2 * Copyright(c) 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
56 * rvt_driver_mr_init - Init MR resources per driver
57 * @rdi: rvt dev struct
59 * Do any intilization needed when a driver registers with rdmavt.
61 * Return: 0 on success or errno on failure
63 int rvt_driver_mr_init(struct rvt_dev_info
*rdi
)
65 unsigned int lkey_table_size
= rdi
->dparms
.lkey_table_size
;
70 * The top hfi1_lkey_table_size bits are used to index the
71 * table. The lower 8 bits can be owned by the user (copied from
72 * the LKEY). The remaining bits act as a generation number or tag.
77 spin_lock_init(&rdi
->lkey_table
.lock
);
79 /* ensure generation is at least 4 bits */
80 if (lkey_table_size
> RVT_MAX_LKEY_TABLE_BITS
) {
81 rvt_pr_warn(rdi
, "lkey bits %u too large, reduced to %u\n",
82 lkey_table_size
, RVT_MAX_LKEY_TABLE_BITS
);
83 rdi
->dparms
.lkey_table_size
= RVT_MAX_LKEY_TABLE_BITS
;
84 lkey_table_size
= rdi
->dparms
.lkey_table_size
;
86 rdi
->lkey_table
.max
= 1 << lkey_table_size
;
87 lk_tab_size
= rdi
->lkey_table
.max
* sizeof(*rdi
->lkey_table
.table
);
88 rdi
->lkey_table
.table
= (struct rvt_mregion __rcu
**)
89 vmalloc_node(lk_tab_size
, rdi
->dparms
.node
);
90 if (!rdi
->lkey_table
.table
)
93 RCU_INIT_POINTER(rdi
->dma_mr
, NULL
);
94 for (i
= 0; i
< rdi
->lkey_table
.max
; i
++)
95 RCU_INIT_POINTER(rdi
->lkey_table
.table
[i
], NULL
);
101 *rvt_mr_exit: clean up MR
102 *@rdi: rvt dev structure
104 * called when drivers have unregistered or perhaps failed to register with us
106 void rvt_mr_exit(struct rvt_dev_info
*rdi
)
109 rvt_pr_err(rdi
, "DMA MR not null!\n");
111 vfree(rdi
->lkey_table
.table
);
114 static void rvt_deinit_mregion(struct rvt_mregion
*mr
)
123 static int rvt_init_mregion(struct rvt_mregion
*mr
, struct ib_pd
*pd
,
129 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
131 mr
->map
[i
] = kzalloc(sizeof(*mr
->map
[0]), GFP_KERNEL
);
133 rvt_deinit_mregion(mr
);
138 init_completion(&mr
->comp
);
139 /* count returning the ptr to user */
140 atomic_set(&mr
->refcount
, 1);
142 mr
->max_segs
= count
;
147 * rvt_alloc_lkey - allocate an lkey
148 * @mr: memory region that this lkey protects
149 * @dma_region: 0->normal key, 1->restricted DMA key
151 * Returns 0 if successful, otherwise returns -errno.
153 * Increments mr reference count as required.
155 * Sets the lkey field mr for non-dma regions.
158 static int rvt_alloc_lkey(struct rvt_mregion
*mr
, int dma_region
)
164 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
165 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
168 spin_lock_irqsave(&rkt
->lock
, flags
);
170 /* special case for dma_mr lkey == 0 */
172 struct rvt_mregion
*tmr
;
174 tmr
= rcu_access_pointer(dev
->dma_mr
);
176 rcu_assign_pointer(dev
->dma_mr
, mr
);
177 mr
->lkey_published
= 1;
184 /* Find the next available LKEY */
188 if (!rcu_access_pointer(rkt
->table
[r
]))
190 r
= (r
+ 1) & (rkt
->max
- 1);
194 rkt
->next
= (r
+ 1) & (rkt
->max
- 1);
196 * Make sure lkey is never zero which is reserved to indicate an
201 * bits are capped to ensure enough bits for generation number
203 mr
->lkey
= (r
<< (32 - dev
->dparms
.lkey_table_size
)) |
204 ((((1 << (24 - dev
->dparms
.lkey_table_size
)) - 1) & rkt
->gen
)
210 rcu_assign_pointer(rkt
->table
[r
], mr
);
211 mr
->lkey_published
= 1;
213 spin_unlock_irqrestore(&rkt
->lock
, flags
);
218 spin_unlock_irqrestore(&rkt
->lock
, flags
);
224 * rvt_free_lkey - free an lkey
225 * @mr: mr to free from tables
227 static void rvt_free_lkey(struct rvt_mregion
*mr
)
232 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
233 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
236 spin_lock_irqsave(&rkt
->lock
, flags
);
237 if (!mr
->lkey_published
)
240 RCU_INIT_POINTER(dev
->dma_mr
, NULL
);
242 r
= lkey
>> (32 - dev
->dparms
.lkey_table_size
);
243 RCU_INIT_POINTER(rkt
->table
[r
], NULL
);
245 mr
->lkey_published
= 0;
248 spin_unlock_irqrestore(&rkt
->lock
, flags
);
255 static struct rvt_mr
*__rvt_alloc_mr(int count
, struct ib_pd
*pd
)
261 /* Allocate struct plus pointers to first level page tables. */
262 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
263 mr
= kzalloc(sizeof(*mr
) + m
* sizeof(mr
->mr
.map
[0]), GFP_KERNEL
);
267 rval
= rvt_init_mregion(&mr
->mr
, pd
, count
);
271 * ib_reg_phys_mr() will initialize mr->ibmr except for
274 rval
= rvt_alloc_lkey(&mr
->mr
, 0);
277 mr
->ibmr
.lkey
= mr
->mr
.lkey
;
278 mr
->ibmr
.rkey
= mr
->mr
.lkey
;
283 rvt_deinit_mregion(&mr
->mr
);
290 static void __rvt_free_mr(struct rvt_mr
*mr
)
292 rvt_deinit_mregion(&mr
->mr
);
293 rvt_free_lkey(&mr
->mr
);
298 * rvt_get_dma_mr - get a DMA memory region
299 * @pd: protection domain for this memory region
302 * Return: the memory region on success, otherwise returns an errno.
303 * Note that all DMA addresses should be created via the
304 * struct ib_dma_mapping_ops functions (see dma.c).
306 struct ib_mr
*rvt_get_dma_mr(struct ib_pd
*pd
, int acc
)
312 if (ibpd_to_rvtpd(pd
)->user
)
313 return ERR_PTR(-EPERM
);
315 mr
= kzalloc(sizeof(*mr
), GFP_KERNEL
);
317 ret
= ERR_PTR(-ENOMEM
);
321 rval
= rvt_init_mregion(&mr
->mr
, pd
, 0);
327 rval
= rvt_alloc_lkey(&mr
->mr
, 1);
333 mr
->mr
.access_flags
= acc
;
339 rvt_deinit_mregion(&mr
->mr
);
346 * rvt_reg_user_mr - register a userspace memory region
347 * @pd: protection domain for this memory region
348 * @start: starting userspace address
349 * @length: length of region to register
350 * @mr_access_flags: access flags for this memory region
351 * @udata: unused by the driver
353 * Return: the memory region on success, otherwise returns an errno.
355 struct ib_mr
*rvt_reg_user_mr(struct ib_pd
*pd
, u64 start
, u64 length
,
356 u64 virt_addr
, int mr_access_flags
,
357 struct ib_udata
*udata
)
360 struct ib_umem
*umem
;
361 struct scatterlist
*sg
;
366 return ERR_PTR(-EINVAL
);
368 umem
= ib_umem_get(pd
->uobject
->context
, start
, length
,
375 mr
= __rvt_alloc_mr(n
, pd
);
377 ret
= (struct ib_mr
*)mr
;
381 mr
->mr
.user_base
= start
;
382 mr
->mr
.iova
= virt_addr
;
383 mr
->mr
.length
= length
;
384 mr
->mr
.offset
= ib_umem_offset(umem
);
385 mr
->mr
.access_flags
= mr_access_flags
;
388 if (is_power_of_2(umem
->page_size
))
389 mr
->mr
.page_shift
= ilog2(umem
->page_size
);
392 for_each_sg(umem
->sg_head
.sgl
, sg
, umem
->nmap
, entry
) {
395 vaddr
= page_address(sg_page(sg
));
397 ret
= ERR_PTR(-EINVAL
);
400 mr
->mr
.map
[m
]->segs
[n
].vaddr
= vaddr
;
401 mr
->mr
.map
[m
]->segs
[n
].length
= umem
->page_size
;
403 if (n
== RVT_SEGSZ
) {
414 ib_umem_release(umem
);
420 * rvt_dereg_mr - unregister and free a memory region
421 * @ibmr: the memory region to free
424 * Note that this is called to free MRs created by rvt_get_dma_mr()
425 * or rvt_reg_user_mr().
427 * Returns 0 on success.
429 int rvt_dereg_mr(struct ib_mr
*ibmr
)
431 struct rvt_mr
*mr
= to_imr(ibmr
);
432 struct rvt_dev_info
*rdi
= ib_to_rvt(ibmr
->pd
->device
);
434 unsigned long timeout
;
436 rvt_free_lkey(&mr
->mr
);
438 rvt_put_mr(&mr
->mr
); /* will set completion if last */
439 timeout
= wait_for_completion_timeout(&mr
->mr
.comp
, 5 * HZ
);
442 "rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
443 mr
, mr
->mr
.pd
, atomic_read(&mr
->mr
.refcount
));
448 rvt_deinit_mregion(&mr
->mr
);
450 ib_umem_release(mr
->umem
);
457 * rvt_alloc_mr - Allocate a memory region usable with the
458 * @pd: protection domain for this memory region
459 * @mr_type: mem region type
460 * @max_num_sg: Max number of segments allowed
462 * Return: the memory region on success, otherwise return an errno.
464 struct ib_mr
*rvt_alloc_mr(struct ib_pd
*pd
,
465 enum ib_mr_type mr_type
,
470 if (mr_type
!= IB_MR_TYPE_MEM_REG
)
471 return ERR_PTR(-EINVAL
);
473 mr
= __rvt_alloc_mr(max_num_sg
, pd
);
475 return (struct ib_mr
*)mr
;
481 * rvt_alloc_fmr - allocate a fast memory region
482 * @pd: the protection domain for this memory region
483 * @mr_access_flags: access flags for this memory region
484 * @fmr_attr: fast memory region attributes
486 * Return: the memory region on success, otherwise returns an errno.
488 struct ib_fmr
*rvt_alloc_fmr(struct ib_pd
*pd
, int mr_access_flags
,
489 struct ib_fmr_attr
*fmr_attr
)
496 /* Allocate struct plus pointers to first level page tables. */
497 m
= (fmr_attr
->max_pages
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
498 fmr
= kzalloc(sizeof(*fmr
) + m
* sizeof(fmr
->mr
.map
[0]), GFP_KERNEL
);
502 rval
= rvt_init_mregion(&fmr
->mr
, pd
, fmr_attr
->max_pages
);
507 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
510 rval
= rvt_alloc_lkey(&fmr
->mr
, 0);
513 fmr
->ibfmr
.rkey
= fmr
->mr
.lkey
;
514 fmr
->ibfmr
.lkey
= fmr
->mr
.lkey
;
516 * Resources are allocated but no valid mapping (RKEY can't be
519 fmr
->mr
.access_flags
= mr_access_flags
;
520 fmr
->mr
.max_segs
= fmr_attr
->max_pages
;
521 fmr
->mr
.page_shift
= fmr_attr
->page_shift
;
528 rvt_deinit_mregion(&fmr
->mr
);
536 * rvt_map_phys_fmr - set up a fast memory region
537 * @ibmfr: the fast memory region to set up
538 * @page_list: the list of pages to associate with the fast memory region
539 * @list_len: the number of pages to associate with the fast memory region
540 * @iova: the virtual address of the start of the fast memory region
542 * This may be called from interrupt context.
544 * Return: 0 on success
547 int rvt_map_phys_fmr(struct ib_fmr
*ibfmr
, u64
*page_list
,
548 int list_len
, u64 iova
)
550 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
551 struct rvt_lkey_table
*rkt
;
555 struct rvt_dev_info
*rdi
= ib_to_rvt(ibfmr
->device
);
557 i
= atomic_read(&fmr
->mr
.refcount
);
561 if (list_len
> fmr
->mr
.max_segs
)
564 rkt
= &rdi
->lkey_table
;
565 spin_lock_irqsave(&rkt
->lock
, flags
);
566 fmr
->mr
.user_base
= iova
;
568 ps
= 1 << fmr
->mr
.page_shift
;
569 fmr
->mr
.length
= list_len
* ps
;
572 for (i
= 0; i
< list_len
; i
++) {
573 fmr
->mr
.map
[m
]->segs
[n
].vaddr
= (void *)page_list
[i
];
574 fmr
->mr
.map
[m
]->segs
[n
].length
= ps
;
575 if (++n
== RVT_SEGSZ
) {
580 spin_unlock_irqrestore(&rkt
->lock
, flags
);
585 * rvt_unmap_fmr - unmap fast memory regions
586 * @fmr_list: the list of fast memory regions to unmap
588 * Return: 0 on success.
590 int rvt_unmap_fmr(struct list_head
*fmr_list
)
593 struct rvt_lkey_table
*rkt
;
595 struct rvt_dev_info
*rdi
;
597 list_for_each_entry(fmr
, fmr_list
, ibfmr
.list
) {
598 rdi
= ib_to_rvt(fmr
->ibfmr
.device
);
599 rkt
= &rdi
->lkey_table
;
600 spin_lock_irqsave(&rkt
->lock
, flags
);
601 fmr
->mr
.user_base
= 0;
604 spin_unlock_irqrestore(&rkt
->lock
, flags
);
610 * rvt_dealloc_fmr - deallocate a fast memory region
611 * @ibfmr: the fast memory region to deallocate
613 * Return: 0 on success.
615 int rvt_dealloc_fmr(struct ib_fmr
*ibfmr
)
617 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
619 unsigned long timeout
;
621 rvt_free_lkey(&fmr
->mr
);
622 rvt_put_mr(&fmr
->mr
); /* will set completion if last */
623 timeout
= wait_for_completion_timeout(&fmr
->mr
.comp
, 5 * HZ
);
625 rvt_get_mr(&fmr
->mr
);
629 rvt_deinit_mregion(&fmr
->mr
);
636 * rvt_lkey_ok - check IB SGE for validity and initialize
637 * @rkt: table containing lkey to check SGE against
638 * @pd: protection domain
639 * @isge: outgoing internal SGE
643 * Check the IB SGE for validity and initialize our internal version
646 * Return: 1 if valid and successful, otherwise returns 0.
648 * increments the reference count upon success
651 int rvt_lkey_ok(struct rvt_lkey_table
*rkt
, struct rvt_pd
*pd
,
652 struct rvt_sge
*isge
, struct ib_sge
*sge
, int acc
)
654 struct rvt_mregion
*mr
;
657 struct rvt_dev_info
*dev
= ib_to_rvt(pd
->ibpd
.device
);
660 * We use LKEY == zero for kernel virtual addresses
661 * (see rvt_get_dma_mr and dma.c).
664 if (sge
->lkey
== 0) {
667 mr
= rcu_dereference(dev
->dma_mr
);
670 atomic_inc(&mr
->refcount
);
674 isge
->vaddr
= (void *)sge
->addr
;
675 isge
->length
= sge
->length
;
676 isge
->sge_length
= sge
->length
;
681 mr
= rcu_dereference(
682 rkt
->table
[(sge
->lkey
>> (32 - dev
->dparms
.lkey_table_size
))]);
683 if (unlikely(!mr
|| mr
->lkey
!= sge
->lkey
|| mr
->pd
!= &pd
->ibpd
))
686 off
= sge
->addr
- mr
->user_base
;
687 if (unlikely(sge
->addr
< mr
->user_base
||
688 off
+ sge
->length
> mr
->length
||
689 (mr
->access_flags
& acc
) != acc
))
691 atomic_inc(&mr
->refcount
);
695 if (mr
->page_shift
) {
697 * page sizes are uniform power of 2 so no loop is necessary
698 * entries_spanned_by_off is the number of times the loop below
699 * would have executed.
701 size_t entries_spanned_by_off
;
703 entries_spanned_by_off
= off
>> mr
->page_shift
;
704 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
705 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
706 n
= entries_spanned_by_off
% RVT_SEGSZ
;
710 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
711 off
-= mr
->map
[m
]->segs
[n
].length
;
713 if (n
>= RVT_SEGSZ
) {
720 isge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
721 isge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
722 isge
->sge_length
= sge
->length
;
731 EXPORT_SYMBOL(rvt_lkey_ok
);
734 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
735 * @qp: qp for validation
737 * @len: length of data
738 * @vaddr: virtual address to place data
739 * @rkey: rkey to check
742 * Return: 1 if successful, otherwise 0.
744 * increments the reference count upon success
746 int rvt_rkey_ok(struct rvt_qp
*qp
, struct rvt_sge
*sge
,
747 u32 len
, u64 vaddr
, u32 rkey
, int acc
)
749 struct rvt_dev_info
*dev
= ib_to_rvt(qp
->ibqp
.device
);
750 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
751 struct rvt_mregion
*mr
;
756 * We use RKEY == zero for kernel virtual addresses
757 * (see rvt_get_dma_mr and dma.c).
761 struct rvt_pd
*pd
= ibpd_to_rvtpd(qp
->ibqp
.pd
);
762 struct rvt_dev_info
*rdi
= ib_to_rvt(pd
->ibpd
.device
);
766 mr
= rcu_dereference(rdi
->dma_mr
);
769 atomic_inc(&mr
->refcount
);
773 sge
->vaddr
= (void *)vaddr
;
775 sge
->sge_length
= len
;
781 mr
= rcu_dereference(
782 rkt
->table
[(rkey
>> (32 - dev
->dparms
.lkey_table_size
))]);
783 if (unlikely(!mr
|| mr
->lkey
!= rkey
|| qp
->ibqp
.pd
!= mr
->pd
))
786 off
= vaddr
- mr
->iova
;
787 if (unlikely(vaddr
< mr
->iova
|| off
+ len
> mr
->length
||
788 (mr
->access_flags
& acc
) == 0))
790 atomic_inc(&mr
->refcount
);
794 if (mr
->page_shift
) {
796 * page sizes are uniform power of 2 so no loop is necessary
797 * entries_spanned_by_off is the number of times the loop below
798 * would have executed.
800 size_t entries_spanned_by_off
;
802 entries_spanned_by_off
= off
>> mr
->page_shift
;
803 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
804 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
805 n
= entries_spanned_by_off
% RVT_SEGSZ
;
809 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
810 off
-= mr
->map
[m
]->segs
[n
].length
;
812 if (n
>= RVT_SEGSZ
) {
819 sge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
820 sge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
821 sge
->sge_length
= len
;
830 EXPORT_SYMBOL(rvt_rkey_ok
);