1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
44 /* How many pages do we try to swap or page in/out together? */
47 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
48 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
49 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_file_pvecs
);
50 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
51 static DEFINE_PER_CPU(struct pagevec
, lru_lazyfree_pvecs
);
53 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
57 * This path almost never happens for VM activity - pages are normally
58 * freed via pagevecs. But it gets used by networking.
60 static void __page_cache_release(struct page
*page
)
63 pg_data_t
*pgdat
= page_pgdat(page
);
64 struct lruvec
*lruvec
;
67 spin_lock_irqsave(&pgdat
->lru_lock
, flags
);
68 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
69 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
71 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
72 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
74 __ClearPageWaiters(page
);
77 static void __put_single_page(struct page
*page
)
79 __page_cache_release(page
);
80 mem_cgroup_uncharge(page
);
81 free_unref_page(page
);
84 static void __put_compound_page(struct page
*page
)
86 compound_page_dtor
*dtor
;
89 * __page_cache_release() is supposed to be called for thp, not for
90 * hugetlb. This is because hugetlb page does never have PageLRU set
91 * (it's never listed to any LRU lists) and no memcg routines should
92 * be called for hugetlb (it has a separate hugetlb_cgroup.)
95 __page_cache_release(page
);
96 dtor
= get_compound_page_dtor(page
);
100 void __put_page(struct page
*page
)
102 if (is_zone_device_page(page
)) {
103 put_dev_pagemap(page
->pgmap
);
106 * The page belongs to the device that created pgmap. Do
107 * not return it to page allocator.
112 if (unlikely(PageCompound(page
)))
113 __put_compound_page(page
);
115 __put_single_page(page
);
117 EXPORT_SYMBOL(__put_page
);
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
123 * Release a list of pages which are strung together on page.lru. Currently
124 * used by read_cache_pages() and related error recovery code.
126 void put_pages_list(struct list_head
*pages
)
128 while (!list_empty(pages
)) {
131 victim
= lru_to_page(pages
);
132 list_del(&victim
->lru
);
136 EXPORT_SYMBOL(put_pages_list
);
139 * get_kernel_pages() - pin kernel pages in memory
140 * @kiov: An array of struct kvec structures
141 * @nr_segs: number of segments to pin
142 * @write: pinning for read/write, currently ignored
143 * @pages: array that receives pointers to the pages pinned.
144 * Should be at least nr_segs long.
146 * Returns number of pages pinned. This may be fewer than the number
147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
148 * were pinned, returns -errno. Each page returned must be released
149 * with a put_page() call when it is finished with.
151 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
156 for (seg
= 0; seg
< nr_segs
; seg
++) {
157 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
160 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
161 get_page(pages
[seg
]);
166 EXPORT_SYMBOL_GPL(get_kernel_pages
);
169 * get_kernel_page() - pin a kernel page in memory
170 * @start: starting kernel address
171 * @write: pinning for read/write, currently ignored
172 * @pages: array that receives pointer to the page pinned.
173 * Must be at least nr_segs long.
175 * Returns 1 if page is pinned. If the page was not pinned, returns
176 * -errno. The page returned must be released with a put_page() call
177 * when it is finished with.
179 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
181 const struct kvec kiov
= {
182 .iov_base
= (void *)start
,
186 return get_kernel_pages(&kiov
, 1, write
, pages
);
188 EXPORT_SYMBOL_GPL(get_kernel_page
);
190 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
191 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
195 struct pglist_data
*pgdat
= NULL
;
196 struct lruvec
*lruvec
;
197 unsigned long flags
= 0;
199 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
200 struct page
*page
= pvec
->pages
[i
];
201 struct pglist_data
*pagepgdat
= page_pgdat(page
);
203 if (pagepgdat
!= pgdat
) {
205 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
207 spin_lock_irqsave(&pgdat
->lru_lock
, flags
);
210 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
211 (*move_fn
)(page
, lruvec
, arg
);
214 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
215 release_pages(pvec
->pages
, pvec
->nr
);
216 pagevec_reinit(pvec
);
219 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
224 if (PageLRU(page
) && !PageUnevictable(page
)) {
225 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
226 ClearPageActive(page
);
227 add_page_to_lru_list_tail(page
, lruvec
, page_lru(page
));
233 * pagevec_move_tail() must be called with IRQ disabled.
234 * Otherwise this may cause nasty races.
236 static void pagevec_move_tail(struct pagevec
*pvec
)
240 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
241 __count_vm_events(PGROTATED
, pgmoved
);
245 * Writeback is about to end against a page which has been marked for immediate
246 * reclaim. If it still appears to be reclaimable, move it to the tail of the
249 void rotate_reclaimable_page(struct page
*page
)
251 if (!PageLocked(page
) && !PageDirty(page
) &&
252 !PageUnevictable(page
) && PageLRU(page
)) {
253 struct pagevec
*pvec
;
257 local_irq_save(flags
);
258 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
259 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
260 pagevec_move_tail(pvec
);
261 local_irq_restore(flags
);
265 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
266 int file
, int rotated
)
268 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
270 reclaim_stat
->recent_scanned
[file
]++;
272 reclaim_stat
->recent_rotated
[file
]++;
275 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
278 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
279 int file
= page_is_file_cache(page
);
280 int lru
= page_lru_base_type(page
);
282 del_page_from_lru_list(page
, lruvec
, lru
);
285 add_page_to_lru_list(page
, lruvec
, lru
);
286 trace_mm_lru_activate(page
);
288 __count_vm_event(PGACTIVATE
);
289 update_page_reclaim_stat(lruvec
, file
, 1);
294 static void activate_page_drain(int cpu
)
296 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
298 if (pagevec_count(pvec
))
299 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
302 static bool need_activate_page_drain(int cpu
)
304 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
307 void activate_page(struct page
*page
)
309 page
= compound_head(page
);
310 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
311 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
314 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
315 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
316 put_cpu_var(activate_page_pvecs
);
321 static inline void activate_page_drain(int cpu
)
325 void activate_page(struct page
*page
)
327 pg_data_t
*pgdat
= page_pgdat(page
);
329 page
= compound_head(page
);
330 spin_lock_irq(&pgdat
->lru_lock
);
331 __activate_page(page
, mem_cgroup_page_lruvec(page
, pgdat
), NULL
);
332 spin_unlock_irq(&pgdat
->lru_lock
);
336 static void __lru_cache_activate_page(struct page
*page
)
338 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
342 * Search backwards on the optimistic assumption that the page being
343 * activated has just been added to this pagevec. Note that only
344 * the local pagevec is examined as a !PageLRU page could be in the
345 * process of being released, reclaimed, migrated or on a remote
346 * pagevec that is currently being drained. Furthermore, marking
347 * a remote pagevec's page PageActive potentially hits a race where
348 * a page is marked PageActive just after it is added to the inactive
349 * list causing accounting errors and BUG_ON checks to trigger.
351 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
352 struct page
*pagevec_page
= pvec
->pages
[i
];
354 if (pagevec_page
== page
) {
360 put_cpu_var(lru_add_pvec
);
364 * Mark a page as having seen activity.
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
373 void mark_page_accessed(struct page
*page
)
375 page
= compound_head(page
);
376 if (!PageActive(page
) && !PageUnevictable(page
) &&
377 PageReferenced(page
)) {
380 * If the page is on the LRU, queue it for activation via
381 * activate_page_pvecs. Otherwise, assume the page is on a
382 * pagevec, mark it active and it'll be moved to the active
383 * LRU on the next drain.
388 __lru_cache_activate_page(page
);
389 ClearPageReferenced(page
);
390 if (page_is_file_cache(page
))
391 workingset_activation(page
);
392 } else if (!PageReferenced(page
)) {
393 SetPageReferenced(page
);
395 if (page_is_idle(page
))
396 clear_page_idle(page
);
398 EXPORT_SYMBOL(mark_page_accessed
);
400 static void __lru_cache_add(struct page
*page
)
402 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
405 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
406 __pagevec_lru_add(pvec
);
407 put_cpu_var(lru_add_pvec
);
411 * lru_cache_add_anon - add a page to the page lists
412 * @page: the page to add
414 void lru_cache_add_anon(struct page
*page
)
416 if (PageActive(page
))
417 ClearPageActive(page
);
418 __lru_cache_add(page
);
421 void lru_cache_add_file(struct page
*page
)
423 if (PageActive(page
))
424 ClearPageActive(page
);
425 __lru_cache_add(page
);
427 EXPORT_SYMBOL(lru_cache_add_file
);
430 * lru_cache_add - add a page to a page list
431 * @page: the page to be added to the LRU.
433 * Queue the page for addition to the LRU via pagevec. The decision on whether
434 * to add the page to the [in]active [file|anon] list is deferred until the
435 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
436 * have the page added to the active list using mark_page_accessed().
438 void lru_cache_add(struct page
*page
)
440 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
441 VM_BUG_ON_PAGE(PageLRU(page
), page
);
442 __lru_cache_add(page
);
446 * lru_cache_add_active_or_unevictable
447 * @page: the page to be added to LRU
448 * @vma: vma in which page is mapped for determining reclaimability
450 * Place @page on the active or unevictable LRU list, depending on its
451 * evictability. Note that if the page is not evictable, it goes
452 * directly back onto it's zone's unevictable list, it does NOT use a
455 void lru_cache_add_active_or_unevictable(struct page
*page
,
456 struct vm_area_struct
*vma
)
458 VM_BUG_ON_PAGE(PageLRU(page
), page
);
460 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
))
462 else if (!TestSetPageMlocked(page
)) {
464 * We use the irq-unsafe __mod_zone_page_stat because this
465 * counter is not modified from interrupt context, and the pte
466 * lock is held(spinlock), which implies preemption disabled.
468 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
469 hpage_nr_pages(page
));
470 count_vm_event(UNEVICTABLE_PGMLOCKED
);
476 * If the page can not be invalidated, it is moved to the
477 * inactive list to speed up its reclaim. It is moved to the
478 * head of the list, rather than the tail, to give the flusher
479 * threads some time to write it out, as this is much more
480 * effective than the single-page writeout from reclaim.
482 * If the page isn't page_mapped and dirty/writeback, the page
483 * could reclaim asap using PG_reclaim.
485 * 1. active, mapped page -> none
486 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
487 * 3. inactive, mapped page -> none
488 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
489 * 5. inactive, clean -> inactive, tail
492 * In 4, why it moves inactive's head, the VM expects the page would
493 * be write it out by flusher threads as this is much more effective
494 * than the single-page writeout from reclaim.
496 static void lru_deactivate_file_fn(struct page
*page
, struct lruvec
*lruvec
,
505 if (PageUnevictable(page
))
508 /* Some processes are using the page */
509 if (page_mapped(page
))
512 active
= PageActive(page
);
513 file
= page_is_file_cache(page
);
514 lru
= page_lru_base_type(page
);
516 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
517 ClearPageActive(page
);
518 ClearPageReferenced(page
);
520 if (PageWriteback(page
) || PageDirty(page
)) {
522 * PG_reclaim could be raced with end_page_writeback
523 * It can make readahead confusing. But race window
524 * is _really_ small and it's non-critical problem.
526 add_page_to_lru_list(page
, lruvec
, lru
);
527 SetPageReclaim(page
);
530 * The page's writeback ends up during pagevec
531 * We moves tha page into tail of inactive.
533 add_page_to_lru_list_tail(page
, lruvec
, lru
);
534 __count_vm_event(PGROTATED
);
538 __count_vm_event(PGDEACTIVATE
);
539 update_page_reclaim_stat(lruvec
, file
, 0);
542 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
545 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
546 int file
= page_is_file_cache(page
);
547 int lru
= page_lru_base_type(page
);
549 del_page_from_lru_list(page
, lruvec
, lru
+ LRU_ACTIVE
);
550 ClearPageActive(page
);
551 ClearPageReferenced(page
);
552 add_page_to_lru_list(page
, lruvec
, lru
);
554 __count_vm_events(PGDEACTIVATE
, hpage_nr_pages(page
));
555 update_page_reclaim_stat(lruvec
, file
, 0);
559 static void lru_lazyfree_fn(struct page
*page
, struct lruvec
*lruvec
,
562 if (PageLRU(page
) && PageAnon(page
) && PageSwapBacked(page
) &&
563 !PageSwapCache(page
) && !PageUnevictable(page
)) {
564 bool active
= PageActive(page
);
566 del_page_from_lru_list(page
, lruvec
,
567 LRU_INACTIVE_ANON
+ active
);
568 ClearPageActive(page
);
569 ClearPageReferenced(page
);
571 * lazyfree pages are clean anonymous pages. They have
572 * SwapBacked flag cleared to distinguish normal anonymous
575 ClearPageSwapBacked(page
);
576 add_page_to_lru_list(page
, lruvec
, LRU_INACTIVE_FILE
);
578 __count_vm_events(PGLAZYFREE
, hpage_nr_pages(page
));
579 count_memcg_page_event(page
, PGLAZYFREE
);
580 update_page_reclaim_stat(lruvec
, 1, 0);
585 * Drain pages out of the cpu's pagevecs.
586 * Either "cpu" is the current CPU, and preemption has already been
587 * disabled; or "cpu" is being hot-unplugged, and is already dead.
589 void lru_add_drain_cpu(int cpu
)
591 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
593 if (pagevec_count(pvec
))
594 __pagevec_lru_add(pvec
);
596 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
597 if (pagevec_count(pvec
)) {
600 /* No harm done if a racing interrupt already did this */
601 local_irq_save(flags
);
602 pagevec_move_tail(pvec
);
603 local_irq_restore(flags
);
606 pvec
= &per_cpu(lru_deactivate_file_pvecs
, cpu
);
607 if (pagevec_count(pvec
))
608 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
610 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
611 if (pagevec_count(pvec
))
612 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
614 pvec
= &per_cpu(lru_lazyfree_pvecs
, cpu
);
615 if (pagevec_count(pvec
))
616 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
, NULL
);
618 activate_page_drain(cpu
);
622 * deactivate_file_page - forcefully deactivate a file page
623 * @page: page to deactivate
625 * This function hints the VM that @page is a good reclaim candidate,
626 * for example if its invalidation fails due to the page being dirty
627 * or under writeback.
629 void deactivate_file_page(struct page
*page
)
632 * In a workload with many unevictable page such as mprotect,
633 * unevictable page deactivation for accelerating reclaim is pointless.
635 if (PageUnevictable(page
))
638 if (likely(get_page_unless_zero(page
))) {
639 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_file_pvecs
);
641 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
642 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
643 put_cpu_var(lru_deactivate_file_pvecs
);
648 * deactivate_page - deactivate a page
649 * @page: page to deactivate
651 * deactivate_page() moves @page to the inactive list if @page was on the active
652 * list and was not an unevictable page. This is done to accelerate the reclaim
655 void deactivate_page(struct page
*page
)
657 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
658 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
661 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
662 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
663 put_cpu_var(lru_deactivate_pvecs
);
668 * mark_page_lazyfree - make an anon page lazyfree
669 * @page: page to deactivate
671 * mark_page_lazyfree() moves @page to the inactive file list.
672 * This is done to accelerate the reclaim of @page.
674 void mark_page_lazyfree(struct page
*page
)
676 if (PageLRU(page
) && PageAnon(page
) && PageSwapBacked(page
) &&
677 !PageSwapCache(page
) && !PageUnevictable(page
)) {
678 struct pagevec
*pvec
= &get_cpu_var(lru_lazyfree_pvecs
);
681 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
682 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
, NULL
);
683 put_cpu_var(lru_lazyfree_pvecs
);
687 void lru_add_drain(void)
689 lru_add_drain_cpu(get_cpu());
695 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
697 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
703 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
704 * kworkers being shut down before our page_alloc_cpu_dead callback is
705 * executed on the offlined cpu.
706 * Calling this function with cpu hotplug locks held can actually lead
707 * to obscure indirect dependencies via WQ context.
709 void lru_add_drain_all(void)
711 static DEFINE_MUTEX(lock
);
712 static struct cpumask has_work
;
716 * Make sure nobody triggers this path before mm_percpu_wq is fully
719 if (WARN_ON(!mm_percpu_wq
))
723 cpumask_clear(&has_work
);
725 for_each_online_cpu(cpu
) {
726 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
728 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
729 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
730 pagevec_count(&per_cpu(lru_deactivate_file_pvecs
, cpu
)) ||
731 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
732 pagevec_count(&per_cpu(lru_lazyfree_pvecs
, cpu
)) ||
733 need_activate_page_drain(cpu
)) {
734 INIT_WORK(work
, lru_add_drain_per_cpu
);
735 queue_work_on(cpu
, mm_percpu_wq
, work
);
736 cpumask_set_cpu(cpu
, &has_work
);
740 for_each_cpu(cpu
, &has_work
)
741 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
746 void lru_add_drain_all(void)
753 * release_pages - batched put_page()
754 * @pages: array of pages to release
755 * @nr: number of pages
757 * Decrement the reference count on all the pages in @pages. If it
758 * fell to zero, remove the page from the LRU and free it.
760 void release_pages(struct page
**pages
, int nr
)
763 LIST_HEAD(pages_to_free
);
764 struct pglist_data
*locked_pgdat
= NULL
;
765 struct lruvec
*lruvec
;
766 unsigned long uninitialized_var(flags
);
767 unsigned int uninitialized_var(lock_batch
);
769 for (i
= 0; i
< nr
; i
++) {
770 struct page
*page
= pages
[i
];
773 * Make sure the IRQ-safe lock-holding time does not get
774 * excessive with a continuous string of pages from the
775 * same pgdat. The lock is held only if pgdat != NULL.
777 if (locked_pgdat
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
778 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
782 if (is_huge_zero_page(page
))
785 if (is_zone_device_page(page
)) {
787 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
,
792 * ZONE_DEVICE pages that return 'false' from
793 * put_devmap_managed_page() do not require special
794 * processing, and instead, expect a call to
795 * put_page_testzero().
797 if (put_devmap_managed_page(page
))
801 page
= compound_head(page
);
802 if (!put_page_testzero(page
))
805 if (PageCompound(page
)) {
807 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
810 __put_compound_page(page
);
815 struct pglist_data
*pgdat
= page_pgdat(page
);
817 if (pgdat
!= locked_pgdat
) {
819 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
,
822 locked_pgdat
= pgdat
;
823 spin_lock_irqsave(&locked_pgdat
->lru_lock
, flags
);
826 lruvec
= mem_cgroup_page_lruvec(page
, locked_pgdat
);
827 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
828 __ClearPageLRU(page
);
829 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
832 /* Clear Active bit in case of parallel mark_page_accessed */
833 __ClearPageActive(page
);
834 __ClearPageWaiters(page
);
836 list_add(&page
->lru
, &pages_to_free
);
839 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
841 mem_cgroup_uncharge_list(&pages_to_free
);
842 free_unref_page_list(&pages_to_free
);
844 EXPORT_SYMBOL(release_pages
);
847 * The pages which we're about to release may be in the deferred lru-addition
848 * queues. That would prevent them from really being freed right now. That's
849 * OK from a correctness point of view but is inefficient - those pages may be
850 * cache-warm and we want to give them back to the page allocator ASAP.
852 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
853 * and __pagevec_lru_add_active() call release_pages() directly to avoid
856 void __pagevec_release(struct pagevec
*pvec
)
858 if (!pvec
->percpu_pvec_drained
) {
860 pvec
->percpu_pvec_drained
= true;
862 release_pages(pvec
->pages
, pagevec_count(pvec
));
863 pagevec_reinit(pvec
);
865 EXPORT_SYMBOL(__pagevec_release
);
867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
868 /* used by __split_huge_page_refcount() */
869 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
870 struct lruvec
*lruvec
, struct list_head
*list
)
874 VM_BUG_ON_PAGE(!PageHead(page
), page
);
875 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
876 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
877 lockdep_assert_held(&lruvec_pgdat(lruvec
)->lru_lock
);
880 SetPageLRU(page_tail
);
882 if (likely(PageLRU(page
)))
883 list_add_tail(&page_tail
->lru
, &page
->lru
);
885 /* page reclaim is reclaiming a huge page */
887 list_add_tail(&page_tail
->lru
, list
);
890 * Head page has not yet been counted, as an hpage,
891 * so we must account for each subpage individually.
893 * Put page_tail on the list at the correct position
894 * so they all end up in order.
896 add_page_to_lru_list_tail(page_tail
, lruvec
,
897 page_lru(page_tail
));
900 if (!PageUnevictable(page
))
901 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
903 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
905 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
909 int was_unevictable
= TestClearPageUnevictable(page
);
911 VM_BUG_ON_PAGE(PageLRU(page
), page
);
915 * Page becomes evictable in two ways:
916 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
917 * 2) Before acquiring LRU lock to put the page to correct LRU and then
918 * a) do PageLRU check with lock [check_move_unevictable_pages]
919 * b) do PageLRU check before lock [clear_page_mlock]
921 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
922 * following strict ordering:
924 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
926 * SetPageLRU() TestClearPageMlocked()
927 * smp_mb() // explicit ordering // above provides strict
929 * PageMlocked() PageLRU()
932 * if '#1' does not observe setting of PG_lru by '#0' and fails
933 * isolation, the explicit barrier will make sure that page_evictable
934 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
935 * can be reordered after PageMlocked check and can make '#1' to fail
936 * the isolation of the page whose Mlocked bit is cleared (#0 is also
937 * looking at the same page) and the evictable page will be stranded
938 * in an unevictable LRU.
942 if (page_evictable(page
)) {
943 lru
= page_lru(page
);
944 update_page_reclaim_stat(lruvec
, page_is_file_cache(page
),
947 count_vm_event(UNEVICTABLE_PGRESCUED
);
949 lru
= LRU_UNEVICTABLE
;
950 ClearPageActive(page
);
951 SetPageUnevictable(page
);
952 if (!was_unevictable
)
953 count_vm_event(UNEVICTABLE_PGCULLED
);
956 add_page_to_lru_list(page
, lruvec
, lru
);
957 trace_mm_lru_insertion(page
, lru
);
961 * Add the passed pages to the LRU, then drop the caller's refcount
962 * on them. Reinitialises the caller's pagevec.
964 void __pagevec_lru_add(struct pagevec
*pvec
)
966 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
968 EXPORT_SYMBOL(__pagevec_lru_add
);
971 * pagevec_lookup_entries - gang pagecache lookup
972 * @pvec: Where the resulting entries are placed
973 * @mapping: The address_space to search
974 * @start: The starting entry index
975 * @nr_entries: The maximum number of pages
976 * @indices: The cache indices corresponding to the entries in @pvec
978 * pagevec_lookup_entries() will search for and return a group of up
979 * to @nr_pages pages and shadow entries in the mapping. All
980 * entries are placed in @pvec. pagevec_lookup_entries() takes a
981 * reference against actual pages in @pvec.
983 * The search returns a group of mapping-contiguous entries with
984 * ascending indexes. There may be holes in the indices due to
985 * not-present entries.
987 * pagevec_lookup_entries() returns the number of entries which were
990 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
991 struct address_space
*mapping
,
992 pgoff_t start
, unsigned nr_entries
,
995 pvec
->nr
= find_get_entries(mapping
, start
, nr_entries
,
996 pvec
->pages
, indices
);
997 return pagevec_count(pvec
);
1001 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1002 * @pvec: The pagevec to prune
1004 * pagevec_lookup_entries() fills both pages and exceptional radix
1005 * tree entries into the pagevec. This function prunes all
1006 * exceptionals from @pvec without leaving holes, so that it can be
1007 * passed on to page-only pagevec operations.
1009 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
1013 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
1014 struct page
*page
= pvec
->pages
[i
];
1015 if (!xa_is_value(page
))
1016 pvec
->pages
[j
++] = page
;
1022 * pagevec_lookup_range - gang pagecache lookup
1023 * @pvec: Where the resulting pages are placed
1024 * @mapping: The address_space to search
1025 * @start: The starting page index
1026 * @end: The final page index
1028 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1029 * pages in the mapping starting from index @start and upto index @end
1030 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1031 * reference against the pages in @pvec.
1033 * The search returns a group of mapping-contiguous pages with ascending
1034 * indexes. There may be holes in the indices due to not-present pages. We
1035 * also update @start to index the next page for the traversal.
1037 * pagevec_lookup_range() returns the number of pages which were found. If this
1038 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1041 unsigned pagevec_lookup_range(struct pagevec
*pvec
,
1042 struct address_space
*mapping
, pgoff_t
*start
, pgoff_t end
)
1044 pvec
->nr
= find_get_pages_range(mapping
, start
, end
, PAGEVEC_SIZE
,
1046 return pagevec_count(pvec
);
1048 EXPORT_SYMBOL(pagevec_lookup_range
);
1050 unsigned pagevec_lookup_range_tag(struct pagevec
*pvec
,
1051 struct address_space
*mapping
, pgoff_t
*index
, pgoff_t end
,
1054 pvec
->nr
= find_get_pages_range_tag(mapping
, index
, end
, tag
,
1055 PAGEVEC_SIZE
, pvec
->pages
);
1056 return pagevec_count(pvec
);
1058 EXPORT_SYMBOL(pagevec_lookup_range_tag
);
1060 unsigned pagevec_lookup_range_nr_tag(struct pagevec
*pvec
,
1061 struct address_space
*mapping
, pgoff_t
*index
, pgoff_t end
,
1062 xa_mark_t tag
, unsigned max_pages
)
1064 pvec
->nr
= find_get_pages_range_tag(mapping
, index
, end
, tag
,
1065 min_t(unsigned int, max_pages
, PAGEVEC_SIZE
), pvec
->pages
);
1066 return pagevec_count(pvec
);
1068 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag
);
1070 * Perform any setup for the swap system
1072 void __init
swap_setup(void)
1074 unsigned long megs
= totalram_pages() >> (20 - PAGE_SHIFT
);
1076 /* Use a smaller cluster for small-memory machines */
1082 * Right now other parts of the system means that we
1083 * _really_ don't want to cluster much more