1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
35 struct madvise_walk_private
{
36 struct mmu_gather
*tlb
;
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
45 static int madvise_need_mmap_write(int behavior
)
56 /* be safe, default to 1. list exceptions explicitly */
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
65 static long madvise_behavior(struct vm_area_struct
*vma
,
66 struct vm_area_struct
**prev
,
67 unsigned long start
, unsigned long end
, int behavior
)
69 struct mm_struct
*mm
= vma
->vm_mm
;
72 unsigned long new_flags
= vma
->vm_flags
;
76 new_flags
= new_flags
& ~VM_RAND_READ
& ~VM_SEQ_READ
;
79 new_flags
= (new_flags
& ~VM_RAND_READ
) | VM_SEQ_READ
;
82 new_flags
= (new_flags
& ~VM_SEQ_READ
) | VM_RAND_READ
;
85 new_flags
|= VM_DONTCOPY
;
88 if (vma
->vm_flags
& VM_IO
) {
92 new_flags
&= ~VM_DONTCOPY
;
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma
->vm_file
|| vma
->vm_flags
& VM_SHARED
) {
100 new_flags
|= VM_WIPEONFORK
;
102 case MADV_KEEPONFORK
:
103 new_flags
&= ~VM_WIPEONFORK
;
106 new_flags
|= VM_DONTDUMP
;
109 if (!is_vm_hugetlb_page(vma
) && new_flags
& VM_SPECIAL
) {
113 new_flags
&= ~VM_DONTDUMP
;
116 case MADV_UNMERGEABLE
:
117 error
= ksm_madvise(vma
, start
, end
, behavior
, &new_flags
);
119 goto out_convert_errno
;
122 case MADV_NOHUGEPAGE
:
123 error
= hugepage_madvise(vma
, &new_flags
, behavior
);
125 goto out_convert_errno
;
129 if (new_flags
== vma
->vm_flags
) {
134 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
135 *prev
= vma_merge(mm
, *prev
, start
, end
, new_flags
, vma
->anon_vma
,
136 vma
->vm_file
, pgoff
, vma_policy(vma
),
137 vma
->vm_userfaultfd_ctx
);
145 if (start
!= vma
->vm_start
) {
146 if (unlikely(mm
->map_count
>= sysctl_max_map_count
)) {
150 error
= __split_vma(mm
, vma
, start
, 1);
152 goto out_convert_errno
;
155 if (end
!= vma
->vm_end
) {
156 if (unlikely(mm
->map_count
>= sysctl_max_map_count
)) {
160 error
= __split_vma(mm
, vma
, end
, 0);
162 goto out_convert_errno
;
167 * vm_flags is protected by the mmap_sem held in write mode.
169 vma
->vm_flags
= new_flags
;
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
176 if (error
== -ENOMEM
)
183 static int swapin_walk_pmd_entry(pmd_t
*pmd
, unsigned long start
,
184 unsigned long end
, struct mm_walk
*walk
)
187 struct vm_area_struct
*vma
= walk
->private;
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
193 for (index
= start
; index
!= end
; index
+= PAGE_SIZE
) {
199 orig_pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, start
, &ptl
);
200 pte
= *(orig_pte
+ ((index
- start
) / PAGE_SIZE
));
201 pte_unmap_unlock(orig_pte
, ptl
);
203 if (pte_present(pte
) || pte_none(pte
))
205 entry
= pte_to_swp_entry(pte
);
206 if (unlikely(non_swap_entry(entry
)))
209 page
= read_swap_cache_async(entry
, GFP_HIGHUSER_MOVABLE
,
218 static const struct mm_walk_ops swapin_walk_ops
= {
219 .pmd_entry
= swapin_walk_pmd_entry
,
222 static void force_shm_swapin_readahead(struct vm_area_struct
*vma
,
223 unsigned long start
, unsigned long end
,
224 struct address_space
*mapping
)
230 for (; start
< end
; start
+= PAGE_SIZE
) {
231 index
= ((start
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
233 page
= find_get_entry(mapping
, index
);
234 if (!xa_is_value(page
)) {
239 swap
= radix_to_swp_entry(page
);
240 page
= read_swap_cache_async(swap
, GFP_HIGHUSER_MOVABLE
,
246 lru_add_drain(); /* Push any new pages onto the LRU now */
248 #endif /* CONFIG_SWAP */
251 * Schedule all required I/O operations. Do not wait for completion.
253 static long madvise_willneed(struct vm_area_struct
*vma
,
254 struct vm_area_struct
**prev
,
255 unsigned long start
, unsigned long end
)
257 struct file
*file
= vma
->vm_file
;
263 walk_page_range(vma
->vm_mm
, start
, end
, &swapin_walk_ops
, vma
);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
268 if (shmem_mapping(file
->f_mapping
)) {
269 force_shm_swapin_readahead(vma
, start
, end
,
278 if (IS_DAX(file_inode(file
))) {
279 /* no bad return value, but ignore advice */
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
289 *prev
= NULL
; /* tell sys_madvise we drop mmap_sem */
291 up_read(¤t
->mm
->mmap_sem
);
292 offset
= (loff_t
)(start
- vma
->vm_start
)
293 + ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
294 vfs_fadvise(file
, offset
, end
- start
, POSIX_FADV_WILLNEED
);
296 down_read(¤t
->mm
->mmap_sem
);
300 static int madvise_cold_or_pageout_pte_range(pmd_t
*pmd
,
301 unsigned long addr
, unsigned long end
,
302 struct mm_walk
*walk
)
304 struct madvise_walk_private
*private = walk
->private;
305 struct mmu_gather
*tlb
= private->tlb
;
306 bool pageout
= private->pageout
;
307 struct mm_struct
*mm
= tlb
->mm
;
308 struct vm_area_struct
*vma
= walk
->vma
;
309 pte_t
*orig_pte
, *pte
, ptent
;
311 struct page
*page
= NULL
;
312 LIST_HEAD(page_list
);
314 if (fatal_signal_pending(current
))
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd
)) {
320 unsigned long next
= pmd_addr_end(addr
, end
);
322 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
323 ptl
= pmd_trans_huge_lock(pmd
, vma
);
328 if (is_huge_zero_pmd(orig_pmd
))
331 if (unlikely(!pmd_present(orig_pmd
))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd
));
337 page
= pmd_page(orig_pmd
);
338 if (next
- addr
!= HPAGE_PMD_SIZE
) {
341 if (page_mapcount(page
) != 1)
347 err
= split_huge_page(page
);
355 if (pmd_young(orig_pmd
)) {
356 pmdp_invalidate(vma
, addr
, pmd
);
357 orig_pmd
= pmd_mkold(orig_pmd
);
359 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
360 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
363 ClearPageReferenced(page
);
364 test_and_clear_page_young(page
);
366 if (!isolate_lru_page(page
))
367 list_add(&page
->lru
, &page_list
);
369 deactivate_page(page
);
373 reclaim_pages(&page_list
);
377 if (pmd_trans_unstable(pmd
))
381 tlb_change_page_size(tlb
, PAGE_SIZE
);
382 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
383 flush_tlb_batched_pending(mm
);
384 arch_enter_lazy_mmu_mode();
385 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
391 if (!pte_present(ptent
))
394 page
= vm_normal_page(vma
, addr
, ptent
);
399 * Creating a THP page is expensive so split it only if we
400 * are sure it's worth. Split it if we are only owner.
402 if (PageTransCompound(page
)) {
403 if (page_mapcount(page
) != 1)
406 if (!trylock_page(page
)) {
410 pte_unmap_unlock(orig_pte
, ptl
);
411 if (split_huge_page(page
)) {
414 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
419 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
425 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
427 if (pte_young(ptent
)) {
428 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
430 ptent
= pte_mkold(ptent
);
431 set_pte_at(mm
, addr
, pte
, ptent
);
432 tlb_remove_tlb_entry(tlb
, pte
, addr
);
436 * We are deactivating a page for accelerating reclaiming.
437 * VM couldn't reclaim the page unless we clear PG_young.
438 * As a side effect, it makes confuse idle-page tracking
439 * because they will miss recent referenced history.
441 ClearPageReferenced(page
);
442 test_and_clear_page_young(page
);
444 if (!isolate_lru_page(page
))
445 list_add(&page
->lru
, &page_list
);
447 deactivate_page(page
);
450 arch_leave_lazy_mmu_mode();
451 pte_unmap_unlock(orig_pte
, ptl
);
453 reclaim_pages(&page_list
);
459 static const struct mm_walk_ops cold_walk_ops
= {
460 .pmd_entry
= madvise_cold_or_pageout_pte_range
,
463 static void madvise_cold_page_range(struct mmu_gather
*tlb
,
464 struct vm_area_struct
*vma
,
465 unsigned long addr
, unsigned long end
)
467 struct madvise_walk_private walk_private
= {
472 tlb_start_vma(tlb
, vma
);
473 walk_page_range(vma
->vm_mm
, addr
, end
, &cold_walk_ops
, &walk_private
);
474 tlb_end_vma(tlb
, vma
);
477 static long madvise_cold(struct vm_area_struct
*vma
,
478 struct vm_area_struct
**prev
,
479 unsigned long start_addr
, unsigned long end_addr
)
481 struct mm_struct
*mm
= vma
->vm_mm
;
482 struct mmu_gather tlb
;
485 if (!can_madv_lru_vma(vma
))
489 tlb_gather_mmu(&tlb
, mm
, start_addr
, end_addr
);
490 madvise_cold_page_range(&tlb
, vma
, start_addr
, end_addr
);
491 tlb_finish_mmu(&tlb
, start_addr
, end_addr
);
496 static void madvise_pageout_page_range(struct mmu_gather
*tlb
,
497 struct vm_area_struct
*vma
,
498 unsigned long addr
, unsigned long end
)
500 struct madvise_walk_private walk_private
= {
505 tlb_start_vma(tlb
, vma
);
506 walk_page_range(vma
->vm_mm
, addr
, end
, &cold_walk_ops
, &walk_private
);
507 tlb_end_vma(tlb
, vma
);
510 static inline bool can_do_pageout(struct vm_area_struct
*vma
)
512 if (vma_is_anonymous(vma
))
517 * paging out pagecache only for non-anonymous mappings that correspond
518 * to the files the calling process could (if tried) open for writing;
519 * otherwise we'd be including shared non-exclusive mappings, which
520 * opens a side channel.
522 return inode_owner_or_capable(file_inode(vma
->vm_file
)) ||
523 inode_permission(file_inode(vma
->vm_file
), MAY_WRITE
) == 0;
526 static long madvise_pageout(struct vm_area_struct
*vma
,
527 struct vm_area_struct
**prev
,
528 unsigned long start_addr
, unsigned long end_addr
)
530 struct mm_struct
*mm
= vma
->vm_mm
;
531 struct mmu_gather tlb
;
534 if (!can_madv_lru_vma(vma
))
537 if (!can_do_pageout(vma
))
541 tlb_gather_mmu(&tlb
, mm
, start_addr
, end_addr
);
542 madvise_pageout_page_range(&tlb
, vma
, start_addr
, end_addr
);
543 tlb_finish_mmu(&tlb
, start_addr
, end_addr
);
548 static int madvise_free_pte_range(pmd_t
*pmd
, unsigned long addr
,
549 unsigned long end
, struct mm_walk
*walk
)
552 struct mmu_gather
*tlb
= walk
->private;
553 struct mm_struct
*mm
= tlb
->mm
;
554 struct vm_area_struct
*vma
= walk
->vma
;
556 pte_t
*orig_pte
, *pte
, ptent
;
561 next
= pmd_addr_end(addr
, end
);
562 if (pmd_trans_huge(*pmd
))
563 if (madvise_free_huge_pmd(tlb
, vma
, pmd
, addr
, next
))
566 if (pmd_trans_unstable(pmd
))
569 tlb_change_page_size(tlb
, PAGE_SIZE
);
570 orig_pte
= pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
571 flush_tlb_batched_pending(mm
);
572 arch_enter_lazy_mmu_mode();
573 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
579 * If the pte has swp_entry, just clear page table to
580 * prevent swap-in which is more expensive rather than
581 * (page allocation + zeroing).
583 if (!pte_present(ptent
)) {
586 entry
= pte_to_swp_entry(ptent
);
587 if (non_swap_entry(entry
))
590 free_swap_and_cache(entry
);
591 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
595 page
= vm_normal_page(vma
, addr
, ptent
);
600 * If pmd isn't transhuge but the page is THP and
601 * is owned by only this process, split it and
602 * deactivate all pages.
604 if (PageTransCompound(page
)) {
605 if (page_mapcount(page
) != 1)
608 if (!trylock_page(page
)) {
612 pte_unmap_unlock(orig_pte
, ptl
);
613 if (split_huge_page(page
)) {
616 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
621 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
627 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
629 if (PageSwapCache(page
) || PageDirty(page
)) {
630 if (!trylock_page(page
))
633 * If page is shared with others, we couldn't clear
634 * PG_dirty of the page.
636 if (page_mapcount(page
) != 1) {
641 if (PageSwapCache(page
) && !try_to_free_swap(page
)) {
646 ClearPageDirty(page
);
650 if (pte_young(ptent
) || pte_dirty(ptent
)) {
652 * Some of architecture(ex, PPC) don't update TLB
653 * with set_pte_at and tlb_remove_tlb_entry so for
654 * the portability, remap the pte with old|clean
655 * after pte clearing.
657 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
660 ptent
= pte_mkold(ptent
);
661 ptent
= pte_mkclean(ptent
);
662 set_pte_at(mm
, addr
, pte
, ptent
);
663 tlb_remove_tlb_entry(tlb
, pte
, addr
);
665 mark_page_lazyfree(page
);
669 if (current
->mm
== mm
)
672 add_mm_counter(mm
, MM_SWAPENTS
, nr_swap
);
674 arch_leave_lazy_mmu_mode();
675 pte_unmap_unlock(orig_pte
, ptl
);
681 static const struct mm_walk_ops madvise_free_walk_ops
= {
682 .pmd_entry
= madvise_free_pte_range
,
685 static int madvise_free_single_vma(struct vm_area_struct
*vma
,
686 unsigned long start_addr
, unsigned long end_addr
)
688 struct mm_struct
*mm
= vma
->vm_mm
;
689 struct mmu_notifier_range range
;
690 struct mmu_gather tlb
;
692 /* MADV_FREE works for only anon vma at the moment */
693 if (!vma_is_anonymous(vma
))
696 range
.start
= max(vma
->vm_start
, start_addr
);
697 if (range
.start
>= vma
->vm_end
)
699 range
.end
= min(vma
->vm_end
, end_addr
);
700 if (range
.end
<= vma
->vm_start
)
702 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
703 range
.start
, range
.end
);
706 tlb_gather_mmu(&tlb
, mm
, range
.start
, range
.end
);
707 update_hiwater_rss(mm
);
709 mmu_notifier_invalidate_range_start(&range
);
710 tlb_start_vma(&tlb
, vma
);
711 walk_page_range(vma
->vm_mm
, range
.start
, range
.end
,
712 &madvise_free_walk_ops
, &tlb
);
713 tlb_end_vma(&tlb
, vma
);
714 mmu_notifier_invalidate_range_end(&range
);
715 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
721 * Application no longer needs these pages. If the pages are dirty,
722 * it's OK to just throw them away. The app will be more careful about
723 * data it wants to keep. Be sure to free swap resources too. The
724 * zap_page_range call sets things up for shrink_active_list to actually free
725 * these pages later if no one else has touched them in the meantime,
726 * although we could add these pages to a global reuse list for
727 * shrink_active_list to pick up before reclaiming other pages.
729 * NB: This interface discards data rather than pushes it out to swap,
730 * as some implementations do. This has performance implications for
731 * applications like large transactional databases which want to discard
732 * pages in anonymous maps after committing to backing store the data
733 * that was kept in them. There is no reason to write this data out to
734 * the swap area if the application is discarding it.
736 * An interface that causes the system to free clean pages and flush
737 * dirty pages is already available as msync(MS_INVALIDATE).
739 static long madvise_dontneed_single_vma(struct vm_area_struct
*vma
,
740 unsigned long start
, unsigned long end
)
742 zap_page_range(vma
, start
, end
- start
);
746 static long madvise_dontneed_free(struct vm_area_struct
*vma
,
747 struct vm_area_struct
**prev
,
748 unsigned long start
, unsigned long end
,
752 if (!can_madv_lru_vma(vma
))
755 if (!userfaultfd_remove(vma
, start
, end
)) {
756 *prev
= NULL
; /* mmap_sem has been dropped, prev is stale */
758 down_read(¤t
->mm
->mmap_sem
);
759 vma
= find_vma(current
->mm
, start
);
762 if (start
< vma
->vm_start
) {
764 * This "vma" under revalidation is the one
765 * with the lowest vma->vm_start where start
766 * is also < vma->vm_end. If start <
767 * vma->vm_start it means an hole materialized
768 * in the user address space within the
769 * virtual range passed to MADV_DONTNEED
774 if (!can_madv_lru_vma(vma
))
776 if (end
> vma
->vm_end
) {
778 * Don't fail if end > vma->vm_end. If the old
779 * vma was splitted while the mmap_sem was
780 * released the effect of the concurrent
781 * operation may not cause madvise() to
782 * have an undefined result. There may be an
783 * adjacent next vma that we'll walk
784 * next. userfaultfd_remove() will generate an
785 * UFFD_EVENT_REMOVE repetition on the
786 * end-vma->vm_end range, but the manager can
787 * handle a repetition fine.
791 VM_WARN_ON(start
>= end
);
794 if (behavior
== MADV_DONTNEED
)
795 return madvise_dontneed_single_vma(vma
, start
, end
);
796 else if (behavior
== MADV_FREE
)
797 return madvise_free_single_vma(vma
, start
, end
);
803 * Application wants to free up the pages and associated backing store.
804 * This is effectively punching a hole into the middle of a file.
806 static long madvise_remove(struct vm_area_struct
*vma
,
807 struct vm_area_struct
**prev
,
808 unsigned long start
, unsigned long end
)
814 *prev
= NULL
; /* tell sys_madvise we drop mmap_sem */
816 if (vma
->vm_flags
& VM_LOCKED
)
821 if (!f
|| !f
->f_mapping
|| !f
->f_mapping
->host
) {
825 if ((vma
->vm_flags
& (VM_SHARED
|VM_WRITE
)) != (VM_SHARED
|VM_WRITE
))
828 offset
= (loff_t
)(start
- vma
->vm_start
)
829 + ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
832 * Filesystem's fallocate may need to take i_mutex. We need to
833 * explicitly grab a reference because the vma (and hence the
834 * vma's reference to the file) can go away as soon as we drop
838 if (userfaultfd_remove(vma
, start
, end
)) {
839 /* mmap_sem was not released by userfaultfd_remove() */
840 up_read(¤t
->mm
->mmap_sem
);
842 error
= vfs_fallocate(f
,
843 FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
844 offset
, end
- start
);
846 down_read(¤t
->mm
->mmap_sem
);
850 #ifdef CONFIG_MEMORY_FAILURE
852 * Error injection support for memory error handling.
854 static int madvise_inject_error(int behavior
,
855 unsigned long start
, unsigned long end
)
861 if (!capable(CAP_SYS_ADMIN
))
865 for (; start
< end
; start
+= PAGE_SIZE
<< order
) {
869 ret
= get_user_pages_fast(start
, 1, 0, &page
);
872 pfn
= page_to_pfn(page
);
875 * When soft offlining hugepages, after migrating the page
876 * we dissolve it, therefore in the second loop "page" will
877 * no longer be a compound page, and order will be 0.
879 order
= compound_order(compound_head(page
));
881 if (PageHWPoison(page
)) {
886 if (behavior
== MADV_SOFT_OFFLINE
) {
887 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
890 ret
= soft_offline_page(page
, MF_COUNT_INCREASED
);
896 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
900 * Drop the page reference taken by get_user_pages_fast(). In
901 * the absence of MF_COUNT_INCREASED the memory_failure()
902 * routine is responsible for pinning the page to prevent it
903 * from being released back to the page allocator.
906 ret
= memory_failure(pfn
, 0);
911 /* Ensure that all poisoned pages are removed from per-cpu lists */
912 for_each_populated_zone(zone
)
913 drain_all_pages(zone
);
920 madvise_vma(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
921 unsigned long start
, unsigned long end
, int behavior
)
925 return madvise_remove(vma
, prev
, start
, end
);
927 return madvise_willneed(vma
, prev
, start
, end
);
929 return madvise_cold(vma
, prev
, start
, end
);
931 return madvise_pageout(vma
, prev
, start
, end
);
934 return madvise_dontneed_free(vma
, prev
, start
, end
, behavior
);
936 return madvise_behavior(vma
, prev
, start
, end
, behavior
);
941 madvise_behavior_valid(int behavior
)
947 case MADV_SEQUENTIAL
:
957 case MADV_UNMERGEABLE
:
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
961 case MADV_NOHUGEPAGE
:
965 case MADV_WIPEONFORK
:
966 case MADV_KEEPONFORK
:
967 #ifdef CONFIG_MEMORY_FAILURE
968 case MADV_SOFT_OFFLINE
:
979 * The madvise(2) system call.
981 * Applications can use madvise() to advise the kernel how it should
982 * handle paging I/O in this VM area. The idea is to help the kernel
983 * use appropriate read-ahead and caching techniques. The information
984 * provided is advisory only, and can be safely disregarded by the
985 * kernel without affecting the correct operation of the application.
988 * MADV_NORMAL - the default behavior is to read clusters. This
989 * results in some read-ahead and read-behind.
990 * MADV_RANDOM - the system should read the minimum amount of data
991 * on any access, since it is unlikely that the appli-
992 * cation will need more than what it asks for.
993 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
994 * once, so they can be aggressively read ahead, and
995 * can be freed soon after they are accessed.
996 * MADV_WILLNEED - the application is notifying the system to read
998 * MADV_DONTNEED - the application is finished with the given range,
999 * so the kernel can free resources associated with it.
1000 * MADV_FREE - the application marks pages in the given range as lazy free,
1001 * where actual purges are postponed until memory pressure happens.
1002 * MADV_REMOVE - the application wants to free up the given range of
1003 * pages and associated backing store.
1004 * MADV_DONTFORK - omit this area from child's address space when forking:
1005 * typically, to avoid COWing pages pinned by get_user_pages().
1006 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1007 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1008 * range after a fork.
1009 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1010 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1011 * were corrupted by unrecoverable hardware memory failure.
1012 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1013 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1014 * this area with pages of identical content from other such areas.
1015 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1016 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1017 * huge pages in the future. Existing pages might be coalesced and
1018 * new pages might be allocated as THP.
1019 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1020 * transparent huge pages so the existing pages will not be
1021 * coalesced into THP and new pages will not be allocated as THP.
1022 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1023 * from being included in its core dump.
1024 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1028 * -EINVAL - start + len < 0, start is not page-aligned,
1029 * "behavior" is not a valid value, or application
1030 * is attempting to release locked or shared pages,
1031 * or the specified address range includes file, Huge TLB,
1032 * MAP_SHARED or VMPFNMAP range.
1033 * -ENOMEM - addresses in the specified range are not currently
1034 * mapped, or are outside the AS of the process.
1035 * -EIO - an I/O error occurred while paging in data.
1036 * -EBADF - map exists, but area maps something that isn't a file.
1037 * -EAGAIN - a kernel resource was temporarily unavailable.
1039 SYSCALL_DEFINE3(madvise
, unsigned long, start
, size_t, len_in
, int, behavior
)
1041 unsigned long end
, tmp
;
1042 struct vm_area_struct
*vma
, *prev
;
1043 int unmapped_error
= 0;
1044 int error
= -EINVAL
;
1047 struct blk_plug plug
;
1049 start
= untagged_addr(start
);
1051 if (!madvise_behavior_valid(behavior
))
1054 if (start
& ~PAGE_MASK
)
1056 len
= (len_in
+ ~PAGE_MASK
) & PAGE_MASK
;
1058 /* Check to see whether len was rounded up from small -ve to zero */
1070 #ifdef CONFIG_MEMORY_FAILURE
1071 if (behavior
== MADV_HWPOISON
|| behavior
== MADV_SOFT_OFFLINE
)
1072 return madvise_inject_error(behavior
, start
, start
+ len_in
);
1075 write
= madvise_need_mmap_write(behavior
);
1077 if (down_write_killable(¤t
->mm
->mmap_sem
))
1080 down_read(¤t
->mm
->mmap_sem
);
1084 * If the interval [start,end) covers some unmapped address
1085 * ranges, just ignore them, but return -ENOMEM at the end.
1086 * - different from the way of handling in mlock etc.
1088 vma
= find_vma_prev(current
->mm
, start
, &prev
);
1089 if (vma
&& start
> vma
->vm_start
)
1092 blk_start_plug(&plug
);
1094 /* Still start < end. */
1099 /* Here start < (end|vma->vm_end). */
1100 if (start
< vma
->vm_start
) {
1101 unmapped_error
= -ENOMEM
;
1102 start
= vma
->vm_start
;
1107 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1112 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1113 error
= madvise_vma(vma
, &prev
, start
, tmp
, behavior
);
1117 if (prev
&& start
< prev
->vm_end
)
1118 start
= prev
->vm_end
;
1119 error
= unmapped_error
;
1123 vma
= prev
->vm_next
;
1124 else /* madvise_remove dropped mmap_sem */
1125 vma
= find_vma(current
->mm
, start
);
1128 blk_finish_plug(&plug
);
1130 up_write(¤t
->mm
->mmap_sem
);
1132 up_read(¤t
->mm
->mmap_sem
);