);
2050 mem_cgroup_uncharge(page);
2051 (*get_compound_page_dtor(page))(page);
2052 spin_lock_irq(&pgdat->lru_lock);
2053 } else
2054 list_add(&page->lru, pages_to_free);
2055 } else {
2056 nr_moved += nr_pages;
2060 if (!is_active_lru(lru)) {
2061 __count_vm_events(PGDEACTIVATE, nr_moved);
2062 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2063 nr_moved);
2066 return nr_moved;
2069 static void shrink_active_list(unsigned long nr_to_scan,
2070 struct lruvec *lruvec,
2071 struct scan_control *sc,
2072 enum lru_list lru)
2074 unsigned long nr_taken;
2075 unsigned long nr_scanned;
2076 unsigned long vm_flags;
2077 LIST_HEAD(l_hold); /* The pages which were snipped off */
2078 LIST_HEAD(l_active);
2079 LIST_HEAD(l_inactive);
2080 struct page *page;
2081 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2082 unsigned nr_deactivate, nr_activate;
2083 unsigned nr_rotated = 0;
2084 int file = is_file_lru(lru);
2085 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2087 lru_add_drain();
2089 spin_lock_irq(&pgdat->lru_lock);
2091 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2092 &nr_scanned, sc, lru);
2094 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2095 reclaim_stat->recent_scanned[file] += nr_taken;
2097 __count_vm_events(PGREFILL, nr_scanned);
2098 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2100 spin_unlock_irq(&pgdat->lru_lock);
2102 while (!list_empty(&l_hold)) {
2103 cond_resched();
2104 page = lru_to_page(&l_hold);
2105 list_del(&page->lru);
2107 if (unlikely(!page_evictable(page))) {
2108 putback_lru_page(page);
2109 continue;
2112 if (unlikely(buffer_heads_over_limit)) {
2113 if (page_has_private(page) && trylock_page(page)) {
2114 if (page_has_private(page))
2115 try_to_release_page(page, 0);
2116 unlock_page(page);
2120 if (page_referenced(page, 0, sc->target_mem_cgroup,
2121 &vm_flags)) {
2122 nr_rotated += hpage_nr_pages(page);
2124 * Identify referenced, file-backed active pages and
2125 * give them one more trip around the active list. So
2126 * that executable code get better chances to stay in
2127 * memory under moderate memory pressure. Anon pages
2128 * are not likely to be evicted by use-once streaming
2129 * IO, plus JVM can create lots of anon VM_EXEC pages,
2130 * so we ignore them here.
2132 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2133 list_add(&page->lru, &l_active);
2134 continue;
2138 ClearPageActive(page); /* we are de-activating */
2139 SetPageWorkingset(page);
2140 list_add(&page->lru, &l_inactive);
2144 * Move pages back to the lru list.
2146 spin_lock_irq(&pgdat->lru_lock);
2148 * Count referenced pages from currently used mappings as rotated,
2149 * even though only some of them are actually re-activated. This
2150 * helps balance scan pressure between file and anonymous pages in
2151 * get_scan_count.
2153 reclaim_stat->recent_rotated[file] += nr_rotated;
2155 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2156 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2157 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2158 spin_unlock_irq(&pgdat->lru_lock);
2160 mem_cgroup_uncharge_list(&l_hold);
2161 free_unref_page_list(&l_hold);
2162 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2163 nr_deactivate, nr_rotated, sc->priority, file);
2167 * The inactive anon list should be small enough that the VM never has
2168 * to do too much work.
2170 * The inactive file list should be small enough to leave most memory
2171 * to the established workingset on the scan-resistant active list,
2172 * but large enough to avoid thrashing the aggregate readahead window.
2174 * Both inactive lists should also be large enough that each inactive
2175 * page has a chance to be referenced again before it is reclaimed.
2177 * If that fails and refaulting is observed, the inactive list grows.
2179 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2180 * on this LRU, maintained by the pageout code. An inactive_ratio
2181 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2183 * total target max
2184 * memory ratio inactive
2185 * -------------------------------------
2186 * 10MB 1 5MB
2187 * 100MB 1 50MB
2188 * 1GB 3 250MB
2189 * 10GB 10 0.9GB
2190 * 100GB 31 3GB
2191 * 1TB 101 10GB
2192 * 10TB 320 32GB
2194 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2195 struct mem_cgroup *memcg,
2196 struct scan_control *sc, bool actual_reclaim)
2198 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2199 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2200 enum lru_list inactive_lru = file * LRU_FILE;
2201 unsigned long inactive, active;
2202 unsigned long inactive_ratio;
2203 unsigned long refaults;
2204 unsigned long gb;
2207 * If we don't have swap space, anonymous page deactivation
2208 * is pointless.
2210 if (!file && !total_swap_pages)
2211 return false;
2213 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2214 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2216 if (memcg)
2217 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2218 else
2219 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2222 * When refaults are being observed, it means a new workingset
2223 * is being established. Disable active list protection to get
2224 * rid of the stale workingset quickly.
2226 if (file && actual_reclaim && lruvec->refaults != refaults) {
2227 inactive_ratio = 0;
2228 } else {
2229 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2230 if (gb)
2231 inactive_ratio = int_sqrt(10 * gb);
2232 else
2233 inactive_ratio = 1;
2236 if (actual_reclaim)
2237 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2238 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2239 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2240 inactive_ratio, file);
2242 return inactive * inactive_ratio < active;
2245 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2246 struct lruvec *lruvec, struct mem_cgroup *memcg,
2247 struct scan_control *sc)
2249 if (is_active_lru(lru)) {
2250 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2251 memcg, sc, true))
2252 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2253 return 0;
2256 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2259 enum scan_balance {
2260 SCAN_EQUAL,
2261 SCAN_FRACT,
2262 SCAN_ANON,
2263 SCAN_FILE,
2267 * Determine how aggressively the anon and file LRU lists should be
2268 * scanned. The relative value of each set of LRU lists is determined
2269 * by looking at the fraction of the pages scanned we did rotate back
2270 * onto the active list instead of evict.
2272 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2273 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2275 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2276 struct scan_control *sc, unsigned long *nr,
2277 unsigned long *lru_pages)
2279 int swappiness = mem_cgroup_swappiness(memcg);
2280 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2281 u64 fraction[2];
2282 u64 denominator = 0; /* gcc */
2283 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2284 unsigned long anon_prio, file_prio;
2285 enum scan_balance scan_balance;
2286 unsigned long anon, file;
2287 unsigned long ap, fp;
2288 enum lru_list lru;
2290 /* If we have no swap space, do not bother scanning anon pages. */
2291 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2292 scan_balance = SCAN_FILE;
2293 goto out;
2297 * Global reclaim will swap to prevent OOM even with no
2298 * swappiness, but memcg users want to use this knob to
2299 * disable swapping for individual groups completely when
2300 * using the memory controller's swap limit feature would be
2301 * too expensive.
2303 if (!global_reclaim(sc) && !swappiness) {
2304 scan_balance = SCAN_FILE;
2305 goto out;
2309 * Do not apply any pressure balancing cleverness when the
2310 * system is close to OOM, scan both anon and file equally
2311 * (unless the swappiness setting disagrees with swapping).
2313 if (!sc->priority && swappiness) {
2314 scan_balance = SCAN_EQUAL;
2315 goto out;
2319 * Prevent the reclaimer from falling into the cache trap: as
2320 * cache pages start out inactive, every cache fault will tip
2321 * the scan balance towards the file LRU. And as the file LRU
2322 * shrinks, so does the window for rotation from references.
2323 * This means we have a runaway feedback loop where a tiny
2324 * thrashing file LRU becomes infinitely more attractive than
2325 * anon pages. Try to detect this based on file LRU size.
2327 if (global_reclaim(sc)) {
2328 unsigned long pgdatfile;
2329 unsigned long pgdatfree;
2330 int z;
2331 unsigned long total_high_wmark = 0;
2333 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2334 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2335 node_page_state(pgdat, NR_INACTIVE_FILE);
2337 for (z = 0; z < MAX_NR_ZONES; z++) {
2338 struct zone *zone = &pgdat->node_zones[z];
2339 if (!managed_zone(zone))
2340 continue;
2342 total_high_wmark += high_wmark_pages(zone);
2345 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2347 * Force SCAN_ANON if there are enough inactive
2348 * anonymous pages on the LRU in eligible zones.
2349 * Otherwise, the small LRU gets thrashed.
2351 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2352 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2353 >> sc->priority) {
2354 scan_balance = SCAN_ANON;
2355 goto out;
2361 * If there is enough inactive page cache, i.e. if the size of the
2362 * inactive list is greater than that of the active list *and* the
2363 * inactive list actually has some pages to scan on this priority, we
2364 * do not reclaim anything from the anonymous working set right now.
2365 * Without the second condition we could end up never scanning an
2366 * lruvec even if it has plenty of old anonymous pages unless the
2367 * system is under heavy pressure.
2369 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2370 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2371 scan_balance = SCAN_FILE;
2372 goto out;
2375 scan_balance = SCAN_FRACT;
2378 * With swappiness at 100, anonymous and file have the same priority.
2379 * This scanning priority is essentially the inverse of IO cost.
2381 anon_prio = swappiness;
2382 file_prio = 200 - anon_prio;
2385 * OK, so we have swap space and a fair amount of page cache
2386 * pages. We use the recently rotated / recently scanned
2387 * ratios to determine how valuable each cache is.
2389 * Because workloads change over time (and to avoid overflow)
2390 * we keep these statistics as a floating average, which ends
2391 * up weighing recent references more than old ones.
2393 * anon in [0], file in [1]
2396 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2397 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2398 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2399 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2401 spin_lock_irq(&pgdat->lru_lock);
2402 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2403 reclaim_stat->recent_scanned[0] /= 2;
2404 reclaim_stat->recent_rotated[0] /= 2;
2407 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2408 reclaim_stat->recent_scanned[1] /= 2;
2409 reclaim_stat->recent_rotated[1] /= 2;
2413 * The amount of pressure on anon vs file pages is inversely
2414 * proportional to the fraction of recently scanned pages on
2415 * each list that were recently referenced and in active use.
2417 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2418 ap /= reclaim_stat->recent_rotated[0] + 1;
2420 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2421 fp /= reclaim_stat->recent_rotated[1] + 1;
2422 spin_unlock_irq(&pgdat->lru_lock);
2424 fraction[0] = ap;
2425 fraction[1] = fp;
2426 denominator = ap + fp + 1;
2427 out:
2428 *lru_pages = 0;
2429 for_each_evictable_lru(lru) {
2430 int file = is_file_lru(lru);
2431 unsigned long size;
2432 unsigned long scan;
2434 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2435 scan = size >> sc->priority;
2437 * If the cgroup's already been deleted, make sure to
2438 * scrape out the remaining cache.
2440 if (!scan && !mem_cgroup_online(memcg))
2441 scan = min(size, SWAP_CLUSTER_MAX);
2443 switch (scan_balance) {
2444 case SCAN_EQUAL:
2445 /* Scan lists relative to size */
2446 break;
2447 case SCAN_FRACT:
2449 * Scan types proportional to swappiness and
2450 * their relative recent reclaim efficiency.
2451 * Make sure we don't miss the last page
2452 * because of a round-off error.
2454 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2455 denominator);
2456 break;
2457 case SCAN_FILE:
2458 case SCAN_ANON:
2459 /* Scan one type exclusively */
2460 if ((scan_balance == SCAN_FILE) != file) {
2461 size = 0;
2462 scan = 0;
2464 break;
2465 default:
2466 /* Look ma, no brain */
2467 BUG();
2470 *lru_pages += size;
2471 nr[lru] = scan;
2476 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2478 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2479 struct scan_control *sc, unsigned long *lru_pages)
2481 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2482 unsigned long nr[NR_LRU_LISTS];
2483 unsigned long targets[NR_LRU_LISTS];
2484 unsigned long nr_to_scan;
2485 enum lru_list lru;
2486 unsigned long nr_reclaimed = 0;
2487 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2488 struct blk_plug plug;
2489 bool scan_adjusted;
2491 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2493 /* Record the original scan target for proportional adjustments later */
2494 memcpy(targets, nr, sizeof(nr));
2497 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2498 * event that can occur when there is little memory pressure e.g.
2499 * multiple streaming readers/writers. Hence, we do not abort scanning
2500 * when the requested number of pages are reclaimed when scanning at
2501 * DEF_PRIORITY on the assumption that the fact we are direct
2502 * reclaiming implies that kswapd is not keeping up and it is best to
2503 * do a batch of work at once. For memcg reclaim one check is made to
2504 * abort proportional reclaim if either the file or anon lru has already
2505 * dropped to zero at the first pass.
2507 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2508 sc->priority == DEF_PRIORITY);
2510 blk_start_plug(&plug);
2511 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2512 nr[LRU_INACTIVE_FILE]) {
2513 unsigned long nr_anon, nr_file, percentage;
2514 unsigned long nr_scanned;
2516 for_each_evictable_lru(lru) {
2517 if (nr[lru]) {
2518 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2519 nr[lru] -= nr_to_scan;
2521 nr_reclaimed += shrink_list(lru, nr_to_scan,
2522 lruvec, memcg, sc);
2526 cond_resched();
2528 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2529 continue;
2532 * For kswapd and memcg, reclaim at least the number of pages
2533 * requested. Ensure that the anon and file LRUs are scanned
2534 * proportionally what was requested by get_scan_count(). We
2535 * stop reclaiming one LRU and reduce the amount scanning
2536 * proportional to the original scan target.
2538 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2539 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2542 * It's just vindictive to attack the larger once the smaller
2543 * has gone to zero. And given the way we stop scanning the
2544 * smaller below, this makes sure that we only make one nudge
2545 * towards proportionality once we've got nr_to_reclaim.
2547 if (!nr_file || !nr_anon)
2548 break;
2550 if (nr_file > nr_anon) {
2551 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2552 targets[LRU_ACTIVE_ANON] + 1;
2553 lru = LRU_BASE;
2554 percentage = nr_anon * 100 / scan_target;
2555 } else {
2556 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2557 targets[LRU_ACTIVE_FILE] + 1;
2558 lru = LRU_FILE;
2559 percentage = nr_file * 100 / scan_target;
2562 /* Stop scanning the smaller of the LRU */
2563 nr[lru] = 0;
2564 nr[lru + LRU_ACTIVE] = 0;
2567 * Recalculate the other LRU scan count based on its original
2568 * scan target and the percentage scanning already complete
2570 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2571 nr_scanned = targets[lru] - nr[lru];
2572 nr[lru] = targets[lru] * (100 - percentage) / 100;
2573 nr[lru] -= min(nr[lru], nr_scanned);
2575 lru += LRU_ACTIVE;
2576 nr_scanned = targets[lru] - nr[lru];
2577 nr[lru] = targets[lru] * (100 - percentage) / 100;
2578 nr[lru] -= min(nr[lru], nr_scanned);
2580 scan_adjusted = true;
2582 blk_finish_plug(&plug);
2583 sc->nr_reclaimed += nr_reclaimed;
2586 * Even if we did not try to evict anon pages at all, we want to
2587 * rebalance the anon lru active/inactive ratio.
2589 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2590 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2591 sc, LRU_ACTIVE_ANON);
2594 /* Use reclaim/compaction for costly allocs or under memory pressure */
2595 static bool in_reclaim_compaction(struct scan_control *sc)
2597 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2598 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2599 sc->priority < DEF_PRIORITY - 2))
2600 return true;
2602 return false;
2606 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2607 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2608 * true if more pages should be reclaimed such that when the page allocator
2609 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2610 * It will give up earlier than that if there is difficulty reclaiming pages.
2612 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2613 unsigned long nr_reclaimed,
2614 unsigned long nr_scanned,
2615 struct scan_control *sc)
2617 unsigned long pages_for_compaction;
2618 unsigned long inactive_lru_pages;
2619 int z;
2621 /* If not in reclaim/compaction mode, stop */
2622 if (!in_reclaim_compaction(sc))
2623 return false;
2625 /* Consider stopping depending on scan and reclaim activity */
2626 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2628 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2629 * full LRU list has been scanned and we are still failing
2630 * to reclaim pages. This full LRU scan is potentially
2631 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2633 if (!nr_reclaimed && !nr_scanned)
2634 return false;
2635 } else {
2637 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2638 * fail without consequence, stop if we failed to reclaim
2639 * any pages from the last SWAP_CLUSTER_MAX number of
2640 * pages that were scanned. This will return to the
2641 * caller faster at the risk reclaim/compaction and
2642 * the resulting allocation attempt fails
2644 if (!nr_reclaimed)
2645 return false;
2649 * If we have not reclaimed enough pages for compaction and the
2650 * inactive lists are large enough, continue reclaiming
2652 pages_for_compaction = compact_gap(sc->order);
2653 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2654 if (get_nr_swap_pages() > 0)
2655 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2656 if (sc->nr_reclaimed < pages_for_compaction &&
2657 inactive_lru_pages > pages_for_compaction)
2658 return true;
2660 /* If compaction would go ahead or the allocation would succeed, stop */
2661 for (z = 0; z <= sc->reclaim_idx; z++) {
2662 struct zone *zone = &pgdat->node_zones[z];
2663 if (!managed_zone(zone))
2664 continue;
2666 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2667 case COMPACT_SUCCESS:
2668 case COMPACT_CONTINUE:
2669 return false;
2670 default:
2671 /* check next zone */
2675 return true;
2678 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2680 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2681 (memcg && memcg_congested(pgdat, memcg));
2684 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2686 struct reclaim_state *reclaim_state = current->reclaim_state;
2687 unsigned long nr_reclaimed, nr_scanned;
2688 bool reclaimable = false;
2690 do {
2691 struct mem_cgroup *root = sc->target_mem_cgroup;
2692 struct mem_cgroup_reclaim_cookie reclaim = {
2693 .pgdat = pgdat,
2694 .priority = sc->priority,
2696 unsigned long node_lru_pages = 0;
2697 struct mem_cgroup *memcg;
2699 memset(&sc->nr, 0, sizeof(sc->nr));
2701 nr_reclaimed = sc->nr_reclaimed;
2702 nr_scanned = sc->nr_scanned;
2704 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2705 do {
2706 unsigned long lru_pages;
2707 unsigned long reclaimed;
2708 unsigned long scanned;
2710 switch (mem_cgroup_protected(root, memcg)) {
2711 case MEMCG_PROT_MIN:
2713 * Hard protection.
2714 * If there is no reclaimable memory, OOM.
2716 continue;
2717 case MEMCG_PROT_LOW:
2719 * Soft protection.
2720 * Respect the protection only as long as
2721 * there is an unprotected supply
2722 * of reclaimable memory from other cgroups.
2724 if (!sc->memcg_low_reclaim) {
2725 sc->memcg_low_skipped = 1;
2726 continue;
2728 memcg_memory_event(memcg, MEMCG_LOW);
2729 break;
2730 case MEMCG_PROT_NONE:
2731 break;
2734 reclaimed = sc->nr_reclaimed;
2735 scanned = sc->nr_scanned;
2736 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2737 node_lru_pages += lru_pages;
2739 if (sc->may_shrinkslab) {
2740 shrink_slab(sc->gfp_mask, pgdat->node_id,
2741 memcg, sc->priority);
2744 /* Record the group's reclaim efficiency */
2745 vmpressure(sc->gfp_mask, memcg, false,
2746 sc->nr_scanned - scanned,
2747 sc->nr_reclaimed - reclaimed);
2750 * Kswapd have to scan all memory cgroups to fulfill
2751 * the overall scan target for the node.
2753 * Limit reclaim, on the other hand, only cares about
2754 * nr_to_reclaim pages to be reclaimed and it will
2755 * retry with decreasing priority if one round over the
2756 * whole hierarchy is not sufficient.
2758 if (!current_is_kswapd() &&
2759 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2760 mem_cgroup_iter_break(root, memcg);
2761 break;
2763 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2765 if (reclaim_state) {
2766 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2767 reclaim_state->reclaimed_slab = 0;
2770 /* Record the subtree's reclaim efficiency */
2771 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2772 sc->nr_scanned - nr_scanned,
2773 sc->nr_reclaimed - nr_reclaimed);
2775 if (sc->nr_reclaimed - nr_reclaimed)
2776 reclaimable = true;
2778 if (current_is_kswapd()) {
2780 * If reclaim is isolating dirty pages under writeback,
2781 * it implies that the long-lived page allocation rate
2782 * is exceeding the page laundering rate. Either the
2783 * global limits are not being effective at throttling
2784 * processes due to the page distribution throughout
2785 * zones or there is heavy usage of a slow backing
2786 * device. The only option is to throttle from reclaim
2787 * context which is not ideal as there is no guarantee
2788 * the dirtying process is throttled in the same way
2789 * balance_dirty_pages() manages.
2791 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2792 * count the number of pages under pages flagged for
2793 * immediate reclaim and stall if any are encountered
2794 * in the nr_immediate check below.
2796 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2797 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2800 * Tag a node as congested if all the dirty pages
2801 * scanned were backed by a congested BDI and
2802 * wait_iff_congested will stall.
2804 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2805 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2807 /* Allow kswapd to start writing pages during reclaim.*/
2808 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2809 set_bit(PGDAT_DIRTY, &pgdat->flags);
2812 * If kswapd scans pages marked marked for immediate
2813 * reclaim and under writeback (nr_immediate), it
2814 * implies that pages are cycling through the LRU
2815 * faster than they are written so also forcibly stall.
2817 if (sc->nr.immediate)
2818 congestion_wait(BLK_RW_ASYNC, HZ/10);
2822 * Legacy memcg will stall in page writeback so avoid forcibly
2823 * stalling in wait_iff_congested().
2825 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2826 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2827 set_memcg_congestion(pgdat, root, true);
2830 * Stall direct reclaim for IO completions if underlying BDIs
2831 * and node is congested. Allow kswapd to continue until it
2832 * starts encountering unqueued dirty pages or cycling through
2833 * the LRU too quickly.
2835 if (!sc->hibernation_mode && !current_is_kswapd() &&
2836 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2837 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2839 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2840 sc->nr_scanned - nr_scanned, sc));
2843 * Kswapd gives up on balancing particular nodes after too
2844 * many failures to reclaim anything from them and goes to
2845 * sleep. On reclaim progress, reset the failure counter. A
2846 * successful direct reclaim run will revive a dormant kswapd.
2848 if (reclaimable)
2849 pgdat->kswapd_failures = 0;
2851 return reclaimable;
2855 * Returns true if compaction should go ahead for a costly-order request, or
2856 * the allocation would already succeed without compaction. Return false if we
2857 * should reclaim first.
2859 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2861 unsigned long watermark;
2862 enum compact_result suitable;
2864 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2865 if (suitable == COMPACT_SUCCESS)
2866 /* Allocation should succeed already. Don't reclaim. */
2867 return true;
2868 if (suitable == COMPACT_SKIPPED)
2869 /* Compaction cannot yet proceed. Do reclaim. */
2870 return false;
2873 * Compaction is already possible, but it takes time to run and there
2874 * are potentially other callers using the pages just freed. So proceed
2875 * with reclaim to make a buffer of free pages available to give
2876 * compaction a reasonable chance of completing and allocating the page.
2877 * Note that we won't actually reclaim the whole buffer in one attempt
2878 * as the target watermark in should_continue_reclaim() is lower. But if
2879 * we are already above the high+gap watermark, don't reclaim at all.
2881 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2883 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2887 * This is the direct reclaim path, for page-allocating processes. We only
2888 * try to reclaim pages from zones which will satisfy the caller's allocation
2889 * request.
2891 * If a zone is deemed to be full of pinned pages then just give it a light
2892 * scan then give up on it.
2894 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2896 struct zoneref *z;
2897 struct zone *zone;
2898 unsigned long nr_soft_reclaimed;
2899 unsigned long nr_soft_scanned;
2900 gfp_t orig_mask;
2901 pg_data_t *last_pgdat = NULL;
2904 * If the number of buffer_heads in the machine exceeds the maximum
2905 * allowed level, force direct reclaim to scan the highmem zone as
2906 * highmem pages could be pinning lowmem pages storing buffer_heads
2908 orig_mask = sc->gfp_mask;
2909 if (buffer_heads_over_limit) {
2910 sc->gfp_mask |= __GFP_HIGHMEM;
2911 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2914 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2915 sc->reclaim_idx, sc->nodemask) {
2917 * Take care memory controller reclaiming has small influence
2918 * to global LRU.
2920 if (global_reclaim(sc)) {
2921 if (!cpuset_zone_allowed(zone,
2922 GFP_KERNEL | __GFP_HARDWALL))
2923 continue;
2926 * If we already have plenty of memory free for
2927 * compaction in this zone, don't free any more.
2928 * Even though compaction is invoked for any
2929 * non-zero order, only frequent costly order
2930 * reclamation is disruptive enough to become a
2931 * noticeable problem, like transparent huge
2932 * page allocations.
2934 if (IS_ENABLED(CONFIG_COMPACTION) &&
2935 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2936 compaction_ready(zone, sc)) {
2937 sc->compaction_ready = true;
2938 continue;
2942 * Shrink each node in the zonelist once. If the
2943 * zonelist is ordered by zone (not the default) then a
2944 * node may be shrunk multiple times but in that case
2945 * the user prefers lower zones being preserved.
2947 if (zone->zone_pgdat == last_pgdat)
2948 continue;
2951 * This steals pages from memory cgroups over softlimit
2952 * and returns the number of reclaimed pages and
2953 * scanned pages. This works for global memory pressure
2954 * and balancing, not for a memcg's limit.
2956 nr_soft_scanned = 0;
2957 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2958 sc->order, sc->gfp_mask,
2959 &nr_soft_scanned);
2960 sc->nr_reclaimed += nr_soft_reclaimed;
2961 sc->nr_scanned += nr_soft_scanned;
2962 /* need some check for avoid more shrink_zone() */
2965 /* See comment about same check for global reclaim above */
2966 if (zone->zone_pgdat == last_pgdat)
2967 continue;
2968 last_pgdat = zone->zone_pgdat;
2969 shrink_node(zone->zone_pgdat, sc);
2973 * Restore to original mask to avoid the impact on the caller if we
2974 * promoted it to __GFP_HIGHMEM.
2976 sc->gfp_mask = orig_mask;
2979 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2981 struct mem_cgroup *memcg;
2983 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2984 do {
2985 unsigned long refaults;
2986 struct lruvec *lruvec;
2988 if (memcg)
2989 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2990 else
2991 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2993 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2994 lruvec->refaults = refaults;
2995 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2999 * This is the main entry point to direct page reclaim.
3001 * If a full scan of the inactive list fails to free enough memory then we
3002 * are "out of memory" and something needs to be killed.
3004 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3005 * high - the zone may be full of dirty or under-writeback pages, which this
3006 * caller can't do much about. We kick the writeback threads and take explicit
3007 * naps in the hope that some of these pages can be written. But if the
3008 * allocating task holds filesystem locks which prevent writeout this might not
3009 * work, and the allocation attempt will fail.
3011 * returns: 0, if no pages reclaimed
3012 * else, the number of pages reclaimed
3014 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3015 struct scan_control *sc)
3017 int initial_priority = sc->priority;
3018 pg_data_t *last_pgdat;
3019 struct zoneref *z;
3020 struct zone *zone;
3021 retry:
3022 delayacct_freepages_start();
3024 if (global_reclaim(sc))
3025 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3027 do {
3028 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3029 sc->priority);
3030 sc->nr_scanned = 0;
3031 shrink_zones(zonelist, sc);
3033 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3034 break;
3036 if (sc->compaction_ready)
3037 break;
3040 * If we're getting trouble reclaiming, start doing
3041 * writepage even in laptop mode.
3043 if (sc->priority < DEF_PRIORITY - 2)
3044 sc->may_writepage = 1;
3045 } while (--sc->priority >= 0);
3047 last_pgdat = NULL;
3048 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3049 sc->nodemask) {
3050 if (zone->zone_pgdat == last_pgdat)
3051 continue;
3052 last_pgdat = zone->zone_pgdat;
3053 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3054 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3057 delayacct_freepages_end();
3059 if (sc->nr_reclaimed)
3060 return sc->nr_reclaimed;
3062 /* Aborted reclaim to try compaction? don't OOM, then */
3063 if (sc->compaction_ready)
3064 return 1;
3066 /* Untapped cgroup reserves? Don't OOM, retry. */
3067 if (sc->memcg_low_skipped) {
3068 sc->priority = initial_priority;
3069 sc->memcg_low_reclaim = 1;
3070 sc->memcg_low_skipped = 0;
3071 goto retry;
3074 return 0;
3077 static bool allow_direct_reclaim(pg_data_t *pgdat)
3079 struct zone *zone;
3080 unsigned long pfmemalloc_reserve = 0;
3081 unsigned long free_pages = 0;
3082 int i;
3083 bool wmark_ok;
3085 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3086 return true;
3088 for (i = 0; i <= ZONE_NORMAL; i++) {
3089 zone = &pgdat->node_zones[i];
3090 if (!managed_zone(zone))
3091 continue;
3093 if (!zone_reclaimable_pages(zone))
3094 continue;
3096 pfmemalloc_reserve += min_wmark_pages(zone);
3097 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3100 /* If there are no reserves (unexpected config) then do not throttle */
3101 if (!pfmemalloc_reserve)
3102 return true;
3104 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3106 /* kswapd must be awake if processes are being throttled */
3107 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3108 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3109 (enum zone_type)ZONE_NORMAL);
3110 wake_up_interruptible(&pgdat->kswapd_wait);
3113 return wmark_ok;
3117 * Throttle direct reclaimers if backing storage is backed by the network
3118 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3119 * depleted. kswapd will continue to make progress and wake the processes
3120 * when the low watermark is reached.
3122 * Returns true if a fatal signal was delivered during throttling. If this
3123 * happens, the page allocator should not consider triggering the OOM killer.
3125 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3126 nodemask_t *nodemask)
3128 struct zoneref *z;
3129 struct zone *zone;
3130 pg_data_t *pgdat = NULL;
3133 * Kernel threads should not be throttled as they may be indirectly
3134 * responsible for cleaning pages necessary for reclaim to make forward
3135 * progress. kjournald for example may enter direct reclaim while
3136 * committing a transaction where throttling it could forcing other
3137 * processes to block on log_wait_commit().
3139 if (current->flags & PF_KTHREAD)
3140 goto out;
3143 * If a fatal signal is pending, this process should not throttle.
3144 * It should return quickly so it can exit and free its memory
3146 if (fatal_signal_pending(current))
3147 goto out;
3150 * Check if the pfmemalloc reserves are ok by finding the first node
3151 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3152 * GFP_KERNEL will be required for allocating network buffers when
3153 * swapping over the network so ZONE_HIGHMEM is unusable.
3155 * Throttling is based on the first usable node and throttled processes
3156 * wait on a queue until kswapd makes progress and wakes them. There
3157 * is an affinity then between processes waking up and where reclaim
3158 * progress has been made assuming the process wakes on the same node.
3159 * More importantly, processes running on remote nodes will not compete
3160 * for remote pfmemalloc reserves and processes on different nodes
3161 * should make reasonable progress.
3163 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3164 gfp_zone(gfp_mask), nodemask) {
3165 if (zone_idx(zone) > ZONE_NORMAL)
3166 continue;
3168 /* Throttle based on the first usable node */
3169 pgdat = zone->zone_pgdat;
3170 if (allow_direct_reclaim(pgdat))
3171 goto out;
3172 break;
3175 /* If no zone was usable by the allocation flags then do not throttle */
3176 if (!pgdat)
3177 goto out;
3179 /* Account for the throttling */
3180 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3183 * If the caller cannot enter the filesystem, it's possible that it
3184 * is due to the caller holding an FS lock or performing a journal
3185 * transaction in the case of a filesystem like ext[3|4]. In this case,
3186 * it is not safe to block on pfmemalloc_wait as kswapd could be
3187 * blocked waiting on the same lock. Instead, throttle for up to a
3188 * second before continuing.
3190 if (!(gfp_mask & __GFP_FS)) {
3191 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3192 allow_direct_reclaim(pgdat), HZ);
3194 goto check_pending;
3197 /* Throttle until kswapd wakes the process */
3198 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3199 allow_direct_reclaim(pgdat));
3201 check_pending:
3202 if (fatal_signal_pending(current))
3203 return true;
3205 out:
3206 return false;
3209 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3210 gfp_t gfp_mask, nodemask_t *nodemask)
3212 unsigned long nr_reclaimed;
3213 struct scan_control sc = {
3214 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3215 .gfp_mask = current_gfp_context(gfp_mask),
3216 .reclaim_idx = gfp_zone(gfp_mask),
3217 .order = order,
3218 .nodemask = nodemask,
3219 .priority = DEF_PRIORITY,
3220 .may_writepage = !laptop_mode,
3221 .may_unmap = 1,
3222 .may_swap = 1,
3223 .may_shrinkslab = 1,
3227 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3228 * Confirm they are large enough for max values.
3230 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3231 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3232 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3235 * Do not enter reclaim if fatal signal was delivered while throttled.
3236 * 1 is returned so that the page allocator does not OOM kill at this
3237 * point.
3239 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3240 return 1;
3242 trace_mm_vmscan_direct_reclaim_begin(order,
3243 sc.may_writepage,
3244 sc.gfp_mask,
3245 sc.reclaim_idx);
3247 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3249 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3251 return nr_reclaimed;
3254 #ifdef CONFIG_MEMCG
3256 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3257 gfp_t gfp_mask, bool noswap,
3258 pg_data_t *pgdat,
3259 unsigned long *nr_scanned)
3261 struct scan_control sc = {
3262 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3263 .target_mem_cgroup = memcg,
3264 .may_writepage = !laptop_mode,
3265 .may_unmap = 1,
3266 .reclaim_idx = MAX_NR_ZONES - 1,
3267 .may_swap = !noswap,
3268 .may_shrinkslab = 1,
3270 unsigned long lru_pages;
3272 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3273 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3275 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3276 sc.may_writepage,
3277 sc.gfp_mask,
3278 sc.reclaim_idx);
3281 * NOTE: Although we can get the priority field, using it
3282 * here is not a good idea, since it limits the pages we can scan.
3283 * if we don't reclaim here, the shrink_node from balance_pgdat
3284 * will pick up pages from other mem cgroup's as well. We hack
3285 * the priority and make it zero.
3287 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3289 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3291 *nr_scanned = sc.nr_scanned;
3292 return sc.nr_reclaimed;
3295 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3296 unsigned long nr_pages,
3297 gfp_t gfp_mask,
3298 bool may_swap)
3300 struct zonelist *zonelist;
3301 unsigned long nr_reclaimed;
3302 unsigned long pflags;
3303 int nid;
3304 unsigned int noreclaim_flag;
3305 struct scan_control sc = {
3306 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3307 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3308 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3309 .reclaim_idx = MAX_NR_ZONES - 1,
3310 .target_mem_cgroup = memcg,
3311 .priority = DEF_PRIORITY,
3312 .may_writepage = !laptop_mode,
3313 .may_unmap = 1,
3314 .may_swap = may_swap,
3315 .may_shrinkslab = 1,
3319 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3320 * take care of from where we get pages. So the node where we start the
3321 * scan does not need to be the current node.
3323 nid = mem_cgroup_select_victim_node(memcg);
3325 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3327 trace_mm_vmscan_memcg_reclaim_begin(0,
3328 sc.may_writepage,
3329 sc.gfp_mask,
3330 sc.reclaim_idx);
3332 psi_memstall_enter(&pflags);
3333 noreclaim_flag = memalloc_noreclaim_save();
3335 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3337 memalloc_noreclaim_restore(noreclaim_flag);
3338 psi_memstall_leave(&pflags);
3340 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3342 return nr_reclaimed;
3344 #endif
3346 static void age_active_anon(struct pglist_data *pgdat,
3347 struct scan_control *sc)
3349 struct mem_cgroup *memcg;
3351 if (!total_swap_pages)
3352 return;
3354 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3355 do {
3356 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3358 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3359 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3360 sc, LRU_ACTIVE_ANON);
3362 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3363 } while (memcg);
3366 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3368 int i;
3369 struct zone *zone;
3372 * Check for watermark boosts top-down as the higher zones
3373 * are more likely to be boosted. Both watermarks and boosts
3374 * should not be checked at the time time as reclaim would
3375 * start prematurely when there is no boosting and a lower
3376 * zone is balanced.
3378 for (i = classzone_idx; i >= 0; i--) {
3379 zone = pgdat->node_zones + i;
3380 if (!managed_zone(zone))
3381 continue;
3383 if (zone->watermark_boost)
3384 return true;
3387 return false;
3391 * Returns true if there is an eligible zone balanced for the request order
3392 * and classzone_idx
3394 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3396 int i;
3397 unsigned long mark = -1;
3398 struct zone *zone;
3401 * Check watermarks bottom-up as lower zones are more likely to
3402 * meet watermarks.
3404 for (i = 0; i <= classzone_idx; i++) {
3405 zone = pgdat->node_zones + i;
3407 if (!managed_zone(zone))
3408 continue;
3410 mark = high_wmark_pages(zone);
3411 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3412 return true;
3416 * If a node has no populated zone within classzone_idx, it does not
3417 * need balancing by definition. This can happen if a zone-restricted
3418 * allocation tries to wake a remote kswapd.
3420 if (mark == -1)
3421 return true;
3423 return false;
3426 /* Clear pgdat state for congested, dirty or under writeback. */
3427 static void clear_pgdat_congested(pg_data_t *pgdat)
3429 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3430 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3431 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3435 * Prepare kswapd for sleeping. This verifies that there are no processes
3436 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3438 * Returns true if kswapd is ready to sleep
3440 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3443 * The throttled processes are normally woken up in balance_pgdat() as
3444 * soon as allow_direct_reclaim() is true. But there is a potential
3445 * race between when kswapd checks the watermarks and a process gets
3446 * throttled. There is also a potential race if processes get
3447 * throttled, kswapd wakes, a large process exits thereby balancing the
3448 * zones, which causes kswapd to exit balance_pgdat() before reaching
3449 * the wake up checks. If kswapd is going to sleep, no process should
3450 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3451 * the wake up is premature, processes will wake kswapd and get
3452 * throttled again. The difference from wake ups in balance_pgdat() is
3453 * that here we are under prepare_to_wait().
3455 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3456 wake_up_all(&pgdat->pfmemalloc_wait);
3458 /* Hopeless node, leave it to direct reclaim */
3459 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3460 return true;
3462 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3463 clear_pgdat_congested(pgdat);
3464 return true;
3467 return false;
3471 * kswapd shrinks a node of pages that are at or below the highest usable
3472 * zone that is currently unbalanced.
3474 * Returns true if kswapd scanned at least the requested number of pages to
3475 * reclaim or if the lack of progress was due to pages under writeback.
3476 * This is used to determine if the scanning priority needs to be raised.
3478 static bool kswapd_shrink_node(pg_data_t *pgdat,
3479 struct scan_control *sc)
3481 struct zone *zone;
3482 int z;
3484 /* Reclaim a number of pages proportional to the number of zones */
3485 sc->nr_to_reclaim = 0;
3486 for (z = 0; z <= sc->reclaim_idx; z++) {
3487 zone = pgdat->node_zones + z;
3488 if (!managed_zone(zone))
3489 continue;
3491 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3495 * Historically care was taken to put equal pressure on all zones but
3496 * now pressure is applied based on node LRU order.
3498 shrink_node(pgdat, sc);
3501 * Fragmentation may mean that the system cannot be rebalanced for
3502 * high-order allocations. If twice the allocation size has been
3503 * reclaimed then recheck watermarks only at order-0 to prevent
3504 * excessive reclaim. Assume that a process requested a high-order
3505 * can direct reclaim/compact.
3507 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3508 sc->order = 0;
3510 return sc->nr_scanned >= sc->nr_to_reclaim;
3514 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3515 * that are eligible for use by the caller until at least one zone is
3516 * balanced.
3518 * Returns the order kswapd finished reclaiming at.
3520 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3521 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3522 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3523 * or lower is eligible for reclaim until at least one usable zone is
3524 * balanced.
3526 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3528 int i;
3529 unsigned long nr_soft_reclaimed;
3530 unsigned long nr_soft_scanned;
3531 unsigned long pflags;
3532 unsigned long nr_boost_reclaim;
3533 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3534 bool boosted;
3535 struct zone *zone;
3536 struct scan_control sc = {
3537 .gfp_mask = GFP_KERNEL,
3538 .order = order,
3539 .may_unmap = 1,
3542 psi_memstall_enter(&pflags);
3543 __fs_reclaim_acquire();
3545 count_vm_event(PAGEOUTRUN);
3548 * Account for the reclaim boost. Note that the zone boost is left in
3549 * place so that parallel allocations that are near the watermark will
3550 * stall or direct reclaim until kswapd is finished.
3552 nr_boost_reclaim = 0;
3553 for (i = 0; i <= classzone_idx; i++) {
3554 zone = pgdat->node_zones + i;
3555 if (!managed_zone(zone))
3556 continue;
3558 nr_boost_reclaim += zone->watermark_boost;
3559 zone_boosts[i] = zone->watermark_boost;
3561 boosted = nr_boost_reclaim;
3563 restart:
3564 sc.priority = DEF_PRIORITY;
3565 do {
3566 unsigned long nr_reclaimed = sc.nr_reclaimed;
3567 bool raise_priority = true;
3568 bool balanced;
3569 bool ret;
3571 sc.reclaim_idx = classzone_idx;
3574 * If the number of buffer_heads exceeds the maximum allowed
3575 * then consider reclaiming from all zones. This has a dual
3576 * purpose -- on 64-bit systems it is expected that
3577 * buffer_heads are stripped during active rotation. On 32-bit
3578 * systems, highmem pages can pin lowmem memory and shrinking
3579 * buffers can relieve lowmem pressure. Reclaim may still not
3580 * go ahead if all eligible zones for the original allocation
3581 * request are balanced to avoid excessive reclaim from kswapd.
3583 if (buffer_heads_over_limit) {
3584 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3585 zone = pgdat->node_zones + i;
3586 if (!managed_zone(zone))
3587 continue;
3589 sc.reclaim_idx = i;
3590 break;
3595 * If the pgdat is imbalanced then ignore boosting and preserve
3596 * the watermarks for a later time and restart. Note that the
3597 * zone watermarks will be still reset at the end of balancing
3598 * on the grounds that the normal reclaim should be enough to
3599 * re-evaluate if boosting is required when kswapd next wakes.
3601 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3602 if (!balanced && nr_boost_reclaim) {
3603 nr_boost_reclaim = 0;
3604 goto restart;
3608 * If boosting is not active then only reclaim if there are no
3609 * eligible zones. Note that sc.reclaim_idx is not used as
3610 * buffer_heads_over_limit may have adjusted it.
3612 if (!nr_boost_reclaim && balanced)
3613 goto out;
3615 /* Limit the priority of boosting to avoid reclaim writeback */
3616 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3617 raise_priority = false;
3620 * Do not writeback or swap pages for boosted reclaim. The
3621 * intent is to relieve pressure not issue sub-optimal IO
3622 * from reclaim context. If no pages are reclaimed, the
3623 * reclaim will be aborted.
3625 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3626 sc.may_swap = !nr_boost_reclaim;
3627 sc.may_shrinkslab = !nr_boost_reclaim;
3630 * Do some background aging of the anon list, to give
3631 * pages a chance to be referenced before reclaiming. All
3632 * pages are rotated regardless of classzone as this is
3633 * about consistent aging.
3635 age_active_anon(pgdat, &sc);
3638 * If we're getting trouble reclaiming, start doing writepage
3639 * even in laptop mode.
3641 if (sc.priority < DEF_PRIORITY - 2)
3642 sc.may_writepage = 1;
3644 /* Call soft limit reclaim before calling shrink_node. */
3645 sc.nr_scanned = 0;
3646 nr_soft_scanned = 0;
3647 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3648 sc.gfp_mask, &nr_soft_scanned);
3649 sc.nr_reclaimed += nr_soft_reclaimed;
3652 * There should be no need to raise the scanning priority if
3653 * enough pages are already being scanned that that high
3654 * watermark would be met at 100% efficiency.
3656 if (kswapd_shrink_node(pgdat, &sc))
3657 raise_priority = false;
3660 * If the low watermark is met there is no need for processes
3661 * to be throttled on pfmemalloc_wait as they should not be
3662 * able to safely make forward progress. Wake them
3664 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3665 allow_direct_reclaim(pgdat))
3666 wake_up_all(&pgdat->pfmemalloc_wait);
3668 /* Check if kswapd should be suspending */
3669 __fs_reclaim_release();
3670 ret = try_to_freeze();
3671 __fs_reclaim_acquire();
3672 if (ret || kthread_should_stop())
3673 break;
3676 * Raise priority if scanning rate is too low or there was no
3677 * progress in reclaiming pages
3679 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3680 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3683 * If reclaim made no progress for a boost, stop reclaim as
3684 * IO cannot be queued and it could be an infinite loop in
3685 * extreme circumstances.
3687 if (nr_boost_reclaim && !nr_reclaimed)
3688 break;
3690 if (raise_priority || !nr_reclaimed)
3691 sc.priority--;
3692 } while (sc.priority >= 1);
3694 if (!sc.nr_reclaimed)
3695 pgdat->kswapd_failures++;
3697 out:
3698 /* If reclaim was boosted, account for the reclaim done in this pass */
3699 if (boosted) {
3700 unsigned long flags;
3702 for (i = 0; i <= classzone_idx; i++) {
3703 if (!zone_boosts[i])
3704 continue;
3706 /* Increments are under the zone lock */
3707 zone = pgdat->node_zones + i;
3708 spin_lock_irqsave(&zone->lock, flags);
3709 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3710 spin_unlock_irqrestore(&zone->lock, flags);
3714 * As there is now likely space, wakeup kcompact to defragment
3715 * pageblocks.
3717 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3720 snapshot_refaults(NULL, pgdat);
3721 __fs_reclaim_release();
3722 psi_memstall_leave(&pflags);
3724 * Return the order kswapd stopped reclaiming at as
3725 * prepare_kswapd_sleep() takes it into account. If another caller
3726 * entered the allocator slow path while kswapd was awake, order will
3727 * remain at the higher level.
3729 return sc.order;
3733 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3734 * allocation request woke kswapd for. When kswapd has not woken recently,
3735 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3736 * given classzone and returns it or the highest classzone index kswapd
3737 * was recently woke for.
3739 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3740 enum zone_type classzone_idx)
3742 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3743 return classzone_idx;
3745 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3748 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3749 unsigned int classzone_idx)
3751 long remaining = 0;
3752 DEFINE_WAIT(wait);
3754 if (freezing(current) || kthread_should_stop())
3755 return;
3757 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3760 * Try to sleep for a short interval. Note that kcompactd will only be
3761 * woken if it is possible to sleep for a short interval. This is
3762 * deliberate on the assumption that if reclaim cannot keep an
3763 * eligible zone balanced that it's also unlikely that compaction will
3764 * succeed.
3766 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3768 * Compaction records what page blocks it recently failed to
3769 * isolate pages from and skips them in the future scanning.
3770 * When kswapd is going to sleep, it is reasonable to assume
3771 * that pages and compaction may succeed so reset the cache.
3773 reset_isolation_suitable(pgdat);
3776 * We have freed the memory, now we should compact it to make
3777 * allocation of the requested order possible.
3779 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3781 remaining = schedule_timeout(HZ/10);
3784 * If woken prematurely then reset kswapd_classzone_idx and
3785 * order. The values will either be from a wakeup request or
3786 * the previous request that slept prematurely.
3788 if (remaining) {
3789 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3790 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3793 finish_wait(&pgdat->kswapd_wait, &wait);
3794 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3798 * After a short sleep, check if it was a premature sleep. If not, then
3799 * go fully to sleep until explicitly woken up.
3801 if (!remaining &&
3802 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3803 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3806 * vmstat counters are not perfectly accurate and the estimated
3807 * value for counters such as NR_FREE_PAGES can deviate from the
3808 * true value by nr_online_cpus * threshold. To avoid the zone
3809 * watermarks being breached while under pressure, we reduce the
3810 * per-cpu vmstat threshold while kswapd is awake and restore
3811 * them before going back to sleep.
3813 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3815 if (!kthread_should_stop())
3816 schedule();
3818 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3819 } else {
3820 if (remaining)
3821 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3822 else
3823 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3825 finish_wait(&pgdat->kswapd_wait, &wait);
3829 * The background pageout daemon, started as a kernel thread
3830 * from the init process.
3832 * This basically trickles out pages so that we have _some_
3833 * free memory available even if there is no other activity
3834 * that frees anything up. This is needed for things like routing
3835 * etc, where we otherwise might have all activity going on in
3836 * asynchronous contexts that cannot page things out.
3838 * If there are applications that are active memory-allocators
3839 * (most normal use), this basically shouldn't matter.
3841 static int kswapd(void *p)
3843 unsigned int alloc_order, reclaim_order;
3844 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3845 pg_data_t *pgdat = (pg_data_t*)p;
3846 struct task_struct *tsk = current;
3848 struct reclaim_state reclaim_state = {
3849 .reclaimed_slab = 0,
3851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3853 if (!cpumask_empty(cpumask))
3854 set_cpus_allowed_ptr(tsk, cpumask);
3855 current->reclaim_state = &reclaim_state;
3858 * Tell the memory management that we're a "memory allocator",
3859 * and that if we need more memory we should get access to it
3860 * regardless (see "__alloc_pages()"). "kswapd" should
3861 * never get caught in the normal page freeing logic.
3863 * (Kswapd normally doesn't need memory anyway, but sometimes
3864 * you need a small amount of memory in order to be able to
3865 * page out something else, and this flag essentially protects
3866 * us from recursively trying to free more memory as we're
3867 * trying to free the first piece of memory in the first place).
3869 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3870 set_freezable();
3872 pgdat->kswapd_order = 0;
3873 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3874 for ( ; ; ) {
3875 bool ret;
3877 alloc_order = reclaim_order = pgdat->kswapd_order;
3878 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3880 kswapd_try_sleep:
3881 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3882 classzone_idx);
3884 /* Read the new order and classzone_idx */
3885 alloc_order = reclaim_order = pgdat->kswapd_order;
3886 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3887 pgdat->kswapd_order = 0;
3888 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3890 ret = try_to_freeze();
3891 if (kthread_should_stop())
3892 break;
3895 * We can speed up thawing tasks if we don't call balance_pgdat
3896 * after returning from the refrigerator
3898 if (ret)
3899 continue;
3902 * Reclaim begins at the requested order but if a high-order
3903 * reclaim fails then kswapd falls back to reclaiming for
3904 * order-0. If that happens, kswapd will consider sleeping
3905 * for the order it finished reclaiming at (reclaim_order)
3906 * but kcompactd is woken to compact for the original
3907 * request (alloc_order).
3909 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3910 alloc_order);
3911 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3912 if (reclaim_order < alloc_order)
3913 goto kswapd_try_sleep;
3916 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3917 current->reclaim_state = NULL;
3919 return 0;
3923 * A zone is low on free memory or too fragmented for high-order memory. If
3924 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3925 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3926 * has failed or is not needed, still wake up kcompactd if only compaction is
3927 * needed.
3929 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3930 enum zone_type classzone_idx)
3932 pg_data_t *pgdat;
3934 if (!managed_zone(zone))
3935 return;
3937 if (!cpuset_zone_allowed(zone, gfp_flags))
3938 return;
3939 pgdat = zone->zone_pgdat;
3940 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3941 classzone_idx);
3942 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3943 if (!waitqueue_active(&pgdat->kswapd_wait))
3944 return;
3946 /* Hopeless node, leave it to direct reclaim if possible */
3947 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3948 (pgdat_balanced(pgdat, order, classzone_idx) &&
3949 !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3951 * There may be plenty of free memory available, but it's too
3952 * fragmented for high-order allocations. Wake up kcompactd
3953 * and rely on compaction_suitable() to determine if it's
3954 * needed. If it fails, it will defer subsequent attempts to
3955 * ratelimit its work.
3957 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3958 wakeup_kcompactd(pgdat, order, classzone_idx);
3959 return;
3962 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3963 gfp_flags);
3964 wake_up_interruptible(&pgdat->kswapd_wait);
3967 #ifdef CONFIG_HIBERNATION
3969 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3970 * freed pages.
3972 * Rather than trying to age LRUs the aim is to preserve the overall
3973 * LRU order by reclaiming preferentially
3974 * inactive > active > active referenced > active mapped
3976 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3978 struct reclaim_state reclaim_state;
3979 struct scan_control sc = {
3980 .nr_to_reclaim = nr_to_reclaim,
3981 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3982 .reclaim_idx = MAX_NR_ZONES - 1,
3983 .priority = DEF_PRIORITY,
3984 .may_writepage = 1,
3985 .may_unmap = 1,
3986 .may_swap = 1,
3987 .hibernation_mode = 1,
3989 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3990 struct task_struct *p = current;
3991 unsigned long nr_reclaimed;
3992 unsigned int noreclaim_flag;
3994 fs_reclaim_acquire(sc.gfp_mask);
3995 noreclaim_flag = memalloc_noreclaim_save();
3996 reclaim_state.reclaimed_slab = 0;
3997 p->reclaim_state = &reclaim_state;
3999 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4001 p->reclaim_state = NULL;
4002 memalloc_noreclaim_restore(noreclaim_flag);
4003 fs_reclaim_release(sc.gfp_mask);
4005 return nr_reclaimed;
4007 #endif /* CONFIG_HIBERNATION */
4009 /* It's optimal to keep kswapds on the same CPUs as their memory, but
4010 not required for correctness. So if the last cpu in a node goes
4011 away, we get changed to run anywhere: as the first one comes back,
4012 restore their cpu bindings. */
4013 static int kswapd_cpu_online(unsigned int cpu)
4015 int nid;
4017 for_each_node_state(nid, N_MEMORY) {
4018 pg_data_t *pgdat = NODE_DATA(nid);
4019 const struct cpumask *mask;
4021 mask = cpumask_of_node(pgdat->node_id);
4023 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
4024 /* One of our CPUs online: restore mask */
4025 set_cpus_allowed_ptr(pgdat->kswapd, mask);
4027 return 0;
4031 * This kswapd start function will be called by init and node-hot-add.
4032 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034 int kswapd_run(int nid)
4036 pg_data_t *pgdat = NODE_DATA(nid);
4037 int ret = 0;
4039 if (pgdat->kswapd)
4040 return 0;
4042 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4043 if (IS_ERR(pgdat->kswapd)) {
4044 /* failure at boot is fatal */
4045 BUG_ON(system_state < SYSTEM_RUNNING);
4046 pr_err("Failed to start kswapd on node %d\n", nid);
4047 ret = PTR_ERR(pgdat->kswapd);
4048 pgdat->kswapd = NULL;
4050 return ret;
4054 * Called by memory hotplug when all memory in a node is offlined. Caller must
4055 * hold mem_hotplug_begin/end().
4057 void kswapd_stop(int nid)
4059 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4061 if (kswapd) {
4062 kthread_stop(kswapd);
4063 NODE_DATA(nid)->kswapd = NULL;
4067 static int __init kswapd_init(void)
4069 int nid, ret;
4071 swap_setup();
4072 for_each_node_state(nid, N_MEMORY)
4073 kswapd_run(nid);
4074 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4075 "mm/vmscan:online", kswapd_cpu_online,
4076 NULL);
4077 WARN_ON(ret < 0);
4078 return 0;
4081 module_init(kswapd_init)
4083 #ifdef CONFIG_NUMA
4085 * Node reclaim mode
4087 * If non-zero call node_reclaim when the number of free pages falls below
4088 * the watermarks.
4090 int node_reclaim_mode __read_mostly;
4092 #define RECLAIM_OFF 0
4093 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4094 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4095 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4098 * Priority for NODE_RECLAIM. This determines the fraction of pages
4099 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4100 * a zone.
4102 #define NODE_RECLAIM_PRIORITY 4
4105 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4106 * occur.
4108 int sysctl_min_unmapped_ratio = 1;
4111 * If the number of slab pages in a zone grows beyond this percentage then
4112 * slab reclaim needs to occur.
4114 int sysctl_min_slab_ratio = 5;
4116 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4118 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4119 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4120 node_page_state(pgdat, NR_ACTIVE_FILE);
4123 * It's possible for there to be more file mapped pages than
4124 * accounted for by the pages on the file LRU lists because
4125 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4127 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4130 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4131 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4133 unsigned long nr_pagecache_reclaimable;
4134 unsigned long delta = 0;
4137 * If RECLAIM_UNMAP is set, then all file pages are considered
4138 * potentially reclaimable. Otherwise, we have to worry about
4139 * pages like swapcache and node_unmapped_file_pages() provides
4140 * a better estimate
4142 if (node_reclaim_mode & RECLAIM_UNMAP)
4143 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4144 else
4145 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4147 /* If we can't clean pages, remove dirty pages from consideration */
4148 if (!(node_reclaim_mode & RECLAIM_WRITE))
4149 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4151 /* Watch for any possible underflows due to delta */
4152 if (unlikely(delta > nr_pagecache_reclaimable))
4153 delta = nr_pagecache_reclaimable;
4155 return nr_pagecache_reclaimable - delta;
4159 * Try to free up some pages from this node through reclaim.
4161 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4163 /* Minimum pages needed in order to stay on node */
4164 const unsigned long nr_pages = 1 << order;
4165 struct task_struct *p = current;
4166 struct reclaim_state reclaim_state;
4167 unsigned int noreclaim_flag;
4168 struct scan_control sc = {
4169 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4170 .gfp_mask = current_gfp_context(gfp_mask),
4171 .order = order,
4172 .priority = NODE_RECLAIM_PRIORITY,
4173 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4174 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4175 .may_swap = 1,
4176 .reclaim_idx = gfp_zone(gfp_mask),
4179 cond_resched();
4180 fs_reclaim_acquire(sc.gfp_mask);
4182 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4183 * and we also need to be able to write out pages for RECLAIM_WRITE
4184 * and RECLAIM_UNMAP.
4186 noreclaim_flag = memalloc_noreclaim_save();
4187 p->flags |= PF_SWAPWRITE;
4188 reclaim_state.reclaimed_slab = 0;
4189 p->reclaim_state = &reclaim_state;
4191 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4193 * Free memory by calling shrink node with increasing
4194 * priorities until we have enough memory freed.
4196 do {
4197 shrink_node(pgdat, &sc);
4198 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4201 p->reclaim_state = NULL;
4202 current->flags &= ~PF_SWAPWRITE;
4203 memalloc_noreclaim_restore(noreclaim_flag);
4204 fs_reclaim_release(sc.gfp_mask);
4205 return sc.nr_reclaimed >= nr_pages;
4208 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4210 int ret;
4213 * Node reclaim reclaims unmapped file backed pages and
4214 * slab pages if we are over the defined limits.
4216 * A small portion of unmapped file backed pages is needed for
4217 * file I/O otherwise pages read by file I/O will be immediately
4218 * thrown out if the node is overallocated. So we do not reclaim
4219 * if less than a specified percentage of the node is used by
4220 * unmapped file backed pages.
4222 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4223 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4224 return NODE_RECLAIM_FULL;
4227 * Do not scan if the allocation should not be delayed.
4229 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4230 return NODE_RECLAIM_NOSCAN;
4233 * Only run node reclaim on the local node or on nodes that do not
4234 * have associated processors. This will favor the local processor
4235 * over remote processors and spread off node memory allocations
4236 * as wide as possible.
4238 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4239 return NODE_RECLAIM_NOSCAN;
4241 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4242 return NODE_RECLAIM_NOSCAN;
4244 ret = __node_reclaim(pgdat, gfp_mask, order);
4245 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4247 if (!ret)
4248 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4250 return ret;
4252 #endif
4255 * page_evictable - test whether a page is evictable
4256 * @page: the page to test
4258 * Test whether page is evictable--i.e., should be placed on active/inactive
4259 * lists vs unevictable list.
4261 * Reasons page might not be evictable:
4262 * (1) page's mapping marked unevictable
4263 * (2) page is part of an mlocked VMA
4266 int page_evictable(struct page *page)
4268 int ret;
4270 /* Prevent address_space of inode and swap cache from being freed */
4271 rcu_read_lock();
4272 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4273 rcu_read_unlock();
4274 return ret;
4278 * check_move_unevictable_pages - check pages for evictability and move to
4279 * appropriate zone lru list
4280 * @pvec: pagevec with lru pages to check
4282 * Checks pages for evictability, if an evictable page is in the unevictable
4283 * lru list, moves it to the appropriate evictable lru list. This function
4284 * should be only used for lru pages.
4286 void check_move_unevictable_pages(struct pagevec *pvec)
4288 struct lruvec *lruvec;
4289 struct pglist_data *pgdat = NULL;
4290 int pgscanned = 0;
4291 int pgrescued = 0;
4292 int i;
4294 for (i = 0; i < pvec->nr; i++) {
4295 struct page *page = pvec->pages[i];
4296 struct pglist_data *pagepgdat = page_pgdat(page);
4298 pgscanned++;
4299 if (pagepgdat != pgdat) {
4300 if (pgdat)
4301 spin_unlock_irq(&pgdat->lru_lock);
4302 pgdat = pagepgdat;
4303 spin_lock_irq(&pgdat->lru_lock);
4305 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4307 if (!PageLRU(page) || !PageUnevictable(page))
4308 continue;
4310 if (page_evictable(page)) {
4311 enum lru_list lru = page_lru_base_type(page);
4313 VM_BUG_ON_PAGE(PageActive(page), page);
4314 ClearPageUnevictable(page);
4315 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4316 add_page_to_lru_list(page, lruvec, lru);
4317 pgrescued++;
4321 if (pgdat) {
4322 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4323 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4324 spin_unlock_irq(&pgdat->lru_lock);
4327 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);