staging: greybus: MAINTAINERS: add greybus protocol drivers maintainers
[linux/fpc-iii.git] / mm / memblock.c
blob483197ef613f258838c40ca4e9869bc126e7e9ea
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
24 #include <linux/io.h>
26 #include "internal.h"
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
62 ulong __init_memblock choose_memblock_flags(void)
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
86 * Address comparison utilities
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
97 unsigned long i;
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
117 * RETURNS:
118 * Found address on success, 0 on failure.
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
137 return 0;
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
151 * RETURNS:
152 * Found address on success, 0 on failure.
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
167 if (this_end < size)
168 continue;
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
175 return 0;
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
187 * Find @size free area aligned to @align in the specified range and node.
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
195 * If bottom-up allocation failed, will try to allocate memory top-down.
197 * RETURNS:
198 * Found address on success, 0 on failure.
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
204 phys_addr_t kernel_end, ret;
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
255 * Find @size free area aligned to @align in the specified range.
257 * RETURNS:
258 * Found address on success, 0 on failure.
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
267 again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
278 return ret;
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
283 type->total_size -= type->regions[r].size;
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 type->cnt--;
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
290 WARN_ON(type->total_size != 0);
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
294 type->regions[0].flags = 0;
295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
307 *addr = __pa(memblock.reserved.regions);
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
319 *addr = __pa(memblock.memory.regions);
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
325 #endif
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
339 * RETURNS:
340 * 0 on success, -1 on failure.
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
346 struct memblock_region *new_array, *old_array;
347 phys_addr_t old_alloc_size, new_alloc_size;
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
350 int *in_slab;
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
355 if (!memblock_can_resize)
356 return -1;
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
374 /* Try to find some space for it.
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
387 addr = new_array ? __pa(new_array) : 0;
388 } else {
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
395 new_alloc_size, PAGE_SIZE);
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
401 new_array = addr ? __va(addr) : NULL;
403 if (!addr) {
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
424 /* Free old array. We needn't free it if the array is the static one */
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
429 memblock_free(__pa(old_array), old_alloc_size);
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
435 if (!use_slab)
436 BUG_ON(memblock_reserve(addr, new_alloc_size));
438 /* Update slab flag */
439 *in_slab = use_slab;
441 return 0;
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
448 * Scan @type and merge neighboring compatible regions.
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
452 int i = 0;
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
468 this->size += next->size;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471 type->cnt--;
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accommodate the new region.
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
489 phys_addr_t size,
490 int nid, unsigned long flags)
492 struct memblock_region *rgn = &type->regions[idx];
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
498 rgn->flags = flags;
499 memblock_set_region_node(rgn, nid);
500 type->cnt++;
501 type->total_size += size;
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
517 * RETURNS:
518 * 0 on success, -errno on failure.
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
524 bool insert = false;
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
527 int idx, nr_new;
528 struct memblock_region *rgn;
530 if (!size)
531 return 0;
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
535 WARN_ON(type->cnt != 1 || type->total_size);
536 type->regions[0].base = base;
537 type->regions[0].size = size;
538 type->regions[0].flags = flags;
539 memblock_set_region_node(&type->regions[0], nid);
540 type->total_size = size;
541 return 0;
543 repeat:
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accommodate the new area. The second actually inserts them.
549 base = obase;
550 nr_new = 0;
552 for_each_memblock_type(type, rgn) {
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
556 if (rbase >= end)
557 break;
558 if (rend <= base)
559 continue;
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
564 if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568 WARN_ON(flags != rgn->flags);
569 nr_new++;
570 if (insert)
571 memblock_insert_region(type, idx++, base,
572 rbase - base, nid,
573 flags);
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
583 memblock_insert_region(type, idx, base, end - base,
584 nid, flags);
587 if (!nr_new)
588 return 0;
591 * If this was the first round, resize array and repeat for actual
592 * insertions; otherwise, merge and return.
594 if (!insert) {
595 while (type->cnt + nr_new > type->max)
596 if (memblock_double_array(type, obase, size) < 0)
597 return -ENOMEM;
598 insert = true;
599 goto repeat;
600 } else {
601 memblock_merge_regions(type);
602 return 0;
606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607 int nid)
609 return memblock_add_range(&memblock.memory, base, size, nid, 0);
612 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base,
616 (unsigned long long)base + size - 1,
617 0UL, (void *)_RET_IP_);
619 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
623 * memblock_isolate_range - isolate given range into disjoint memblocks
624 * @type: memblock type to isolate range for
625 * @base: base of range to isolate
626 * @size: size of range to isolate
627 * @start_rgn: out parameter for the start of isolated region
628 * @end_rgn: out parameter for the end of isolated region
630 * Walk @type and ensure that regions don't cross the boundaries defined by
631 * [@base,@base+@size). Crossing regions are split at the boundaries,
632 * which may create at most two more regions. The index of the first
633 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
635 * RETURNS:
636 * 0 on success, -errno on failure.
638 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
639 phys_addr_t base, phys_addr_t size,
640 int *start_rgn, int *end_rgn)
642 phys_addr_t end = base + memblock_cap_size(base, &size);
643 int idx;
644 struct memblock_region *rgn;
646 *start_rgn = *end_rgn = 0;
648 if (!size)
649 return 0;
651 /* we'll create at most two more regions */
652 while (type->cnt + 2 > type->max)
653 if (memblock_double_array(type, base, size) < 0)
654 return -ENOMEM;
656 for_each_memblock_type(type, rgn) {
657 phys_addr_t rbase = rgn->base;
658 phys_addr_t rend = rbase + rgn->size;
660 if (rbase >= end)
661 break;
662 if (rend <= base)
663 continue;
665 if (rbase < base) {
667 * @rgn intersects from below. Split and continue
668 * to process the next region - the new top half.
670 rgn->base = base;
671 rgn->size -= base - rbase;
672 type->total_size -= base - rbase;
673 memblock_insert_region(type, idx, rbase, base - rbase,
674 memblock_get_region_node(rgn),
675 rgn->flags);
676 } else if (rend > end) {
678 * @rgn intersects from above. Split and redo the
679 * current region - the new bottom half.
681 rgn->base = end;
682 rgn->size -= end - rbase;
683 type->total_size -= end - rbase;
684 memblock_insert_region(type, idx--, rbase, end - rbase,
685 memblock_get_region_node(rgn),
686 rgn->flags);
687 } else {
688 /* @rgn is fully contained, record it */
689 if (!*end_rgn)
690 *start_rgn = idx;
691 *end_rgn = idx + 1;
695 return 0;
698 static int __init_memblock memblock_remove_range(struct memblock_type *type,
699 phys_addr_t base, phys_addr_t size)
701 int start_rgn, end_rgn;
702 int i, ret;
704 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
705 if (ret)
706 return ret;
708 for (i = end_rgn - 1; i >= start_rgn; i--)
709 memblock_remove_region(type, i);
710 return 0;
713 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
715 return memblock_remove_range(&memblock.memory, base, size);
719 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
721 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
722 (unsigned long long)base,
723 (unsigned long long)base + size - 1,
724 (void *)_RET_IP_);
726 kmemleak_free_part(__va(base), size);
727 return memblock_remove_range(&memblock.reserved, base, size);
730 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
732 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
733 (unsigned long long)base,
734 (unsigned long long)base + size - 1,
735 0UL, (void *)_RET_IP_);
737 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
742 * This function isolates region [@base, @base + @size), and sets/clears flag
744 * Return 0 on success, -errno on failure.
746 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
747 phys_addr_t size, int set, int flag)
749 struct memblock_type *type = &memblock.memory;
750 int i, ret, start_rgn, end_rgn;
752 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
753 if (ret)
754 return ret;
756 for (i = start_rgn; i < end_rgn; i++)
757 if (set)
758 memblock_set_region_flags(&type->regions[i], flag);
759 else
760 memblock_clear_region_flags(&type->regions[i], flag);
762 memblock_merge_regions(type);
763 return 0;
767 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
768 * @base: the base phys addr of the region
769 * @size: the size of the region
771 * Return 0 on success, -errno on failure.
773 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
775 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
779 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
780 * @base: the base phys addr of the region
781 * @size: the size of the region
783 * Return 0 on success, -errno on failure.
785 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
787 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
791 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
792 * @base: the base phys addr of the region
793 * @size: the size of the region
795 * Return 0 on success, -errno on failure.
797 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
799 system_has_some_mirror = true;
801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
805 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
806 * @base: the base phys addr of the region
807 * @size: the size of the region
809 * Return 0 on success, -errno on failure.
811 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
813 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
817 * __next_reserved_mem_region - next function for for_each_reserved_region()
818 * @idx: pointer to u64 loop variable
819 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
822 * Iterate over all reserved memory regions.
824 void __init_memblock __next_reserved_mem_region(u64 *idx,
825 phys_addr_t *out_start,
826 phys_addr_t *out_end)
828 struct memblock_type *type = &memblock.reserved;
830 if (*idx < type->cnt) {
831 struct memblock_region *r = &type->regions[*idx];
832 phys_addr_t base = r->base;
833 phys_addr_t size = r->size;
835 if (out_start)
836 *out_start = base;
837 if (out_end)
838 *out_end = base + size - 1;
840 *idx += 1;
841 return;
844 /* signal end of iteration */
845 *idx = ULLONG_MAX;
849 * __next__mem_range - next function for for_each_free_mem_range() etc.
850 * @idx: pointer to u64 loop variable
851 * @nid: node selector, %NUMA_NO_NODE for all nodes
852 * @flags: pick from blocks based on memory attributes
853 * @type_a: pointer to memblock_type from where the range is taken
854 * @type_b: pointer to memblock_type which excludes memory from being taken
855 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857 * @out_nid: ptr to int for nid of the range, can be %NULL
859 * Find the first area from *@idx which matches @nid, fill the out
860 * parameters, and update *@idx for the next iteration. The lower 32bit of
861 * *@idx contains index into type_a and the upper 32bit indexes the
862 * areas before each region in type_b. For example, if type_b regions
863 * look like the following,
865 * 0:[0-16), 1:[32-48), 2:[128-130)
867 * The upper 32bit indexes the following regions.
869 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
871 * As both region arrays are sorted, the function advances the two indices
872 * in lockstep and returns each intersection.
874 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
875 struct memblock_type *type_a,
876 struct memblock_type *type_b,
877 phys_addr_t *out_start,
878 phys_addr_t *out_end, int *out_nid)
880 int idx_a = *idx & 0xffffffff;
881 int idx_b = *idx >> 32;
883 if (WARN_ONCE(nid == MAX_NUMNODES,
884 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
885 nid = NUMA_NO_NODE;
887 for (; idx_a < type_a->cnt; idx_a++) {
888 struct memblock_region *m = &type_a->regions[idx_a];
890 phys_addr_t m_start = m->base;
891 phys_addr_t m_end = m->base + m->size;
892 int m_nid = memblock_get_region_node(m);
894 /* only memory regions are associated with nodes, check it */
895 if (nid != NUMA_NO_NODE && nid != m_nid)
896 continue;
898 /* skip hotpluggable memory regions if needed */
899 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
900 continue;
902 /* if we want mirror memory skip non-mirror memory regions */
903 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
904 continue;
906 /* skip nomap memory unless we were asked for it explicitly */
907 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
908 continue;
910 if (!type_b) {
911 if (out_start)
912 *out_start = m_start;
913 if (out_end)
914 *out_end = m_end;
915 if (out_nid)
916 *out_nid = m_nid;
917 idx_a++;
918 *idx = (u32)idx_a | (u64)idx_b << 32;
919 return;
922 /* scan areas before each reservation */
923 for (; idx_b < type_b->cnt + 1; idx_b++) {
924 struct memblock_region *r;
925 phys_addr_t r_start;
926 phys_addr_t r_end;
928 r = &type_b->regions[idx_b];
929 r_start = idx_b ? r[-1].base + r[-1].size : 0;
930 r_end = idx_b < type_b->cnt ?
931 r->base : ULLONG_MAX;
934 * if idx_b advanced past idx_a,
935 * break out to advance idx_a
937 if (r_start >= m_end)
938 break;
939 /* if the two regions intersect, we're done */
940 if (m_start < r_end) {
941 if (out_start)
942 *out_start =
943 max(m_start, r_start);
944 if (out_end)
945 *out_end = min(m_end, r_end);
946 if (out_nid)
947 *out_nid = m_nid;
949 * The region which ends first is
950 * advanced for the next iteration.
952 if (m_end <= r_end)
953 idx_a++;
954 else
955 idx_b++;
956 *idx = (u32)idx_a | (u64)idx_b << 32;
957 return;
962 /* signal end of iteration */
963 *idx = ULLONG_MAX;
967 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
969 * Finds the next range from type_a which is not marked as unsuitable
970 * in type_b.
972 * @idx: pointer to u64 loop variable
973 * @nid: node selector, %NUMA_NO_NODE for all nodes
974 * @flags: pick from blocks based on memory attributes
975 * @type_a: pointer to memblock_type from where the range is taken
976 * @type_b: pointer to memblock_type which excludes memory from being taken
977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979 * @out_nid: ptr to int for nid of the range, can be %NULL
981 * Reverse of __next_mem_range().
983 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
984 struct memblock_type *type_a,
985 struct memblock_type *type_b,
986 phys_addr_t *out_start,
987 phys_addr_t *out_end, int *out_nid)
989 int idx_a = *idx & 0xffffffff;
990 int idx_b = *idx >> 32;
992 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993 nid = NUMA_NO_NODE;
995 if (*idx == (u64)ULLONG_MAX) {
996 idx_a = type_a->cnt - 1;
997 if (type_b != NULL)
998 idx_b = type_b->cnt;
999 else
1000 idx_b = 0;
1003 for (; idx_a >= 0; idx_a--) {
1004 struct memblock_region *m = &type_a->regions[idx_a];
1006 phys_addr_t m_start = m->base;
1007 phys_addr_t m_end = m->base + m->size;
1008 int m_nid = memblock_get_region_node(m);
1010 /* only memory regions are associated with nodes, check it */
1011 if (nid != NUMA_NO_NODE && nid != m_nid)
1012 continue;
1014 /* skip hotpluggable memory regions if needed */
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1016 continue;
1018 /* if we want mirror memory skip non-mirror memory regions */
1019 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020 continue;
1022 /* skip nomap memory unless we were asked for it explicitly */
1023 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024 continue;
1026 if (!type_b) {
1027 if (out_start)
1028 *out_start = m_start;
1029 if (out_end)
1030 *out_end = m_end;
1031 if (out_nid)
1032 *out_nid = m_nid;
1033 idx_a--;
1034 *idx = (u32)idx_a | (u64)idx_b << 32;
1035 return;
1038 /* scan areas before each reservation */
1039 for (; idx_b >= 0; idx_b--) {
1040 struct memblock_region *r;
1041 phys_addr_t r_start;
1042 phys_addr_t r_end;
1044 r = &type_b->regions[idx_b];
1045 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1046 r_end = idx_b < type_b->cnt ?
1047 r->base : ULLONG_MAX;
1049 * if idx_b advanced past idx_a,
1050 * break out to advance idx_a
1053 if (r_end <= m_start)
1054 break;
1055 /* if the two regions intersect, we're done */
1056 if (m_end > r_start) {
1057 if (out_start)
1058 *out_start = max(m_start, r_start);
1059 if (out_end)
1060 *out_end = min(m_end, r_end);
1061 if (out_nid)
1062 *out_nid = m_nid;
1063 if (m_start >= r_start)
1064 idx_a--;
1065 else
1066 idx_b--;
1067 *idx = (u32)idx_a | (u64)idx_b << 32;
1068 return;
1072 /* signal end of iteration */
1073 *idx = ULLONG_MAX;
1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1078 * Common iterator interface used to define for_each_mem_range().
1080 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1081 unsigned long *out_start_pfn,
1082 unsigned long *out_end_pfn, int *out_nid)
1084 struct memblock_type *type = &memblock.memory;
1085 struct memblock_region *r;
1087 while (++*idx < type->cnt) {
1088 r = &type->regions[*idx];
1090 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1091 continue;
1092 if (nid == MAX_NUMNODES || nid == r->nid)
1093 break;
1095 if (*idx >= type->cnt) {
1096 *idx = -1;
1097 return;
1100 if (out_start_pfn)
1101 *out_start_pfn = PFN_UP(r->base);
1102 if (out_end_pfn)
1103 *out_end_pfn = PFN_DOWN(r->base + r->size);
1104 if (out_nid)
1105 *out_nid = r->nid;
1109 * memblock_set_node - set node ID on memblock regions
1110 * @base: base of area to set node ID for
1111 * @size: size of area to set node ID for
1112 * @type: memblock type to set node ID for
1113 * @nid: node ID to set
1115 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1116 * Regions which cross the area boundaries are split as necessary.
1118 * RETURNS:
1119 * 0 on success, -errno on failure.
1121 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1122 struct memblock_type *type, int nid)
1124 int start_rgn, end_rgn;
1125 int i, ret;
1127 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1128 if (ret)
1129 return ret;
1131 for (i = start_rgn; i < end_rgn; i++)
1132 memblock_set_region_node(&type->regions[i], nid);
1134 memblock_merge_regions(type);
1135 return 0;
1137 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1139 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1140 phys_addr_t align, phys_addr_t start,
1141 phys_addr_t end, int nid, ulong flags)
1143 phys_addr_t found;
1145 if (!align)
1146 align = SMP_CACHE_BYTES;
1148 found = memblock_find_in_range_node(size, align, start, end, nid,
1149 flags);
1150 if (found && !memblock_reserve(found, size)) {
1152 * The min_count is set to 0 so that memblock allocations are
1153 * never reported as leaks.
1155 kmemleak_alloc(__va(found), size, 0, 0);
1156 return found;
1158 return 0;
1161 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1162 phys_addr_t start, phys_addr_t end,
1163 ulong flags)
1165 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1166 flags);
1169 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1170 phys_addr_t align, phys_addr_t max_addr,
1171 int nid, ulong flags)
1173 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1176 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1178 ulong flags = choose_memblock_flags();
1179 phys_addr_t ret;
1181 again:
1182 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1183 nid, flags);
1185 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1186 flags &= ~MEMBLOCK_MIRROR;
1187 goto again;
1189 return ret;
1192 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1194 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1195 MEMBLOCK_NONE);
1198 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1200 phys_addr_t alloc;
1202 alloc = __memblock_alloc_base(size, align, max_addr);
1204 if (alloc == 0)
1205 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1206 (unsigned long long) size, (unsigned long long) max_addr);
1208 return alloc;
1211 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1213 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1216 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1218 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1220 if (res)
1221 return res;
1222 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1226 * memblock_virt_alloc_internal - allocate boot memory block
1227 * @size: size of memory block to be allocated in bytes
1228 * @align: alignment of the region and block's size
1229 * @min_addr: the lower bound of the memory region to allocate (phys address)
1230 * @max_addr: the upper bound of the memory region to allocate (phys address)
1231 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1233 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1234 * will fall back to memory below @min_addr. Also, allocation may fall back
1235 * to any node in the system if the specified node can not
1236 * hold the requested memory.
1238 * The allocation is performed from memory region limited by
1239 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1241 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1243 * The phys address of allocated boot memory block is converted to virtual and
1244 * allocated memory is reset to 0.
1246 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1247 * allocated boot memory block, so that it is never reported as leaks.
1249 * RETURNS:
1250 * Virtual address of allocated memory block on success, NULL on failure.
1252 static void * __init memblock_virt_alloc_internal(
1253 phys_addr_t size, phys_addr_t align,
1254 phys_addr_t min_addr, phys_addr_t max_addr,
1255 int nid)
1257 phys_addr_t alloc;
1258 void *ptr;
1259 ulong flags = choose_memblock_flags();
1261 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1262 nid = NUMA_NO_NODE;
1265 * Detect any accidental use of these APIs after slab is ready, as at
1266 * this moment memblock may be deinitialized already and its
1267 * internal data may be destroyed (after execution of free_all_bootmem)
1269 if (WARN_ON_ONCE(slab_is_available()))
1270 return kzalloc_node(size, GFP_NOWAIT, nid);
1272 if (!align)
1273 align = SMP_CACHE_BYTES;
1275 if (max_addr > memblock.current_limit)
1276 max_addr = memblock.current_limit;
1278 again:
1279 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1280 nid, flags);
1281 if (alloc)
1282 goto done;
1284 if (nid != NUMA_NO_NODE) {
1285 alloc = memblock_find_in_range_node(size, align, min_addr,
1286 max_addr, NUMA_NO_NODE,
1287 flags);
1288 if (alloc)
1289 goto done;
1292 if (min_addr) {
1293 min_addr = 0;
1294 goto again;
1297 if (flags & MEMBLOCK_MIRROR) {
1298 flags &= ~MEMBLOCK_MIRROR;
1299 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1300 &size);
1301 goto again;
1304 return NULL;
1305 done:
1306 memblock_reserve(alloc, size);
1307 ptr = phys_to_virt(alloc);
1308 memset(ptr, 0, size);
1311 * The min_count is set to 0 so that bootmem allocated blocks
1312 * are never reported as leaks. This is because many of these blocks
1313 * are only referred via the physical address which is not
1314 * looked up by kmemleak.
1316 kmemleak_alloc(ptr, size, 0, 0);
1318 return ptr;
1322 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1323 * @size: size of memory block to be allocated in bytes
1324 * @align: alignment of the region and block's size
1325 * @min_addr: the lower bound of the memory region from where the allocation
1326 * is preferred (phys address)
1327 * @max_addr: the upper bound of the memory region from where the allocation
1328 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1329 * allocate only from memory limited by memblock.current_limit value
1330 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1332 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1333 * additional debug information (including caller info), if enabled.
1335 * RETURNS:
1336 * Virtual address of allocated memory block on success, NULL on failure.
1338 void * __init memblock_virt_alloc_try_nid_nopanic(
1339 phys_addr_t size, phys_addr_t align,
1340 phys_addr_t min_addr, phys_addr_t max_addr,
1341 int nid)
1343 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1344 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1345 (u64)max_addr, (void *)_RET_IP_);
1346 return memblock_virt_alloc_internal(size, align, min_addr,
1347 max_addr, nid);
1351 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1352 * @size: size of memory block to be allocated in bytes
1353 * @align: alignment of the region and block's size
1354 * @min_addr: the lower bound of the memory region from where the allocation
1355 * is preferred (phys address)
1356 * @max_addr: the upper bound of the memory region from where the allocation
1357 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358 * allocate only from memory limited by memblock.current_limit value
1359 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1361 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1362 * which provides debug information (including caller info), if enabled,
1363 * and panics if the request can not be satisfied.
1365 * RETURNS:
1366 * Virtual address of allocated memory block on success, NULL on failure.
1368 void * __init memblock_virt_alloc_try_nid(
1369 phys_addr_t size, phys_addr_t align,
1370 phys_addr_t min_addr, phys_addr_t max_addr,
1371 int nid)
1373 void *ptr;
1375 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1376 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1377 (u64)max_addr, (void *)_RET_IP_);
1378 ptr = memblock_virt_alloc_internal(size, align,
1379 min_addr, max_addr, nid);
1380 if (ptr)
1381 return ptr;
1383 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1384 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1385 (u64)max_addr);
1386 return NULL;
1390 * __memblock_free_early - free boot memory block
1391 * @base: phys starting address of the boot memory block
1392 * @size: size of the boot memory block in bytes
1394 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1395 * The freeing memory will not be released to the buddy allocator.
1397 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1399 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1400 __func__, (u64)base, (u64)base + size - 1,
1401 (void *)_RET_IP_);
1402 kmemleak_free_part(__va(base), size);
1403 memblock_remove_range(&memblock.reserved, base, size);
1407 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1408 * @addr: phys starting address of the boot memory block
1409 * @size: size of the boot memory block in bytes
1411 * This is only useful when the bootmem allocator has already been torn
1412 * down, but we are still initializing the system. Pages are released directly
1413 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1415 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1417 u64 cursor, end;
1419 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1420 __func__, (u64)base, (u64)base + size - 1,
1421 (void *)_RET_IP_);
1422 kmemleak_free_part(__va(base), size);
1423 cursor = PFN_UP(base);
1424 end = PFN_DOWN(base + size);
1426 for (; cursor < end; cursor++) {
1427 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1428 totalram_pages++;
1433 * Remaining API functions
1436 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1438 return memblock.memory.total_size;
1441 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1443 unsigned long pages = 0;
1444 struct memblock_region *r;
1445 unsigned long start_pfn, end_pfn;
1447 for_each_memblock(memory, r) {
1448 start_pfn = memblock_region_memory_base_pfn(r);
1449 end_pfn = memblock_region_memory_end_pfn(r);
1450 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1451 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1452 pages += end_pfn - start_pfn;
1455 return PFN_PHYS(pages);
1458 /* lowest address */
1459 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1461 return memblock.memory.regions[0].base;
1464 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1466 int idx = memblock.memory.cnt - 1;
1468 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1471 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1473 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1474 struct memblock_region *r;
1477 * translate the memory @limit size into the max address within one of
1478 * the memory memblock regions, if the @limit exceeds the total size
1479 * of those regions, max_addr will keep original value ULLONG_MAX
1481 for_each_memblock(memory, r) {
1482 if (limit <= r->size) {
1483 max_addr = r->base + limit;
1484 break;
1486 limit -= r->size;
1489 return max_addr;
1492 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1494 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1496 if (!limit)
1497 return;
1499 max_addr = __find_max_addr(limit);
1501 /* @limit exceeds the total size of the memory, do nothing */
1502 if (max_addr == (phys_addr_t)ULLONG_MAX)
1503 return;
1505 /* truncate both memory and reserved regions */
1506 memblock_remove_range(&memblock.memory, max_addr,
1507 (phys_addr_t)ULLONG_MAX);
1508 memblock_remove_range(&memblock.reserved, max_addr,
1509 (phys_addr_t)ULLONG_MAX);
1512 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1514 struct memblock_type *type = &memblock.memory;
1515 phys_addr_t max_addr;
1516 int i, ret, start_rgn, end_rgn;
1518 if (!limit)
1519 return;
1521 max_addr = __find_max_addr(limit);
1523 /* @limit exceeds the total size of the memory, do nothing */
1524 if (max_addr == (phys_addr_t)ULLONG_MAX)
1525 return;
1527 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1528 &start_rgn, &end_rgn);
1529 if (ret)
1530 return;
1532 /* remove all the MAP regions above the limit */
1533 for (i = end_rgn - 1; i >= start_rgn; i--) {
1534 if (!memblock_is_nomap(&type->regions[i]))
1535 memblock_remove_region(type, i);
1537 /* truncate the reserved regions */
1538 memblock_remove_range(&memblock.reserved, max_addr,
1539 (phys_addr_t)ULLONG_MAX);
1542 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1544 unsigned int left = 0, right = type->cnt;
1546 do {
1547 unsigned int mid = (right + left) / 2;
1549 if (addr < type->regions[mid].base)
1550 right = mid;
1551 else if (addr >= (type->regions[mid].base +
1552 type->regions[mid].size))
1553 left = mid + 1;
1554 else
1555 return mid;
1556 } while (left < right);
1557 return -1;
1560 bool __init memblock_is_reserved(phys_addr_t addr)
1562 return memblock_search(&memblock.reserved, addr) != -1;
1565 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1567 return memblock_search(&memblock.memory, addr) != -1;
1570 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1572 int i = memblock_search(&memblock.memory, addr);
1574 if (i == -1)
1575 return false;
1576 return !memblock_is_nomap(&memblock.memory.regions[i]);
1579 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1580 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1581 unsigned long *start_pfn, unsigned long *end_pfn)
1583 struct memblock_type *type = &memblock.memory;
1584 int mid = memblock_search(type, PFN_PHYS(pfn));
1586 if (mid == -1)
1587 return -1;
1589 *start_pfn = PFN_DOWN(type->regions[mid].base);
1590 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1592 return type->regions[mid].nid;
1594 #endif
1597 * memblock_is_region_memory - check if a region is a subset of memory
1598 * @base: base of region to check
1599 * @size: size of region to check
1601 * Check if the region [@base, @base+@size) is a subset of a memory block.
1603 * RETURNS:
1604 * 0 if false, non-zero if true
1606 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1608 int idx = memblock_search(&memblock.memory, base);
1609 phys_addr_t end = base + memblock_cap_size(base, &size);
1611 if (idx == -1)
1612 return 0;
1613 return memblock.memory.regions[idx].base <= base &&
1614 (memblock.memory.regions[idx].base +
1615 memblock.memory.regions[idx].size) >= end;
1619 * memblock_is_region_reserved - check if a region intersects reserved memory
1620 * @base: base of region to check
1621 * @size: size of region to check
1623 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1625 * RETURNS:
1626 * True if they intersect, false if not.
1628 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1630 memblock_cap_size(base, &size);
1631 return memblock_overlaps_region(&memblock.reserved, base, size);
1634 void __init_memblock memblock_trim_memory(phys_addr_t align)
1636 phys_addr_t start, end, orig_start, orig_end;
1637 struct memblock_region *r;
1639 for_each_memblock(memory, r) {
1640 orig_start = r->base;
1641 orig_end = r->base + r->size;
1642 start = round_up(orig_start, align);
1643 end = round_down(orig_end, align);
1645 if (start == orig_start && end == orig_end)
1646 continue;
1648 if (start < end) {
1649 r->base = start;
1650 r->size = end - start;
1651 } else {
1652 memblock_remove_region(&memblock.memory,
1653 r - memblock.memory.regions);
1654 r--;
1659 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1661 memblock.current_limit = limit;
1664 phys_addr_t __init_memblock memblock_get_current_limit(void)
1666 return memblock.current_limit;
1669 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1671 unsigned long long base, size;
1672 unsigned long flags;
1673 int idx;
1674 struct memblock_region *rgn;
1676 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1678 for_each_memblock_type(type, rgn) {
1679 char nid_buf[32] = "";
1681 base = rgn->base;
1682 size = rgn->size;
1683 flags = rgn->flags;
1684 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1685 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1686 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1687 memblock_get_region_node(rgn));
1688 #endif
1689 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1690 name, idx, base, base + size - 1, size, nid_buf, flags);
1694 void __init_memblock __memblock_dump_all(void)
1696 pr_info("MEMBLOCK configuration:\n");
1697 pr_info(" memory size = %#llx reserved size = %#llx\n",
1698 (unsigned long long)memblock.memory.total_size,
1699 (unsigned long long)memblock.reserved.total_size);
1701 memblock_dump(&memblock.memory, "memory");
1702 memblock_dump(&memblock.reserved, "reserved");
1705 void __init memblock_allow_resize(void)
1707 memblock_can_resize = 1;
1710 static int __init early_memblock(char *p)
1712 if (p && strstr(p, "debug"))
1713 memblock_debug = 1;
1714 return 0;
1716 early_param("memblock", early_memblock);
1718 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1720 static int memblock_debug_show(struct seq_file *m, void *private)
1722 struct memblock_type *type = m->private;
1723 struct memblock_region *reg;
1724 int i;
1726 for (i = 0; i < type->cnt; i++) {
1727 reg = &type->regions[i];
1728 seq_printf(m, "%4d: ", i);
1729 if (sizeof(phys_addr_t) == 4)
1730 seq_printf(m, "0x%08lx..0x%08lx\n",
1731 (unsigned long)reg->base,
1732 (unsigned long)(reg->base + reg->size - 1));
1733 else
1734 seq_printf(m, "0x%016llx..0x%016llx\n",
1735 (unsigned long long)reg->base,
1736 (unsigned long long)(reg->base + reg->size - 1));
1739 return 0;
1742 static int memblock_debug_open(struct inode *inode, struct file *file)
1744 return single_open(file, memblock_debug_show, inode->i_private);
1747 static const struct file_operations memblock_debug_fops = {
1748 .open = memblock_debug_open,
1749 .read = seq_read,
1750 .llseek = seq_lseek,
1751 .release = single_release,
1754 static int __init memblock_init_debugfs(void)
1756 struct dentry *root = debugfs_create_dir("memblock", NULL);
1757 if (!root)
1758 return -ENXIO;
1759 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1760 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1761 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1762 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1763 #endif
1765 return 0;
1767 __initcall(memblock_init_debugfs);
1769 #endif /* CONFIG_DEBUG_FS */